M02有限元分析与ANSYS
利用有限元软件ANSYS进行车窗玻璃隔声特性的有限元分析

利用有限元软件ANSYS进行车窗玻璃隔声特性的有限元分析汽车是现代人交通工具中常用的一种,而随着人们生活水平的提高,车窗的密封性和噪音控制变得越来越重要。
车窗的隔音效果是指阻止外部噪声进入车内的能力,因此它是一种重要的性能指标。
本文将介绍如何使用有限元分析软件ANSYS对车窗玻璃的隔声特性进行分析和优化,以提高车窗的噪音控制能力。
一、有限元分析原理有限元分析是一种通过建立数学模型,将实际问题转化成数学模型,然后采用数值分析方法,求解大量的方程,得到各种物理量分布和性能指标的计算方法。
本文将通过有限元分析软件ANSYS对车窗玻璃的隔声特性进行分析。
二、模型建立模型建立是进行有限元分析的第一步。
根据车窗的实际情况,将车窗完整地分为两个部分,即车窗玻璃和密封圈,建立相应的有限元模型。
具体步骤如下:1. 导入车窗CAD模型将车窗CAD模型导入ANSYS中,建立3D有限元模型。
2. 网格划分对车窗进行网格划分,将车窗划分成若干个单元,每个单元由若干节点和对应的单元类型构成。
3. 定义物理属性定义材料属性,包括车窗玻璃和密封圈的材料参数,例如密度、弹性模量、泊松比等。
三、分析步骤ANSYS提供了多种求解方式,可以选择相应的求解方式来得到相应的结果。
在这里,我们采用模态分析方法和声学分析方法来进行求解。
1. 模态分析模态分析是基于结构的固有振动特性研究,即在结构受到一定激励情况下,自然发生的振动状态。
通过模态分析可以得到系统的自然频率和振动模态,并判断系统中是否存在共振现象。
在分析车窗玻璃的隔声特性时,需要先进行模态分析,以得到其结构的固定振动状态,以便后续声学分析的计算。
2. 声学分析在模态分析中,通过得到结构的固定振动状态,对车窗闭合时的结构强度进行检查。
在这里,我们使用声学分析方法来进行正向传递声学计算(正向传递声学就是将声源处的声源声压通过车窗进入车内的过程,因此是一个研究声学传递过程的分析方法)。
这个过程与刚刚的模态分析过程不同,模态分析的过程是通过结构的固定振动状态来获得结构自身的有效固有频率,而这里是实际的声波传播的过程,需要涉及到结构的声传递特性,所以这里的分析需要考虑结构的声波特性,包括车窗的吸声和隔声特性。
有限元法与ANSYS在家具结构分析中的应用

在家具结构分析中,有限元法与ANSYS的应用方法与技巧如下:
1、选择合适的离散化方法:离散化方法直接影响计算精度和计算效率。在 选择离散化方法时,需要考虑计算资源的限制和实际问题的特点。
2、准确描述边界条件:边界条件是影响结构性能的重要因素。在建立模型 时,需要准确描述沙发的边界条件,如固定支撑、活动支撑等。
可以通过改变支架结构或材料属性来降低应力水平;又比如,某机枪弹匣附 近的零部件会受到较大的冲击载荷,可以通过增加加强筋或改变材料属性来提高 结构强度。
需要注意的是,有限元结构分析需要耗费大量的计算资源和时间,同时还需 要工程师们具备一定的有限元分析知识和经验。因此,在实际应用中,需要权衡 分析成本和实际需求的关系。此外,由于实际工况的复杂性和不确定性,有限元 分析结果可能存在一定的误差。因此,需要结合实际情况和实验数据进行验证和 修正,以获得更为准确的分析法已经成为一种广泛应 用于各种工程领域的重要工具。砌体结构是一种常见的建筑结构形式,具有传力 路径不明确、材料非线性等特点,因此,对其进行非线性有限元分析是非常必要 的。ANSYS是一款广泛使用的有限元分析软件,具有强大的非线性分析和仿真能 力,适用于各种工程领域的有限元分析。因此,本次演示旨在研究ANSYS在砌体 结构非线性有限元分析中的应用,以期提高分析精度和效率。
3、求解:通过ANSYS的求解器,对有限元模型进行求解,得到各节点的位移、 应力、应变等结果。
4、后处理:对计算结果进行后处理,包括结果可视化、数据提取、优化设 计等等。
通过有限元分析,可以获得某机枪在各种工况下的应力、应变、强度等参数, 为结构的优化和改进提供依据。例如,通过分析发现,某机枪的支架在不同工况 下会出现较大的应力集中,
2、数据采集
实例分析—运用有限元分析软件ANSYS对轴对称压力容器

ANSYS Example: Axisymmetric Analysis of a Pressure VesselThe pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) andcontains an internal pressure of p = 1700 psi. The cylindrical vessel has an inner diameter of 8 in with spherical end caps. The end caps have a wall thickness of 0.25 in, while the cylinder walls are 0.5 in thick. In addition, there are two small circumferential grooves of 1/8 in radius along the inner surface, and a 2 in wide by 0.25 in deep circumferential groove at the center of the cylinder along the outer surface.In this example, ANSYS will be used to analyze the stresses and deflections in the vessel walls due to the internal pressure. Since the vessel is axially symmetric about its central axis, an axisymmetric analysis will be performed using two-dimensional, 8-node quadrilateral elements (Plane 82) with the axisymmetric option activated. In addition, the vessel is symmetric about a plane through the center of the cylinder. Thus, only a quarter section of the vessel needs to be modeled.In ANSYS, an axisymmetric model must always be created such that the global Y-axis is the axis of symmetry, and the entire model should appear on the right side of the Y-axis (along the positive X-axis); i.e., no part of the model (elements, nodes, etc.) may be defined withnegative X coordinates. Once the axisymmetric option is invoked, ANSYS will automatically apply axisymmetric boundary conditions along the Y-axis.R = 1/16 inR = 1/8 inR = 1/4 in 0.5 in0.25 inR = 4 in2 in 2 in 15.5 inFor model validation purposes, the stresses in the vessel walls away from any notches can be estimated using the thin-walled pressure vessel equations. Although the model does notspecifically meet the criteria for the “thin-walled” assumption, these equations will still provide reasonably accurate values for model validation purposes. For a pressure vessel subjected to internal pressure only, the radial stress (σr ) should vary from –p (−1.7 ksi) on the inner surface to zero on the outer surface. The hoop and longitudinal stresses are calculated as (p = 1700 psi, r = 4 in, t = 0.5 or 0.25 in):section)(thick ksi 13.6or section)(thin ksi 27.2tpr h =≈σ section)(thick ksi 6.8or section)(thin ksi 6.31t2pr =≈σlANSYS Analysis:Start ANSYS Product Launcher, set the Working Directory to C:\temp, define Job Name as‘Pressure Vessel’, and click Run. Then define Title and Preferences.Utility MenuÆFileÆChange Jobname…Æ Enter ‘Pressure_Vessel’ Æ OKUtility MenuÆFileÆChange Title…Æ Enter ‘Stress Analysis of an Axisymmetric Pressure Vessel’ Æ OKANSYS Main MenuÆPreferencesÆ Preferences for GUI Filtering Æ Select ‘Structural’ and ‘h-method’ Æ OKEnter the Preprocessor to define the model geometry:Define Element Type (Axisymmetric Option) and Material Properties.ANSYS Main MenuÆPreprocessor ÆElement Type Æ Add/Edit/Delete Æ Add… ÆStructural Solid Quad 8 node 82 (PLANE82) (define ‘Element type reference number’ as 1) ÆOK Æ Click Options… Æ Select ‘Axisymmetric’ for K3 (Element behavior) Æ OK Æ Close ANSYS Main MenuÆPreprocessorÆMaterial PropsÆ Material Models Æ Double Click Structural Æ Linear Æ Elastic Æ Isotropic Æ Enter 14.5e6 for EX and 0.21 for PRXY Æ Click OK Æ Click Exit (under ‘Material’)Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆCircleÆ Solid Circle Æ Enter 0 for WP X, 0 for WP Y, and 4 for Radius Æ Apply Æ Enter 0 for WP X, 0 for WP Y, and 4.25 for Radius Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆSubtractÆAreas Æ Select (with the mouse) Area 2 (bigger circle) Æ OK Æ Select Area 1 (smaller circle) Æ OKCreate Lines through the center of the Circles and Divide the Areas along these Lines.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆLinesÆLinesÆ Straight line Æ Click on the Keypoints on the outer circle which are on the X-axis to create a Line parallel to the X-axis (Circles are divided into four arcs by Ansys, with a Keypoint placed at the end of each arc). Similarly, click on the Keypoints on the outer circle which are on the Y-axis to create a Line parallel to the Y-axis Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆDivideÆArea by Line Æ Select (with the mouse) the remaining Area (annulus)Æ OK Æ Select the two Lines that we have created Æ OKANSYS Main MenuÆPreprocessorÆModelingÆDeleteÆ Area and Below Æ Select the three Areas in the first, second, and third quadrants Æ OKDefine two Rectangles to create the walls of the cylindrical portion of the vessel (thick and thin sections). Define a Circle to create the circumferential groove on the inside of the vessel. ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆRectangleÆ By Dimensions Æ Enter 4 and 4.5 for X-coordinates and 0 and 7.75 for Y-coordinates Æ Click Apply Æ Enter 4.25 and 4.5 for X-coordinates and 6.75 and 7.75 for Y-coordinates Æ OK ANSYS Main MenuÆPreprocessorÆModeling ÆCreateÆAreasÆCircleÆ Solid Circle Æ Enter 4 for WP X, 2 for WP Y, and 1/8 for Radius Æ OKSubtract Areas to eliminate unused segments, and then Add all Areas to create a single Area for meshing.ANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆSubtractÆAreas Æ Select (with the mouse) the bigger rectangle Æ OK Æ Select the small rectangle and circle Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆAddÆ Areas Æ Select ‘Pick All’ Æ OKCreate Line Fillets at the two transitions between the thick and thin sections.Utility Menu Æ Plot ÆLinesUtility Menu Æ Plot CtrlsÆNumbering…Æ Click ‘Line numbers’ On Æ OKANSYS Main MenuÆPreprocessorÆModelingÆCreateÆLinesÆ Line Fillet Æ Select (with the mouse) the two Lines near the lower Fillet Æ OK Æ Enter 1/16 for Fillet radius ÆApply Æ Select the two Lines near the upper Fillet Æ OK Æ Enter 1/4 for Fillet radius Æ OK Create Areas within the two Fillets and add these Areas to the main Area. First zoom in on the area of interest using the plot controls.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆArbitraryÆ By Lines Æ Select (with the mouse) the Fillet and adjacent two Lines Æ OKRepeat for the other Fillet.ANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆAddÆ Areas Æ Select ‘Pick All’ Æ OKUtility Menu Æ Plot ÆLinesThe geometry should appear as shown below in the figure on the left.In this example, the irregular geometry will be Free Meshed with Quad Elements. Better control of Element sizing and distribution can be obtained with Mapped Meshing, but this would require that additional sub-Areas be defined within the main Area that have a regular (four-sided) geometry. Using Free Meshing, all Elements in the model will be approximately the same size. In the first run, we will choose a Global Size (approximate Element edge length) of 0.1 in. ANSYS Main MenuÆPreprocessorÆMeshingÆ MeshTool Æ Under ‘Size Controls: Global’ click Set Æ Enter 0.1 for ‘Element edge length’ ÆOK Æ Under ‘Mesh:’ select Areas, Quad and Free Æ Click Mesh Æ Select (with the mouse) the Area Æ OKEnter the Solution Menu to define boundary conditions and loads and run the analysis: ANSYS Main MenuÆSolutionÆAnalysis TypeÆ New Analysis Æ Select Static Æ OK The Boundary Conditions and Loads can now be applied. ANSYS will automatically apply the Axisymmetric Boundary Conditions along the Y-axis. However, we must apply the Symmetry Boundary Conditions along the upper edge of the model. Finally, the Pressure can be applied on all lines that make up the inner surface of the vessel. The magnitude should be input as the actual value – no reduction is needed to account for axisymmetry (ANSYS automatically makes the necessary adjustment of Loads in an Axisymmetric model).ANSYS Main MenuÆSolutionÆDefine LoadsÆApplyÆStructuralÆDisplacement ÆSymmetry B.C.Æ On Lines Æ Select the Line on top of the model (19) Æ OKANSYS Main MenuÆSolutionÆDefine LoadsÆApplyÆStructuralÆPressureÆ On Lines Æ Select (with the mouse) all the Lines on the inside of the vessel (20,12,16,17 and 2) ÆOK Æ Enter 1700 for ‘Load PRES value’ Æ OKThe pressure will be indicated by arrows, as shown above in the figure on the right.Save the Database and initiate the Solution using the current Load Step (LS).ANSYS Toolbar Æ SAVE_DBANSYS Main MenuÆSolutionÆSolveÆ Current LS Æ OK Æ Close the information window when solution is done Æ Close the /STATUS Command windowEnter the General Postprocessor to examine the results:First, plot the Deformed Shape.ANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆ Deformed Shape Æ Select Def + undeformed Æ OKA Contour Plot of any stress component can be created. The radial, hoop (tangential), and longitudinal stresses should be checked to verify the model. Also, stress values at any particular node can be checked by using the “Query Results” command, selecting the desired component, and then picking the appropriate node. For this model, along the cylindrical portion of the vessel, x represents the radial direction, y represents the longitudinal direction, and z represents the hoop (tangential) direction. Powergraphics must be disabled to query results at nodes. ANSYS Toolbar Æ POWRGRPH Æ Select OFF Æ OKANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘X-Component of stress’ (or Y or Z) Æ OKANSYS Main MenuÆGeneral PostprocÆQuery ResultsÆ Nodal Solution Æ Select‘Stress’ and ‘X-direction SX’ (or SY or SZ) Æ OK Æ Select Nodes in the region of interest (may be helpful to zoom in on region)Compare the finite element stresses to the values calculated using the thin-wall equations. If the values are within reason (away from notches, etc.), proceed. For the purposes of failure analysis, we must select an appropriate failure theory. A plot of the von Mises stress is useful for identifying critical locations in the vessel. However, since the vessel is made of cast iron (brittle material), the “Maximum-Normal-Stress” failure criterion may be more appropriate (or Coulomb-Mohr or other similar failure theories). Create Contour Plots of the von Mises and 1st Principal stresses.ANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘von Mises stress’ Æ OKANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘1st Principal stress’ Æ OKThe plot of the model can be expanded around the axisymmetric axis to get a better view of the full model. For this plot, Powergraphics must be enabled.ANSYS Toolbar Æ POWRGRPH Æ Select ON Æ OKUtility Menu Æ PlotCtrlsÆStyleÆ Symmetry Expansion Æ 2-D Axi-Symmetric… Æ Select ‘Full expansion’ Æ OKNote the locations of the maximum stresses in the vessel. Are the critical locations where you would expect them to be? If not, why? Do you think the current model is accurate, or might there be some discretization error? Record the magnitudes and locations of the maximum stresses, and then refine the mesh and re-run the analysis to check for possible discretization error.。
(完整版)国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。
它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。
常见软件有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。
目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。
软件对比ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析目前没有流体模块。
MSC是比较老的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
ANSYS有限元分析步骤2

Fill between KPs:在已知的两个关键点之间插入一系列的
关
键点
实体建模—直线
Straight Line:生成直线 In Active Coord:通过两关键点生成直线 Overlaid on Area :在选中面上两个关键点间创建该面上 最短的线 Tangent to Line:生成一条在一直曲线端点与之相切的曲 线 Norm to line:生成一条与已知线垂直正交的直线 At angle to line:生成与一条已知线成一定角度的直线
有限元模型由一些简单形状的单元组成,单元之
载荷
间通过节点连接,并承受一定载荷。
SOLID70单元
SOLID70具有三个方向的热传导能力。该单元有8个节点且每个节 点上只有一个温度自由度,可以用于三维静态或瞬态的热分析。该 单元能实现匀速热流的传递。假如模型包括实体传递结构单元,那 么也可以进行结构分析,此单元能够用等效的结构单元代替(如 SOLID45单元)
实体建模—面(正多边形)
Triangle:正三角形 Square:正方形 Pentagon:正五边形 Septagon:正九边形 Octagon:正八边形 By Inscribed Rad:设置内切圆的半径来绘制正多边形 By Circumscr Rad:设置外接圆的半径来绘制正多边形 By Side Length:根据边长来绘制正多边形 By Vertices:在工作平面上选取顶点绘制多边形
实体建模—坐标系
模型的建立都是在一定坐标系下完成的,ANSYS12.0中有三类总体坐 标系可供选择:笛卡尔坐标系、柱坐标系和球坐标系。
总体坐标系及其在ANSYS中的编号
总体坐标系 笛卡尔坐标 柱坐标(Z)
球坐标 柱坐标(Y)
有限元分析课件之ANSYS单元类型(本科生讲解)

华北科技学院
2 单元介绍
1 点单元
其特点是几何形状为点状,可用以下单元模拟: MASS单元:主要用于动力学分析质量块结构的模拟;
机电工程学院
华北科技学院
2 线单元
几何形状为线性的结构,可用以下单元进行模拟: 1、LINK单元:用于桁架、螺栓、螺杆等连接件的模拟; 2、Beam单元:用于梁、螺栓、螺杆、连接件等的模拟 3、Pipe单元:用于管道、管件等结构的模拟; 4、Combin单元:用于弹簧,细长构件等的模拟。
solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化 为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于
不可压缩超弹性材料)。
Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单 元,单元的主要功能基本相同。
机电工程学院
华北科技学院
机电工程学院
华北科技学院
3 单元类型的选择方法
单元类型选择概述
1、ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是 将单元的选择范围缩小到少数几个单元上; 2、在选择单元时,首先应该遵循的原则是要能正确的计算模型,根据模 型的几何形状选定单元的大类,如线状结构只能用“LINK Beam Pipe 和Combin”这类单元去模拟;面状结构则只能用“Plane、Shell”这 类单元去模拟; 3、其次应当根据分析问题的性质选择单元类型,如确定为2D的Beam单 元后,应当根据分析问题是弹性的还是塑性确定为“Beam3”或 “Beam4”等 4、在选择时,应当考虑到模型精度与模型计算量之间的取舍问题,例如 高阶与线性之间的选择
国内外主要有限元分析软件比较

常见软件有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。
目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。
软件对比ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析目前没有流体模块。
MSC是比较老的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSCABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。
但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。
Intro1_M02_有限元分析与ANSYS

ANSYS技术支持体系(ASC)
– 请联系您所在地的ANSYS公司
Training Manual
INTRODUCTION TO ANSYS - Part 1
– 请关注ANSYS相关信息;包括软件更新,错误提示,时事通讯以及相关 邮件等
ANSYS及ANSYS公司的更多信息:
–
– 热分析 • 稳态热分析和瞬态热分析 – 流体分析 (包括CFD,声学,和其他流体分析)
– 低频和高频电磁场分析
– 耦合场分析
2-6
第 2 章-有限元分析与ANSYS
…关于 ANSYS
• ANSYS在部分工业领域的应用:
– 航空航天
– 汽车工业 – 生物医学 – 桥梁建筑 – 电子产品
Training Manual
d = PL3/3EI = (-100)*(103)/(3)*(30e6)*(1/12) = -0.013
命令流如下:
/prep7 mp,ex,1,30e6 mp,nuxy,1,0.3 et,1,plane42 blc4,0,0,10,1 amesh,all nsel,s,loc,x,0 d,all,all
2-10
第 2 章-有限元分析与ANSYS
C、什么是有限元
• 有限元分析是一种模拟在确定的荷载条件下的设计响应的方法。
基于ANSYS的滑移装载机动臂有限元分析与优化

基于ANSYS的滑移装载机动臂有限元分析与优化
滑移装载机动臂是一种用于搬运和装载重物的机械设备,常用于建筑工地、码头、仓库等场所。
它的动臂是其关键部件之一,承担着承载和作业的重要功能。
在设计和制造滑移装载机动臂时,我们需要考虑其结构的强度和稳定性,以确保其在各种工况下能够正常运行并完成作业任务。
有限元分析与优化成为了不可或缺的工具。
有限元分析是一种数值计算方法,通过将结构离散为有限数量的单元,利用数学模型对结构进行数值求解,得到结构在各种工况下的应力、位移等响应。
在滑移装载机动臂的有限元分析中,我们可以建立一个包含动臂主梁、液压缸等关键部件的三维模型,并对其进行网格划分,然后采用ANSYS等有限元分析软件对其进行求解。
在进行有限元分析之后,我们可以得到动臂在不同工况下的应力和位移分布。
通过分析这些结果,我们可以评估动臂在工作中是否存在过载、变形等问题,并找到引起这些问题的主要原因。
在优化滑移装载机动臂结构时,我们可以通过有限元分析结果进行参数优化或结构改进。
如果发现某个部件承受的应力过大,我们可以通过增大材料的强度或增加其尺寸来改善结构的强度。
或者,我们也可以对动臂的结构进行优化设计,例如改变截面形状、调整关键连接处等,以提高结构的稳定性和刚度。
基于ANSYS的滑移装载机动臂有限元分析与优化可以帮助我们全面了解和评估动臂的性能,并为其结构的设计和制造提供指导。
通过优化设计,我们可以提高动臂的工作效率和可靠性,提高整个滑移装载机的性能。
有限元分析培训(第4讲 ANSYS Workbench结构静力分析&模态分析)

有限元分析培训
邵世林 喻炜 董大鹏
传统设计过程 设计 制造
重新设计循环
CAD
试验
批量生产
CAE驱动设计过程
概念设计
设计
CAD
CAE
制 造
试 验
批量生 产
优化循环
导入或建立几何模型
HyperMesh、ANSA、Patran、SimXpert、 MEDINA、FEMAP等
四 连接关系
接触类型
对于理想无限大的Knormal , 零穿透. 但对于罚函数法, 这在数值计算中是不可能,但是只要Xpenetration 足够 小或可忽略,求解的结果就是精确的。
四 连接关系
接触类型
Pure Penalty 和Augmented Lagrange 公式使用积分点探测,Normal Lagrange 和MPC 公式 使用节点探测(目标法向)。节点探测在处理边接触时会稍好一些,但是,通过局部网格细化, 积分点探测也会达到同样的效果。
Nastran
ANSYS
Samcef Linear
OptiStruct
FEPG
(国产)
MSC
非线性分析
Marc
ADINA
Samcef Mecano
Fluent 流体分析
Star-CD Star-CCM+
XFlow
PowerFlow
LS-DYNA
MSC
显式分析
Dytran
Radioss
MADYMO
结构静力分析 & 模态分析
有限元分析系列课程 ANSYS Workbench篇 第四讲
一 结构静力分析概述
ANSYS有限元分析

或Windows NT环境下的PC机、工作站等各种工作站,直至巨型计算
2.4.2 ANSYS有限元软件的特点
A.多物理场解析
ANSYS可以用来分析多种类型的问题,包括结构、热、电磁场、电场、静电、流体、CFD和藕合场分析。每种分析类型又包括几种特定的分析类型,如:结构分析可分为静力和动力分析;热分析中可进行稳态和瞬态分析等。
C.耦合场的分析
当考虑到受热、结构、流体、电、电磁场等多物理场的影响时,可通过藕合场单元直接实现或通过序贯场分析间接实现。直接祸合法在单个分析中采用耦合场单元,这些单元在节点上有多个自由度〔跨几个场),允许在所涉及到的分析学科间交叉耦合;间接耦合场分析法包括两种分析,每种分析属于不同的场,场间耦合是把第一个分析的结果作为载荷施加到第二个分析。
目前,学者们在对轧制过程进行模拟分析时,较多采用针对某一特定的工况和问题建立数学模型,开发计算程序的方法。所开发的软件结构比较简单,程序规模较小,针对性较强,是对具体问题的具体分析,因而其通用性较差。随着有限元分析理论的发展和数值分析技术及计算机技术的进步,六十年代末、七十年代初出现的大型通用有限元分析程序以其功能强大、用户使用方便、计算结果可靠、效率高而逐渐成为工程技术人员和科研人员强有力的分析工具。通用程序的使用避免了软件开发低水平的重复。
2.4 ANSYS有限元分析软件简介
最近几年,随着计算科学的快速发展和有限元技术应用的日益成熟,CAE技术模拟分析金属在塑性变形过程中的流动规律在现实生产中得到愈来愈广泛的应用,降低了生产成本,提高企业的市场竞争能力,而且有利于将有限元分析法和传统的试验方法结合起来,从而推动模具现代制造业的快速发展。
ansys有限元分析基本流程

第一章实体建模第一节基本知识建模在ANSYS 系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。
建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。
一、实体造型简介1.建立实体模型的两种途径①利用ANSYS 自带的实体建模功能创建实体建模:②利用ANSYS 与其他软件接口导入其他二维或三维软件所建立的实体模型。
2.实体建模的三种方式(1) 自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。
(2) 自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。
(3) 混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。
自由网格划分时,实体模型的建立比较1e 单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。
二、ANSYS 的坐标系ANSYS 为用户提供了以下几种坐标系,每种都有其特定的用途。
①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。
②显示坐标系:定义了列出或显示几何对象的系统。
③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
④单元坐标系:确定材料特性主轴和单元结果数据的方向。
1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。
在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。
总体坐标系是一个绝对的参考系。
ANSYS 提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y- 柱坐标系。
4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian), 1是柱坐标系(Cyliadrical) , 2 是球坐标系(Spherical),5 是Y-柱坐标系(Y-aylindrical),如图2-1 所示。
ANSYS有限元分析实例

有限元分析的带孔矩形板受平面内张力,如下图所示。
左边固定,右边受载荷20mm一个厚度为p=20N/mm作用,求其变形情况20P100200一个典型的ANSYS分析过程可分为以下6个步骤:①定义参数②创建几何模型③划分网格④加载数据⑤求解⑥结果分析1定义参数1.1指定工程名和分析标题(1)启动ANSYS软件,选择Jobname命令,弹出如图所示的[Change Jobname]对话框。
(2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定(3)选择Title菜单命令,弹出如图所示的[Change Title]对话框。
(4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。
1.2定义单位”/UNIT,SI软件操作主界面的输入窗口中输入“ANSYS在.1.3定义单元类型(1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。
(2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。
(3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。
(4)返回[Element Types]对话框,如下所示(5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。
选项,单击确定。
[Plane strs w/thk]下拉列表中选择[Element behavior]在(6).(7)再次回到[Element Types]对话框,单击[close]按钮结束,单元定义完毕。
1.4定义单元常数(1)在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令,弹出如下所示[Real Constants]对话框。
ANSYS有限元分析理论及其发展

ANSYS有限元分析理论及其发展1. 有限元分析的基本理论 有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
有限元法将函数定义在简单几何形状的单元域上,且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
2.有限元求解问题的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。
有限元分析基础教程(ANSYS算例)

有限元分析基础教程Fundamentals of Finite Element Analysis(ANSYS算例)曾攀清华大学2008-12有限元分析基础教程曾攀有限元分析基础教程Fundamentals of Finite Element Analysis曾攀(清华大学)内容简介全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。
本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。
本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。
本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。
- 1 -标准分享网 免费下载目录[[[[[[\\\\\\【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57i【ANSYS 算例】3.3.7(3) 三梁平面框架结构的有限元分析如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。
ANSYS有限元分析软件介绍

3D
SHELL28,SHELL41,SHELL43,SHELL63,SHELL93,
SHELL150,SHELL181
PIPE16,PIPE17,PIPE18,PIPE20,PIPE59,PIPE60
ANSYS软件分析步骤
2、定义单元实常数
单元实常数是依赖单元类型的特性,如梁单元的横截面特性。例如 2D梁单元BEAM3的实常数是面积(AREA)、惯性矩(IZZ)、高度 (HEIGHT)、剪切变形常数(SHEARZ)、初始应变(ISTRN)和 附加的单位长度质量(ADDMAS)。并不是所有的单元类型都需要 实常数,同类型的不同单元可以有不同的实常数值。
ANSYS软件分析步骤
6、施加负载
对于不同的分析类型,所施加的载荷形式有所不同,可以归结为6类: DOF约束(DOF constraint):用于对模型自由度做出限定,用于
确定边界条件; 力(Force):施加在有限元模型节点上的集中载荷; 表面载荷(Surface load):施加在单元上的分布载荷,包括线分
• ANSYS在分析过程中需要读写文件. • 文件格式为 jobname.ext, 其中 jobname 是设定的工作文件名,
ext 是由ANSYS定义的扩展名,用于区分文件的用途和类型. • 默认的工作文件名是 file.
一些特殊的文件
数据库文件
jobname.db
二进制
Log 文件
jobname.log
ANSYS软件分析步骤
4、创建几何模型
1. 建立模型的方法 ANSYS程序为用户提供了下列生成几何模型以及有限元模型的方法: 在ANSYS中创建几何模型,即实体建模; 导入在其它CAD系统创建的模型,直接生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Training Manual
有限元分析是一种模拟设计荷载条件,并且确定在荷载条件下的设计响应 是一种模拟设计荷载条件,
它是用被称之为“单元”的离散的块体来模拟设计。 它是用被称之为“单元”的离散的块体来模拟设计。
– 每一个单元都有确定的方程来描述在一 定荷载下的响应。 定荷载下的响应。
– 模型中所有单元响应的“和”给出了设 模型中所有单元响应的“ 计的总体响应。 计的总体响应。
Historical Note
January 30, 2001 Inventory #001441 2-3
Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1
2001 Inventory #001441 2-2
Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1 Introduction to ANSYS 5.7, Part 1
Training Manual
这种包含有限个未知量的有限单元模型, 这种包含有限个未知量的有限单元模型,只能近似具有无限未知量的实际 系统的响应。 系统的响应。
– 所以问题是:怎样才能达到最好的“近似”? 所以问题是:怎样才能达到最好的“近似”
有限元分析与ANSYS
... 什么是有限元分析?
– 然而,对该问题还没有一个容易的 然而, 解决方案。 解决方案。这完全依赖于你所模拟 的对象和模拟所采用的方式。 的对象和模拟所采用的方式。但是 ,我们将尽力通过这次培训为你提 供指南。 供指南。
有限元分析与ANSYS
A.什么是有限元分析?
的方法。 的方法。
– 单元中未知量的个数是有限的,因此称 单元中未知量的个数是有限的, 有限单元” 为“有限单元”。
The finite element method of structural analysis was created by academic and industrial researchers during the 1950s and 1960s. The underlying theory is over 100 years old, and was the basis for pen-and-paper calculations in the evaluation of suspension bridges and steam boilers.
第2章
有限元分析与ANSYS 有限元分析与
Training Manual
在这一节,我们将在介绍有限单元分析同时给出ANSYS功能的概 在这一节,我们将在介绍有限单元分析同时给出 功能的概 述。
A. 什么是有限元分析? 什么是有限元分析?
有限元分析与ANSYS