计算机图形学第4章2

合集下载

计算机图形学 答案

计算机图形学 答案

计算机图形学Ⅰ专业:计算机科学与技术计算机科学与技术20922012年12月第1章绪论1、计算机图形学的概念?(或什么是计算机图形学?)计算机图形学是研究怎样利用计算机表示、生成、处理和显示图形的(原理、算法、方法和技术)一门学科。

2、图形与图像的区别?图像是指计算机内以位图(Bitmap)形式存在的灰度信息;图形含有几何属性,更强调物体(或场景)的几何表示,是由物体(或场景)的几何模型(几何参数)和物理属性(属性参数)共同组成的。

3、计算机图形学的研究内容?计算机图形学的研究内容非常广泛,有图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真和虚拟现实等。

4、计算机图形学的最高奖是以 Coons 的名字命名的,而分别获得第一届(1983年)和第二届(1985年)Steven A. Coons 奖的,恰好是 Ivan E. Sutherland 和 Pierre Bézier 。

5、1971年,Gourand提出“漫反射模型+插值”的思想,被称为 Gourand 明暗处理。

6、1975年,Phong提出了著名的简单光照模型—— Phong模型。

7、1980年,Whitted提出了一个光透明模型—— Whitted模型,并第一次给出光线跟踪算法的范例,实现了Whitted模型。

8、以 SIGGRAPH 会议的情况介绍,来结束计算机图形学的历史回顾。

9、什么是三维形体重建?三维形体重建就是从二维信息中提取三维信息,通过对这些信息进行分类、综合等一系列处理,在三维空间中重新构造出二维信息所对应的三维形体,恢复形体的点、线、面及其拓扑关系,从而实现形体的重建。

10、在漫游当中还要根据CT图像区分出不同的体内组织,这项技术叫分割。

11、一个图形系统通常由图形处理器、图形输入设备和输出设备构成。

12、CRT显示器的简易结构图12、LCD液晶显示器的基本技术指标有:可视角度、点距和分辨率。

第1章 绪论

第1章  绪论
GERBER平板式绘图仪。 1962年:计算机图形学诞生——麻省理工林肯实验
室博士论文——sketchpad:ManMachine Graphical Communication System) 1964年:IBM2250显示器——第一代刷新式随机扫 描图形终端; 1970年——至今:光栅图形显示器的诞生。
2. 交互式绘图
(Interactive Draft)
3. 计算机辅助设计/制造
(CAD/M,Computer Aided Design/Manufacturing)
4. 艺术与娱乐
(Art & Amusement)
5. 模拟与仿真
(Emulation & Simulation)
6. 计算机辅助教学
研究的对象是图形。
3. 图形的定义
从客观世界中抽象出来的带有颜色 和形状信息的图和形。
1.1 计算机图形学的概念及研究内容
4. 图形分类
1)线条式——用线段来表现图形。适合于 反映客观实体的内部结构,因而适合表示各类 如工程技术中的结构图。如,机械零件结构图、 地形图、土木设计中的房屋结构图、平面图布 置图和剖面图。
1.2 计算机图形学的发展
2)输入设备: 光笔、鼠标、操纵杆、跟踪球、输入板、坐标数字化 仪、触摸屏。
1.2 计算机图形学的发展
2. 软件的发展
1)计算机图形学软件种类(3类) (1类)——用现有的高级程序设计语言写成的 软件包。
用户使用时按照相应计算机语言的规定调 用所需要的子程序生成各种图形。较为广泛使 用的图形标准化程序包:GKS、PHIGS、GL。 便于移植但执、行速度效率较低。
1.1 计算机图形学的概念及研究内容
图像处理——则是用摄像或扫描仪等观测手段将客 观世界中原来存在的景物摄制成数字化图像,对图 像进行分析和处理,理解图像的内涵,进而从图像 中提取所关注的景物的二维和三维信息。如:卫星 遥感中的资源探测、气象预报中的云图和海图处理、 人体的CT扫描、工业中的射线探伤、进项图谱分析 等。

计算机图形学教案

计算机图形学教案

计算机图形学教案第一章:计算机图形学概述1.1 课程介绍计算机图形学的定义计算机图形学的发展历程计算机图形学的应用领域1.2 图形与图像的区别图像的定义图形的定义图形与图像的联系与区别1.3 计算机图形学的基本概念像素与分辨率矢量与栅格颜色模型图像文件格式第二章:二维图形基础2.1 基本绘图函数画点函数画线函数填充函数2.2 图形变换平移变换旋转变换缩放变换2.3 图形裁剪矩形裁剪贝塞尔曲线裁剪多边形裁剪第三章:三维图形基础3.1 基本三维绘图函数画点函数画线函数填充函数3.2 三维变换平移变换旋转变换缩放变换3.3 光照与材质基本光照模型材质的定义与属性光照与材质的实现第四章:图像处理基础4.1 图像处理基本概念像素的定义与操作图像的表示与存储图像的数字化4.2 图像增强对比度增强锐化滤波4.3 图像分割阈值分割区域生长边缘检测第五章:计算机动画基础5.1 动画基本概念动画的定义与分类动画的基本原理动画的制作流程5.2 关键帧动画关键帧的定义与作用关键帧动画的制作方法关键帧动画的插值算法5.3 骨骼动画骨骼的定义与作用骨骼动画的制作方法骨骼动画的插值算法第六章:虚拟现实与增强现实6.1 虚拟现实基本概念虚拟现实的定义与分类虚拟现实技术的关键组件虚拟现实技术的应用领域6.2 虚拟现实实现技术头戴式显示器(HMD)位置追踪与运动捕捉交互设备与手势识别6.3 增强现实基本概念与实现增强现实的定义与原理增强现实技术的应用领域增强现实设备的介绍第七章:计算机图形学与人类视觉7.1 人类视觉系统基本原理视觉感知的基本过程人类视觉的特性和局限性视觉注意和视觉习惯7.2 计算机图形学中的视觉感知视觉感知在计算机图形学中的应用视觉线索和视觉引导视觉感知与图形界面设计7.3 图形学中的视觉错误与解决方案常见视觉错误分析避免视觉错误的方法提高图形可读性与美观性第八章:计算机图形学与艺术8.1 计算机图形学在艺术创作中的应用数字艺术与计算机图形学的交融计算机图形学工具在艺术创作中的使用计算机图形学与艺术的创新实践8.2 计算机图形学与数字绘画数字绘画的基本概念与工具数字绘画技巧与风格数字绘画作品的创作与展示8.3 计算机图形学与动画电影动画电影制作中的计算机图形学技术3D动画技术与特效制作动画电影的视觉艺术表现第九章:计算机图形学的未来发展9.1 新兴图形学技术的发展趋势实时图形渲染技术基于物理的渲染动态图形设计9.2 计算机图形学与其他领域的融合计算机图形学与的结合计算机图形学与物联网的结合计算机图形学与生物医学的结合9.3 计算机图形学教育的未来发展图形学教育的重要性图形学教育的发展方向图形学教育资源的整合与创新第十章:综合项目实践10.1 项目设计概述项目目标与需求分析项目实施流程与时间规划项目团队组织与管理10.2 项目实施与技术细节项目技术选型与工具使用项目开发过程中的关键技术项目测试与优化10.3 项目成果展示与评价项目成果的展示与推广项目成果的评价与反馈重点和难点解析一、图像的定义与图像的定义,图形与图像的联系与区别1. 学生是否能够理解并区分图像和图形的概念。

计算机图形学第4章图形变换

计算机图形学第4章图形变换

反射变换
总结词
反射变换是将图形关于某一平面进行镜像反射的变换。
详细描述
反射变换可以通过指定一个法向量和反射平面来实现。法向量垂直于反射平面,指向反射方向。在二 维空间中,反射变换可以将图形关于x轴或y轴进行镜像反射;在三维空间中,反射变换可以将图形关 于某一平面进行镜像反射。
03
复合图形变换
组合变换
01
02
03
04
组合变换是指将多个基本图形 变换组合在一起,形成一个复
杂的变换过程。
组合变换可以通过将多个变换 矩阵相乘来实现,最终得到一
个复合变换矩阵。
组合变换可以应用于各种图形 变换场景,如旋转、缩放、平
移、倾斜等。
组合变换需要注意变换的顺序 和矩阵的乘法顺序,不同的顺 序可能导致不同的变换结果。
矩阵变换
矩阵变换是指通过矩阵运算对图形进 行变换的方法。
常见的矩阵变换包括平移矩阵、旋转 矩阵、缩放矩阵和倾斜矩阵等。
矩阵变换可以通过将变换矩阵与图形 顶点坐标相乘来实现,得到变换后的 新坐标。
矩阵变换具有数学表达式的简洁性和 可操作性,是计算机图形学中常用的 图形变换方法之一。
仿射变换
仿射变换是指保持图形中点与 点之间的线性关系不变的变换。
05
应用实例
游戏中的图形变换
角色动画
通过图形变换技术,游戏中的角 色可以完成各种复杂的动作,如
跑、跳、攻击等。
场景变换
游戏中的场景可以通过图形变换 技术实现动态的缩放、旋转和平 移,为玩家提供更加丰富的视觉
体验。
特效制作
图形变换技术还可以用于制作游 戏中的特效,如爆炸、火焰、水
流等,提升游戏的视觉效果。
THANKS

计算机图形学习题参考答案(完整版)

计算机图形学习题参考答案(完整版)
2
区域二(下半部分)
k (x k, yk) pk 0 (7, 3) b 2(x 0 1/2)2 a 2(y01)2a 2b 2 23 1 (8, 2) p02a 2y1a 22b 2x1 361 2 (8,1) p12a 2y2 a 2 297 3 (8, 0)
2a yk pk 2 2 2 1600 b a b (1/4)a 332 768 p0 2b2x1b2 224 768 p12b 2x 2 b 2 44 768 p2 2b 2x 3 b2 208 2 640 p3 2b x 4 b 22a 2y 4 108 640 p4 2b 2x 5 b 2 288 512 p5 2b 2x 6 b 22a 2y6 244 384
10、使用中点椭圆算法,绘制中心为 (0, 0) ,长半径 a 8 ,短半径 b 6 的椭圆在第一象限中的部分。 解: 区域一(上半部分)
k (x k, yk) 2b x k 0 (0, 8) 0 1 (1, 8) 72 2 (2, 8) 144 3 (3, 8) 216 4 (4, 7) 288 5 (5, 7) 360 6 (6, 6) 432 7 (7, 6) 504 8 8, 5
第 2 章 基本图元的显示
1、假设 RGB 光栅系统的设计采用 810 英寸的屏幕,每个方向的分辨率为每英寸 100 个像素。如果 每个像素 6 位,存放在帧缓冲器中,则帧缓冲器需要多大存储容量(字节数)? 解: 8100101006/8600000 (字节) 。 2、假设计算机字长为 32 位,传输速率为 1 MIP(每秒百万条指令) 。300 DPI(每英寸点数)的激光打 印机,页面大小为 8.511 英寸,要填满帧缓冲器需要多长时间。 解:
2
11、已知: A(0, 0) 、 B(1, 1) 、 C(2, 0) 、 D(1, 2) ,请判断多边形 ABCD 是否是凹多边形。 解: 多 边 形 的 边 向 量 为 AB (1,1, 0) , BC (1, 1, 0) , CD (1, 2, 0) , DA(1, 2, 0) 。 因 为

第4章二维变换

第4章二维变换

• 性质
U •V = V •U U •V = 0 ⇔ U ⊥ V U •U = 0 ⇔ U = 0
变换的数学基础(3/4) 变换的数学基础
– 矢量的长度
• 单位矢量 • 矢量的夹角
2 U = U • U = u x + u y + u z2 2
U •V cos θ = U •V
– 矢量的叉积
i U ×V = ux vx
– 在世界坐标系( 在世界坐标系(WCS)中指定的矩形区域 , ) 用来指定要显示的图形 。
2. 视区
– 在设备坐标系(屏幕或绘图纸) 在设备坐标系(屏幕或绘图纸)上指定的矩形区域 , 用来指定窗口内的图形在屏幕上显示的大小及位置。 用来指定窗口内的图形在屏幕上显示的大小及位置。
3. 窗口到视区的变换
P′=P+Tm 等价于
[x’ y’]=[x y] +[Mx My]
图形变换的特点( 4.3.1 图形变换的特点(续)
比例变换 P′=P×Ts
Sx 0 Ts= 0 Sy Sx、Sy分别表示比例因子。 cosθ sinθ Tr= -sinθ cosθ θ>0时为逆时针旋转 θ<0时为顺时针旋转
旋转变换 P'=P×Tr
变换后的 顶点坐标
P
变换前的 顶点坐标

T2D
二维变换矩阵
二维变换矩阵中: a b 是对图形进行缩放、旋转、对称、错切等变换。 c d [ l m] 是对图形进行平移变换
• 计算机图形场景中所有图形对象的空间定位和定义,包括观 计算机图形场景中所有图形对象的空间定位和定义, 察者的位置视线等,是其它坐标系的参照。 察者的位置视线等,是其它坐标系的参照。
2.模型坐标系(Modeling Coordinate System,也称局部坐标系) 模型坐标系

9-10讲 第4章 变换-几何变换及投影

9-10讲 第4章 变换-几何变换及投影
Yv = c ⋅ Yw + d
当a≠c时,即x 方向的变化与y方向的变化不同时, ≠ 时 方向的变化与 方向的变化不同时, 方向的变化不同时 视图中的图形会有伸缩变化,图形变形。 视图中的图形会有伸缩变化,图形变形。 当 a=c=1, b=d=0则 Xv=Xw,Yv=Yw, 图形完全相同 。 , 则 = , = , 图形完全相同。
14
4.2.3 窗口区和视图区的坐标变换
2. 变换过程 窗口-视图二维变换 窗口 视图二维变换
从应用程序得到 图形的用户坐标 对窗口区域 进行裁剪 窗口至视 区的变换 显示或 绘图
窗口-视图三维变换 窗口 视图三维变换
从应用程序得到图 形的三维用户坐标 投影 对窗口区 域裁剪 窗口至视 区的变换 显示或 绘图
16
4.3.1 齐次坐标
齐次坐标表示法: 维向量表示一个n维向量 齐次坐标表示法 用n+1维向量表示一个 维向量 维向量表示一个 (x,y)点对应的齐次坐标为 其中x 问题1:点对应的齐次坐标为(x 空间中的一点, 非齐次坐标表示方式唯一吗? 问题 点对应的齐次坐标为 h,yh,h), 其中 h=hx, yh=hy, 空间中的一点 非齐次坐标表示方式唯一吗 h≠0. 因此,普通坐标与齐次坐标的关系为“一对多” ? 因此,,(x,y)点对应的齐次坐标为三维空间的一条直 问题2: 空间中的一点 其齐次坐标表示方式唯一吗 问题 普通坐标与齐次坐标的关系为“一对多” 这样, 这样 空间中的一点, 其齐次坐标表示方式唯一吗? 点对应的齐次坐标为三维空间的一条直
y2 z2
5
4.1 变换的数学基础
4.1.2 矩阵基础知识
矩阵的加法运算 数乘矩阵 矩阵的乘法运算 零矩阵运算 单位矩阵 矩阵逆运算 转置运算 矩阵的基本性质

黄章进图形学 第四章 几何对象与变换

黄章进图形学  第四章 几何对象与变换
S u+v R v R u+v v Q
u P(α, β) = R + αu + βv
u P(α, β) = R + α(Q – R) + β(S – Q)
三角形
R
S(α)与R的凸组合 P与Q的凸组合
T(α, β)
S(α)=αP+(1-α)Q T(α, β)= βS(α)+(1- β)R
P
S(α)
当0≤α, β≤1时定义在三角形内的点
Q
向量的内积

内积或点积:u⋅v = |u| |v| cosθ, θ为两个向 量的夹角
• u⋅v=0⇔u⊥v • | u | cosθ= u ⋅ v / |v|是u在v上的正交投影
向量的外积

外积或叉积:u × v为向量,其长度等于|u| |v| sinθ, 方向垂直于u, v所在的平面,并 且保证u, v, u × v 成为右手系,其中θ为两 个向量的夹角。
高级计算机图形学
中国科学技术大学计算机学院 黄章进 zhuang@
第四章
几何对象与变换
第四章之第一节
几何
基本内容

介绍几何要素
• 标量 • 向量 •点

给出这些要素间的与坐标无关的数学运算 定义基本的几何图元
• 线段 • 多边形
坐标系
二维坐标系
三维坐标系 (右手系)
• 标量、向量、点


标量可以定义为集合中的成员,集合中具 有两种运算(加法和乘法),运算遵从一些 基本的公理(结合律、交换律、逆) 例:实数或复数全体,通常的加法与乘法 标量自身没有几何属性
为什么需要向量?
(4,6)
CAD中的问题: 给定不共线三个点,那 么过这三点的唯一圆的 圆心在哪里?

计算机图形学(孙家广.第三版)-第4章

计算机图形学(孙家广.第三版)-第4章
波长
400
700
nm
– 各波长的能量 分布不均匀, 为彩色光
– 包含一种波长
能 量
P ( )
波长
400
能 量
700
nm
的能量,其他 波长都为零, 是单色光
P ( )
波长

400
700
nm
• 光谱能量分布定义颜色十分麻烦
• 光谱与颜色的对应关系是多对一
• 两种光的光谱分布不同而颜色相同的现 象称为“异谱同色”
• 颜色模型的用途是在某个颜色域内方便 地指定颜色
RGB颜色模型
• 通常使用于彩色光栅图形显示设备中
• 真实感图形学中的主要的颜色模型
蓝(0,0,1) 青(0,1,1)
• 采用三维直角坐标系 • RGB立方体
内容
• 颜色视觉
简单光照明模型
• 局部光照明模型 光透射模型 • 纹理及纹理映射 整体光照明模型 • 实时真实感图形学技术
4.1 颜色视觉
分析以下的基本现象: 为什么计算R、G、B三个分量就可 以使人有颜色的视觉感觉?
基本概念
• 颜色是外来的光刺激作用于人的视觉器 官而产生的主观感觉,影响的因素有:
三 刺 激 值 0.2
0
-0.2 400 500 600 700

波长
nm
CIE-XYZ系统
• CIE-RGB曲线一部分三刺激值是负数, 表明只能在给定光上叠加曲线中负值对 应的原色,去匹配另两种原色的混合
– 计算不便,不易理解
• 1931年CIE-XYZ系统,利用三种假想的 标准原色X、Y、Z,使颜色匹配三刺激 c xX yY zZ 值都是正值: • 任何颜色都能由标准三原色混合匹配(三

计算机图形学题目及答案

计算机图形学题目及答案

第一章概述1、计算机图形学研究的是什么?计算机图形学研究的是通过计算机将数据转换为图形,并在专门的设备上输出的原理、方法和技术。

2、计算机图形学处理的图形有哪些?计算机图形学处理的图形有:专题图件、类似于照片的三维逼真图形、实体的视图、抽象图等。

3、二维图形的基本操作和图形处理算法包含哪些内容?对图形的平移、缩放、旋转、镜像、错切等操作,此外还包括二维图形的裁剪、多边形填充以及二维图形的布尔运算(并、交、差)等。

4、什么叫科学计算可视化技术?这是20世纪90年代计算机图形学领域的前沿课题。

研究的是,将科学计算中大量难以理解的数据通过计算机图形显示出来,从而加深人们对科学过程的理解。

例如,有限元分析的结果,应力场、磁场的分布,各种复杂的运动学和动力学问题的图形仿真等。

5、计算机图形学的应用领域有哪些?计算机图形学处理图形的领域越来越广泛,主要的应用领域有:计算机辅助设计与制造(CAD/CAM)、科学计算可视化、地理信息系统与制图、事务管理和办公自动化、虚拟现实系统、过程控制和指挥系统、计算机动画。

6、计算机图形系统的硬件设备有哪些?硬件设备包括主机、输入设备和输出设备。

输入设备通常为键盘、鼠标、数字化仪、扫描仪和光笔等。

输出设备则为图形显示器、绘图仪和打印机。

7、在彩色CRT的荫罩法技术中,说说每个象素的组成结构?谈谈彩色是如何产生的?彩色CRT显示器中,每个象素位置上分布着呈三角形排列的三个荧光彩色点,三个荧光点分别发射红光、绿光和蓝光。

这样的彩色CRT有三支电子枪,分别与三个荧光点相对应,即每支电子枪发出的电子束专门用于轰击某一个荧光点。

屏幕上的荧光点、荫罩板上的小孔和电子枪被精确地安排处于一条直线上,使得由某一电子枪发出的电子束只能轰击到它所对应的荧光点上。

这样,只要调节各电子枪发出电子束的强弱,即可控制各象素中三个荧光点所发出的红、绿、蓝三色光的亮度。

于是我们可以根据彩色中所含红、绿、蓝三色的数量,以不同的强度激励三个荧光点,从而可以产生范围很广的彩色。

计算机图形学第4章 自由曲线与曲面2

计算机图形学第4章 自由曲线与曲面2


(1) P3 Q0 (2) 0 P3 P2 (Q1 Q0 )
三点共线,且Q1,P2在连接点的异侧

二阶几何连续条件?
自学
21
4.6 Bezier曲线
反求控制顶点

给定n+1个型值点,要求构造一条Bezier曲线通过这些点
Q0 P0 ... 0 n 1 n 1 n (i / n) ... PnCn (i / n) n Qi P0Cn (1 i / n) P 1C n (1 i / n) ... Qn Pn
17
4.6 Bezier曲线
二次Bezier曲线


n=2,抛物线 P(0)=P0,P(1)=P2; P'(0)=2(P1- P0), P'(1)=2(P2- P1) P(1/2)=[P1+ (P0+ P2)/2]/2
P1
P(0.5)
P(0)
P0
M
P2
P(1)
说明二次Bezier曲线在 t=1/2 处的点经过P0P2 上 的中线P1M的中点。
优于Bezier曲线之处:



26
4.7 B样条曲线
三次B样条曲线对三次Bezier曲线进行改进, 它克服了Bezier曲线的不足,同时保留了 Bezier曲线的直观性和凸包性,是一种工程设 计中更常用的拟合曲线。
三次B样条曲线的构造:
由前面可知,三次参数曲线可以表示成: P(t)=F0,3(t)P0 + F1,3(t)P1 + F2,3(t)P2 + F3,3 (t)P3 F0,3(t) ,F1,3(t) ,F2,3(t) ,F3,3 (t)是待定参数 P2 P1 P(t) 由P0,P1,P2,P3确定 Q(s) 由P1,P2,P3,P4确定 P3 P4

第四章基本图元的生成

第四章基本图元的生成

4.5 区域填充
基础知识: 基础知识 区域: 区域:通常由一个封闭的轮廓线来定义,处于一个 封闭轮廓线内的所有像素点即构成了一个区域。 区域填充: 区域填充:给出一个区域的边界,要求对应边界范 围内的所有像素单元赋予指定的颜色值或图案。 区域填充要解决两个问题: 区域填充要解决两个问题:一是确定需要填充哪些 像素;二是确定用什么颜色填充(实心填充)或 图案填充。 在光栅系统中有两种基本的区域填充方法: 在光栅系统中有两种基本的区域填充方法: 扫描线填色方法 种子填色方法
一般来讲,任何图形输出设备都能准确地画出水 平线X和垂直线Y,但要画出一条准确的斜线不是 件容易的事。怎样生成斜线段呢?图形显示器是 由一个个排列有序的像素构成,划分的像素点越 多分辨率越高。例如,VGA卡640×480的显示 VGA 640 480 器,分成640×480个网络,网络的单元称为像素, 一条线段就是由一些连续可见的像素所组成。画 一条直线实际上是根据一系列计算出来并与该线 靠近的像素绘制的。(见书P51)
4.4 椭圆的生成
4.4.1 概述 4.4.2 中点椭圆算法
4.4.1 概述
椭圆被定义为到两个定点(也称为焦点) 的距离之和等于常数的点的集合。假如椭 圆上任意点P=(x,y)到两个焦点F1= (x1,y1)和F2=(x2,y2)的距离之和等于 常数R,那么椭圆的通用方程可表示为: 对方程平方处理去掉根号后,椭圆的方程 可表示为:
4.5.3 种子填充
种子填充算法允许从四个方向寻找下一个 像素的,称为四向算法;允许从八个方向 搜索下一像素的,称为八向算法。八向算 法可以填充八向连通区域,也可以填充四 向连通区域。但四向算法只能填充四向连 通区域,而不能填充八向填充区域。
4.5.3 种子填充

计算机图形学教学大纲(word文档【经典】)

计算机图形学教学大纲(word文档【经典】)

XX大学《计算机图形学》教学大纲编写单位:执笔人:审核人:XX大学xx系20xx年9 月[实验要求]本课程实验要求较高,实验内容多且相关性较强,有关实验的具体要求与内容需按实验大纲执行,本大纲中不再另行说明。

第一章绪论[教学内容]计算机图形学的目标与任务;计算机图形学的内容体系;计算机图形学相关学科;计算机图形学相关领域。

[教学目标与要求]熟练掌握:计算机图形学的内容体系;计算机图形学的目标与任务;掌握:计算机图形学的应用领域;计算机图形学的相关学科;了解:计算机图形学的发展。

[重点与难点]计算机图形学的内容体系;计算机图形学的目标与任务。

[教学时数]2学时第一节计算机图形学的目标与任务一、视觉交流是计算机图形学的目标与任务二、计算机图形学的三个基本任务第二节计算机图形学的内容体系一、基础模块二、建模与表示模块三、绘制模块四、交互技术第三节计算机图形学相关学科一、图形与图像二、相关学科第四节计算机图形学的应用领域一、计算机辅助设计与制造(CAD/CAM)二、科学计算可视化三、虚拟现实四、动画第五节计算机图形学的发展一、计算机图形学的发展简史二、计算机图形学的发展趋势[复习思考题]1、图形包括哪两方面的要素?在计算机中如何表示它们?2、图形的本质是什么?3、如何看待计算机图形学的发展趋势?第二章图形系统[教学内容]Visual 图形系统概述;图形系统体系结构;图形支撑软件;图形硬件显示原理;[教学目标与要求]熟练掌握:图形系统体系结构;图形硬件显示原理掌握:图形系统基本概念和术语;了解:图形支撑软件[重点与难点]图形系统体系结构;图形硬件显示原理[教学时数]2学时第一节图形系统概述一、图形系统组成结构1.图形系统组成结构2.图形系统分类第二节图形系统体系结构一、概述二、应用程序阶段三、几何处理阶段四、光栅阶段第三节图形支撑软件一、OpenGL二、DirectX三、Java2D和Java3D第四节图形硬件显示原理一、图形显示设备及工作原理二、图形显示方式三、光栅扫描图形显示系统[复习思考题]1、从图形硬件显示原理角度,思考并分析如何显示直线?2、请你总结一下光栅显示系统的优缺点?3、在光栅显示系统中,显卡有什么作用?第三章二维图形生成[教学内容]直线生成算法;圆弧绘制算法;区域填充;字符;反走样技术;[教学目标与要求]熟练掌握:直线生成算法;区域填充;圆弧绘制算法掌握:反走样技术了解:字符编码[重点与难点]直线生成算法;区域填充;圆弧绘制算法[教学时数]8学时第一节直线生成算法一、数值微分法二、逐点比较法三、Bresenham画线法四、中点画线法第二节圆弧绘制算法一、基于光栅的整圆绘制算法二、角度离散法绘制圆弧和椭圆弧第三节区域填充一、种子填充算法二、多边形填充算法第四节字符一、字符的编码二、点阵字符三、矢量字符第五节反走样技术第六节编程实例-地图绘制一、地图绘制方法二、基于OpenGL的地图绘制[复习思考题]1、简述DDA算法、中点画线法、Bresenham画线法算法的思想?2、根据中点画圆法和Bresenham算法,绘制一条端点为(1,1)和(6,5)的直线,画出对应各像素的位置?第四章图形几何变换[教学内容]二维几何变换;三维几何变换;图形几何变换的模式;[教学目标与要求]熟练掌握:二维几何变换;三维几何变换;掌握:图形几何变换的模式;[重点与难点]二维几何变换;三维几何变换;[教学时数]6学时第一节二维几何变换一、基本变换二、二维复合变换三、二维坐标系间的变换第二节三维几何变换一、基本变换二、三维复合变换三、三维坐标系间的变换第三节图形几何变换的模式一、固定坐标系模式二、活动坐标系模式[复习思考题]1、试编写对二维点实现平移、旋转、比例变换的程序。

计算机图形学第二版(陆枫)课后习题答案部分

计算机图形学第二版(陆枫)课后习题答案部分

计算机图形学第二版(陆枫)课后习题集第一章绪论概念:计算机图形学、图形、图像、点阵法、参数法、图形的几何要素、非几何要素、数字图像处理;计算机图形学和计算机视觉的概念及三者之间的关系;计算机图形系统的功能、计算机图形系统的总体结构。

第二章图形设备图形输入设备:有哪些。

图形显示设备:CRT的结构、原理和工作方式。

彩色CRT:结构、原理。

随机扫描和光栅扫描的图形显示器的结构和工作原理。

图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算第三章交互式技术什么是输入模式的问题,有哪几种输入模式。

第四章图形的表示与数据结构自学,建议至少阅读一遍第五章基本图形生成算法概念:点阵字符和矢量字符;直线和圆的扫描转换算法;多边形的扫描转换:有效边表算法;区域填充:4/8连通的边界/泛填充算法;内外测试:奇偶规则,非零环绕数规则;反走样:反走样和走样的概念,过取样和区域取样。

5.1.2 中点 Bresenham 算法(P109)5.1.2 改进 Bresenham 算法(P112)习题解答习题5(P144)5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。

(P111)解: k<=-1 |△y|/|△x|>=1 y为最大位移方向故有构造判别式:推导d各种情况的方法(设理想直线与y=yi+1的交点为Q):所以有: y Q-kx Q-b=0 且y M=y Qd=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M)所以,当k<0,d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。

d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。

d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。

所以有递推公式的推导:d2=f(x i-1.5,y i+2)当d>0时,d2=y i+2-k(x i-1.5)-b 增量为1+k=d1+1+k当d<0时,d2=y i+2-k(x i-0.5)-b 增量为1=d1+1当d=0时,5.7 利用中点 Bresenham 画圆算法的原理,推导第一象限y=0到y=x圆弧段的扫描转换算法(要求写清原理、误差函数、递推公式及最终画图过程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y rz + 1 z rz + 1 1
r = −1 / d
投影中心 z 一点透视
1 0 T = 0 0
[x ′
y′
x z ′ 1] = rz + 1
20
平面几何投影(15/16) 平面几何投影(15/16)
灭点:
不平行于投影平面的平行线,经过透视投影之后相交于 一点,称为灭点. 一点,称为灭点.
3
Hale Waihona Puke 三维图形的基本问题(3/5) 三维图形的基本问题(3/5)
3. 如何反映遮挡关系? 如何反映遮挡关系?
物体之间或物体的不同部分之间存在相互遮挡关系 解决方法----消除隐藏面与隐藏线 解决方法----消除隐藏面与隐藏线
4
三维图形的基本问题(4/5) 三维图形的基本问题(4/5)
4. 如何产生真实感图形
2. 如何表示三维物体? 如何表示三维物体?
三维形体的表示----空间直线段、曲线段、多边形、曲 三维形体的表示----空间直线段、曲线段、多边形、曲 ---面片 三维形体的输入、运算、有效性保证----困难 三维形体的输入、运算、有效性保证----困难 解决方法----各种用于形体表示的理论、模型、方法 解决方法----各种用于形体表示的理论、模型、方法
y
投影 平面
120° 120°
120° z x
(a) 正等轴测
正方体的正等轴测投影 正方体的正等轴测投影
三个单位向量将投影成三个长度相等的平 面向量,即三根坐标轴有相同的变形系数
17
平面几何投影(12/16) 平面几何投影(12/16)
正方体的正轴测投影 正方体的正轴测投影
y
y
投影 平面
z x
投影 平面
何谓真实感图形? 真实感来源于 透视关系和遮挡关系 光线传播引起的物体表面颜色的自然分布 解决方法 建立光照明模型 真实感图形绘制
5
三维图形的基本问题(5/5) 三维图形的基本问题(5/5)
三维图形的基本研究内容
1. 2. 3. 4.
投影 三维形体的表示 消除隐藏面与隐藏线 建立光照明模型、研究真实感图形绘制方法
z
x
(b)正二轴测
(c)正三轴测
18
平面几何投影(13/16) 平面几何投影(13/16)
透视投影
投影中心与投影平面之间的距离为有限 参数:投影方向,距离 例子:室内白炽灯的投影,视觉系统
特点:
产生近大远小的视觉效果,由它产生的图形深度感 强,看起来更加真实。
19
平面几何投影(14/16) 平面几何投影(14/16)
透视投影投影方程
y P’ y’ x z x’ d 投影平面 x P y
x′ x x = = d (| z | + d ) − z + d
y′ y y = = d (| z | + d ) − z + d
x′ =
x y y′ = (− z / d ) + 1 (− z / d ) + 1
0 1 0 0 0 0 1 0 0 0 r 1
z
主视图
侧视图
y x 俯视图 图3 一个直角棱台的三视图
15
平面几何投影(10/16) 平面几何投影(10/16)
从三视图很难想象出实际物体的空间形状 解决: 投影平面不垂直于任何一个坐标轴——正轴测投影 投影平面不垂直于任何一个坐标轴——正轴测投影
16
平面几何投影(11/16) 平面几何投影(11/16)
6
平面几何投影(1/16) 平面几何投影(1/16)
如何投影? 如何投影? 生活中的类比--如何拍摄景物? 生活中的类比--如何拍摄景物? 拍摄过程 选景 取景--裁剪 取景--裁剪 对焦— 对焦—参考点 按快门--成像 按快门--成像 移动方式 移动景物 移动照相机
7
平面几何投影(2/16) 平面几何投影(2/16)
一点透视
两点透视
22 三点透视
23
空间平行线可认为是相交于无穷远点, 空间平行线可认为是相交于无穷远点, 灭点可以看成是无穷远点经透视投影后得到的点
21
平面几何投影(16/16) 平面几何投影(16/16)
主灭点: 主灭点:平行于坐标轴的平行线产生的灭点。
一点透视 两点透视 三点透视
主灭点的个数由什么决定? 主灭点的个数由什么决定
基本内容
1 三维图形的基本问题 2 平面几何投影 平行投影 透视投影
1
三维图形的基本问题(1/5) 三维图形的基本问题(1/5)
1. 在二维屏幕上如何显示三维物体? 在二维屏幕上如何显示三维物体?
显示器屏幕、绘图纸等是二维的 显示对象是三维的 解决方法----投影 解决方法----投影
2
三维图形的基本问题(2/5) 三维图形的基本问题(2/5)
透视投影
平行投影
12
平面几何投影(7/16) 平面几何投影(7/16)
平行投影
投影中心与投影平面之间的距离为无限
投影方向
投影平面
13
平面几何投影(8/16) 平面几何投影(8/16)
正投影与斜投影
正平行投影
斜平行投影
14
平面几何投影(9/16) 平面几何投影(9/16)
三视图:正视图、侧视图和俯视图
观察点、视点
投影面
不经过投影中心
9
平面几何投影(4/16) 平面几何投影(4/16)
投影线 从投影中心向物体上各点发出的射线 平面几何投影 投影面是平面 投影线为直线 投影变换 投影过程 投影的数学表示
10
平面几何投影(5/16) 平面几何投影(5/16)
投影分类
11
平面几何投影(6/16) 平面几何投影(6/16)
z轴灭点
灭点的个数? 灭点的个数
[x
1 0 H ] = [0 0 1 0] 0 0
灭点的位置? 灭点的位置
0 0 0 1 0 0 = [0 0 1 r ] 0 1 r 0 0 1
y
y
z
[x ′
y ′ z ′ 1] = [0 0 1 / r 1]
x z 图7 正方体的一点透视及其灭点
投影— 投影—照相机模型
选定投影类型 设置投影参数– 设置投影参数– 拍摄方向、距离等 三维裁剪 –取景 投影和显示 –成像
8
平面几何投影(3/16) 平面几何投影(3/16)
平面几何投影及其分类
投影
将n维的点变换成小于n维的点 维的点变换成小于n 将3维的点变换成2维的点 维的点变换成2
投影中心
相关文档
最新文档