【高考数学】:数列求和及综合应用

合集下载

高考数学二轮复习数列求和及其综合应用

高考数学二轮复习数列求和及其综合应用

(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.

高考数学数列之数列求和

高考数学数列之数列求和

数列求和(一)【总结】等差数列求和公式:11()(1)22n n n a a n n dS na +-==+ ; 等比数列求和公式:11,1(1),11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩1、 已知{}n a 是等差数列,{}n b 是等比数列,且23111443,9,,b b a b a b ====。

(1) 求{}n a 的通项公式;(2) 设n n n c a b =+,求{}n c 的前n 项和。

2、 已知{}n a 是等差数列,满足345984,73a a a a ++==。

(1) 求{}n a 的通项公式;(2) 对任意*m N ∈,将数列{}n a 中落入区间2(9,9)mm内的项的个数记为m b ,求数列{}m b 的前m 项和m S 。

【总结】一般题目中出现1212(),()()()x x k k f x f x l l +=+=为常数为常数时,可以采用倒叙相加的方法进行求和。

3、 函数()f x 对任意x R ∈都有1()(1)2f x f x +-=。

(1) 求1()2f 的值;(2) 若数列{}n a 满足11(0)()()(1)n n a f f f f nn-=++++,数列{}n a 是等差数列吗?4、 已知定义在R 上的偶函数()f x 和奇函数()g x ,且()()xf xg x e +=。

(1) 求函数()f x ,()g x 的解析式;(2) 设函数1()2()11()2g x F x f x -=+-,记121()()()()n H n F F F n n n-=+++,探究是否存在正整数(2)n n ≥,使得对任意(0,1]x ∈,不等式(2)()()g x H n g x >恒成立。

若存在,求出所有满足条件的正整数n 的值,若不存在,说明理由。

5、函数321()()212x F x x x -=≠-,则122018()()()201920192019F F F +++= 。

高考数学《数列求和及综合应用》复习

高考数学《数列求和及综合应用》复习
1010
C. 2019
2020
√D. 2020 2021

a1
1 2
,an1
1 2 an
,得 a2
1 2 a1
2 3
,a3
3 4
,归纳可得
an
n
n
1
.当
n
1
时,a1
1 2
满足
an
n.
n 1
假设当 n k 时满足,即 ak
k
k 1
,当
n
k
1 时,
ak 1
1 2 ak
1 2 k
k 1 ,满足该式,故
an
SS1n,
n
1 Sn1, n
2, n N
只有 a1 S1 ,满足 n 2 的情形,通项公式才可以统一写成 an Sn . Sn1
1.已知数列an
满足
a1
1 2

an1
2
1 an
n N*
,则 a1
a2 22
a3 32
a2020 的值是(
20202
)
A. 2018
2019
B. 1009
3.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、 分组求和 4.以递推数列、等差(比)数列为命题背景, 考查错位相减、裂项相消、倒序相加等求和方法
考点解读
5.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 6.常与不等式、函数、解析几何相结合考查数列求和函数、 不等式的性质等
2.已知等比数列an 的前 n 项和为 Sn ,且 Sn 2n1 2 ,
则数列
log
2
an
1 log2
an1

高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题三第2讲 数列求和及其综合应用 Word版含答案

高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题三第2讲 数列求和及其综合应用 Word版含答案

第2讲数列求和及其综合应用错位相减法求和[学生用书P34]共研典例类题通法错位相减法适用于由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,其依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )·b n +1=db n +1,这样就把对应相减的项变成了一个等比数列,从而达到求和的目的.(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .【解】(1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+ (2)+1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.应用错位相减法求和需注意的问题(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. [跟踪训练](2016·兰州模拟)等差数列{a n }中,已知a n >0,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,则由已知得: a 1+a 2+a 3=3a 2=15,即a 2=5. 又(5-d +2)(5+d +13)=100, 解得d =2或d =-13(舍去),所以a 1=a 2-d =3,a n =a 1+(n -1)×d =2n +1. 又b 1=a 1+2=5,b 2=a 2+5=10,所以公比q =2, 所以b n =5×2n -1.(2)因为T n =5[3+5×2+7×22+…+(2n +1)×2n -1], 2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1], 则T n =5[(2n -1)2n +1].裂项相消法求和[学生用书P35]共研典例类题通法 1.常见的裂项类型 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;(3)1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;(4)14n 2-1=12⎝⎛⎭⎫12n -1-12n +1;(5)n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n. 2.裂项相消法求和的基本思想是把数列的通项公式a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2016·海口调研测试)在等差数列{a n }中,公差d ≠0,a 1=7,且a 2,a 5,a 10成等比数列.(1)求数列{a n }的通项公式及其前n 项和S n ; (2)若b n =5a n ·a n +1,求数列{b n }的前n 项和T n .【解】(1)因为a 2,a 5,a 10成等比数列, 所以(7+d )(7+9d )=(7+4d )2, 又因为d ≠0,所以d =2,所以a n =2n +5,S n =(7+2n +5)n 2=n 2+6n .(2)由(1)可得b n =5(2n +5)(2n +7)=52⎝ ⎛⎭⎪⎫12n +5-12n +7, 所以T n =52⎝ ⎛⎭⎪⎫17-19+19-111+…+12n +5-12n +7=5n14n +49.裂项相消法的技巧在裂项时要注意把数列的通项分拆成的两项一定是某个数列中的相邻的两项,或者是等距离间隔的两项,只有这样才能实现逐项相消,只剩余有限的几项,从而求出其和.[跟踪训练](2016·石家庄模拟)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.分组转化求和[学生用书P35]共研典例类题通法 分组转化求和的三种类型分组转化求和是把数列之和分为几组,每组中的各项是可以利用公式(或其他方法)求和的,求出各组之和即得整体之和,这类试题一般有如下三种类型:(1)数列是周期数列,先求出每个周期内的各项之和,然后把整体之和按照周期进行划分,再得出整体之和;(2)奇偶项分别有相同的特征的数列(如奇数项组成等差数列、偶数项组成等比数列),按照奇数项和偶数项分组求和;(3)通项中含有(-1)n 的数列,按照奇数项、偶数项分组,或者按照n 为奇数、偶数分类求和.(2016·呼和浩特模拟)在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *). (1)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (2)求数列{a n }的前n 项和S n .【解】(1)因为a n +n =2[a n -1+(n -1)],a n +n ≠0, 所以{a n +n }是首项为4,公比为2的等比数列,所以a n +n =4×2n -1=2n +1. 所以a n =2n +1-n .(2)S n =(22+23+24+…+2n +1)-(1+2+3+…+n )=2n +2-n 2+n +82.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组.(3)根据数列的周期性分组.[题组通关]1.已知数列{a n }的通项公式是a n =(-1)n -1(n +1),则a 1+a 2+a 3+…+a 2017=( )A .1009B .1010C .-1009D .-1010B [解析] 因为a n =(-1)n -1(n +1),所以a 1+a 2+a 3+…+a 2017=(2-3)+(4-5)+…+(2016-2017)+2018=1008×(-1)+2018=1010.2.设数列{a n }的前n 项和为S n (n ∈N *),数列{a 2n -1}是首项为1的等差数列,数列{a 2n }是首项为2的等比数列,且满足S 3=a 4,a 3+a 5=a 4+2.(1)求数列{a n }的通项公式; (2)求S 2n .[解] (1)设等差数列的公差为d ,等比数列的公比为q ,则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d ,所以⎩⎪⎨⎪⎧4+d =2q ,(1+d )+(1+2d )=2+2q ,解得d =2,q =3.所以a n =⎩⎪⎨⎪⎧n ,n =2k -1,2·3n 2-1,n =2k ,(k ∈N *).(2)S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+5+…+2n -1)+(2×30+2×31+…+2×3n -1) =(1+2n -1)n 2+2(1-3n )1-3=n 2-1+3n .等差、等比数列的综合问题[学生用书P36]共研典例类题通法解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明:S n <34.【解】(1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *,得(a n +1-1)+1a n +1-1-1a n -1=0,即1+1a n +1-1-1a n -1=0,亦即1a n +1-1-1a n -1=-1(常数).所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以1a 1-1=-2为首项, -1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1.(2)证明:因为b n =a n +1a n -1=(n +1)2n (n +2)-1=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2,所以S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝⎛⎭⎫1+12=34.解决数列综合问题的方法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. [跟踪训练](2016·武汉模拟)已知S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1)a n ,求数列{b n }的前n 项和T n .[解] (1)设{a n }的公差为d (d ≠0), 因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d .因为d ≠0,所以d =2a 1.① 因为a 3=-52,所以a 1+2d =-52.②联立①②,解得⎩⎪⎨⎪⎧a 1=-12d =-1,所以a n =-12+(n -1)×(-1)=-n +12.(2)因为b n =1(2n +1)a n =1(2n +1)⎝⎛⎭⎫-n +12=-2(2n +1)(2n -1)=12n +1-12n -1,所以T n =⎝⎛⎭⎫13-1+⎝⎛⎭⎫15-13+⎝⎛⎭⎫17-15+…+⎝ ⎛⎭⎪⎫12n +1-12n -1=-1+12n +1=-2n 2n +1. 课时作业[学生用书P120(独立成册)]1.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( ) A .22 2B .442C .22D .44B [解析] 因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( ) A .445 B .765 C .1080D .3105B [解析] 因为a n +1=a n +3,所以a n +1-a n =3. 所以{a n }是以-60为首项,3为公差的等差数列. 所以a n =-60+3(n -1)=3n -63. 令a n ≤0,得n ≤21. 所以前20项都为负值. 所以|a 1|+|a 2|+|a 3|+…+|a 30| =-(a 1+a 2+…+a 20)+a 21+…+a 30 =-2S 20+S 30.因为S n =a 1+a n 2n =-123+3n 2×n ,所以|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40等于( )A .20B .40C .60D .80C [解析] 由a n +1=a na n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263,又40=6×6+4,所以S 40=6×263+1+3+3+1=60.4.(2016·郑州模拟)设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B.2011C .-95D.95A [解析] 设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n =-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝ ⎛⎭⎪⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13⎦⎤+…+⎝⎛⎭⎫110-111=-2·⎝⎛⎭⎫1-111=-2011. 5.设b n =a n (a n +1)(a n +1+1)(其中a n =2n -1),数列{b n }的前n 项和为T n ,则T 5=( )A.3133B.3233C.3166D.1633C [解析] 由题意得,b n =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,所以T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+…+ ⎝ ⎛⎭⎪⎫12n -1+1-12n +1=12-12n +1,所以T 5=12-133=3166.6.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a>0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .9C [解析] 由⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,知f (x )g (x )在R 上是增函数,即f (x )g (x )=a x 为增函数,所以a >1.又因为a +1a =52,所以a =2或a =12(舍).数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =21+22+…+2n =2(1-2n)1-2=2n +1-2>62.即2n >32,所以n >5.7.(2016·海口调研测试)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.[解析] 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. [答案]43⎝⎛⎭⎫1-14n +28.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为________.[解析] 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. [答案]29.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 2017=________.[解析] 因为a n +a n +1=12(n ∈N *),所以a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2,所以S 2017=1009a 1+1008a 2=1009×⎝⎛⎭⎫12-2+1008×2=10052. [答案]1005210.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析]因为⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,所以a n +2+a n =2a n +1,所以数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,所以a 3=a 2+2=4,所以S 10=1+2+4+6+…+18=1+9(2+18)2=91. [答案]9111.(2016·东北四市联考)已知数列{a n }满足a 1=511,a 6=-12,且数列{a n }的每一项加上1后成为等比数列.(1)求a n ;(2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和T n .[解] (1)由题意数列{a n +1}是等比数列,设公比为q ,a 1+1=512,a 6+1=12=512×q 5, 解得q =14. 则数列{a n +1}是以512为首项,14为公比的等比数列, 所以a n +1=211-2n ,a n =211-2n -1.(2)由(1)知b n =|11-2n |,当n ≤5时,T n =10n -n 2,当n ≥6时,T n =n 2-10n +50,所以T n =⎩⎪⎨⎪⎧10n -n 2,n ≤5n 2-10n +50,n ≥6. 12.(2016·哈尔滨模拟)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n .[解] (1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2.因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n ,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n ,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1,②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×4(1-2n -1)1-2-(2n -1)2n +1 =-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.13.数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. [解] (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2. 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(选做题)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. [解] (1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , 因为|φ|<π,所以φ=-2π3. (2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.。

2024年高考数学---数列求和、数列的综合

2024年高考数学---数列求和、数列的综合

例2 (2022海南嘉积中学等四校联考,18)①等比数列{an}的公比为2,且a4 是a3与a5-8的等差中项;②a2=4,S3=14且{an}为递增数列,在①②中任选一 个,补充在下列横线上并解答.
已知等比数列{an}中,Sn为数列{an}的前n项和,若
.
(1)求数列{an}的通项公式;
(2)若bn=(n+1)log2an,记数列
2)以数列为载体,考查不等式的恒成立问题时,可转化为数列的最值问题, 可利用数列单调性或数列对应函数的单调性; 3)解决与数列有关的不等式的证明问题时,可构造函数证明,或利用放缩 法证明.
综合篇
考法一 错位相减法求和 1.当{an}是等差数列,{bn}是等比数列时,求数列{an·bn}的前n项和常采用错 位相减法. 2.用错位相减法求和时,应注意: 1)要善于识别题目类型,特别是等比数列的公比为负数的情形. 2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”, 以便于下一步准确地写出“Sn-qSn”的表达式. 3)应用等比数列求和公式必须注意公比q是否等于1,如果q=1,那么应用公 式Sn=na1.
q2
)
14, 解得aq122,或
a1 8,
q
1 2
,
因为数列{an}是递增数列,所以 aq122,, 所以数列{an}的通项公式是
an=2n.
(2)证明:由(1)知an=2n,则bn=(n+1)log2an=(n+1)log22n=n(n+1),
因此
1 bn
=
1 n(n 1)
=
1 n
-
1 n 1
,于是有Tn=1
1 bn
的前n项和Tn,求证:

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用高考数学一轮总复习:数列与级数的求和公式推导与应用数列与级数是高中数学中的重要内容,也是高考数学考试中常见的考点之一。

在高考中,理解、掌握数列与级数的求和公式的推导与应用是解题的关键。

本文将重点介绍数列与级数的求和公式的推导方法,并结合实际应用问题进行解析。

一、数列的求和公式推导1.1 等差数列的求和公式对于等差数列{an},其中a1为首项,d为公差,n为项数,其前n项和Sn可以用下式表示:Sn = (a1 + an) * n / 2推导过程如下:首先,将数列{an}逆序相加并累加两式,得到:2Sn = (a1 + an) + (a2 + a{n-1}) + (a3 + a{n-2}) + ... + (an + a1)由于等差数列的关系式为an = a1 + (n-1)d,则上式可以简化为:2Sn = (a1 + a1 + (n-1)d) + (a1 + d + a1 + (n-2)d) + (a1 + 2d + a1 + (n-3)d) + ... + (a1 + a1 + (n-1)d)化简后得:2Sn = n(a1 + an)最终得到等差数列的求和公式:Sn = (a1 + an) * n / 21.2 等比数列的求和公式对于等比数列{an},其中a1为首项,q为公比,n为项数,其前n 项和Sn可以用下式表示:Sn = a1 * (1 - q^n) / (1 - q)推导过程如下:首先,将Sn与qSn相减得:Sn - qSn = a1 * (1 - q^n) - a1 * q * (1 - q^(n-1))化简后得:Sn(1 - q) = a1(1 - q^n)由于等比数列的关系式为an = a1 * q^(n-1),则上式可以简化为:Sn(1 - q) = an最终得到等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)二、数列求和公式的应用2.1 应用一:计算等差数列的前n项和假设某等差数列的首项为a1,公差为d,共有n项。

高考数学二轮专题复习常考问题10 数列求和及其综合应用

高考数学二轮专题复习常考问题10 数列求和及其综合应用

常考问题10 数列求和及其综合应用[真题感悟]1.(2013·新课标全国Ⅰ卷)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD . S n =3-2a n解析 S n =a 1(1-q n)1-q =a 1-q ·a n 1-q =1-23a n 13=3-2a n . 故选D.答案 D2.(2013·江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析 每天植树棵数构成等比数列{a n }, 其中a 1=2,q =2.则S n =a 1(1-q n )1-q=2(2n -1)≥100,即2n +1≥102. ∴n ≥6,∴最少天数n =6.答案 63.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 答案 634.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去), a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2, 由2n -5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 125.(2013·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23,由于函数f (x )=x 33-10x 23在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.答案 -49[考题分析]题型 选择题、填空题、解答题难度 中档 ①考查数列与函数、方程、不等式的综合问题;②考查数列的通项以及前n 项和的求解.高档 考查数列与平面几何、解析几何、三角函数交汇问题.。

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件
n+1,n为奇数, 从而 bn=2n,n为偶数,
b1+b2+b3+…+b2n-1+b2n =(2+4+…+2n)+(22+24+…+22n) =n×(22+2n)+4×1(-1-4 4n) =n(n+1)+43(4n-1);
(2)∵cn=b2n-1·b2n=2n×22n=2n·4n, ∴Sn=2×41+4×42+6×43+…+2n·4n, 4Sn=2×42+4×43+6×44+…+2(n-1)·4n+2n·4n+1, 两式相减得,-3Sn=2×41+2×42+2×43+…+2×4n-2n×4n+1 =8(11--44n)-2n×4n+1
(1)求数列{an}的通项公式; (2)设 bn=24nn+an1,求数列{bnbn+1}的前 n 项和 Tn.
【解析】(1)当 n=1 时,a1=14. 因为 a1+4a2+42a3+…+4n-2an-1+4n-1an=n4,① 所以 a1+4a2+42a3+…+4n-2an-1=n-4 1(n≥2,n∈N*),② ①-②得 4n-1an=14(n≥2,n∈N*), 所以 an=41n(n≥2,n∈N*). 当 n=1 时也适合上式,故 an=41n(n∈N*).
核心拔头筹 考点巧突破
考点一 数列求和
1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间 能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项 抵消.常见的裂项方式有:
n(n1+1)=1n-n+1 1; n(n1+k)=1k1n-n+1 k; n2-1 1=12n-1 1-n+1 1; 4n21-1=122n1-1-2n1+1.
②cn=4n3-n 2, Tn=23+362+1303+…+4n3-n 2,① 13Tn=322+363+1304+…+4n3-n 6+43nn-+12,②

高考总复习优化设计二轮用书数学考点突破练5 数列求和及其综合应用

高考总复习优化设计二轮用书数学考点突破练5 数列求和及其综合应用
∴2na1+2n-1a2+…+22an-1=2(n-1)an(n≥2),②
①-②得2an=nan+1-2(n-1)an(n≥2),即an+1=2an(n≥2),
令2na1+2n-1a2+…+2an=nan+1中n=1,得a2=2a1也符合上式,
故数列{an}为首项a1=1,公比q=2的等比数列,则an=a1qn-1=2n-1.
2 +
n+1
Tn=(2 -2)×
=(2n-1)(n2+n).
2
n+1
1 2 3 4 5 6
=
2 +
,
2
3.(2023河北张家口高三期末)已知Sn为数列{an}的前n项和,Sn=2an-4n+2.
(1)证明:数列{an+4}为等比数列;
(2)求数列{nan}的前n项和Tn.
1 2 3 4 5 6
9
由题意得 6d+=21,从而 2d2-7d+3=0.
1
整理得(2d-1)(d-3)=0,解得 d=3 或 d=2(舍去).
故 an=3n,n∈N*.
1 2 3 4 5 6
(2)由题意,n∈N*,d>1,
2 +
在等差数列{bn}中,bn= ,前 n 项和为 Tn,

2
6
12
a2=a1+d,a3=a1+2d,b1= ,b2= ,b3= ,
2024
高考总复习优化设计
GAO KAO ZONG FU XI YOU HUA SHE JI
考点突破练5
数列求和及其综合应用
1.(2023安徽芜湖高三统考)已知Sn是数列{an}的前n项和,2Sn=(n+1)an,且

2021届高考数学一轮基础过关训练31:数列求和及综合应用

2021届高考数学一轮基础过关训练31:数列求和及综合应用

1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200D .100解析:选D.由题意知S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D. 2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n ,n ∈N *,则S 60的值为( ) A .990 B .1 000 C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0解析:选A.因为a n +1=a n -a n -1,a 1=1,a 2=2,所以a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故 S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A.4.122-1+132-1+142-1+…+1(n +1)2-1的值为( )A.n +12(n +2)B.34-n +12(n +2) C.34-12⎝⎛⎭⎫1n +1+1n +2D.32-1n +1+1n +2解析:选C.因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1 B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n=2n +12n =2,所以a n +2a n=2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.故选B.6.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n=1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=________. 解析:由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n =2n (n +1)=2(1n -1n +1),T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019. 答案:4 0362 0197.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n+1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×(1-29)1-2=210-2=1 022. 答案:1 0228.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 018项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n , 所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 018项的和等于S 2 018=1 009×⎝⎛⎭⎫1+12=3 0272. 答案:3 02729.已知数列{a n }满足:1a 1+2a 2+…+n a n =38(32n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n n ,求1b 1b 2+1b 2b 3+…+1b n b n +1.解:(1)1a 1=38(32-1)=3,当n ≥2时,因为n a n =(1a 1+2a 2+…+n a n )-(1a 1+2a 2+…+n -1a n -1) =38(32n -1)-38(32n -2-1) =32n -1,当n =1,n a n =32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn=-(2n -1),因为1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以1b 1b 2+1b 2b 3+…+1b n b n +1=12[(1-13)+(13-15)+…+(12n -1-12n +1)] =12(1-12n +1) =n2n +1. 10.已知{a n }是各项均为正数的等比数列,且a 1+ a 2 =6,a 1a 2= a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得:a 1=2,q=2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)·b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n .。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

高考数列求和知识点总结

高考数列求和知识点总结

高考数列求和知识点总结数列求和是高中数学中的一个重要知识点,也是高考数学中经常考察的内容之一。

掌握了数列求和的方法和技巧,可以帮助我们更好地解决问题,提高解题效率。

下面将对数列求和的相关知识进行总结和归纳。

一、等差数列的求和等差数列是高中数学中最基本的数列之一,求和公式为Sn = n* (a1 + an) / 2,其中Sn表示前n项和,a1表示首项,an表示第n 项。

例题1:已知某等差数列的首项为2,公差为3,求前10项的和。

解题思路:首先根据等差数列的公式an = a1 + (n - 1) * d,计算出第10项的值为2 + (10 - 1) * 3 = 29。

然后利用等差数列的求和公式Sn = n * (a1 + an) / 2,代入n=10,a1=2,an=29,计算出前10项的和为10 * (2 + 29) / 2 = 155。

二、等比数列的求和等比数列是高中数学中另一个重要的数列,求和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比。

例题2:已知某等比数列的首项为1,公比为2,求前5项的和。

解题思路:首先根据等比数列的公式an = a1 * q^(n - 1),计算出第5项的值为1 * 2^(5 - 1) = 16。

然后利用等比数列的求和公式Sn = a1 * (1 - q^n) / (1 - q),代入n=5,a1=1,q=2,计算出前5项的和为1 * (1 - 2^5) / (1 - 2) = 31。

三、一般数列的求和对于一般的数列,如果找不到明显的规律或者确定不了数列的类型,可以采用递推法求和。

例题3:已知数列{an}满足a1 = 1,an = an-1 + 2,求前5项的和。

解题思路:根据数列的递推关系an = an-1 + 2,可以得出第2项a2 = a1 + 2 = 1 + 2 = 3,第3项a3 = a2 + 2 = 3 + 2 = 5,以此类推,可以求得前5项依次为1,3,5,7,9。

高考数学二轮复习专题三 第2讲 数列求和及其综合应用

高考数学二轮复习专题三   第2讲 数列求和及其综合应用

第2讲 数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上. 考点一 数列求和 核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;1n2-1=12⎝⎛⎭⎫1n -1-1n +1;14n2-1=12⎝⎛⎭⎫12n -1-12n +1.2.如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式. 考向1 分组转化法求和例1 已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1an+2log 2a n -1,求数列{b n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,由a 1,a 2,a 3-2成等差数列,得2a 2=a 1+a 3-2, 即4q =2+2q 2-2,解得q =2(q =0舍去), 则a n =a 1q n -1=2n ,n ∈N *.(2)b n =1an +2log 2a n -1=12n +2log 22n -1=12n +2n -1,则数列{b n }的前n 项和S n =⎝⎛⎭⎫12+14+…+12n +(1+3+…+2n -1) =12⎝⎛⎭⎫1-12n 1-12+12n (1+2n -1)=1-12n +n 2.考向2 裂项相消法求和 例2 (2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1an +1·log2bn +1,求{c n }的前n 项和T n .解 (1)由S n =n 2-2n ,得当n =1时,a 1=S 1=-1, 当n ≥2时,S n -1=(n -1)2-2(n -1)=n 2-4n +3,所以当n ≥2时,a n =S n -S n -1=2n -3,a 1=-1也满足此式.所以a n =2n -3,n ∈N *. 又b 1=a 1+3=2,b 3=6a 4+2=32,因为{b n }为正项等比数列,设{b n }的公比为q (q >0). 所以q 2=b3b1=16,即q =4,所以b n =b 1·q n -1=2·4n -1=22n -1,n ∈N *. (2)因为a n +1=2(n +1)-3=2n -1,b n +1=22n +1. 所以c n =1an +1·log2bn +1=1(2n -1)·log 222n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.所以T n =c 1+c 2+c 3+…+c n=12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.所以T n =n 2n +1.考向3 错位相减法求和例3 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n . 解 (1)由a 2n +1-2a n +1a n -3a 2n =0及a n >0, 得⎝⎛⎭⎫an +1an 2-2×an +1an -3=0,解得an +1an =3或an +1an =-1(舍),所以{a n }是等比数列,且公比q =3, 又a 1=2,所以a n =2·3n -1,n ∈N *. (2)因为S n =2(1-3n )1-3=3n-1,所以b n =log 3(1+S n )=n ,则a n b n =2n ·3n -1,所以T n =2×30+4×31+6×32+…+(2n -2)·3n -2+2n ·3n -1,① 所以3T n =2×31+4×32+6×33+…+(2n -2)·3n -1+2n ·3n ,②①-②,得(1-3)T n =2+2×31+2×32+2×33+…+2·3n -1-2n ·3n =2(1-3n )1-3-2n ·3n =(1-2n )·3n -1,所以T n =⎝⎛⎭⎫n -12·3n +12.规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.跟踪演练 1 (1)已知函数f (n )=⎩⎨⎧n2,n 为奇数,-n2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 8等于( ) A .-16 B .-8 C .8 D .16 答案 C解析 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+a 7=-(3+7+11+15)=-36.当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,则a 2+a 4+a 6+a 8=5+9+13+17=44.所以a 1+a 2+a 3+…+a 8=-36+44=8,故选C. (2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040 答案 C解析 依题意得a n ≠0,由2(2n +1)a n a n +1=a n -a n +1, 等式两边同时除以a n a n +1可得1an +1-1an=4n +2,则当n ≥2时,1an -1an -1=4n -2,1an -1-1an -2=4n -6,…,1a2-1a1=6,以上式子左右两边分别相加可得 1an -1a1=(6+4n -2)(n -1)2, 即1an =2n 2-12=(2n -1)(2n +1)2, 所以a n =2(2n -1)(2n +1)=12n -1-12n +1,当n =1时,a 1=23满足上式.故a 1+a 2+a 3+…+a 2 020=1-13+13-15+…+14 039-14 041=1-14 041=4 0404 041.(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .解 ①由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n +1-b n .整理得bn +1n +1=bn n ,又b22=b11,所以b n =n (n ∈N *). ②由①知a n b n =n ·2n ,因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).考点二 数列的综合问题 核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,通过放缩进行等式的证明. 例4 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+ a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020 答案 C解析 由直角坐标系可知,A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),即a 1=1,a 2=1,a 3=-1,a 4=2,a 5=2,a 6=3,a 7=-2,a 8=4,…,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于其项数除以2;每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数, 因为2 020÷4=505,所以a 2 017=505,a 2 018=1 009,a 2 019=-505,a 2 020=1 010, a 2 017+a 2 018+a 2 019+a 2 020=2 019. (2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1na n =n 2+n (n ∈N *),设数列{b n }满足b n =2n +1anan +1,数列{b n }的前n 项和为T n ,若T n <n n +1λ(n ∈N *)恒成立,则λ的取值范围是( ) A.⎝⎛⎭⎫14,+∞ B.⎣⎡⎭⎫14,+∞ C.⎣⎡⎭⎫38,+∞ D.⎝⎛⎭⎫38,+∞ 答案 D解析 因为a 1+12a 2+…+1na n =n 2+n (n ∈N *),所以 a 1+12a 2+…+1n -1a n -1=(n -1)2+(n -1)(n ∈N *,n ≥2),故1n a n =2n ,即a n =2n 2(n ≥2). 当n =1时,a 1=12+1=2,满足上式, 故a n =2n 2(n ∈N *).b n =2n +14n2×(n +1)2=14⎣⎡⎦⎤1n2-1(n +1)2,故T n =14⎣⎡⎦⎤⎝⎛⎭⎫112-122+⎝⎛⎭⎫122-132+…+1n2-1(n +1)2 =14⎣⎡⎦⎤1-1(n +1)2=n2+2n 4(n +1)2,故T n <n n +1λ(n ∈N *)恒成立等价于n2+2n 4(n +1)2<n n +1λ,即n +24(n +1)<λ恒成立,化简,得14+14(n +1)<λ, 因为14+14(n +1)≤14+18=38,故λ>38.易错提醒 (1)公式a n =S n -S n -1适用于所有数列,但易忽略n ≥2这个前提.(2)数列和不等式的综合问题,要注意条件n ∈N *,求最值要注意等号成立的条件,放缩不等式要适度. 跟踪演练2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若在数列{a n }中,已知a n =n 2+λn ,n ∈N *,a 1<a 2,则1+λ<4+2λ,解得λ>-3,若数列{a n }是单调递增数列,则对任意的n ∈N *都满足a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ>0,∴λ>-1-2n ,即λ>(-1-2n )max =-3,因此,“a 1<a 2”是“{a n }是单调递增数列”的充要条件.(2)设曲线y =2 020x n +1(n ∈N *)在点(1,2 020)处的切线与x 轴的交点的横坐标为x n ,令a n = log 2 020x n ,则a 1+a 2+…+a 2 019的值为( ) A .2 020 B .2 019 C .1 D .-1 答案 D解析 因为y ′=2 020(n +1)x n ,所以切线方程是y -2 020=2 020(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 019=log 2 020(x 1·x 2·…·x 2 019) =log 2 020⎝⎛⎭⎫12×23×…×2 0192 020=log 2 02012 020=-1. 专题强化练一、单项选择题 1.(2020·聊城模拟)数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为( )A .153B .190C .231D .276 答案 B解析 由题意知,数列{a n }的各项为1,6,15,28,45,…,所以a 1=1=1×1,a 2=6=2×3,a 3=15=3×5,a 4=28=4×7,a 5=45=5×9,…,a n =n (2n -1), 所以a 10=10×19=190.2.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2020等于( )A .3B .2C .1D .0 答案 A解析 ∵a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,……,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 020=336×0+a 2 017+a 2 018+a 2 019+a 2 020=a 1+a 2+a 3+a 4=3.故选A. 3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =bn +1bn=3,n ∈N *,则数列{ba n }的前10项和为( ) A.12×(310-1) B.18×(910-1) C.126×(279-1) D.126×(2710-1) 答案 D解析 因为a n +1-a n =bn +1bn=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3, 所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以na b =33n -3=27n -1,所以{}na b 是以1为首项,27为公比的等比数列,所以{}na b 的前10项和为1×(1-2710)1-27=126×(2710-1). 4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.14 041答案 D解析 由a n -1≥a n (n ≥2),a n +1≥a n 可得a n +1=a n , 即数列{a n }是常数列,又数列{a n }的首项为1,所以a n =1,所以当S n S n +1≠0时,2S n S n +1+a n b n +1=0可化为2S n S n +1+b n +1=0, 因为S n 为数列{b n }的前n 项和,所以2S n S n +1+b n +1=2S n S n +1+(S n +1-S n )=0, 所以1Sn +1-1Sn=2,又1S1=1b1=1,因此数列⎩⎨⎧⎭⎬⎫1Sn 是以1为首项,2为公差的等差数列,所以1Sn =1+2(n -1)=2n -1,故S n =12n -1,即S n S n +1≠0.所以S 2 021=14 041.5.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1 D .20×320+1答案 A解析 当0≤x <2时,f (x )=2x -x 2=1-(x -1)2,可得a 1=1,b 1=1;当2≤x <4时,有0≤x -2<2,可得f (x )=3f (x -2)=3[1-(x -3)2],可得a 2=3,b 2=3;当4≤x <6时,有0≤x -4<2,可得f (x )=9f (x -4)=9[1-(x -5)2],可得a 3=5,b 3=9;…;a 20=39,b 20=319;….故S 20=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×3+5×9+…+39×319,3S 20=1×3+3×9+5×27+…+39×320,两式相减可得-2S 20=1+2(3+9+27+…+319)-39×320=1+2×3×(1-319)1-3-39×320,化简可得S 20=1+19×320.故选A. 二、多项选择题6.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故数列{a n }不是“差递减数列”;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }是递增数列,故数列{a n }不是“差递减数列”;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”;对于D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝⎛⎭⎫1+1n2+2n ,由于函数y =ln ⎝⎛⎭⎫1+1x2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”. 7.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a1d≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式可能成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .a 24=a 2a 8 D .b 24=b 2b 8答案 ABC解析 由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *). 由{a n }为等差数列,可知{b n }为等差数列.选项A 中,由a 4为a 2,a 6的等差中项,得2a 4=a 2+a 6,成立.选项B 中,由b 4为b 2,b 6的等差中项,得2b 4=b 2+b 6,成立. 选项C 中,a 2=a 1+d ,a 4=a 1+3d ,a 8=a 1+7d . 由a 24=a 2a 8,可得(a 1+3d )2=(a 1+d )(a 1+7d ), 化简得a 1d =d 2,又由d ≠0,可得a 1=d ,符合a1d≤1,成立.选项D 中,b 2=a 3+a 4=2a 1+5d ,b 4=a 7+a 8=2a 1+13d , b 8=a 15+a 16=2a 1+29d .由b 24=b 2b 8,知(2a 1+13d )2=(2a 1+5d )(2a 1+29d ), 化简得2a 1d =3d 2, 又由d ≠0,可得a1d =32.这与已知条件a1d≤1矛盾.8.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论错误的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a n D .T n <b n +1答案 ABC解析 由题意可得S n +3=3×2n ,S n =3×2n -3,a n =S n -S n -1=3×2n -1(n ≥2),当n =1时,a 1=S 1=3×21-3=3,满足上式,所以数列{a n }的通项公式为a n =3×2n -1(n ∈N *).设等比数列{b n }的公比为q ,则b 1q n -1+b 1q n =3×2n -1,解得b 1=1,q =2,数列{b n }的通项公式为b n =2n -1(n ∈N *),由等比数列的求和公式有T n =2n -1.则有S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.三、填空题9.数列{a n }的通项公式为a n =1n +n +1,若该数列的前k 项之和等于9,则k =________.答案 99 解析 a n =1n +n +1=n +1-n ,故前n 项和S n =(2-1)+(3-2)+…+(n +1-n)=n +1-1,令S k =k +1-1=9,解得k =99. 10.设数列{a n }满足a 1=1,且an +1an=n +2n +1(n ∈N *),则数列{a n }的通项公式a n =________,数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为________. 答案n +12 53解析 因为an +1an =n +2n +1,所以a2a1=32,a3a2=43,a4a3=54,…,anan -1=n +1n (n ≥2),把它们左右两边分别相乘,得a n =n +12(n ≥2),当n =1时,a 1=1也符合上式,所以a n =n +12(n ∈N *).所以1anan +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为4×⎝⎛⎭⎫12-13+13-14+…+111-112=4×⎝⎛⎭⎫12-112=53. 11.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则a 5=________,b 10=________. 答案 4 64解析 因为a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,所以a n ,a n +1是方程x 2-b n x +2n =0的两个根, 根据根与系数的关系,可得a n ·a n +1=2n , a n +a n +1=b n ,由a n ·a n +1=2n ,可得a n +1·a n +2=2n +1, 两式相除可得an +2an=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列, 又由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32, 所以b 10=a 10+a 11=32+32=64. 12.在数列{a n }中,a 1+a22+a33+…+an n=2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为________. 答案12解析 依题意得,数列⎩⎨⎧⎭⎬⎫an n 的前n 项和为2n -1,当n ≥2时,an n =(2n -1)-(2n -1-1)=2n -1,且a11=21-1=21-1,因此an n =2n -1(n ∈N *),an n (n +1)=2n -1n +1,记b n =2n -1n +1,则b n >0,bn +1bn =2(n +1)n +2=(n +2)+n n +2>n +2n +2=1,b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥an n (n +1)=b n 成立,即有λ≥b 1=12,λ的最小值是12.四、解答题13.(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列, 设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧ a1q +a1q3=20,a1q2=8,解得⎩⎪⎨⎪⎧a1=2,q =2,或⎩⎪⎨⎪⎧a1=32,q =12(舍)所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, 所以b 1对应的区间为(0,1],则b 1=0; b 2,b 3对应的区间分别为(0,2],(0,3], 则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为 (0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2, 即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.14.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1.(1)证明数列⎩⎨⎧⎭⎬⎫bn n 为等差数列,并求数列{a n }和{b n }的通项公式;(2)若c n =(-1)n -1·4(n +1)(3+2log 2a n )(3+2log 2a n +1),求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·bn ,数列{d n }的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1),两边同除以n (n +1),得bn +1n +1-bnn=1,从而数列⎩⎨⎧⎭⎬⎫bn n 为首项b11=1,公差d =1的等差数列,所以bnn=n (n ∈N *),数列{b n }的通项公式为b n =n 2(n ∈N *). 当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1, 又a 1=1≠0,所以anan -1=2,从而数列{a n }为首项a 1=1,公比q =2的等比数列, 从而数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)c n =(-1)n -1·⎣⎢⎡⎦⎥⎤4(n +1)(2n +1)(2n +3) =(-1)n -1⎝⎛⎭⎫12n +1+12n +3,T 2n =c 1+c 2+c 3+…+c 2n -1+c 2n =13+15-15-17+…-14n +1-14n +3 =13-14n +3(n ∈N *).(3)由(1)得d n=a n·bn=n·2n-1,D n=1×1+2×21+3×22+…+(n-1)·2n-2+n·2n-1,①2D n=1×21+2×22+3×23+…+(n-1)·2n-1+n·2n.②①-②得,-D n=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=2n-1-n·2n,所以D n=(n-1)·2n+1,由(1)得S n=2a n-1=2n-1,因为任意n∈N*,都有D n≤nS n-a,即(n-1)·2n+1≤n(2n-1)-a恒成立,所以a≤2n-n-1恒成立,记e n=2n-n-1,所以a≤(e n)min,因为e n+1-e n=[2n+1-(n+1)-1]-(2n-n-1) =2n-1>0,从而数列{e n}为递增数列,所以当n=1时,e n取最小值e1=0,于是a≤0. 所以a的取值范围为(-∞,0].。

高考数学一轮复习数列求和

高考数学一轮复习数列求和

解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.

高考数学二轮复习专题三数列第2讲数列的求和及综合应用课件文1205340-数学备课【全免费】

高考数学二轮复习专题三数列第2讲数列的求和及综合应用课件文1205340-数学备课【全免费】
=2n-1-1, 1-2
由 b1=2,所以 bn=2n-1+1. (3)cn=bnbann+1=bnb+nb1-n+b1 n=b1n-bn1+1, 所以 Tn=c1+c2+…cn=b11-b12+b12-b13+…+ b1n-bn1+1=b11-bn1+1=12-2n+1 1.
命题视角 3 错位相减法求和
cn=TbnTn+n+1 1=n2(2nn++11)2=n12-(n+1 1)2, 所以 An=1-(n+1 1)2=(nn2++12)n 2.
因此{An}是单调递增数列, 所以当 n=1 时,An 有最小值 A1=1-14=34;An 没有 最大值.
[规律方法] 1.给出 Sn 与 an 的关系求 an,常用思路是:一是利 用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其通项 公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的 关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
[变式训练] (2017·太原质检)已知数列{an}的前 n 项 和 Sn=2n+1-2,数列{bn}满足 bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式; (2)若 cn=log2an(n∈N*),求数列{bn·cn}的前 n 项和 Tn. 解:(1)由于 Sn=2n+1-2,n∈N*,
+2n.
[规律方法] 1.在处理一般数列求和时,一定要注意运用转化思 想.把一般的数列求和转化为等差数列或等比数列进行求 和.在利用分组求和法求和时,常常根据需要对项数 n 进行讨论,最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组; (2)根据正号、负号分组.
从而{an}的通项公式为 an=2n2-1. an

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 【答案】 (1)√ (2)√ (3)× (4)√【解析】 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 021【答案】 B【解析】 a n =1n (n +1)=1n -1n +1, S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019. 3.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________. 【答案】 3649【解析】 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫1361-13=3649.【真题体验】 4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30【答案】 C【解析】 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.【答案】 2n +2+n (n +1)-4【解析】 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2,又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【答案】 a n =2(n +1)【解析】 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【答案】见解析【解析】(1)设等比数列{a n }的公比为q ,∵a 1,a 2,a 3-1成等差数列,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2, ∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1)=1+(2n -1)2·n +1-2n1-2=n 2+2n -1. ∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. 2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n . 【答案】见解析【解析】(1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2, 当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎫a n 2-n , 即a n +1=3a n +2,又a 2=8=3a 1+2,∴a n +1=3a n +2,n ∈N *,∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝⎛⎭⎫13-1-132-1+⎝⎛⎭⎫132-1-133-1+…+⎝⎛⎭⎫13n -1-13n +1-1 =12-13n +1-1. 【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n . 【答案】见解析【解析】(1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n . (2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1, 又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n , 因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n . 【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式;(2)求数列{a n ·b n }的前n 项和T n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ),解得d =2(舍负),所以a n =1+(n -1)×2=2n -1.又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得12T n =12+2×⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝⎛⎭⎫1-12n -11-12-2n -12n +1, ∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n 2n . 考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【答案】见解析【解析】设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ; 第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ;第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1). 令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高,所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2).所以等于或多于10天时,选择第三种方案.【规律方法】 数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1, 故T n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-17+⎝⎛⎭⎫17-113+…+⎝⎛⎭⎫16n -5-16n +1=12⎝⎛⎭⎫1-16n +1=3n 6n +1. 【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.8 【答案】 A【解析】 设{a n }的公差为d ,根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( ) A.9B.99C.10D.100【答案】 B【解析】 因为a n =1n +n +1=n +1-n , 所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1,令n +1-1=9,得n =99. 4.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026B.1 025C.1 024D.1 023【答案】 C 【解析】 ∵2n +12n =1+⎝⎛⎭⎫12n,∴T n =n +1-12n , ∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013恒成立,∴整数m 的最小值为1 024.5.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100 【答案】 D【解析】 当n =2k (k ∈N *)时,a 2k +1-a 2k =2,当n =2k -1(k ∈N *)时,a 2k +a 2k -1=2,当n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,∴a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,∴{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100.二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.【答案】 3n -1【解析】 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0,又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列,故S n =2(1-3n )1-3=3n -1. 7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________. 【答案】 1516【解析】 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝⎛⎭⎫13n -1=13n ,所以a n =13n (n 2+n ),则3n a n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516. 8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.【答案】 9【解析】 由于平均产量类似于图形过P 1(1,S 1),P n (n ,S n )两点直线的斜率,斜率大平均产量就高,由图可知n =9时割线P 1P 9斜率最大,则m 的值为9.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 【答案】见解析【解析】当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2=⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n=(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n=x 2(x 2n -1)x 2-1+x -2(1-x -2n)1-x -2+2n=(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n .当x =±1时,S n =4n .10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【答案】见解析【解析】(1)解 因为a n +1=2+S n (n ∈N *),所以a n =2+S n -1(n ≥2),所以a n +1-a n =S n -S n -1=a n ,所以a n +1=2a n (n ≥2).又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1,所以数列{a n }是以2为首项,2为公比的等比数列,则a n =2·2n -1=2n (n ∈N *).(2)证明 因b n =1+log 2(a n )2,则b n =2n +1.则1b n b n +1=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=16-12(2n +3)<16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1【答案】 B【解析】 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 12.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定【答案】 A【解析】 投入资金逐月值构成等比数列{b n },利润逐月值构成等差数列{a n },等比数列{b n }可以看成关于n 的指数式函数,它是凹函数,等差数列{a n }可以看成关于n 的一次式函数.由于a 1=b 1,a 12=b 12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a 1+a 2+…+a 12比总投资N =b 1+b 2+…+b 12大,故选A.13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.【答案】 4n -1【解析】 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【答案】见解析【解析】(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n=1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n=5+(n -1)=n +4, 所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3.又a 1=5也符合上式,所以a n =2n +3(n ∈N *),所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,①2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,②所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8)=(2n +1)2n +1-2.【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n }中,a 1=1,且a 2,a 5,a 14成等比数列,{a n }的前n 项和为S n ,b n =(-1)n S n ,则a n =________,数列{b n }的前n 项和T n =________.【答案】 2n -1 (-1)n n (n +1)2【解析】 设等差数列{a n }的公差为d (d ≠0),则由a 2,a 5,a 14成等比数列得a 25=a 2·a 14,即(1+4d )2=(1+d )(1+13d ),解得d =2,则a n =a 1+(n -1)d =2n -1,S n =na 1+n (n -1)2d =n 2,当n 为偶数时,T n =-S 1+S 2-S 3+S 4-…-S n -1+S n =-12+22-32+42-…-(n -1)2+n 2=3+7+…+(2n -1)=n (n +1)2;当n为大于1的奇数时,T n =-S 1+S 2-S 3+S 4-…+S n -1-S n =-12+22-32+42-…-(n -2)2+(n -1)2-n 2=3+7+…+(2n -3)-n 2=-n (n +1)2,当n =1时,也符合上式.综上所述,T n =(-1)n n (n +1)2.。

高考数学二轮复习专题三数列第2讲数列的求和及综合应

高考数学二轮复习专题三数列第2讲数列的求和及综合应
第2讲 数列的求和及综合应用
高考定位 1.高考对数列求和的考查主要以解答题的形式出 现,通过分组转化、错位相减、裂项相消等方法求数列的和, 难度中档偏下;2.在考查数列运算的同时,将数列与不等式、 函数交汇渗透.
真题感悟 1.(2017·全国Ⅲ卷)设数列{an}满足 a1+3a(2n+1)(b21+b2n+1)=(2n+1)bn+1, 又 S2n+1=bnbn+1,bn+1≠0,所以 bn=2n+1. 令 cn=bann,则 cn=2n2+n 1, 因此 Tn=c1+c2+…+cn=32+252+273+…+22nn--11+2n2+n 1, 又12Tn=232+253+274+…+2n2-n 1+22nn++11, 两式相减得12Tn=32+12+212+…+2n1-1-22nn++11, 所以 Tn=5-2n2+n 5.
温馨提醒 (1)裂项求和时,易把系数写成它的倒数或忘记系数导 致错误. (2)an=SS1n,-nS=n-11,,n≥2,忽略 n≥2 的限定,忘记第一项单独求解 与检验.
2.数列与函数、不等式的交汇 数列与函数的综合问题一般是利用函数作为背景,给出数列所 满足的条件,通常利用点在曲线上给出Sn的表达式,还有以曲 线上的切点为背景的问题,解决这类问题的关键在于利用数列 与函数的对应关系,将条件进行准确的转化.数列与不等式的 综合问题一般以数列为载体,考查最值问题、不等关系或恒成 立问题.
热点一 数列的求和问题 命题角度1 分组转化求和 【例 1-1】 (2017·郑州质检)已知数列{an}的前 n 项和 Sn=n2+2 n,
n∈N*. (1)求数列{an}的通项公式; (2)设 bn=2an+(-1)nan,求数列{bn}的前 2n 项和.
解 (1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-(n-1)2+2 (n-1)=n. 而 a1 也满足 an=n,故数列{an}的通项公式为 an=n. (2)由(1)知 an=n,故 bn=2n+(-1)nn. 记数列{bn}的前 2n 项和为 T2n, 则 T2n=(21+22+…+22n)+(-1+2-3+4-…+2n). 记 A=21+22+…+22n,B=-1+2-3+4-…+2n, 则 A=2(11--222n)=22n+1-2, B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{bn}的前 2n 项和 T2n=A+B=22n+1+n-2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲数列求和及综合应用高考考点考点解读本部分内容在备考时应注意以下几个方面:(1)加强对递推数列概念及解析式的理解,掌握递推数列给出数列的方法.(2)掌握等差(比)数列求和公式及方法.(3)掌握数列分组求和、裂项相消求和、错位相减求和的方法.(4)掌握与数列求和有关的综合问题的求解方法及解题策略.预测2020年命题热点为:(1)已知等差(比)数列的某些项的值或其前几项的和,求该数列的通项公式.(2)已知某数列的递推式或某项的值,求该数列的和.(3)已知某个不等式成立,求某参数的值.证明某个不等式成立.Z知识整合hi shi zheng he1.分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列.2.裂项相消法:将数列的通项分成两个代数式子的差,即a n=f(n+1)-f(n)的形式,然后通过累加抵消中间若干项的求和方法.形如{ca n a n+1}(其中{a n}是公差d≠0且各项均不为0的等差数列,c 为常数)的数列等.3.错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.4.倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.附:(1)常见的拆项公式(其中n ∈N *) ①1n (n +1)=1n -1n +1.②1n (n +k )=1k (1n -1n +k).③1(2n -1)(2n +1)=12(12n -1-12n +1).④若等差数列{a n }的公差为d ,则1a n a n +1=1d (1a n -1a n +1);1a n a n +2=12d (1a n -1a n +2). ⑤1n (n +1)(n +2)=12[1n (n +1)-1(n +1)(n +2)].⑥1n +n +1=n +1-n .⑦1n +n +k =1k(n +k -n ).(2)公式法求和:要熟练掌握一些常见数列的前n 项和公式,如 ①1+2+3+…+n =n (n +1)2;②1+3+5+…+(2n -1)=n 2;③12+22+32+…+n 2=16n (n +1)(2n +1).Y 易错警示i cuo jing shi1.公比为字母的等比数列求和时,注意公比是否为1的分类讨论. 2.错位相减法求和时易漏掉减数式的最后一项. 3.裂项相消法求和时易认为只剩下首尾两项. 4.裂项相消法求和时注意所裂式与原式的等价性.1.(2017·全国卷Ⅱ,3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏[解析] 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=a 1(1-q 7)1-q =a 1(1-27)1-2=381,解得a 1=3.故选B .2.(2017·全国卷Ⅰ,12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( A )A .440B .330C .220D .110[解析] 设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (1+n )2.由题意知,N >100,令n (1+n )2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.第n 组的各项和为1-2n 1-2=2n -1,前n 组所有项的和为2(1-2n )1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -n (1+n )2项的和即第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×(1+29)2+5=440.故选A .3.(2018·江苏卷,14)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为27.[解析] B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑,1个:n =1+1=2 S 2=3,12a 3=36 2个:n =2+2=4 S 4=10,12a 5=60 3个:n =4+3=7 S 7=30,12a 8=108 4个:n =8+4=12 S 12=94,12a 13=2045个:n =16+5=21 S 21=318,12a 22=396 6个:n =32+6=38 S 38=1 150,12a 39=780发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找: S 30=687,12a 31=612,所以所求n 应在22~29之间, S 25=462,12a 26=492,所以所求n 应在25~29之间, S 27=546,12a 28=540,所以所求n 应在25~27之间, S 26=503,12a 27=516,因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n +1成立的n 的最小值为27.4.(2017·全国卷Ⅱ,15)等差数列{a n }的前n 项和S n ,a 3=3,S 4=10,则∑k =1n1S k =2nn +1.[解析] 设等差数列{a n }的公差为d ,则 由⎩⎪⎨⎪⎧a 3=a 1+2d =3,S 4=4a 1+4×32d =10, 得⎩⎪⎨⎪⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2,1S n =2n (n +1)=2(1n -1n +1). ∴∑k =1n1S k =1S 1+1S 2+1S 3+…+1S n=2(1-12+12-13+13-14+…+1n -1n +1)=2(1-1n +1)=2nn +1. 5.(2018·全国卷Ⅲ,17)等比数列{}a n 中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式.(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解析] (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.6.(2018·北京卷,15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式. (2)求e a 1+e a 2+…+e a n .[解析] (1)由已知,设{a n }的公差为d ,则a 2+a 3=a 1+d +a 1+2d =2a 1+3d =5ln 2,又a 1=ln 2, 所以d =ln 2,所以{a n }的通项公式为a n =ln 2+(n -1)ln 2=n ln 2(n ∈N *). (2)由(1)及已知,e a n =e n ln 2=(e ln 2)n =2n , 所以e a 1+e a 2+…+e a n =21+22+…+2n =2(1-2n )1-2=2n +1-2(n ∈N *).命题方向1 求数列的通项公式例1 (1)已知正项数列{a n }满足a 1=1,(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,则它的通项公式为( B )A .a n =1n +1B .a n =2n +1C .a n =n +12D .a n =n[解析] 由(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,得[(n +2)a n +1-(n +1)a n ]·(a n +1+a n )=0,又a n >0,所以(n +2)a n +1=(n +1)a n ,即a n +1a n =n +1n +2,a n +1=n +1n +2·a n ,所以a n =n n +1·n -1n ·…·23a 1=2n +1a 1(n ≥2),所以a n =2n +1(n =1适合),于是所求通项公式为a n =2n +1.(2)(2017·厦门二模)若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式为( B )A .a n =-2n -1 B .a n =(-2)n -1 C .a n =(-2)nD .a n =-2n[解析] 由a n =S n -S n -1(n ≥2),得a n =23a n -23a n -1.所以a n =-2a n -1.又可以得到a 1=1,所以a n =(-2)n -1(n ≥2).又a 1=(-2)1-1=1,所以a n =(-2)n -1.『规律总结』求数列通项公式的常见类型及方法(1)归纳猜想法:已知数列的前几项,求数列的通项公式,可采用归纳猜想法.(2)已知S n 与a n 的关系,利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,求a n .(3)累加法:数列递推关系形如a n +1=a n +f (n ),其中数列{f (n )}前n 项和可求,这种类型的数列求通项公式时,常用累加法(叠加法).(4)累乘法:数列递推关系形如a n +1=g (n )a n ,其中数列{g (n )}前n 项可求积,此数列求通项公式一般采用累乘法(叠乘法).(5)构造法:①递推关系形如a n +1=pa n +q (p ,q 为常数)可化为a n +1+qp -1=p (a n +q p -1)(p ≠1)的形式,利用{a n +qp -1}是以p 为公比的等比数列求解; ②递推关系形如a n +1=pa n a n +p (p 为非零常数)可化为1a n +1-1a n =1p的形式. G 跟踪训练en zong xun lian1.若数列{a n }满足a 1=0,2a n =1+a n a n -1(n ≥2,n ∈N *),则a 2019=20182019.[解析] 当n ≥2时,因为2a n =1+a n a n -1, 所以(1-a n -1)-(1-a n )=1-a n -a n -1+a n a n -1, 所以(1-a n -1)-(1-a n )=(1-a n )(1-a n -1), 所以11-a n -11-a n -1=1,因为a 1=0,所以11-a 1=1, 所以{11-a n }是首项为1,公差为1的等差数列,所以11-a n=1+(n -1)=n ,所以11-a 2019=2019,解得a 2019=20182019.2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n }前10项的和为2011.[解析] 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n-a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2(1n -1n +1),故数列{1a n}前10项的和S 10=2(1-12+12-13+…+110-111)=2(1-111)=2011.命题方向2数列求和问题(一)分组转化法求和例2 设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cos x-a n+2sin x满足f ′(π2)=0.(1)求数列{a n}的通项公式;(2)若b n=2(a n+12a n),求数列{b n}的前n项和S n.[解析](1)由题设可得f′(x)=a n-a n+1+a n+2-a n+1sin x-a n+2cos x.对任意n∈N*,f′(π2)=a n-a n+1+a n+2-a n+1=0,即a n+1-a n=a n+2-a n+1,故{a n}为等差数列.由a1=2,a2+a4=8,解得{a n}的公差d=1,所以a n=2+1·(n-1)=n+1.(2)因为b n=2(a n+12a n)=2(n+1+12n+1)=2n+12n+2,所以S n=b1+b2+…+b n=(2+2+…+2)+2(1+2+…+n)+(12+122+…+12n)=2n+2·n(n+1)2+12[1-(12)n]1-12=n2+3n+1-12n.(二)裂项相消法求和例3 (2017·全国卷Ⅲ,17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;(2)求数列{a n2n+1}的前n项和.[解析](1)因为a1+3a2+…+(2n-1)a n=2n,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1),两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记{a n2n +1}的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1. (三)错位相减法求和例4 (2018·郴州二模)已知等差数列{a n },满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解析] (1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3后成等比数列, 得(2+d )2=2(4+2d ), 因为d >0,所以d =2, 所以a n =1+(n -1)×2=2n -1. 又因为a n =-1-2log 2b n , 所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2×(122+123+124+…+12n )-2n -12n +1.所以T n =1+1-12n -11-12-2n -12n=3-12n -2-2n -12n =3-2n +32n .(四)奇(偶)数项和问题例5 (2018·潍坊二模)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40;数列{}b n 的前n 项和为T n ,且T n -2b n +3=0,n ∈N *.(1)求数列{a n },{b n }的通项公式.(2)设c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数, 求数列{c n }的前n 项和P n .[解析] (1)设等差数列{a n }的公差为d ,由题意,⎩⎪⎨⎪⎧ a 1+d =8,4a 1+6d =40,得⎩⎪⎨⎪⎧a 1=4,d =4,所以a n =4n ,因为T n -2b n +3=0,所以当n =1时,b 1=3, 当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2), 数列{}b n 为等比数列,所以b n =3·2n -1.(2)c n =⎩⎪⎨⎪⎧4n ,n 为奇数,3·2n -1,n 为偶数.当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n 2)1-4=2n +1+n 2-2.当n 为奇数时, 方法一:n -1为偶数, P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1.方法二:P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6⎝⎛⎭⎫1-4n -121-4=2n +n 2+2n -1.所以P n =⎩⎪⎨⎪⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.『规律总结』1.分组求和的常见方法 (1)根据等差、等比数列分组.(2)根据正号、负号分组,此时数列的通项式中常会有(-1)n 等特征. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘{a n ·b n }型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比. ②把两个和的形式错位相减. ③整理结果形式. 4.分奇偶的求和问题如果数列的奇数项与偶数项有不同的规律,当n 为奇数或偶数时S n 的表达式不一样,因此需要分奇偶分别求S n .(1)分组直接求和:相邻的奇偶项合并为一项,组成一个新的数列b n ,用S ′n 表示其前n 项和,则S n=⎩⎨⎧S ′n2,n 为偶数,S ′n -12+a n,n 为奇数.(2)分奇偶转化求和:先令n 为偶数,求出其前n 项和S n ;当n 为奇数时,S n =S n -1+a n . G 跟踪训练en zong xun lian(文)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .[解析] (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4(1-2n )1-2-(n+1)×2n +2]=-3n ·2n +2,所以T n =3n ·2n +2.(理)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解析] (1)因为2S n =3n +3, 所以2a 1=3+3,故a 1=3. 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3, n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13.当n >1时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13;当n >1时,T n =b 1+b 2+b 3+…+b n=13+[]1×3-1+2×3-2+…+(n -1)×31-n , 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n ]. 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n 1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n .经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n.命题方向3 数列与函数、不等式的综合问题(一)数列与函数的综合例6 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a nb n}的前n 项和T n .[解析] (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2. 解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)f ′(x )=2x ln 2,f ′(a 2)=2a 2ln 2,故函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=2a 2ln 2(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意得,a 2-1ln 2=2-1ln 2,解得a 2=2. 所以d =a 2-a 1=1. 从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =12+122+…+12n -1-n 2n=2-12n -1-n2n=2n +1-n -22n.所以T n =2n +1-n -22n .(二)数列与不等式的综合例7 (文)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列{4a n (a n +2)}的前n 项和为T n ,求证:12≤T n <1.[解析] (1)因为2S n =(n +1)a n , 当n ≥2时,2S n -1=na n -1, 两式相减得2a n =(n +1)a n -na n -1, 即(n -1)a n =na n -1, 所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11.因为a 1=2,所以a n =2n . (2)证明:因为a n =2n ,令b n =42n (2n +2)=1n (n +1)=1n -1n +1.所以T 1=b 1+b 2+…+b n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=nn +1.因为1n +1>0,所以1-1n +1<1.因为f (n )=1n +1在N *上是递减函数,所以1-1n +1在N *上是递增的,所以当n =1时,T n 取最小值12.所以12≤T n <1.(理)已知数列{a n }满足a 1=1,a n +1=3a n +1 (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.[解析] (1)证明:由a n +1=3a 1+1, 得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32. 所以1a 1+1a 2+…+1a n <32.『规律总结』1.数列与函数、不等式的综合问题的常见题型 (1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等问题,需要熟练应用不等式知识解决数列中的相关问题.2.解决数列与函数综合问题的注意点(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.(2)转化以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.A 组1.设{a n }的首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( D )A .2B .-2C .12D .-12[解析] 由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6, 因为S 1,S 2,S 4成等比数列,所以S 22=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.故选D .2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( B )A .1-14nB .23(1-14n )C .1-12nD .23(1-12n )[解析] 因为a n =1×2n -1=2n -1, 所以a n ·a n +1=2n -1·2n =2×4n -1,所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B .3.(2018·烟台模拟)已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( C )A .30B .45C .90D .186[解析] 设{a n }的公差为d ,首项为a 1,由题意得⎩⎪⎨⎪⎧ a 1+d =6,a 1+4d =15,解得⎩⎪⎨⎪⎧a 1=3,d =3,所以a n =3n ,所以b n =a 2n =6n ,且b 1=6,公差为6, 所以S 5=5×6+5×42×6=90.4.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( C )[解析] ∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .5.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ; ③f (x )=|x |; ④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( C ) A .①② B .③④ C .①③D .②④[分析] 保等比数列函数指:①定义在(-∞,0)∪(0,+∞)上的函数;②若{a n }是等比数列,则{f (a n )}仍是等比数列.[解析] 解法一:设{a n }的公比为q . ①f (a n )=a 2n ,∵a 2n +1a 2n =(a n +1a n )2=q 2,∴{f (a n )}是等比数列,排除B 、D . ③f (a n )=|a n |, ∵|a n +1||a n |=|a n +1a n|=|q |, ∴{f (a n )}是等比数列,排除A . 解法二:不妨令a n =2n .①因为f (x )=x 2,所以f (a n )=a 2n =4n .显然{f (a n)}是首项为4,公比为4的等比数列. ②因为f (x )=2x ,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24, f (a 3)=f (8)=28,所以f (a 2)f (a 1)=2422=4≠f (a 3)f (a 2)=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n . 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln|x |,所以f (a n )=ln2n =n ln2.显然{f (a n )}是首项为ln2,公差为ln2的等差数列,故选C .6.(2018·邵阳一模)已知数列{b n }为等比数列,且b 1 009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,则ln a 2 018的值为2_017.[解析] 因为数列{b n }为等比数列,且b 1 009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,所以a 2 018=b 1·b 2·b 3·b 4·…·b 2 017=b 2 0171 009=e 2 017, ln a 2 018=lne 2 017=2 017.7.已知数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,那么1a 1+1a 2+1a 3+…+1a 10的值为1 023128.[解析] 数列{a n }是等比数列,其公比为2, 设b n =log 2a n ,且数列{b n }的前10项的和为25, 所以b 1+b 2+…+b 10 =log 2(a 1·a 2·…·a 10)=log 2(a 10121+2+…+9)=25,所以a 101×245=225,可得:a 1=14. 那么1a 1+1a 2+1a 3+…+1a 10=4(1+12+122+ (129)=4×1-12101-12=1 023128.8.已知等比数列{a n }的公比q >1,42是a 1和a 4的一个等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .[解析] (1)因为42是a 1和a 4的一个等比中项, 所以a 1·a 4=(42)2=32.由题意可得⎩⎪⎨⎪⎧a 2·a 3=32,a 2+a 3=12.因为q >1,所以a 3>a 2.解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2.故数列{a n }的通项公式a n =2n .(2)由于b n =log 2a n (n ∈N *),所以a n b n =n ·2n , S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,① 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得,-S n =1·2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1. 所以S n =2-2n +1+n ·2n +1=2+(n -1)·2n +1.9.(文)(2018·天津卷,18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.[解析] (1)设等比数列{b n }的公比为q ,由b 1=1,b 3=b 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故b n =2n -1.所以T n =1-2n 1-2=2n-1.设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4. 由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n ,所以S n =n (n +1)2.(2)由(1),知T 1+T 2+…+T n =(21+22+…+2n )-n =2n +1-n -2. 由S n +(T 1+T 2+…+T n )=a n +4b n 可得n (n +1)2+2n +1-n -2=n +2n +1,整理得n 2-3n -4=0,解得n =-1(舍),或n =4.所以n 的值为4.(理)(2018·天津卷,18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列. 已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式.(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ; ②证明[解析] (1)设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0. 因为q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6,可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .所以数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)①由(1),有S n =1-2n 1-2=2n-1,故T n =∑k =1n (2k -1)=∑k =1n2k-n =2×(1-2n )1-2-n =2n +1-n -2. ②因为(T k +b k +2)b k (k +1)(k +2)=(2k +1-k -2+k +2)k(k +1)(k +2)=k ·2k +1(k +1)(k +2)=2k +2k +2-2k +1k +1,B 组1.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列{1(2n +1)a n}的前n 项和T n =( C )A .-n2n +1B .n 2n +1C .-2n2n +1D .2n2n +1[解析] 本题主要考查等差、等比数列的性质以及裂项法求和.设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a 3-a 12=32a 1-54,S 4=3a 3+a 1=a 1-152, 因为S 1,S 2,S 4成等比数列,所以(32a 1-54)2=(a 1-152)a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12. 当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a 3-a 12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以1(2n +1)a n =-2(2n -1)(2n +1)=-(12n -1-12n +1),所以其前n 项和T n =-(1-13+13-15+…+12n -1-12n +1)=-(1-12n +1)=-2n2n +1,故选C .2.(文)以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( D )A .2a 3>3a 4B .5a 5>a 1+6a 6C .a 5+a 4-a 3<0D .a 3+a 6+a 12<2a 7[解析] 依题意得a 6=S 6-S 5<0,2a 3-3a 4=2(a 1+2d )-3(a 1+3d )=-(a 1+5d )=-a 6>0,2a 3>3a 4;5a 5-(a 1+6a 6)=5(a 1+4d )-a 1-6(a 1+5d )=-2(a 1+5d )=-2a 6>0,5a 5>a 1+6a 6;a 5+a 4-a 3=(a 3+a 6)-a 3=a 6<0.综上所述,故选D .(理)已知a n =32n -11,数列{a n }的前n 项和为S n ,关于a n 及S n 的叙述正确的是( C )A .a n 与S n 都有最大值B .a n 与S n 都没有最大值C .a n 与S n 都有最小值D .a n 与S n 都没有最小值[解析] 画出a n =32n -11的图象,点(n ,a n )为函数y =32x -11图象上的一群孤立点,(112,0)为对称中心,S 5最小,a 5最小,a 6最大.3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( A ) A .25 B .50 C .100D .不存在[解析] ∵S 20=a 1+a 202×20=100,∴a 1+a 20=10.∵a 1+a 20=a 7+a 14,∴a 7+a 14=10.∵a n >0,∴a 7·a 14≤(a 7+a 142)2=25.当且仅当a 7=a 14时取等号.4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( B ) A .2n -1 B .(32)n -1C .(23)n -1D .12n -1[解析] 由S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n , ∴S n +1S n =32, ∵a 1=1,S 1=2a 2,∴a 2=12a 1=12,∴S 2=32,∴S 2S 1=32,∴S n =(32)n -1. 5.(2018·山东省实验中学调研)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( A )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n[解析] a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln2-ln1+2=2+ln n .6.(2018·西安一模)已知数列{a n }的通项公式a n =log 2nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 的值为16.[解析] 因为a n =log 2nn +1,所以S n =log 212+log 223+log 234+…+log 2nn +1=log 2(12·23·34·…·n n +1)=log 21n +1,若S n <-4,则1n +1<116,即n >15,则使S n <-4成立的最小自然数n 的值为16.7.如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第一群,第二群,…,第n 群,…,第n 群恰好n 个数,则第n 群中n 个数的和是3·2n -2n -3.[解析] 由图规律知,第n 行第1个数为2n -1,第2个数为3·2n -2,第3个数为5·2n -3……设这n 个数的和为S则S =2n -1+3·2n -2+5×2n -3+…+(2n -3)·2+(2n -1)·20 ① 2S n =2n +3·2n -1+5·2n -2+…+(2n -3)·22+(2n -1)·21 ② ②-①得S n =2n +2·2n -1+2·2n -2+…+2·22+2·2-(2n -1) =2n +2n +2n -1+…+23+22-(2n -1) =2n+4(1-2n -1)1-2-(2n -1)=2n +2n +1-4-2n +1 =3·2n -2n -3.8.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[分析] (1)利用a n +1=S n +1-S n 用配凑法可获证;(2)假设存在λ,则a 1,a 2,a 3应成等差数列求出λ的值,然后依据a n +2-a n =λ推证{a n }为等差数列.[解析] (1)由题设:a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1, 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 9.已知数列{a n }满足a n +1=-1a n +2,a 1=-12.(1)求证{1a n +1}是等差数列;(2)求数列{a n }的通项公式;(3)设T n =a n +a n +1+…+a 2n -1.若T n ≥p -n 对任意的n ∈N *恒成立,求p 的最大值. [解析] (1)证明:∵a n +1=-1a n +2, ∴a n +1+1=-1a n +2+1=a n +2-1a n +2=a n +1a n +2, 由于a n +1≠0, ∴1a n +1+1=a n +2a n +1=1+1a n +1,∴{1a n +1}是以2为首项,1为公差的等差数列. (2)由(1)题结论知:1a n +1=2+(n -1)=n +1,∴a n =1n +1-1=-nn +1(n ∈N *).(3)∵T n =a n +a n +1+…+a 2n -1≥P -n , ∴n +a n +a n +1+…+a 2n -1≥P ,即(1+a n )+(1+a n +1)+(1+a n +2)+…+(1+a 2n -1)≥p ,对任意n ∈N *恒成立, 而1+a n =1n +1,设H (n )=(1+a n )+(1+a n +1)+…+(1+a 2n -1), ∴H (n )=1n +1+1n +2+…+12n ,H (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2,∴H (n +1)-H (n )=12n +1+12n +2-1n +1=12n +1-12n +2>0,∴数列{H (n )}单调递增,∴n ∈N *时,H (n )≥H (1)=12,故P ≤12.∴P 的最大值为12.专题四 规范答题示例例(12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *). [思路探究]先求某一项或找到某几项之间的关系式―→求通项公式―→求数列的前n 项和n 2n 得1分,通项公式使用错误不得分;③根据等差数列的通项公式求通项a n =3n -2得1分,通项公式使用错误不得分.④正确写出a 2n b 2n -1=(3n -1)×4n 得1分;⑤正确写出2×4+5×42+8×43+…+(3n -1)×4n 得1分;⑥正确写出4T n 得1分;⑦正确计算出T n =3n -23×4n+1+83得3分.G 跟踪训练en zong xun lian已知数列{a n }的前n 项和为S n ,且S n =2-2n +1,数列{b n }为等差数列,且b 2=a 1,b 8=a 3.(1)求数列{a n },{b n } 的通项公式; (2)求数列{b na n}的前n 项和T n .[解析] (1)对于数列{a n }有S n =2-2n +1, 当n =1时,S 1=2-22=-2,即a 1=-2;当n ≥2时,a n =S n -S n -1=(2-2n +1)-(2-2n )=-2n , 对n =1也符合,故a n =-2n . 所以数列{a n }是等比数列,公比q =2. 等差数列{b n }中,b 2=a 1=-2,b 8=a 3=-8. 故其公差d 满足6d =b 8-b 2=-6,所以d =-1. 所以其通项b n =b 2+(n -2)d =-2+(n -2)×(-1)=-n . (2)令c n =b n a n ,由(1)知,c n =b n a n =n ×12n .T n =c 1+c 2+c 3+…+c n -1+c n=12+2×122+3×123+…+(n -1)×12n -1+n ×12n ①, 12T n =122+2×123+3×124+…+(n -1)×12n +n ×12n +1②, ①-②,得12T n =12+122+123+…+12n -1+12n -n 2n +1=12[1-(12)n ]1-12-n2n +1=1-12n -n 2n +1所以T n =2-12n -1-n2n =2-n +22n .。

相关文档
最新文档