特征方程解数列递推关系
特征方程法求递推数列的通项公式
特征方程法求解递推关系中的数列通项之吉白夕凡创作一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式.采纳数学归纳法可以求解这一问题, 然而这样做太过繁琐, 而且在猜想通项公式中容易犯错, 本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行论述.定理1:设上述递推关系式的特征方程的根为0x , 则那时10a x =,na 为常数列, 即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列, 即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cd x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 那时10a x ≠, 01≠b , 数列}{n b 是以c 为公比的等比数列, 故;11-=n n c b b那时10a x =, 01=b , }{n b 为0数列, 故.N ,1∈=n a a n (证毕)下面列举两例, 说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则那时41=a , .21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单元.当1a 取何值时, 数列}{n a 是常数数列?解:作方程,)32(i x x +=则.5360ix +-=要使n a 为常数, 即则必需.53601ix a +-== 二、(二阶线性递推式)定理2:对由递推公式nn n qa pa a +=++12, βα==21,a a 给出的数列{}n a , 方程02=--q px x , 叫做数列{}n a 的特征方程.若21,x x 是特征方程的两个根, 那时21x x ≠, 数列{}n a 的通项为1211--+=n n n Bx Ax a , 其中A, B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n , 代入1211--+=n n n Bx Ax a , 获得关于A 、B 的方程组);那时21x x =, 数列{}n a 的通项为11)(-+=n n x B A a , 其中A, B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n , 代入11)(-+=n n x Bn A a , 获得关于A 、B 的方程组). 例3:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++, 求数列{}n a 的通项公式.解法一(待定系数——迭加法) 由025312=+-++n n n a a a , 得)(32112n n n n a a a a -=-+++, 且a b a a -=-12.则数列{}n n a a -+1是以a b -为首项, 32为公比的等比数列, 于是11)32)((-+-=-n n n a b a a .把n n ,,3,2,1⋅⋅⋅=代入, 得a b a a -=-12,)32()(23⋅-=-a b a a ,234)32()(⋅-=-a b a a ,21)32)((---=-n n n a b a a .把以上各式相加, 得])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-.a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--.解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x .32,121==x x , ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A . 又由b a a a ==21,, 于是 故1)32)((323--+-=n n b a a b a三、(分式递推式)定理3:如果数列}{n a 满足下列条件:已知1a 的值且对N ∈n , 都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数, 且rh a r qr ph -≠≠≠1,0,), 那么,可作特征方程hrx qpx x ++=.(1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ 若λ≠1a , 则,N ,1∈+=n b a nn λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地, 当存在,N 0∈n 使00=n b 时, 无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时, 则112--=n n n c c a λλ, ,N ∈n其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根, 使用定理2的第(2)部份, 则有∴.N ,)51(521∈-=-n c n n∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ即.N ,)5(24)5(∈-+--=n a nn n 例5.已知数列}{n a 满足:对,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a(4)当1a 取哪些值时, 无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部份解答.(1)∵∴=∴=.,511λa a 对,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p rn a b n --+-=)1(11 令0=n b , 得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4, N ∈n 时, 51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ (4)、显然那时31-=a , 数列从第2项开始便不存在.由本题的第(1)小题的解答过程知, 51=a 时, 数列}{n a 是存在的, 那时51=≠λa , 则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时, 数列}{n a 从第n 项开始便不存在.于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时, 无穷数列}{n a 都不存在. 练习题:求下列数列的通项公式:1、 在数列}{n a 中, ,7,121==a a )3(3221≥+=--n a a a n n n , 求n a .(key :21)1(32---+⋅=n n n a )2、 在数列}{n a 中, ,5,121==a a 且2145---=n n n a a a , 求n a .(key :)14(31-=n n a )3、 在数列}{n a 中, ,7,321==a a )3(2321≥-=--n a a a n n n , 求n a .(key :121-=+n n a )4、 在数列}{n a 中, ,2,321==a a n n n a a a 313212+=++, 求n a .(key :2)31(4147--⋅+=n n a )5、 在数列}{n a 中, ,35,321==a a )4(3112n n n a a a -=++, 求n a .(key :1321-+=n n a )6、 在数列}{n a 中, ,,21b a a a ==n n n qa pa a +=++12, 且1=+q p .求n a .(key :1=q 时, ))(1(a b n a a n --+=;1≠q 时, qq a b b aq a n n +---+=-1))((1)7、 在数列}{n a 中, ,,21b a a a a +==0)(12=++-++n n n qa a q p pa (qp ,是非0常数).求n a .(key :b pq q p p a a n n )](1[1---+=(q p ≠);b n a a n )1(1-+=)(q p =)8、在数列}{n a 中, 21,a a 给定, 21--+=n n n ca ba a .求n a .(key:122211)(a c a a n n n n n ⋅--+⋅--=----αβαβαβαβ)(βα≠;若βα=, 上式不能应用, 此时,.)2()1(1122----⋅-=n n n a n a n a αα附定理3的证明定理3(分式递推问题):如果数列}{n a 满足下列条件:已知1a 的值且对N ∈n , 都有hra qpa a n n n ++=+1(其中p 、q 、r 、h 均为常数, 且rh a r qr ph -≠≠≠1,0,), 那么, 可作特征方程hrx qpx x ++=.(1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a , 则,N ,1∈+=n b a nn λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地, 当存在,N 0∈n 使00=n b 时, 无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时, 则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第(1)部份. 作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra qpa a d n n n n 11λλλλr h rd q p h r r p d n n -+--+--=])([)(2① ∵λ是特征方程的根, ∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ②将rp x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ③ 当01=d , 即λ+=11d a =λ时, 由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ立即01≠d λ≠1a 时, 由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变动:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+④由λ是方程hrx qpx x ++=的两个相同的根可以求得.2rhp -=λ ∴,122=++=---+=-+h p p h rrh p p rr hp h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp r d d n n λ令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以r p rλ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n r p r n b b n λ 其中.11111λ-==a d b 那时0,N ≠∈n b n , .N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时, λλ+=+=0001n n n b d a 无意义.故此时, 无穷数列}{n a 是不存在的.再证明定理的第(2)部份如下: ∵特征方程有两个相异的根1λ、2λ, ∴其中必有一个特征根不即是1a , 无妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ 故21111λλ--=+++n n n a a c , 将h ra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ⑤ 由第(1)部份的证明过程知r px =不是特征方程的根, 故.,21r p r p ≠≠λλ故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p hq a r p r p c n n n λλλλλλ⑥ ∵特征方程h rx qpx x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ, 而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--r p h q r p h q 将上两式代入⑥式得 立即,01=c 11λ≠a 时, 数列}{n c 是等比数列, 公比为r p rp 21λλ--.此时对N ∈n 都有立即01=c 11λ=a 时, 上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:那时qr ph =,h ra qpa n n ++会退化为常数;那时0=r ,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.。
特征方程法求数列通项
特征方程法求数列通项一、递推数列的定义和初值条件首先需要明确递推数列的定义和初始条件。
通常情况下,递推数列可以表示为:an = p1 * an-1 + p2 * an-2 + … + pk * an-k,其中p1、p2、…、pk为常数,an为数列的第n项,n为整数。
除了定义外,还需要给出数列的一些初始条件,如数列的第一项a1、第二项a2等。
二、构造特征方程在特征方程法中,首先需要构造递推数列的特征方程。
特征方程的构造与递推式相关,通常可以通过将递推式中的n项移到等式的一边,然后利用项的移位,将递推式表示为一个递推关系式:an - p1 * an-1 - p2 * an-2 - … - pk * an-k = 0然后,令n = k+1,得到an+1 - p1 * an - p2 * an-1 - … - pk * an-k+1 = 0再通过移项,将递推式表示为:an+1 = p1 * an + p2 * an-1 + … + pk * an-k+1三、寻找递推数列的特征值接下来需要找出递推数列的特征值(或称为根)。
特征值是使得特征方程成立的值。
根据以上递推式,可以得到特征方程的形式:x^(k+1) - p1 * x^k - p2 * x^(k-1) - … - pk * x = 0其中x为特征值。
四、确定递推数列的通项公式已知递推式的通解形式为:an = c1 * x1^n + c2 * x2^n + … + ck * xk^n通常,我们可以通过给定的初始条件,求解出常数c1、c2、…、ck,进而确定递推数列的通项公式。
举例说明:假设有一个递推数列满足an = 3 * an-1 - 2 * an-2,且a1 = 2,a2 = 5首先,可以将递推式变换为特征方程:an - 3 * an-1 + 2 * an-2 = 0再令n=2,可以得到a3-3*a2+2*a1=0将初始条件代入,即可得到一个关于c1和c2的方程:2c1+5c2=-4然后,我们需要求解特征值。
特征方程法求递推数列的通项公式
bn1
d . 作 换 元 bn a n x 0 , 则 1 c d cd a n1 x 0 ca n d ca n c(a n x 0 ) cbn . 1 c 1 c
当 x0 a1 时,b1 0 ,数列 {bn } 是以 c 为公比的等比数列,故 bn b1c n 1 ; 当 x0 a1 时, b1 0 , {bn } 为 0 数列,故 a n a1 , n N. (证毕) 下面列举两例,说明定理 1 的应用. 例 1.已知数列 {a n } 满足: a n 1 a n 2, n N, a1 4, 求 a n .
a n 2 3 n1 (1) n 2 )
2、 在数列 {a n } 中, a1 1, a 2 5, 且 a n 5a n 1 4a n 2 ,求 a n 。 (key:
13 x 25 . 变形得 x 2 10 x 25 0, x3 特征方程有两个相同的特征根 5. 依定理 2 的第(1)部分解答.
(1)∵ a1 5, a1 . 对于 n N, 都有 a n 5; (2)∵ a1 3, a1 . ∴ bn
存在. 于是知:当 a1 在集合 {3 或 数列 {a n } 都不存在. 练习题: 求下列数列的通项公式: 1、 在数列 {a n } 中, a1 1, a 2 7, a n 2a n1 3a n 2 (n 3) , 求 an 。 (key:
5n 13 : n N , 且 n ≥2}上取值时,无穷 n 1
a n
满
足
a1 a, a 2 b,3a n 2 5a n 1 2a n 0(n 0, n N ) ,求数列 a n 的通项
递推关系的特征方程
递推关系的特征方程
递推关系是一种数学关系,通常用来描述一个数列中的元素如何由前面的元素推导出来。
特征方程是用来求解递推关系的一种方法。
当我们有一个递推关系形如an = c1an-1 + c2an-2 + ... + ckan-k时,其中c1, c2, ..., ck是常数,我们可以通过引入新的变量x,将递推关系转化为特征方程。
特征方程的一般形式为x^k c1x^(k-1) c2x^(k-2) ... ck = 0。
特征方程的根对应着递推关系的解。
具体来说,如果特征方程有k个互不相同的实根或共轭复根,那么递推关系的通解可以表示为an = A1r1^n + A2r2^n + ... + Akrk^n,其中r1, r2, ..., rk 是特征方程的根,A1, A2, ..., Ak是常数。
另外,特征方程的根还可以帮助我们求解递推关系的特解。
如果特征方程的根为r1, r2, ..., rk,而递推关系右侧的非齐次项为P(n),那么递推关系的特解可以表示为特解可以表示为an =
Q(n)r1^n + Q(n)r2^n + ... + Q(n)rk^n,其中Q(n)是关于n的多项式,其具体形式取决于P(n)的形式。
总之,特征方程是求解递推关系的一种重要方法,通过求解特
征方程,我们可以得到递推关系的通解和特解,进而深入理解数学模型中的数列规律。
特征方程法求解递推关系中的数列通项
特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列{a n }的项满足a j = b,a n 4 = ca n • d ,其中c = 0, c = 1,求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx • d,称之为特征方程;借助这个特征方程的根快速求解通项公式•下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为 x 0,则当x 0 = a 4时,a n为常数列,即a n 二a i ;当X o 二a i 时,a^ b n ' x o ,其中{b n }是以c 为公比 的等比数列,即 b n = b 4c n J,b 4 =a 4-x 0.pl证明:因为c = 0,1,由特征方程得x 0——.作换元b n = a n - x 0,贝U 1 -c n 1当X 。
=a 1时,b 1 =0 ,数列{b n }是以c 为公比的等比数列, 故b n =b1C _; 当 x ° 二a 1 时,d =0 , {b n }为 0 数列,故 a * =a 1,n • N.(证毕) 下面列举两例,说明定理 1的应用.1例1•已知数列{a n }满足:a n^^a -2,- N,a—,求a n.13 解:作方程x x -2,则x 0. 3 2b"a n「x0 © d—注乂a .cd1 -c二 c(a n -X °) = cb n . 11一2 -3 一2 +X — a-fl等的比公为11 1 n4丁 3) ,a n-3b n —3叫-」)n‘, n N. 2 2 2 3b n列是例2.已知数列{a n}满足递推关系:a n ^(2a n - 3)i, n,N,其中i为虚数3单位。
当a i 取何值时,数列{a .}是常数数列?a^ :-,a 2二:给出的数列:a n 爲方程x 2- px -q =0,叫做数列 :a n / 的特征方程。
用特征方程法求解递推关系中的数列通项
特征方程法求解递推关系中的数列通项递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。
如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。
有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。
新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。
笔者从用特征方程法求解递推关系中的数列通项谈谈这方面的认识。
题型一:一阶线性递推数列问题.设已知数列}{n a 的项满足⎩⎨⎧+==+d ca a b a n n 11 ,其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列?解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601i x a +-== 题型二:分式递推问题(*).例3.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 将这问题一般化,应用特征方程法求解,有下述结果.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr q p λλλλ将该式代入①式得.N ,)(1∈-+-=+n r h rd r p d d n n n λλ ② 将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④ 由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ 故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ ⑥ ∵特征方程h rx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题)(*.解:作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a n n n 例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依第(1)部分解答.(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在. 题型三:二阶线性递推数列问题.设递推公式为,11-++=n n n qa pa a 其特征方程为022=--+=q px x q px x 即,1、 若方程有两相异根A 、B ,则n n n B c A c a 21+=2、 若方程有两等根,B A =则n n A nc c a )(21+=其中1c 、2c 可由初始条件(21,a a )构造方程组确定。
特征方程解数列递推关系
特征方程解数列递推关系数列递推关系是指由已知的一些项推导出后续项的关系,通常用特征方程解决数列递推问题。
特征方程是一个代数方程,其解决了递推关系的数学性质,因此能够推导出数列的通项公式。
在讨论特征方程解数列递推关系之前,首先让我们来了解一下数列和递推关系的概念。
数列是一列有序的数的集合,其中每个数都有其对应的位置,称为项。
数列通常用a1,a2,a3,...,an表示,其中ai表示数列的第i项。
数列是离散的,即项之间没有连续性。
递推关系是指通过已知的一些项,推导出后续项之间的关系。
数列递推关系一般具有以下的形式:an = f(an-1, an-2, ..., an-k),其中f是一个函数,表示通过前面的k个项来推导出当前项。
解决数列递推关系的一种常用方法是利用特征方程。
特征方程是通过将递推关系转化为代数方程,并求解该方程得到的根来得出通项公式。
接下来,我们将详细介绍如何通过特征方程解数列递推关系。
首先,考虑一个简单的数列递推关系 an = k * an-1,其中k是一个常数。
我们希望通过已知的一些项,推导出后续项之间的关系。
将an-1代入递推关系中得到 an = k * (k * an-2) = k^2 * an-2,依次类推,可以得到 an = k^n * an-n。
这是一个简单的等比数列,通项公式为 an= a1 * k^(n-1),其中a1为初始项。
下面,我们通过特征方程解决一个稍复杂一些的数列递推关系。
考虑递推关系 an = an-1 + 2an-2,其中n > 2、假设已知a1和a2,我们可以通过这两个初始项来推导出后续项之间的关系。
首先,我们猜测通项公式为 an = r^n,其中r为待确定的常数。
将该通项公式代入递推关系中得到 r^n = r^(n-1) + 2r^(n-2)。
我们希望将递推关系转化为一个代数方程,从而求解r的值。
将r^(n-2)整体提取出来,得到r^(n-2)(r^2-r-2)=0。
数列三项递推求通项特征方程
数列三项递推求通项特征方程数列是我们日常生活中非常常见的数学模型,它们可以描述一种事物或现象的变化规律。
在数列中,常常需要计算出第 n 项,而有些数列可以通过递推关系式来求解第 n 项。
其中,三项递推是一种常见的递推方式。
在这篇文章中,我们将介绍如何利用三项递推求解数列的通项公式,以及如何使用特征方程来解决数列的求解问题。
一、数列三项递推求通项公式对于数列 {a1,a2,a3,…,an},如果它们之间存在递推关系式:an = f(an-1,an-2,an-3),n ≥ 4那么我们可以通过这个递推关系式来求解数列的通项公式。
具体来说,我们可以通过迭代使用递推关系式,通过已知的前三项(a1、a2、a3),逐个求出数列的每一项。
当我们求得第 n 项时,我们就可以得到数列的通项公式。
例如,我们考虑这样一个数列:{1,1,2,3,5,8,13,…}我们发现这个数列的特点是,每一项都是前两项之和。
我们可以用以下递推关系式来描述这个数列:an = an-1 + an-2,n ≥ 3利用这个递推关系式,我们可以求出数列中的每一项,如下所示:a1 = 1a2 = 1a3 = a2 + a1 = 2a4 = a3 + a2 = 3a5 = a4 + a3 = 5a6 = a5 + a4 = 8a7 = a6 + a5 = 13…我们发现,这个数列的通项公式可以写成:an = fib(n),n ≥ 1其中,fib(n) 表示斐波那契数列的第 n 项。
这个数列是一个非常著名的数列,每一项都是前两项之和,它的前几项是1,1,2,3,5,8,13,21,34,55,89,144,…二、特征方程的应用除了使用递推关系式来求解数列的通项公式之外,我们还可以使用特征方程的方法来解决这个问题。
特征方程是什么呢?它可以帮助我们求出数列的通项公式。
对于一个递推关系式:an = c1an-1 + c2an-2 + … + cm an-m,n ≥ m我们可以构造一个特征方程:x^m - c1x^(m-1) - c2x^(m-2) - … - cm = 0其中,x 是未知数。
数列的递推特征方程法
数列的递推特征方程法特征方程法是通过构造特征方程,然后求解特征方程得到通解的一种方法。
下面我们将详细介绍特征方程法在数列递推中的应用。
首先,让我们来回顾一下数列的一般形式。
一个数列可以表示为:aₙ=c₁aₙ₋₁+c₂aₙ₋₂+...+cₙaₙ₋ₙ其中aₙ表示数列的第n项,c₁,c₂,...,cₙ为常数,k为递推阶数。
为了求解递推关系,我们首先要确定数列的特征方程。
特征方程的核心思想是假设数列的n项与前面的k项有关,然后构造一个特征方程来描述这个关系。
假设数列的特征方程为:xₙ-c₁xₙ₋₁-c₂xₙ₋₂-...-cₙ₋₁x₁-cₙ=0其中x₁,x₂,...,xₙ为变量。
我们可以通过观察数列的递推关系来确定特征方程中的系数。
具体方法如下:1.观察递推关系中的系数c₁,c₂,...,cₙ;3.求解特征方程,得到特征根。
特征方程的解,也称为特征根,是特征方程的根,通常由它的重根个数决定数列的通解形式。
当特征根都是互不相等的实数时,数列的通解可以表示为:aₙ=A₁r₁ⁿ+A₂r₂ⁿ+...+Aₙrₙⁿ其中A₁,A₂,...,Aₙ为常数,r₁,r₂,...,rₙ为特征根。
当特征根中存在共轭复根时,数列的通解可以表示为:aₙ = (A₁r₁ⁿ + A₂r₂ⁿ + ... + Aₙrₙⁿ)cos(ωn) + (B₁r₁ⁿ + B₂r₂ⁿ+ ... + Bₙrₙⁿ)sin(ωn)其中A₁,A₂,...,Aₙ,B₁,B₂,...,Bₙ为常数,r₁,r₂,...,rₙ为特征根,ω为共轭复根的辐角。
通过特征方程法,我们可以求解出数列的通解。
在实际问题中,根据已知的数列前几项,我们可以构造数列的递推关系并使用特征方程法求解出数列的通解。
然后根据题目给出的条件,我们可以求解出具体的系数,从而得到数列的具体形式。
总结起来,特征方程法是通过构造特征方程来求解数列的递推关系的一种方法。
通过特征方程的解,我们可以得到数列的通解,并根据题目给出的条件得到数列的具体形式。
特别解析特征方程法求解递推关系中的数列通项
特别解析:特征方程法求解递推关系中的数列通项一、一阶线性递推式设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式;定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n 证毕例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位;当1a 取何值时,数列}{n a 是常数数列 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、二阶线性递推式定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程;若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组;当21x x =时,数列{}n a 的通项为11)(-+=n n x B A a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组;例3:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式;解法一待定系数、迭加法由025312=+-++n n n a a a ,得)(32112n n n n a a a a -=-+++, 且a b a a -=-12;则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列, 于是:11)32)((-+-=-n n n a b a a ;把n n ,,3,2,1⋅⋅⋅=代入,得:a b a a -=-12, )32()(23⋅-=-a b a a , ••• ,21)32)((---=-n n n a b a a ;把以上各式相加,得:])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-; a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--;解法二特征根法:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x ;32,121==x x , ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A ; 又由b a a a ==21,,于是:⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a三、分式递推式定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,,那么,可作特征方程hrx q px x ++=. 1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在;2当特征方程有两个相异的根1λ、2λ时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第2部分,则有:∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a1若,51=a 求;n a 2若,31=a 求;n a 3若,61=a 求;n a 4当1a 取哪些值时,无穷数列}{n a 不存在解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第1部分解答.1∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a 2∵.,311λ≠∴=a a ∴λλr p rn a b n --+-=)1(11令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. 3∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ 4、显然当31-=a 时,数列从第2项开始便不存在.由本题的第1小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2.∴当11351--=n n a 其中N ∈n 且N ≥2时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.定理3证明:分式递推问题:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r ha r qr ph -≠≠≠1,0,,那么,可作特征方程hrx qpx x ++=.1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.2当特征方程有两个相异的根1λ、2λ称作特征根时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第1部分. 作交换N ,∈-=n a d n n λ, 则λλ-++=-=++h ra q pa a d n n n n 11hra hq r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλλλλλr h rd q p h r r p d n n -+--+--=])([)(2 ①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将rpx =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2r hp -=λ ∴,122=++=---+=-+h p p h rrh p p rr h p h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp rd d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n rp rb b n n λ故数列}{n b 是以r p r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp rn b b n λ其中.11111λ-==a db 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第2部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra qpa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a hq r p a c n n n λλλλ ⑤由第1部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n rp h q a r p hq a rp r p c n n n λλλλλλ ⑥∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程.∴222111,λλλλλλ-=---=--rp hq r p h q将上两式代入⑥式得当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp rp 21λλ--.此时对于N ∈n 都有当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n所以.N ,112∈--=n c c a n n n λλ证毕注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra qpa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a b a c a d+⋅+=⋅+......① 其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ. 定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++---=⋅---.定理2: 若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+-+-.例109·江西·理·22各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++. 1当14,25a b ==时,求通项n a ;2略. 例2 已知数列{}n a 满足*1112,2,n n a a n N a -==-∈,求通项n a . 例 3 已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a例4已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a2.已知数列{}n a 满足2112n n n a c a c a ++=+② 其中12,c c 为常数,且*20,c n N ≠∈. 定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n nn a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩. 定理4: 若12λλλ==,则12()nn a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩. 例5已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 例6已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a例7:已知数列{}n a 满足12212,8,44n n n a a a a a ++===-,求通项n a .。
特征方程法求递推数列的通项介绍
征方程法求递推数列的通项介绍1、引例:已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:11131323232n n n n a a a a ++⎛⎫=--⇔+=-+ ⎪⎝⎭ 得13111()223n n a -=-+- 这里的32-恰为方程0132,.32x x x =--=-的根 则称方程123x x =--为特征方程 一般地:定理1:在数列{}n a 中,已知1a ,且2n ≥时,1n n a pa q -=+(,p q 是常数),这时数列{}n a 的通项公式为:11()n n a a x p x -=-+2、定理2:在数列{}n a 中,已知1a 与2a ,且21n n n a pa qa ++=+(,p q 是常数),则称2x px q =+是数列{}n a 的二阶特征方程,其根1x ,2x 叫做特征方程的特征根。
(1)当12x x ≠时,有111122n n n a c x c x --=+;(2)当12x x =时,有()1121n n a c c n x -=+;其中12,c c 由12,a a 代入n a 后确定。
例2. (1)已知数列{n a }满足1a =3,2a =6,2n a +=41n a +-4n a 求n a解:作特征方程x 2=4x-4由特征根方程得122x x ==,故设n a =(1c +2c ) 12n -, 其中3=1c +2c ,6=(1c +22c ).2,所以1c =3, 2c =0,则n a =3.12n -(2)已知数列{n a }满足1a =3,2a =6,2n a +=21n a ++3n a 求n a解:作特征方程x 2=2x+3由特征根方程得α=3, β=-1所以n a =1c 13n -+2c 1(1)n --其中3=1c +2c , 6=31c -2c得1c =94, 2c =34所以n a =14.13n ++341(1)n --例 3. 已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。
特征根方程求数列
特征方程求数列的通项江西省丰城市第二中学 陈爱荣 331100数列是高中数学的重要内容,也是高考的热点问题,但课本对数列的教学安排和高考的要求有一定的差距,从近年各省的高考试卷看,高考对数列的要求明显比课本要高,所以在复习中我们要在深刻理解等差和等比数列的基础上,对数列的性质各特点进行必要的挖掘,特别是某些递推关系求数列的通项这一类问题中有一些高等数学的背景,其中特征方程求数列的通项就是其中典型的内容之一一.可用特征方程解决递推数列的三类模型1.线性递推关系{1,11n a n n pa q a =++=(其中p ,q 均为常数,)0)1((≠-p pq )2.齐次二阶线性递推关系1221(1)(2)n n n a n a a n pa qa ++=⎧⎪==⎨⎪+⎩(其中p ,q 均为常数)3.分式递推关系1n n n pa q a ra h ++=+(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,) 二. 特征根方程及求法1. {1,11n a n n pa q a =++=的特征根方程为 x=px+q ,其根为α,则1n a α+-=p(1n a α+-) 2. 1221(1)(2)n n n a n a a n pa qa ++=⎧⎪==⎨⎪+⎩的特征根方程为2x px q =+设两实根为α,β(1).若α≠β时,则n a =1112n n c c αβ--+,其中1c ,2c 是由1a ,2a 确定(2). 若α=β时,则112()n n a c n c α-=+其中1c ,2c 是由, 1a 2a 确定 3. 1n n n pa q a ra h ++=+的特征根方程为px q x rx h+=+若方程的两根为α,β 若1,a αβ≠且αβ≠,则11n n n n a a p r a p r a αααβββ++---=⋅---即{n n a a αβ--}等比数列 若1a αβ=≠且0p h +≠,则1121n n r a p h a αα+=+-+-即{ 1n a α- }等差数列三.例题分析例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作特征方程.23,231-=--=x x x 则 .211231=+a 数列13n a ⎧⎫+⎨⎬⎩⎭是以31-为公比的等比数列.于是 13n a +=(231+a ).N ,)31(21123,)31(211)31(111∈-+-=-=----n a n n n n 例2.已知数列{n a }满足1a =3,2a =6,2n a +=41n a +-4n a 求n a解:作特征方程x 2=4x-4由特征根方程得α=β=2故设n a =(1c +2c n) 12n -, 其中3=1c +2c ,6=(1c +22c ).2所以1c =3, 2c =0,则n a =3.12n -例3. 已知数列{n a }满足1a =3,2a =6,2n a +=21n a ++3n a 求n a解:作特征方程x 2=2x+3由特征根方程得α=3, β=-1所以n a =1c 13n -+2c 1(1)n --其中3=1c +2c , 6=31c -2c得1c =94, 2c =34所以n a =14.13n ++341(1)n -- 例4.(2009江西)各项均为正数的数列{.n a }1a =a, 2a =b 且对任意的m+n=p+q 的正整数 m,n p,q 都有(1)(1)(1)(1)p q m n n m n q a a a a a a a a ++=++++当a=12,b=45求通项n a 解:由(1)(1)(1)(1)p q m n m n p q a a a a a a a a ++=++++得121121(1)(1)(1)(1)n n n n a a a a a a a a --++=++++ 将14,25a b ==代入上式化简得11212n n n a a a --+=+ 考虑特征方程212x x x +=+得特征根1x =± 所以11111121112112113112n n n n n n n n a a a a a a a a ------+--+-==⋅+++++所以数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=-+为首项,公比为13的等比数列 故11111()()1333n n n n a a --=-⋅=-+ 即3131n n n a -=+ 例5:已知数列{}n a 满足*1112,2,n n a a n N a -==-∈,求通项n a . 解: 考虑特征方程12x x=-得特征根1x = 111111111111111(2)11n n n n n n a a a a a a -----====+------ 所以数列11n a ⎧⎫⎨⎬-⎩⎭是以1111a =-为首项,公差为1的等差数列 故11n n a =- 即1n n a n += 数列通项公式的求解问题往往是解决数列难题的瓶颈,而特征方程求数列的通项却为我们提供了一种简便、快捷的方法。
递推数列的特征方程的原理
递推数列的特征方程的原理递推数列是数学中常见的一种数列形式,它的每一项都是前几项的某种函数关系。
而递推数列的特征方程是求解递推数列的关键步骤之一,它可以通过分析数列的递推规律,建立递推数列的数学模型,并通过特征方程来求解数列中的任意项。
特征方程的原理可以用来解决许多实际问题,例如在计算机科学中,递推数列可以用来描述算法的时间复杂度;在经济学中,递推数列可以用来预测市场的走势;在物理学中,递推数列可以用来描述粒子的运动轨迹等等。
为了更好地理解特征方程的原理,我们先来看一个简单的例子:斐波那契数列。
斐波那契数列的定义是:第一项和第二项都为1,从第三项开始,每一项都是前两项的和。
数列的前几项为1、1、2、3、5、8、13、21、34……我们可以用递推关系式来表示斐波那契数列:Fn = Fn-1 + Fn-2。
我们可以将递推关系式转化为特征方程。
假设递推数列的前n项满足一个特征方程anFn + an-1Fn-1 + … + a1F1 + a0 = 0,其中Fn 是数列的第n项,a0、a1、…、an是特征方程的系数。
对于斐波那契数列,特征方程为:Fn = Fn-1 + Fn-2。
我们可以将特征方程转化为:Fn - Fn-1 - Fn-2 = 0。
因此,斐波那契数列的特征方程为:Fn - Fn-1 - Fn-2 = 0。
通过解特征方程,我们可以得到特征方程的根。
对于斐波那契数列的特征方程,我们可以得到根为φ和-φ-1,其中φ是黄金分割比例。
因此,斐波那契数列的通项公式可以表示为:Fn = Aφ^n + B(-φ-1)^n,其中A和B是常数,可以通过初始条件来确定。
特征方程的原理不仅适用于斐波那契数列,还适用于其他形式的递推数列。
通过分析递推数列的递推关系,我们可以建立递推数列的特征方程,并通过解特征方程来求解数列中的任意项。
特征方程的原理为我们解决递推数列问题提供了一种有效的方法。
通过分析数列的递推规律,建立特征方程,并通过解特征方程来求解数列中的任意项,我们可以更好地理解和应用递推数列的概念。
数列特征值法
数列特征值法数列特征值法是一种用于求解数列的方法,通过求解数列的特征值,可以得到数列的一些重要性质和规律。
在数学和统计学中,数列是一组按照特定规律排列的数值,对于研究数列的性质和规律,特征值法提供了一种有效的分析工具。
我们来介绍一下数列的特征值。
数列的特征值是指数列中出现的特殊数值,它们对于数列的性质和规律具有重要的意义。
通过求解数列的特征值,我们可以得到数列的周期、极值、趋势等重要信息。
在应用数列特征值法进行数列分析时,我们首先需要确定数列的递推关系式。
递推关系式是指数列中相邻两项之间的关系式,它描述了数列中各项之间的演化规律。
常见的递推关系式包括线性递推、二次递推、等比递推等。
接下来,我们以一个具体的数列为例,来说明数列特征值法的应用过程。
考虑以下数列:1, 3, 5, 7, 9, ...我们观察数列的前几项,可以发现数列中的每一项都是前一项加2得到的。
因此,我们可以得到数列的递推关系式为:an = an-1 + 2,其中a1 = 1。
接下来,我们需要求解数列的特征值。
根据递推关系式,我们可以得到特征方程an - an-1 - 2 = 0。
解这个特征方程,可以得到特征方程的根为2和-1。
因此,数列的特征值为2和-1。
有了数列的特征值,我们就可以得到数列的一些重要性质。
首先,我们可以求解数列的通项公式。
根据特征值的定义,我们知道数列的通项公式可以表示为:an = C1 * 2^n + C2 * (-1)^n,其中C1和C2为常数。
我们可以求解数列的周期。
对于数列1, 3, 5, 7, 9, ...来说,由于特征值为2和-1,所以数列的周期为2。
通过数列的特征值,我们还可以得到数列的极值和趋势。
对于数列1, 3, 5, 7, 9, ...来说,由于特征值为2和-1,所以数列是递增的,并且没有极值。
在实际应用中,数列特征值法可以应用于各种数学和统计学问题中。
例如,可以用来分析股票价格的变化趋势,预测未来的价格走势;可以用来研究人口增长等社会现象的规律;还可以用来分析自然界中的一些周期性现象,如天体运动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用特征方程与特征根解数列线性递推关系式的通项公式一.特征方程类型与解题方法类型一 递推公式为An+2=aAn+1+bAn特征方程为 X 2=aX+b 解得两根X 1 X 2(1)若X 1≠X 2 则A n =pX 1n +qX 2n(2)若X 1=X 2=X 则A n =(pn+q)X n(其中p.q 为待定系数,由A 1.A 2联立方程求得) (3)若为虚数根,则为周期数列 类型二 递推公式为特征方程为X =dc b a X X ++ 解得两根X 1 X 2(1)若X 1≠X 2 则计算2111x A x A n n --++=21x d cA b aA x d cA baA n n n n -++-++=k21x A x A n n --接着做代换B n =21x A x A n n -- 即成等比数列(2)若X 1=X 2=X 则计算x A n -+11=x d cA b aA n n -++1=k+x A n -1接着做代换B n =xA n -1即成等差数列(3)若为虚数根,则为周期数列类型三 递推公式为特征方程为X =dc b ax X ++2解得两根X 1 X 2 。
然后参照类型二的方法进行整理类型四 k 阶常系数齐次线性递归式 A n+k =c 1A n+k-1+c 2A n+k-2+…+c k A n 特征方程为 X k = c 1X k-1+c 2X k-2+…+c k(1) 若X 1≠X 2≠…≠X k 则A n =X k n 11+X k n 22+…+X k k nk(2) 若所有特征根X 1,X 2,…,X s.其中X i 是特征方程的t i 次重根,有t 1+t 2+…+t s =k则A n=X n Q n)(11+X n Q n )(22+…+X n Q s ns)( ,其中)(n Q i=B 1+n B 2+…+n B ti ti 1-(B 1,B 2,…,B ti 为待定系数)二.特征方程的推导及应用类型一、p ,q 均为非零常数)。
先把原递推公式转化为)(112112n n n n a x a x a x a -=-+++,其中21,x x 满足⎩⎨⎧-==+q x x px x 2121,显然21,x x 是方程02=--q px x 的两个非零根。
1) 如果0112=-a x a ,则0112=-++n n a x a ,n a 成等比,很容易求通项公式。
2)如果0112≠-a x a ,则{112++-n n a x a }成等比。
公比为2x ,所以1211211)(-+-=-n n n x a x a a x a ,转化成:)(1122221121a x a x a x x x a n nn n -=---+, ( I )又如果x x x ==21,则{121-+n n x a }等差,公差为)(112a x a -,所以))(1(11122121a x a n a x a n n --+=-+, 即:1211221)])(1([-+--+=n n x a x a n a a12211222])()2([---+=n n x x a x a n x a aIi)如果21x x ≠,则令1121+-+=n n n b x a ,A x x =21,B a x a =-)(112,就有 B Ab b n n =-+1,利用待定系数法可以求出n b 的通项公式21211212121221)()()1(x x x a x a x x x x x x a b n n -----=-所以2221211212121221])()()1([-------=n n n x x x x a x a x x x x x x a a ,化简整理得:1221211112121)1(----+--=n n n x x x a x a x x x x a a ,小结特征根法:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,为特征方程。
若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为12)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入12)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。
简例应用(特征根法):例1:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21, 解:特征方程是:02532=+-x x 32,121==x x Θ, ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A 。
又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a 例2:设p 、q 为实数,α、β是方程x 2-px+q=0的两个实数根,数列{x n }满足x 1=p,x 2=p 2-q,x n =px n-1-qx n-2(n=3,4,5……)求数列{x n }的通项公式。
解: 显然x n =px n-1-qx n-2(n=3,4,5……)的特征根方程就是x 2-px+q=0,而α、β是方程x 2-px+q=0的两个实数根,所以可以直接假设:⑴ 当α=β时,设1)(-+=n n Bn A x α,因为x 1=p,x 2=p 2-q ,所以⎩⎨⎧-=+=+q p B A p B A 2)2(α 解得⎪⎪⎩⎪⎪⎨⎧--=+-=ααααpq P B qP P A 222 ∴=n x 222})(2{---++-n n p q p q p p ααα⑵ 当βα≠时,设11--+=n n n B A x βα,因为x 1=p,x 2=p 2-q ,所以 ⎩⎨⎧-=+=+qp B A p B A 2βα 解得αββ----=q p p A 2,αβα---=q p p B 2 ∴=n x 12-----n q p p ααββ+12----n q p p βαβα类型二、解法:如果数列}{n a 满足:已知1a ,且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r ha r qr ph -≠≠≠1,0,),那么,可作特征方程hrx qpx x ++=,当特征方程有且仅有一根0x 时,如果01x a =则0x a n =;如果01x a ≠则01n a x ⎧⎫⎨⎬-⎩⎭是等差数列。
当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ⎧⎫-⎨⎬-⎩⎭是等比数列。
(证明方法如同类型一,从略)例1:已知数列}{n a 满足:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解: 数列}{n a 的特征方程为,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-=--⋅--=--n r p r p a a c n n n λλλλ∴.N ,)51(521∈-=-n c n n∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ 即.N ,)5(24)5(∈-+--=n a nn n例2:已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a(4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(1151131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ (4)、显然当31-=a 时,数列从第2项开始便不存在.由第(1)小题的解答知,51=a 时,}{n a 是存在的,当51=≠λa 时,有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在。
于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在。
例3: 数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S 解:由已知,得n n n a a a 816521-+=+,其特征方程为x x x 81652-+=解之得,211=x 或452=x∴n n n a a a 816)21(6211--=-+,nn n a a a 816)45(12451--=-+ ∴452121452111--⋅=--++n n n n a a a a , ∴n n n n a a a a 24)21(45214521111-=•--=---∴42521++=-nn n a )1(34231≥+⋅=n b n n ,121211+=-=nn n n n b b a a b 得由n n n b a b a b a S +++=Λ2211故121()2n b b b n=++++L 1(12)53123n n -=+-1(251)3n n =+-例4:各项均为正数的数列{}n a 中都有的正整数且对满足q p n m q p n m b b a a ,,,,,11+=+===+++)1)(1(m n m n a a a a )1)(1(q p q p a a a a +++, 当时,求通项54,21==b a n a解:由=+++)1)(1(m n m n a a a a )1)(1(q p q p a a a a +++得=+++)1)(1(11a a a a n n )1)(1(2121a a a a n n +++--化间得21211++=--n n n a a a ,作特征方程212++=x x x ,11=x ,12-=x 。