(易错题精选)初中数学概率图文答案
初中数学经典易错题精选及解析:概率、事件概率
初中数学经典易错题精选及解析:概率、事件概率引言在初中数学中,概率和事件概率是一个重要的概念。
由于其抽象性和复杂性,学生经常在相关题目中出现错误。
本文收集了一些经典易错题,并提供详细的解析,希望能够帮助学生更好地理解概率和事件概率的概念,同时提高解题准确率。
经典易错题精选及解析题目1:掷骰子已知一枚普通的六面骰子,问掷出的点数是1的概率是多少?解析1骰子有6个面,每个面都可能掷出。
因此,掷出的点数是1的概率为1/6(即1个有利结果,总共有6个可能结果)。
题目2:抽牌有一副共有52张牌的扑克牌,其中有4张红心。
从中随机抽取一张牌,请问这张牌是红心的概率是多少?解析2共有52张牌,其中4张是红心。
因此,这张牌是红心的概率为4/52(即4个有利结果,总共有52个可能结果)。
题目3:抛硬币抛一枚公平的硬币10次,问正面出现的次数为4的概率是多少?解析3抛硬币出现正面和反面的概率是相等的,都是1/2。
根据二项分布的概率公式,正面出现的次数为4的概率为C(10, 4) × (1/2)^4×(1/2)^6,其中C(10, 4)表示从10次投掷中取出4次正面的组合数。
计算得知,正面出现的次数为4的概率为210/1024。
题目4:蓝球和红球从一个装有4个红球和6个蓝球的盒子中随机抽取2个球,请问两个球都是红球的概率是多少?解析4从盒子中抽取两个球,一共有C(10, 2)种可能的组合。
其中,两个球都是红球的组合有C(4, 2)种。
因此,两个球都是红球的概率为C(4, 2)/C(10, 2) = 6/45。
结论本文介绍了一些初中数学中与概率和事件概率相关的经典易错题,并提供详细的解析。
通过学习和理解这些例题,希望能够帮助学生更好地掌握概率和事件概率的概念,从而在解题过程中避免常见的错误。
初中数学概率易错题汇编及答案
B.2
C.3
【答案】C
【解析】
【分析】
D.4
根据事件发生的可能性大小判断相应事件的类型即可. 【详解】 事件 1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件; 事件 2:相似三角形的对应边成比例,是必然事件;件 3:正数和 0 有平方根,负数没有平 方根,所以不是必然事件; 事件 4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件. 所以,必然事件有 3 个, 故选:C. 【点睛】 本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定 发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件 是指在一定条件下,可能发生也可能不发生的事件. 失分的原因是对事件类型的分类未熟练掌握.
D.明天气温高达 30C ,一定能见到明媚的阳光
【答案】B 【解析】 【分析】 根据必然事件的概念作出判断即可解答. 【详解】 解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故 A 错误; B、操场上小明抛出的篮球会下落是必然事件,故 B 正确; C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故 C 错误;
∴从布袋里任意摸出一个球是黄球的概率是 3 = 1 . 5+3+1 3
故选:B.
点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之
比.
4.下列事件中,是必然事件的是( ) A.任意掷一枚质地均匀的骰子,掷出的点数是奇数 B.操场上小明抛出的篮球会下落 C.车辆随机到达一个路口,刚好遇到红灯
n
2
【答案】D
【解析】
某人随意投掷一枚均匀的骰子,投掷了 n 次,其中有 m 次掷出的点数是偶数,即掷出的点数是
(易错题精选)初中数学概率技巧及练习题附答案解析
(易错题精选)初中数学概率技巧及练习题附答案解析一、选择题1.下列事件中,属于随机事件的是( ). A .凸多边形的内角和为500︒ B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边 【答案】C 【解析】 【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答. 【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件. 故选:C . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.下列事件是必然事件的是( )A .某彩票中奖率是1%,买100张一定会中奖B .长度分别是3,5,6cm cm cm 的三根木条能组成一个三角形C .打开电视机,正在播放动画片D .2018年世界杯德国队一定能夺得冠军 【答案】B 【解析】 【分析】必然事件就是一定发生的事件,即发生的概率是1的事件. 【详解】A 、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.3.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.4.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.5.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.6.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B 【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.7.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.8.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.13.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第一象限的概率为( ) A .16B .13C .12D .49【答案】D 【解析】 【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可. 【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.15.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41=164, 故选B . 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨; ②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件; ④16的平方根是4±164=±; 其中正确的个数有( ) A .1个 B .2个C .3个D .4个【答案】A 【解析】 【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误; ③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确; ④16的平方根是4±,用式子表示是164±±,故错误; 综上,正确的只有③,【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.18.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.19.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.20.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.。
【期末复习】2019年 九年级数学上册 期末复习 概率初步 知识点+易错题精选(含答案)
2019年九年级数学上册期末复习概率初步知识点+易错题精选概率的概念某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为(1)列表法求概率当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
(2)树状图法求概率当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
利用频率估计概率①利用频率估计概率:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
概率初步 易错题精选一、选择题1.下列成语中描述的事件必然发生的是( )A .水中捞月B .瓮中捉鳖C .守株待兔D .拔苗助长2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C.至少有2个球是黑球 D .至少有2个球是白球3.如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是( )A .41B .83C .85D .214.如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )5.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A .23B .31C .41 D .1 6.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图所示),从中任意一张是数字3的概率是( )A .61B .31C .21D .32 7.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13 B .16 C .518 D .56 8.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )A .23B .15C .0.4D .359.向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为( )A 1-B .16C .1-.1510.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a 、b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是( )A .B .C .D .11.甲、乙、丙三位同学参加一次节日活动,很幸运的是,他们都得到了一件精美的礼物。
最新初中数学概率易错题汇编含答案解析
最新初中数学概率易错题汇编含答案分析一、选择题1.从一副 (54 张 )扑克牌中随意抽取一张,正好为K 的概率为()2111 A.B.C.D.274542【答案】 A【分析】【剖析】用 K 的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有 4张K,∴正好为 K的概率为4=2,54 27应选: A.【点睛】本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件A 出现 m 种结果,那么事件 A 的概率 P(A) = m.n2.将一枚质地平均的骰子掷两次,则两次点数之和等于9的概率为()A.1111B.6C.D.3912【答案】 C【分析】【剖析】【详解】解:画树状图为:共有 36 种等可能的结果数,其点数之和是9 的结果数为4,所以其点数之和是9 的概率=4=1.369应选 C.点睛:本题考察了列表法与树状图法求概率:经过列表法或树状图法展现所有等可能的结果求出 n,再从中选出切合事件 A 的结果数目m,则事件 A 的概率 P( A)=m.n3.在一个不透明的袋中,装有 3 个红球和 1 个白球,这些球除颜色外其余都同样. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()1121 A.B.C.D.2334【答案】 A【分析】【剖析】列举出所有状况,看两个球都是红球的状况数占总状况数的多少即可.【详解】画树形图得:一共有 12 种状况,两个球都是红球的有 6 种状况,故这两个球都是红球同样的概率是6=1 ,122应选 A.【点睛】本题考察的是用列表法或树状图法求概率.列表法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件;树状图法合适两步或两步以上达成的事件;解题时要注意此题是放回实验仍是不放回实验.用到的知识点为:概率=所讨状况数与总状况数之比.4.太原是我国生活垃圾分类的 46 个试点城市之一,垃圾分类的强迫实行也马上提上日程依据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其余垃圾现有投放这四类垃圾的垃圾桶各 1 个,若将用不透明垃圾袋分类打包好的两袋不一样垃圾随机投进两个不一样的垃圾桶,投放正确的概率是()1111 A.B.C.D.681216【答案】 C【分析】【剖析】依据题意,由列表法获取投放的所有结果,而后正确的只有 1 种,即可求出概率.【详解】解:由列表法,得:∴共有 12 种等可能的结果数,此中将两包垃圾随机投放到此中的两个垃圾箱中,能实现对应投放的结果为 1 种,1∴投放正确的概率为:P;12应选择: C.【点睛】本题考察了列表法与树状图法求概率,解题的重点是正确求出所有等可能的结果数.5.如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()11A.B.2345C.D.99【答案】 C【分析】【剖析】依据几何概率的求法:飞镖落在暗影部分的概率就是暗影地区的面积与总面积的比值.【详解】∵总面积为3×3=9,此中暗影部分面积为4×1× 1× 2=4,24∴飞镖落在暗影部分的概率是.9故答案选: C.【点睛】本题考察了几何概率的求法,解题的重点是依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件(A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件( A)发生的概率.6.袋中有8个红球和若干个黑球,小强从袋中随意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了 50次,共有 16 次摸出红球,据此预计袋中有黑球()个.A.15B. 17C. 16D. 18【答案】 B【分析】【剖析】依据共摸球 50次,此中 16 次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可预计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数 .【详解】∵共摸了 50 次,此中 16 次摸到红球,∴有34 次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 178÷8=17(),∴黑球的个数17个,故答案选 B.【点睛】本题主要考察的是经过样本去预计整体,只要将样本 "成比率地放大”为整体是解本题的重点 .7.将三粒平均的分别标有:1,2, 3, 4, 5,6 的正六面体骰子同时掷出,出现的数字分别为a ,b,c,则a ,b,c正好是直角三角形三边长的概率是()1111A.B.C.D.366123【答案】A【分析】【剖析】本题是一个由三步才能达成的事件,共有6×6×6=216种结果,每种结果出现的时机同样,a, b, c 正好是直角三角形三边长,则它们应当是一组勾股数,在这216 组数中,是勾股数的有 3, 4,5; 3, 5,4; 4, 3, 5; 4, 5, 3; 5,3,4; 5, 4,3 共 6 种状况,即可求出 a, b, c 正好是直角三角形三边长的概率 . 【详解】61P(a, b, c 正好是直角三角形三边长)=216 36应选: A【点睛】本题考察概率的求法,概率等于所讨状况数与总状况数之比.本题属于基础题,也是常考题型.8.以下事件中,是必定事件的是( )A.随意掷一枚质地平均的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会着落C.车辆随机抵达一个路口,恰巧碰到红灯D.明日气温高达30 C ,必定能见到明朗的阳光【答案】 B【分析】【剖析】依据必定事件的观点作出判断即可解答.【详解】解: A、抛随意掷一枚质地平均的骰子,掷出的点数是奇数是随机事件,故 A 错误;B、操场上小明抛出的篮球会着落是必定事件,故 B 正确;C、车辆随机抵达一个路口,恰巧碰到红灯是随机事件,故 C 错误;D、明日气温高达30 C ,必定能见到明朗的阳光是随机事件,故 D 错误;应选: B.【点睛】本题考察了必定事件的定义,必定事件指在必定条件下必定发生的事件,娴熟掌握是解题的重点 .9.如图,在4×3长方形网格中,任选用一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()1B.111A.C.3D.6124【答案】 D【分析】【剖析】【详解】解:∵在4×3正方形网格中,任选用一个白色的小正方形并涂黑,共有8 种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有 2 种状况,以下图:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2 18 4应选 D.10.一个不透明的口袋中装有 4 个完整同样的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于 6 的概率为()1111A.B.C.D.6543【答案】 A【分析】【剖析】画树状图得出所有的状况,依据概率的求法计算概率即可.【详解】画树状图得:∵共有 12 种等可能的结果,两次摸出的小球标号之和等于 6 的有 2 种状况,∴两次摸出的小球标号之和等于621的概率 == .126应选 A.【点睛】考察概率的计算,明确概率的意义是解题的重点,概率等于所讨状况数与总状况数的比.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其余差异,每次摸球前先搅拌平均 .随机摸出一球,不放回;再随机摸出一球 .两次摸出的球上的汉字能构成“孔孟”的概率是()A.B.C.D.【答案】 B【分析】【剖析】依据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12 中可能,此中能构成孔孟的有 2 种,所以两次摸出的球上的汉字能构成“孔孟”的概率是.应选 B.考点:简单概率计算.12.以下说法正确的选项是()A.检测某批次灯泡的使用寿命,适合用全面检查B.“ 367人中有 2 人同月同日生”为必定事件C.可能性是1%的事件在一次试验中必定不会犮生D.数据 3, 5, 4, 1,﹣ 2 的中位数是4【答案】 B【分析】【剖析】依据可能性大小、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点进行判断.【详解】检查某批次灯泡的使用寿命检查拥有损坏性,应采纳抽样检查, A 错;一年有366 天所以367 个人中必定有 2 人同月同日生, B 对;可能性是 1 %的事件在一次试验中有可能发生,故 C 错;3,5, 4, 1, -2 按从小到大排序为-2, 1, 3,4, 5, 3 在最中间故中位数是3,D 错.应选 B.【点睛】划分并掌握可能性、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点.13.在平面直角坐标系中有三个点的坐标: A 0, 2 ,B 2,0 ,C( 1, 3),从、、A B C 三个点中挨次取两个点,求两点都落在抛物线y x 2x 2 上的概率是()11C.1D.2A.B.23 36【答案】 A【分析】【剖析】先画树状图展现所有 6 种等可能的结果数,再找出两点都落在抛物线y2x 2 上的结x果数,而后依据概率公式求解.【详解】解:在 A 0, 2 ,B 2,0 ,C(1, 3) 三点中,此中AB 两点在 y x 2x2上,依据题意绘图以下:共有 6 种等可能的结果数,此中两点都落在抛物线22,y x x 2 上的结果数为所以两点都落在抛物线221y x x 2 上的概率是;63应选: A.【点睛】本题考察了列表法或树状图法和函数图像上点的特点.经过列表法或树状图法展现所有等可能的结果求出n ,再从中选出切合事件 A 或B的结果数目m,而后依据概率公式求失事件 A 或B的概率.也考察了二次函数图象上点的坐标特点.14.以下事件是必定事件的是()A.翻开电视机正在播放动画片B.扔掷一枚质地平均的硬币100 次,正面向上的次数为50C.车辆在下个路口将会碰到红灯D.在平面上随意画一个三角形,其内角和是180【答案】 D【分析】【剖析】直接利用随机事件以及必定事件的定义分别判断得出答案.【详解】A、翻开电视机正在插放动画片为随机事件,故此选项错误;B、扔掷一枚质地平均的硬币 100 次,正面向上的次数为 50 为随机事件,故此选项错误;C、“车辆在下个路口将会碰到红灯”为随机事件,故此选项错误;D、在平面上随意画一个三角形,其内角和是180 °为必定事件,故此选项正确.应选: D.【点睛】本题考察随机事件以及必定事件,正确掌握有关定义是解题重点.15.在 10 盒红色的笔芯中混放了若干支黑色的笔芯,每盒20 支笔芯,每盒中混放入的黑色笔芯数以下表:黑色笔芯数01456盒数24121以下结论:①黑色笔芯一共有 16支;② 从中随机取一盒,盒中红色笔芯数不低于14 是必定事件;③ 从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 0.7;④将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是0.12 .此中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】 C【分析】【剖析】依据表格的信息分别考证算出黑色笔芯的数目,由每盒黑色笔芯的数目能够算出每盒红色笔芯的数目,即可考证①② 的正确性,再算出盒中黑色笔芯数不超出 4 的概率,即可判断③ ,用黑色的数目除以总的笔数,可考证④.【详解】解:① 依据表格的信息,获取黑色笔芯数 =0 2 1441526124 ,故① 错误;② 每盒笔芯的数目为20 支,∵每盒黑色笔芯的数目都≤6,∴每盒红色笔芯≥14,所以从中任取一盒,盒中红色笔芯数不低于14是必定事件,故② 正确;③ 依据图表信息,获取黑色笔芯不超出4的一共有 7 盒,所以从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 7÷10=0.7故③ 正确④10 盒笔芯一共有 10× 20=200(支),由详解①知黑色笔芯共有 24 支,将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是24÷200=0.12,故④ 正确;综上有三个正确结论,故答案为 C.【点睛】本题主要考察了与概率有关的知识点. 在本题中求出黑色笔芯的数目是重点,求某事件的概率时,主要求该事件的数目与总数目的比值;还需要掌握必定事件的观点,即必定事件是必定会发生的事件 .16.在一个不透明的口袋中装有 4 个红球和若干个白球,他们除颜色外其余完整同样.通过多次摸球实验后发现,摸到红球的频次稳固在25% 邻近,则口袋中白球可能有()个.A.20B. 16C. 12D. 15【答案】 C【分析】【剖析】由摸到红球的频次稳固在 25% 邻近,能够得出口袋中获取红色球的概率,从而求出白球个数即可获取答案 .【详解】解:设白球个数为x 个,∵摸到红球的频次稳固在25% 左右,∴口袋中获取红色球的概率为25% ,∴4 1 ,4x4解得: x12 ,经查验, x12是原方程的解故白球的个数为12 个.应选 C【点睛】本题主要考察了随机概率,利用频次预计概率,依据大批频频试验下频次稳固值即概率得出是解题重点,应掌握概率与频次的关系,从而更好的解题.17.某市环青云湖竞走活动中,走完整部行程的队员即可获取一次摇奖时机,摇奖机是一个圆形转盘,被平分红16 个扇形,摇中红、黄、蓝色地区,分获一、二、三等奖,奖品分别为自行车、雨伞、署名笔.小明走完了全程,能够获取一次摇奖时机,小明能获取署名笔的概率是()A.1711B.C.D.161648【答案】 C【分析】【剖析】从题目知道,小明需要获取署名笔,一定获取三等奖,即转到蓝色地区,把圆盘中蓝色的小扇形数出来,再除以总分数,即可获取答案.【详解】解:小明要获取署名笔,则一定获取三等奖,即转到蓝色地区,从转盘中找出蓝色地区的扇形有4 份,又由于转盘总的平分红了16 份,所以,获取署名笔的概率为:故答案为 C.【点睛】4 1 ,164本题主要考察了随机事件的概率,概率是对随机事件发生之可能性的胸怀;在做转盘题时,能正确找到事件发生占圆盘的比率是做对题目的重点,还需要注意,转盘是否是被平分的,才能防止错误 .18. 如图,由四个直角边分别是 6 和 8 的直角三角形拼成的 “赵爽弦图 ”,随机往大正方形ABCD 内投针一次,则针扎在小正方形 EFGH 内的概率是( )A .1 1 1 1B .20C .D .162425【答案】 D【分析】【剖析】依据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算依据直角三角形的边长求算边长再算面积.【详解】依据题意, “赵爽弦图 ”中,直角三角形的直角边分别为 6 和 8 所以小正方形的边长为: 8 6 2 ,小正方形的面积为4 ,依据勾股定理,大正方形的边长为62 8210 ,大正方形的面积为 100.所以针扎在小正方形 EFGH 内的概率是4 = 1,答案选 D .100 25【点睛】本题借助 “赵爽弦图 ”考察了几何概率,要注意针扎在小正方形EFGH 内的概率是小正方形与大正方形的面积比.19.如图,在△ABC中, AB= AC,∠ BAC=90°,直角∠ EPF的极点 P 是 BC的中点,两边PE, PF 分别交 AB,AC 于点 E,F,现给出以下四个结论:(1)AE= CF;( 2)△EPF是等腰直角三角形;( 3)S 四边形AEPF=1△ABC4EPF ABC内绕极点P旋转时一直有2S;()当∠在△EF= AP.(点 E 不与 A、 B 重合),上述结论中是正确的结论的概率是()A.1 个B.3 个13 C.D.44【答案】 D【分析】【剖析】依据题意,简单证明△AEP≌△ CFP,而后能推理获取选项A,B, C 都是正确的,当EF= AP一直相等时,可推出AP22PF2,由 AP 的长为定值,而PF 的长为变化值可知选项 D 不正确.从而求出正确的结论的概率.【详解】解:∵ AB=AC,∠ BAC= 90°,点 P 是 BC 的中点,∴ EAP1BAC 45 ,AP 1BC CP.22(1)在△AEP与△CFP中,∵∠ EAP=∠ C=45°, AP= CP,∠ APE=∠ CPF= 90°﹣∠ APF,∴△ AEP≌△ CFP∴AE= CF.( 1)正确;(2)由( 1)知,△AEP≌△ CFP,∴PE= PF,又∵∠ EPF= 90°,∴△ EPF是等腰直角三角形.( 2)正确;(3)∵△ AEP≌△ CFP,同理可证△APF≌△ BPE.∴ S1SVAEPSVAPFSVCPFSVBPESVABC.(3)正确;四边形 AEPF2(4)当 EF= AP 一直相等时,由勾股定理可得:EF 22PF 2则有:AP22PF2,∵AP 的长为定值,而 PF 的长为变化值,∴ AP2与2PF2 不行能一直相等,即 EF与 AP 不行能一直相等,(4)错误,综上所述,正确的个数有 3 个,故正确的结论的概率是3.4应选: D.【点睛】用到的知识点为:概率 =所讨状况数与总状况数之比;解决本题的重点是利用证明三角形全等的方法来获取正确结论.20.在一个不透明的布袋中,红色、黑色、白色的小球共有50 个,除颜色外其余完整相同.乐乐经过多次摸球试验后发现,摸到红色球、黑色球的频次分别稳固在27%和 43%,则口袋中白色球的个数很可能是()A.20B. 15C. 10D. 5【答案】 B【分析】【剖析】由频次获取红色球和黑色球的概率,用总数乘以白色球的概率即可获取个数.【详解】白色球的个数是50? (1 27% - 43%) = 15个,应选: B.【点睛】本题考察概率的计算公式,频次与概率的关系,正确理解频次即为概率是解题的重点.。
中考数学统计与概率专题知识易错题50题-含参考答案
中考数学统计与概率专题知识易错题50题含答案一、单选题1.为了了解我市2021年中考数学学科各分数段成绩分布情况,从中抽取200名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.200B.被抽取的200名考生的中考数学成绩C.被抽取的200名考生D.我市2021年中考数学成绩2.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.53.在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是()A.随机事件B.必然事件C.不可能事件D.以上事件都有可能4.下列调查中,最适合采用全面调查(普查)方式的是()A.对全国初中学生睡眠质量情况的调查;B.对2022年元宵节期间市场上“元宵”质量情况的调查;C.对春运期间乘车旅客携带危险品情况的调查;D.对母亲河——嘉玲江水质情况的调查.5.甲、乙、丙、丁四名同学进行体温测量,他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,则体温最稳定的是()A.甲B.乙C.丙D.丁6.下列说法正确的个数是()①为了了解一批灯泡的使用寿命,应采用全面调查的方式①一组数据5,6,7,6,8,10的众数和中位数都是6①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m≥0①23≥-≠-a a且A.1B.2C.3D.47.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()A.88B.90C.91D.928.为了估计一片树林中的麻雀的数量,爱鸟人在这个林子里随机捕捉到了30只麻雀,分别在它们的脚上做上标记后,再放归树林.一周后,再次在这片林子里捕捉到了50只麻雀,发现其中3只脚上有标记,(不考虑其他因素)则这片林子中麻雀的数量大约为()A.300只B.500只C.1000只D.1500只9.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A.15B.625C.25D.192510.下列说法正确的是()A.了解中央电视台新闻频道的收视率应采用全面调查B.了解岳池县初一年级学生的视力情况,现在我县城区甲、乙两所中学的初一年级随机地各抽取50名学生的视力情况C.反映岳池县6月份每天的最高气温的变化情况适合用折线统计图D.商家从一批粽子中抽取200个进行质量检测,200是总体11.以下调查中,最适合采用普查方式的是()A.调查某班级学生的身高情况B.调查全国中学生的视力状况C.调查山东省居民的网上购物状况D.调查一批电脑的使用寿命12.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.1913.淘淘和丽丽是九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是()A.13B.19C.23D.2914.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3①5①2变成5①3①2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加15.某校举行防疫知识竞赛,甲、乙两班的参加人数及成绩(满分100分)的平均数、中位数、方差如下表所示,规定成绩大于或等于96分为优异.佳佳根据上述信息得出如下结论:①甲、乙两班学生成绩的平均水平相同;①甲班的成绩比乙班的成绩稳定;①乙班成绩优异的人数比甲班多;①佳佳得94分将排在甲班的前20名.其中正确的结论是()A.①①B.①①C.①①D.①①①16.某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中()A.个体是每个学生B.样本是抽取的1200名学生的数学毕业成绩C.总体是40本试卷的数学毕业成绩D.样本是30名学生的数学毕业成绩17.下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160B.170,160C.170,180D.160,20018.下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数19.甲乙二人做出拳(石头、剪刀、布)游戏,则甲赢的概率为()A.16B.13C.12D.1920.已知一组数据的方差为345,数据为:-1,0,3,5,x,那么x等于()A.-2或5.5B.2或-5.5C.4或11D.-4或-11二、填空题21.博物馆拟招聘一名优秀讲解员,张三的笔试、试讲、面试成绩分别为94分、90分、95分.综合成绩中笔试占50%、试讲占30%、面试占20%,那么张三最后的成绩为_____分.22.一组数据2,3,2,3,5的方差是__________.23.A,B,C三把外观一样的电子钥匙对应打开a,b,c三把电子锁.(1)任意取出一把钥匙,恰好可以打开a锁的概率是;(2)求随机取出A,B,C三把钥匙,一次性对应打开a,b,c三把电子锁的概率.24.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.25.小华想了解光明小区500户家庭的教育费用支出情况,随机抽查了该小区的50户家庭并做了相关统计.在这次调查中,样本容量是_____.26.若一组数据2、2、3、1、5的极差是_________27.制作频数直方图的步骤:(1)确定所给数据的最大值、最小值,求出最大值与最小值的差;(2)将数据适当________;(3)统计每组中数据出现的________;(4)绘制频数直方图.28.一组数据:1,2,2,3,3,3,4,4,4,4的平均数等于_________.29.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼_____尾.30.为做好疫情防控工作,学校南门设置了A,B两台体温快速检测设备,小成和小林随机进入学校,二人恰好均从设备A检测入校的概率是______.31.万州区九池乡盛产草莓,每年三四月正是草莓成熟的季节.某水果经销商为了更好地了解市场,分别对甲、乙、丙、丁四个市场四月份每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为22228.1, 5.7,9.5, 6.4====s s s s,则该经销商四月份草莓价格最稳定的市场是甲乙丁丙__________.32.在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:59.569.579.599.59151289.599.5出现的频率为15%,则这一次抽样调查的容量是(1)已知最后一组()________.69.579.5的频数是________,频率是________.(2)第三小组()33.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是_____.34.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:由此你能给这家鞋店提供的进货建议是________________________.35.有四张完全相同且不透明的的卡片,正面分别标有数字-1,-2,1,2,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为a ,放回后洗匀,再抽一张,卡片上的数字记为b ,则函数y ax =与函数by x=没有交点的概率是_______. 36.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____.37.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.38.某校为了了解该校学生在家做家务的情况,随机调查了50名学生,得到他们在一周内做家务所用时间的情况如下表所示:这组数据的中位数是_____.39.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.40.我们把a 、b 、c 三个数的中位数记作,,Z a b c ,直线12y kx =+与函数22,1,1y Z x x x =-+-+的图象有且只有2个交点,则k 的值为______.三、解答题41.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 27 26 18 19 22 17 16 19 32 30 16 15 16 28 15 32 23 17 14 15 27 27 16 19,对这30个数据按组距3进行分组,并整理和分析如下: 频数分布表:数据分析表:请根据以上信息解答下列问题:(1)上表中=a ,b = ,c = ,d = ;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.42.体育测试即将进入中考,某校随机抽取八年级50名男生进行立定跳远测试,并把测试成绩(单位:m )绘制成如下统计表和统计图.(每组数据含前一个边界值,不含后一个边界值)八年级50名男生立定跳远测试成绩的频数表(1)求a,b的值,并把频数直方图补充完整;(2)学生立定跳远成绩在1.85m(含1.85m)以上为合格,若该年级共有600名男生,试估计有多少名男生达到合格水平?43.东京奥运会10米跳台决赛在2021年8月5日下午15:00举行,来自广东湛江的14岁小女孩全红婵让全世界记住了她的名字.下表是7名裁判对全红婵第一跳的打分情况:(1)写出7名裁判打分的众数和中位数.(2)跳水比赛计分规则规定,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这一跳的完成分,根据“最后得分=难度系数×完成分×3”,那么全红婵第一跳的最后得分多少?44.如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1)根据图中信息分别求出上午和下午四个整点时间的平均气温.(2)请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.45.西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为____________,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.46.2021年底,西安突发新冠肺炎疫情、在各方共同努力下,取得了抗击疫情的阶段性胜利.日前,新一波新冠肺炎疫情又在中国香港地区蔓延,同时深圳、呼和浩特等多地也出现散发病例.做好新冠肺炎疫情防控时刻不能放松,对中学生来说抗击疫情的最好办法是强身健体,提高免疫力.某校为了解九年级学生周末在家体育锻炼的情况,在该校九年级随机抽收了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了如下数据(单位:分钟):【收集数据】男生:28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105;女生:29,35,36,48,55,56,62,69,69,72,73,78,88,88,90,98,99,109.【整理数据】【分析数据】两组数据的平均数、中位数、众数如表:根据以上信息解答下列问题:a______,b=______;(1)填空:m=______,=(2)如果该校九年级的男生有270人、女生有360人,估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数;(3)王老师看了表格数据后认为九年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.47.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:规定:演讲答辩得分按.......“.去掉一个最高分和一个最低分再算平均分..................”.的方法确定.....;. 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; 综合得分=演讲答辩得分×(1-a)+民主测评得分×a (0.5≤a≤0.8); (1) 当a=0.6时,甲的综合得分是多少?(2) 如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.48.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数; (2)求这位同学将两种不同类型的垃圾都正确投放的概率.49.我校团委举办了一次“中国梦·我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀. 这次大赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏下!”观察上表,请说明小明是哪一组学生,并说明理由;(3)如果学校准备推荐其中一个组参加县级比赛,你推荐哪一组参加?请你从两个不同的角度说明推荐理由.50.甲、乙二人做如下的游戏;从编号为1到20的卡片中任意抽出一张.(1)若抽到的数字是奇数,则甲获胜,否则乙获胜,你认为这个游戏对甲、乙双方公平吗?请从概率的角度分析你的结论.(2)若抽到的数字是3的倍数,则甲获胜;若抽到的数字是5的倍数,则乙获胜,你认为这个游戏对甲、乙双方公平吗?参考答案:1.B【分析】根据样本的定义(从总体中抽取出的一部分个体叫做这个总体的一个样本)即可得.【详解】解:由题意可知,样本是指被抽取的200名考生的中考数学成绩,故选:B.【点睛】本题考查了样本,熟记样本的定义是解题关键.2.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.3.A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是随机事件,故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对全国初中学生睡眠质量情况的调查,适合采用抽样调查方式,不符合题意;B.对2022年元宵节期间市场上“元宵”质量情况的调查,适合采用抽样调查方式,不符合题意;C.对春运期间乘车旅客携带危险品情况的调查,适合采用全面调查方式,符合题意;D.对母亲河——嘉玲江水质情况的调查,适合采用抽样调查方式,不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.A【分析】根据方差越小,数据越稳定,比较方差的大小即可.【详解】解:他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,0.020.040.060.08<<<.∴甲体温最稳定.故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.6.A【分析】根据全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件逐一判断即可.【详解】解:①为了了解一批灯泡的使用寿命,调查具有破坏性,应采用抽样调查的方式,故错误;①一组数据5,6,7,6,8,10的众数是6,中位数是(6+7)÷2=6.5,故错误;①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m>0,故错误;①23≥-≠-a a且,故正确.综上:正确的有1个故选A.【点睛】此题考查的是调查方式的选择、求一组数据的众数、中位数、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件,掌握全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件是解决此题的关键. 7.C【分析】根据“平均分=总分数÷科目数”计算即可解答. 【详解】解:()919488391++÷=(分), 故小华的三科考试成绩平均分式91分; 故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可. 8.B【分析】设这片林子中麻雀的数量为x 只,根据样本估计总体列式求解即可. 【详解】解:设这片林子中麻雀的数量为x 只, 由题意得:30:3:50x =, 解得:500x =,所以这片林子中麻雀的数量大约为500只, 故选:B .【点睛】本题主要考查了用样本估计总体,熟练掌握相关知识是解题的关键. 9.B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案. 【详解】根据题意列树状图得:①共有25可能出现的情况,两个指针同时指在偶数上的情况有6种, ①两个指针同时指在偶数上的概率为:625, 故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.10.C【详解】A. ①了解中央电视台新闻频道的收视率,如果采用应采用全面调查,工作量很大,故不正确;B. ①从城区甲、乙两所中学的初一年级随机地各抽取50名学生,漏掉了农村中学的学生,不具代表性,故不正确;C. ①折线统计图能反应一个量的变化情况,①反映岳池县6月份每天的最高气温的变化情况适合用折线统计图正确;D. 商家从一批粽子中抽取200个进行质量检测,200是样本容量,故不正确;故选C.11.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班级学生的身高情况,适合采用普查方式,故本选项符合题意B.调查全国中学生的视力状况,适合采用抽样调查,故本选项不合题意;C.调查山东省居民的网上购物状况,适合采用抽样调查,故本选项不合题意;D.调查一批电脑的使用寿命,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】此题考查了普查和抽样调查的问题,解题的关键是掌握普查和抽样调查的定义以及区别.12.D【详解】解:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故选:D.13.B【分析】根据题意列表法求概率即可. 【详解】列表如下总共有9种等可能结果,他们两人都抽到物理实验的结果有1种 ①两人都抽到物理实验的概率是19故选B【点睛】本题考查了列表法或树状图法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比. 14.B【详解】创意权重没有改变,所以可以不计算.小明原先:700.3600.5⨯+⨯=51.现在: 700.5600.353⨯+⨯=. 小亮原先:900.3750.5⨯+⨯=63.5 .现在:900.5750.3⨯+⨯=67.5. 小丽原先:600.3840.5⨯+⨯=60.现在:600.5840.3⨯+⨯=55.2. 显然小亮增加最多, 故选B . 15.D【分析】根据平均数、中位数、方差的意义逐项分析判断即可.【详解】解:①甲、乙两班学生的平均成绩相等,故成绩的平均水平相同,故①正确; ①甲班的成绩的方差比乙班的大,故乙班的成绩稳定,故①不正确,①根据中位数可得乙班的中位数大于甲班的中位数,故乙班成绩优异的人数比甲班多,故①正确;①根据甲班的中位数为93,则①佳佳得94分将排在甲班的前20名,正确故选D【点睛】本题考查了平均数、中位数、方差的意义,掌握平均数、中位数、方差的意义是解题的关键.16.B【详解】A. 个体是每份试卷,C. 总体是一万名初中毕业生的数学毕业成绩;D. 样本是抽取的1200名学生的数学毕业成绩,故B正确17.B【分析】将这些数从小到大排列起来,找出中位数,众数即可.【详解】把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170,160出现了2次,出现的次数最多,则众数是160,故选:B.【点睛】本题考查众数和中位数的概念,能够找到一组数据的众数,中位数是解决本题的关键.18.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.19.B【分析】由题意列表格,根据概率公式进行求解即可.【详解】解:由题意知,列表法表示甲、乙可能的结果如下:共有9种可能,甲赢乙共有3种情况;①甲赢的概率为3193=故选B .【点睛】本题考查了列表法求概率.解题的关键在于正确的列表格. 20.A【分析】根据平均数和方差的公式列出关于x ,m 的方程求解.【详解】解:设数据的平均数为m ,则11(1035)(7)55m x x =-++++=+①,222222134(1)(0)(3)(5)()55s m m m m x m ⎡⎤=--+-+-+-+-=⎣⎦, 整理得22514210m m mx x --++=①,把①代入①,得:221115(7)14(7)2(7)10555x x x x x ⎡⎤+-⨯+-⨯+⋅++=⎢⎥⎣⎦,化简得227220x x --= 解得:x =-2或5.5. 故选A .【点睛】本题主要考查的是方差公式,平均数公式,以及一元二次方程的解法,方程思想在初中数学的学习中极为重要,也是中考中的热点,本题思考问题的角度独特,难度较大. 21.93【分析】根据加权平均数的定义列式计算即可.【详解】解:张三最后的成绩为:9450%9030%9520%93⨯+⨯+⨯=(分), 故答案为:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 22.1.2【详解】解:先求出平均数(2+3+2+3+5)÷5=3,再根据方差公式计算方差=22222[(23(33)(23)(33)(53)]5 1.2-+-+-+-+-÷=)即可23.(1)13;(2)16【详解】试题分析:1)直接利用概率公式求解即可;(2)根据题意列表后利用概率公式求概率即可.试题解析:(1)①3把钥匙中有1把打开a锁,①任意取出一把钥匙,恰好可以打开a锁的概率是13;(2)由题意可列表如下:由上表可知共有六种方法,故刚好A能开a锁,B能开b锁,C能开c 锁的概率为:16.考点:列表法与树状图法.24.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.25.50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量可得答案.。
中考数学统计与概率专题知识易错题50题(含答案)
中考数学统计与概率专题知识易错题50题含答案一、单选题1.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2.某中学46名女生体育中考立定跳远成绩如下表:这些立定跳远成绩的中位数和众数分别是()A.185,170B.180,170C.7.5,16D.185,163.下列事件中,是随机事件的是()A.守株待兔B.水涨船高C.拔苗助长D.瓮中捉鳖4.对某班学生在家做家务的时间进行调查后,将所得数据分成4组,第一组的频率为0.15,第二组和第三组的频率之和为0.75,则第四组的频率为()A.0.35B.0.30C.0.20D.0.105.下列调查中,调查方式选择合理的是()A.了解某河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查6.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 7.数据:-2,1,1,2,4,6的中位数是()A.1B.2C.1.5D.1或28.在一次男子马拉松长跑比赛中,抽得10名选手所用的时间(单位:min)如下:136,140,129,180,146,145,158,175,165,148,则这10名选手的成绩中位数是()A.145B.145.5C.146D.1479.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.下列事件中,是确定事件的有()A.打开电视,正在播放广告B.三角形三个内角的和是180°C.两个负数的和是正数D.某名牌产品一定是合格产品11.下列事件是随机事件的是()A.从一副扑克牌中抽取一张牌是红桃KB.投掷一颗骰子两次,向上的面数字之和大于12C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办D.北京大学的校训是“爱国进步民主科学”12.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.12D.3413.下列命题是真命题的是()A.一个正数的算术平方根一定比这个数小B.若22a b=,则a b= C.三角形的任意两边之和大于第三边D.“守株待兔”是必然事件14.一组数据由m 个a 和n 个b 组成,那么这组数据的平均数是( ) A .2a b+ B .a bm n++ C .ma nba b++ D .ma nbm n++ 15.在一次数学测试中,某小组的成员得分如下:95、85、95、85、80、95、90、95这组数据的平均数、中位数和众数分别为( ) A .92、95和90 B .92、95和85 C .90、92.5和95D .90、80和8516.下列统计量中,能够刻画一组数据的离散程度的是( ) A .方差或标准差B .平均数或中位数C .众数或频率D .频数或众数17.“递减数”是一个数中右边数字比左边数字小的自然数(如:32,421,9732等),任取一个两位数,是“递减数”的概率是( ) A .718 B .25C .35D .1218.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )A .从甲袋摸到黑球的概率较大B .从乙袋摸到黑球的概率较大C .从甲、乙两袋摸到黑球的概率相等D .无法比较从甲、乙两袋摸到黑球的概率19.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m20.我国古代有着辉煌的数学研究成果,其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作,这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习,则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为( ) A .13B .15C .115D .118二、填空题21.若1x , 2 x ,3x 的平均数为3,则15+1x , 2 5+2x ,35+3x 的平均数为________. 22.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.23.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________. 24.为保证新冠疫情防控工作的口罩供应,某公司及时转产,开设了多条生产线批量生产口罩,以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:估计这一批口罩的合格率为_____(结果精确到0.01).25.对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图(图①)和扇形统计图(图①).根据图中信息,这些学生的平均分数是________分.26.某学校招聘一名教师,对甲、乙、丙三名候选人进行了笔试、面试测试,他们的各项测试成绩如下表所示,根据要求,学校将笔试、面试得分按6:4的比例确定各人的最后成绩,然后录用得分最高的候选人,最终被录用的是______.27.在一个不透明的袋子中装有仅颜色不同的8个球,其中红球3个,黄球5个.请你从袋子中取出m 个红球,再从袋子中随机摸出一个球,将“摸出的球为黄色”记为事件A ,若此事件为必然事件,则m 的值为__________.28.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是4,方差是5,将这组数据中的每个数据都减去2,得到一组新数据,则这组新数据的方差是______. 29.某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多_____万元.30.在4张完全一样的纸条上分别写上1、2、3、4,做成4支签,放入一个不透明的盒子中搅匀,则抽到的签是偶数的概率是 ___.31.一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是__________.32.冬奥会单板U 型池比赛中,某单板滑雪动员的成绩(单位:分)为81,89,83,88,84,83.则这组数据的中位数是________.33.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.34.如图是某中学七年级学生视力统计图,其中近视400度以上的学生所在扇形的圆心角为_____度_______分______秒.35.远远在一个不透明的盒子里装了4个除颜色外其他都相同的小球,其中有3个是红球,1个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是_____.36.现有下列长度的五根木棒:5,6,8,12,13,从中任取三根,可以组成直角三角形的概率为______.37.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)38.(2016·荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.39.盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是________.三、解答题40.在一个不透明的口袋里装有4个白球和6个红球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出一个球,摸到球的概率大(填白或红);(2)从中任意摸出一个球,摸到白球的概率是;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是45,求x的值.41.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中①α的度数是° ,把图2条形统计图补充完整;(3)该区九年级有学生4500名,如果全部参加这次体育科目测试,请估计不及格的人数是多少?42.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:=a______;b=______;(2)请估计当n很大时,频率将会接近______,假如你去转动该转盘一次,你获得“书画作品”的概率约是______;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加多少度?43.近年来,“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n 名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题: n 名学生对使用计算器影响计算能力的发展看法人数统计表(1)求n 的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数. 44.综合题(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)(2)如果甲跟另外n (n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).45.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?46.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=;(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是多少人.47.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题(1)填写表格.(2)这三个厂家的推销广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是位顾客,宜选购哪家工厂的产品?为什么?48.2021年2月10日,“天问一号”火星探测器抵达火星轨道,成为中国首颗人造火星卫星.某学校组织首届“航天梦报国情”航天知识竞赛活动,九年级全体同学参加了“航天知识竞赛”,为了解本次竞赛的成绩,小彬进行了下列统计活动,收集数据:现随机抽取九年级40名同学“航天知识竞赛”的成绩(单位:分)如下:75 85 75 80 75 75 85 70 75 90 75 80 80 70 75 80 85 80 80 95 95 75 90 80 70 80 95 85 75 85 80 80 70 80 75 80 80 55 70 60整理分析:小彬按照如下表格整理了这组数据,并绘制了如下的频数分布直方图和频数分布表,(1)请直接写出m,n的值,并补全图形.(2)活动组委会决定,给“航天知识竞赛”成绩在90分及以上的同学授予“小宇航员”称号.根据上面的统计结果,估计该校九年级840人中约有多少人将获得“小宇航员”称号,(3)本次活动中获得“小宇航员”称号的小颖得到了A,B,C,D四枚纪念章(除图案外完全相同),她将这四枚纪念章背面朝上放在桌面上,从中随机选取两枚送给小彬,求小颖送给小彬的两枚纪念章中恰好有一枚是A的概率.49.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写大赛”预赛,各参赛选手的成绩如下:八(1)班:91,92,93,93,93,94,98,88,98,100八(2)班:93,93,93,95,96,96,98,89;98,99通过整理,得到数据分析表如下:(1)直接写出表中a,b,c的值;(2)依据数据分析表,有人说:“八(1)班的最高分100大于八(2)班的最高分99,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩比较好,请给出两条支持八(2)班成绩好的理由.参考答案:1.A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.2.B【分析】根据中位数和众数的定义求解即可.【详解】由上表可得中位数是180,众数是170故答案为:B.【点睛】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.3.A【详解】A、是随机事件,故A选项符合题意;B、是必然事件,故B选项不符合题意;C、是不可能事件,故C选项不符合题意;D、是必然事件,故D选项不符合题意;故选:A.【点睛】本题考查了随机事件的定义,解题的关键是熟练掌握随机事件的定义:在一定条件下,可能发生也可能不发生的事件.4.D【分析】根据各组频率之和为1即可求出答案.【详解】解:根据题意得:第四组的频率为10.150.750.10.故选:D【点睛】本题考查频率的性质,解题的关键是熟练运用各组频率之和为1,本题属于基础题型.5.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解某河的水质情况,应该选择抽样调查,故A正确;B.了解每种型号节能灯的使用寿命,应该选择抽样调查;故B错误;C.了解一架Y-8GX7新型战斗机各零部件的质量,应该选择全面调查,故C错误;D.了解一批药品是否合格,应该选择抽样调查,故D错误.故选A.【点睛】本题主要考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于破坏性的调查、无法进行普查、普查的意义和价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C【详解】试题分析:在试验中,可能出现也可能不出现事件叫做随机事件;一定出现的事件叫必然事件;一定不出现的事件叫不可能事件.所以任意打开七年级下册数学教科书,正好是97页是随机事件,故C错误.考点:简单随机事件7.C【分析】根据中位数的定义即可得.【详解】解:将这组数据从小到大排序得-2,1,1,2,4,6,其中最中间的两个数为1,2,∴这组数据的中位数为121.52+=,故选:C.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,熟记中位数的定义是解题的关键.8.D【分析】根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】解:这10名选手的成绩从小到大排列为:129,136,140,145,146,148,158,165,175,180,则中位数为1461482+=147(mm ). 故选:D .【点睛】此题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.B【分析】根据平均数与方差的意义解答即可.【详解】解: =x x x x <=甲乙丁丙, ∴乙与丁二选一,又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 10.B【详解】试题分析:解:分析4个事件可得:B .符合三角形内角和定理,是必然事件;C .两个负数的和是正数,是不可能事件;A .打开电视,不一定正在播放广告;D .某名牌产品不一定是合格产品,故它们是不确定事件;故确定事件的有B ;故选B .考点:事件的分类.11.A【分析】根据随机事件的定义逐项判断即可【详解】A.从一副扑克牌中抽取一张牌是红桃K ,这是随机事件,故符合题意;B.投掷一颗骰子两次,向上的面数字之和大于12,因为数字之和的最大值为12,所以这不是随机事件,故不符合题意;C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办,这是已经确定的事实,不是随机事件,故不符合题意;D.北京大学的校训是“爱国进步民主科学”, 这是已经确定的事实,不是随机事件,故不符合题意;故选:A【点睛】本题考查了随机事件的定义,理解随机事件的定义是解决问题的关键12.B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.13.C【分析】根据算术平方根和平方根的定义,三角形三边的关系,随机事件的定义逐一判断即可.【详解】解:A、如1的算术平方根是1,但是1=1,故一个正数的算术平方根不一定比这个数小,是假命题,此选项不符合题意;B、若22a b=,则a b=±,是假命题,此选项不符合题意;C、三角形的任意两边之和大于第三边,是真命题,符合题意;D、“守株待兔”是随机事件,是假命题,不符合题意;故选C.【点睛】本题主要考查了判断命题真假,算术平方根,平方根,三角形三边的关系,随机事件,熟知相关知识是解题的关键.14.D【分析】由题意知,这组数总共有m+n个,m个a和为ma,n个b的和为nb,则根据平均数的定义即可求得该组数据的平均数.【详解】该组数据的和=ma+nb,该组数据的个数=m+n;则平均数nbmam n++;故选D.【点睛】本题考查了平均数的计算,弄清数据的和以及个数是解题的关键.15.C【分析】根据平均数、中位数、方差的定义逐一进行求解即可得.【详解】这组数据的平均数是18×(95+85+95+85+80+95+90+95)=90;将95、85、95 、85 、80 、95 、90、95按照从小到大的顺序排列是:80,85,85,90,95,95,95,95,则中位数是90952=92.5;①95出现了4次,出现的次数最多,①众数是95,故选C.【点睛】本题考查了平均数、中位数和众数,熟练掌握定义和公式是解题的关键.16.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.17.D【分析】由共有90个两位数,其中是“递减数”的有45个,直接利用概率公式求解即可求得答案.【详解】①共有90个两位数,其中是“递减数”的有45个,①任取一个两位数,是“递减数”的概率是:12.故选D.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.B【详解】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算19.B【分析】利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.【详解】①骰子落在世界杯图案中的频率稳定在常数0.4左右,①估计骰子落在世界杯图案中的概率为0.4,①估计宣传画上世界杯图案的面积=0.4×(4×2)=3.2(m 2).故选B .【点睛】本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.20.C【分析】设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,列树形图表示所有等可能性,根据概率公式即可求解.【详解】解:设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,根据题意列树形图得由树形图得共有30种等可能性,其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性,①所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点睛】本题考查了列树形图求概率,根据题意分别用字母表示六种算经并正确列出树形图是解题关键.21.17【分析】根据平均数的定义得到1x + 2 x +3x =9,再求出15+1x , 2 5+2x ,35+3x 的和即可求解.【详解】①1x ,2x ,3x 的平均数是3,①()123123515253512351x x x x x x +++++=+++++=, ①51173x ==.故填:17.【点睛】此题主要考查平均数的求解,解题的关键是熟知平均数的性质.22.93【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:①观察表格可知5名选手的平均成绩为91分,①3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93(分);故答案为:93.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.23.23【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,故从中任取一个数,则恰为奇数的概率是42 63 =,故答案为:23.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.24.0.92【分析】由抽检的合格率即可估计这批产品的合格率.【详解】解:由图标可得,抽检的数量越大,合格率与接近0.92,∴估计这批产品的合格率是0.92.故答案为:0.92.【点睛】本题考查用频率估计概率,掌握抽查数据越大,频率越接近概率是解题的关键.25.2.95【详解】略26.甲【分析】分别计算甲、乙、丙三名候选人的加权平均数,然后做出判断即可.。
(易错题精选)初中数学概率经典测试题附答案解析(1)
(易错题精选)初中数学概率经典测试题附答案解析(1)一、选择题1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.2.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是( ) A .13B .49C .19D .23【答案】A 【解析】 【分析】将三个小区分别记为A 、B 、C ,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A 、B 、C ,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况, 所以他们恰好抽到同一个小区的概率为31=93.故选:A . 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.3.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C 【解析】 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】 解不等式组得:7x ax ≤⎧⎨>-⎩ ,由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x=52a-,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.4.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.5.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.9.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A .1B .34C .12D .14【答案】B 【解析】 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个, ∴P (中心对称图形)=34, 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.11.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56【答案】B 【解析】 【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】∵这组数中无理数有 共2个, ∴卡片上的数为无理数的概率是21=63.故选B. 【点睛】本题考查了无理数的定义及概率的计算.12.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( ) A .12B .14C .35D .23【答案】D 【解析】 【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案 【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432; ∴排出的数是偶数的概率为:46=23. 【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.14.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A .指针落在标有5的区域内B .指针落在标有10的区域内C .指针落在标有偶数或奇数的区域内D .指针落在标有奇数的区域内【答案】C 【解析】 【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可. 【详解】解:A 、指针落在标有5的区域内的概率是18;B 、指针落在标有10的区域内的概率是0;C 、指针落在标有偶数或奇数的区域内的概率是1;D 、指针落在标有奇数的区域内的概率是12; 故选:C . 【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.15.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .16.下列事件中,属于确定事件的是( ) A .抛掷一枚质地均匀的骰子,正面向上的点数是6 B .抛掷一枚质地均匀的骰子,正面向上的点数大于6 C .抛掷一枚质地均匀的骰子,正面向上的点数小于6D .抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次 【答案】B 【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.19.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.。
中考数学统计与概率专题知识易错题50题含答案
中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列事件中,不可能发生的事件是()A.明天气温为30C︒B.学校新调进一位女教师C.大伟身长丈八D.打开电视机,就看到广告2.数据1,2,3,4,5,3-的平均数是()A.0B.2C.3D.2.53.下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.将一滴花生油滴入水中,油会浮在水面上C.车辆随机到达一个路口,遇到红灯D.掷一枚质地均匀的硬币,一定正面向上4.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.中位数是9B.众数是9C.平均数是10D.方差是3 5.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是()A.280B.100C.380D.2606.一个布袋中装有7个红球,2个黑球和1个白球,它们除颜色外都相同.从中任意摸出一个球,被摸到的可能性最大的球是()A.红球B.黑球C.白球D.黄球7.一个不透明的口袋里有10个黑球和若干个红球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验600次,其中360次摸到红球,由此估计袋中的红球有()个A.15B.9C.10D.208.对于数据:80,88,85,85,83,83,84.下列说法中错误的有()①这组数据的平均数是84;①这组数据的众数是85;①这组数据的中位数是84;①这组数据的方差是36.A.1 个B.2 个C.3 个D.4 个9.下列事件中属于随机事件的是()A.13名同学中,至少有两名同学出生月份相同B.任意一个实数的绝对值小于0a b b a D.经过有交通信号的路口,遇到红灯C.a,b是实数,+=+10.技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A.平均数B.方差C.中位数D.众数11.如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是()A.甲B.乙C.丙D.丁12.下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>013.一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0B.1、0C.1、1D.2、114.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87B.87,85C.83,87D.83,85 15.一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,则他合格的概率为()A.710B.12C.25D.1516.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1B.67C.12D.017.从编号为1~10的10个完全相同的球中,任取一球,其号码能被3整除的概率是()A.110B.115C.310D.2518.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.6519.下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a b=,则22a b=C.一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上20.已知A样本的数据如下:67,68,68,71,66,64,64,72,B样本的数据恰好是A样本数据每个都加6,则A、B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数二、填空题21.在一次体检中,某班学生视力检查结果如表:从表中看出全班视力的众数是___.22.端午假期鼓浪屿商场为了吸引顾客,举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会,不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,如果摸到红色小球则有机会以优惠价28.88元购买“冰墩墩”一个.如图显示了活动第一天开展上述摸球活动的获奖的结果.李老师在活动第二天去购物,刚好消费了100元,推测李老师能以优惠价购买“冰墩墩”的概率为___.23.如图,用两个可以自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是___.24.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.25.如图,是用黑白打印机在纸张上打印的边长为20cm的正方形“易加学院”微课二维码.为了估计图中黑色部分的总面积,在该二维码内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可以估计黑色部分的总面积约为_________2cm.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是_____.28.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是_________年,私人汽车拥有量年增长率最大的是_________年.29.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=___.30.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是_______;________.31.现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中b的值是______.32.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___33.抽样时要注意样本的______性和______性.34.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为________35.一套书有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书从左向右恰好成上、中、下顺序的概率为__ __.36.如图,Rt△ABC是一块草坪,其中①C=90°,AC=9m,AB=15m,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟随机落在这块草坪上,则小鸟落在阴影部分的概率为________.37.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.38.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是______.39.甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:x甲=1.70m,x乙=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,_____的成绩更稳定.40.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________三、解答题41.如表是我国运动员在最近六届奥运会上所获奖牌总数情况:数学小组分析了上面的数据,得出这六届奥运会我国奖牌总数的平均数、中位数如表所示:(1)上表中的中位数m的值为;(2)经过数学小组的讨论,认为由于第29届奥运会在我国北京召开,我国运动员的成绩超常,所以其数据应记为极端数据,在计算平均数时应该去掉,于是计算了另外五属奥运会上我国奖总数的平均数,这个平均数应该是(3)根据上面提供的信息,预估我国运动员在2020年举行的第32届奥运会上将获得多少枚奖牌,并写出你的预估理由42.小丽在家备战体育中考,增强自身免疫力抗击疫情,每天晚上进行5组1分钟跳绳训练,10天成绩如下图.(1)扇形统计图中a=.(2)补全条形统计图.(3)小丽的跳远成绩是跳绳平均成绩的90%,小丽的跳远成绩是多少分?(精确到个位)43.某单位欲招聘一名员工,现有A,B,C三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.(1).请将表一和图一中的空缺部分补充完整;(2).竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;(3).若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.44.某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?45.(1) 请你调查自己家一周内每天消耗粮食的数量.(2) 统计本班学生这一周内消耗粮食的总数,并用科学记数法表示.(3) 根据你收集的数据,估计全校学生的家庭,一周内消耗粮食的总数并用科学记数法表示.46.某数学研究小组为了解各类危险天气对航空飞行安全的影响,从国际航空飞行安全网提供的近百年飞行事故报告中,选取了650起与危险天气相关的个例,研究小组将危险天气细分为9类:火山灰云(A),强降水(B),飞机积冰(C),闪电(D),低能见度(E),沙尘暴(F),雷暴(G),湍流(H),风切变(I),然后对数据进行了收集、整理、描述和分析,相关信息如下:信息一:各类危险天气导致飞行事故的数量统计图;信息二:C类与E类危险天气导致飞行事故的月频数统计图;(以上数据来源于国际航空飞行安全网)根据以上信息,解决下列问题:(1)导致重大飞行事故发生数量最多的危险天气类别是______类;(填写字母)(2)从C类与E类危险天气导致飞行事故的月频数统计图来看,______类危险天气导致飞行事故发生次数的波动性小;(填“C”或“E”)(3)根据以上信息,下列结论正确的是______.(只填序号)①C类危险天气导致飞行事故的概率最高;①每年1—4月份C类危险天气比E类危险天气导致飞行事故发生的次数要多;①每年的12月至次年的1月是C类危险天气导致飞行事故发生的多发时期.47.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的可能性大还是选中两名女生的可能性大?48.由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A、B、C三家快餐店,对每家快餐店随机选择1000条网络评价统计如表:(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A、B、C中推荐一家快餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.49.某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图①),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有________人,女生有________人;(2)扇形统计图中a=________,b=________;(3)补全条形统计图(不必写出计算过程).50.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物PQ高度为96cm,放置文物的展台QO高度为168cm,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视),则分隔参观者角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的PAQ与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;①通常围栏的摆放位置需考虑参观者的平均身高)参考答案:1.C【分析】不可能事件是指在一定条件下,一定不发生的事件,根据概念即可解决问题.【详解】A、B、D选项都是可能发生也可能不发生的事件,是随机事件;C、大伟身长丈八是一定不发生的事件,是不可能事件.故选:C.【点睛】本题考查了不可能事件的概念,理解掌握相关的概念是解题的关键.2.B【分析】根据题目中的数据,可以计算出这组数据的平均数,本题得以解决.【详解】解:() 12345326+++++-=,故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.3.B【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、如果a2=b2,那么a=b或a=-b,故该选项不是必然事件,该选项不符合题意;B、将一滴花生油滴入水中,油会浮在水面上,故该选项是必然事件,该选项符合题意;C、车辆随机到达一个路口,可能遇到红灯,故该选项不是必然事件,该选项不符合题意;D、掷一枚质地均匀的硬币,不一定正面向上,故该选项不是必然事件,该选项不符合题意.故选:B.【点睛】本题考查了必然事件,熟练掌握必然事件的定义是解题的关键.4.A【分析】根据给出的折线统计图确定他在一周内每天跑步圈数的数据分别为多少,再根据各选项要求的数据进行求解即可.【详解】解:由题目中折线统计图可知,每天跑步圈数数据分别为7、10、9、9、10、8、10,A、将数据按照从小到大排列,依次为7、8、9、9、10、10、10,中位数应为9,故A正确;B 、该组数据中10出现的次数最多,为3次,所以众数为10,故B 错误;C 、平均数应为710991081097++++++=,故C 错误; D 、由C 可知平均数为9,方差应为222222218(79)(109)(99)(99)(109)(89)(109)77⎡⎤-+-+-+-+-+-+-=⎣⎦,故D 错误, 故选:A .【点睛】本题主要考查众数、中位数、平均数、方差的求法,结合了折线统计图的应用,重点在于熟练掌握各类数据定义进而求出数值.5.C【分析】根据条形统计图中的数据可以计算出统计图中8~12小时的学生数,从而可以估计该校五一期间参加社团活动时间在8~12小时的学生数.【详解】解:由题意可得,条形统计图中,参加社团活动时间8~12小时的学生有:100−8−24−30=38(名),则该校五一期间参加社团活动时间在8~12小时之间的学生数大约是:1000×38100=380(名),故选:C .【点睛】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,根据样本的频数估计总体的频数.6.A【分析】根据布袋哪个颜色的球最多即可判断.【详解】解:∵红球最多,∴被摸到的可能性最大.故选:A .【点睛】本题考查了概率,解决本题的关键是灵活运用所学知识解决问题.7.A【分析】先求出摸到红球的频率,用频率估计概率,再用频率公式,列出方程,即可求解.【详解】由题意得:P (摸到红球)≈360÷600=0.6,设红球的个数为x 个,则0.610x x=+,解得:x=15, 答:估计袋中的红球有15个.故选A .【点睛】本题主要考查用频率估计概率以及概率公式,根据概率公式,列出方程是解题的关键.8.B【详解】由平均数公式可得这组数据的平均数为84;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、84、85、85、88,可得其中位数是84; 其方差为367, 故选B .9.D【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件),据此判断即可.【详解】解:A 、13名同学中,至少有两名同学出生月份相同,为必然事件,不符合题意;B 、任意一个实数的绝对值小于0为不可能事件,不符合题意;C 、a ,b 是实数,+=+a b b a ,根据加法交换律可知为必然事件,不符合题意;D 、经过有交通信号的路口,遇到红灯是随机事件,符合题意;故选:D .【点睛】本题考查了随机事件的定义,熟知定义是解题的关键.10.B【详解】试题分析:根据平均数、方差、中位数及众数的定义求解.解:①为考察某种小麦长势整齐的情况,①应该需要知道这些麦苗的方差,故选B .点评:本题考查了统计量的选择及平均数、方差、中位数及众数的定义,方差能反映一组数据的稳定情况,方差越大,越不稳定.11.C【分析】成绩好,需要考查平均分;发挥稳定,需要考查方差.【详解】①乙和丙的平均数最高,乙和丙的方差分别为8.5和1.5①丙的成绩好又发挥稳定.故答案为:C.【点睛】本题考查平均数和方差,需要注意,方差越小,则这组数据越稳定,理解方差衡量数据的稳定性时,方差越小,越稳定是解题的关键.12.C【分析】先判断各个选项事件的可能性,再根据必然事件的概念进行判断即可.【详解】A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖为随机事件,不符合题意;B.一组数据1,2,4,5的平均数是124534+++=,故平均数是4是不可能事件,不符合题意;C.三角形的内角和等于180°为必然事件,符合题意;D.若a是实数,则0a≥,故|a|>0为随机事件,不符合题意.故选:C.【点睛】本题考查了必然事件、不可能事件及随机事件,必然事件是一定会发生的事件,即发生的概率是1的事件;不可能事件是一定不会发生的事件,即发生的概率为0;随机事件发生的概率在0和1之间.13.C【分析】根据的中位数和众数的概念进行分析即可.【详解】这组数据1出现的次数最多,所以这组数据的众数为1,从小到大排列:﹣2,0,1,1,1,2,处在最中间的两个数的平均数为1,所以这组数据的中位数是1,故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可.【详解】①这组数据排序后为83,83,87,87,87,90,①这组数据的众数是87,这组数据的中位数是87872=87.故选A.【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.15.A【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.【详解】共有20种情况,合格的情况数有14种,所以概率为7 10.故选A.【点睛】考查用列树状图的方法解决概率问题;得到合格的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.16.C【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).17.C【分析】根据数的整除性得出连续自然数每10个有三个能整除3,即可得出卡片号能被3整除的概率.【详解】解:①10张已编号的球(编号为连续的自然数)有三个能整除3,为3,6,9,①号码能被3整除的概率为3 10.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18.C【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.19.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意画一个四边形,它的内角和是360°是必然事件,故A不符合题意;B、若a=b,则a2=b2是必然事件,故B不符合题意;C、一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”是不可能事件,故C符合题意;D、掷一枚质地均匀的硬币,落地时正面朝上是随机事件,故D不符合题意;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.B【分析】根据样本A,B中数据之间的关系,结合众数,平均数,中位数和方差的定义即可得到结论.【详解】设样本A中的数据为xi,则样本B中的数据为yi=xi+6,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差6,只有方差没有发生变化.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的21.4.9【分析】根据众数的定义可知出现次数最多的数据是众数,然后根据表格中的数据,可知4.9所占的百分比最大,即4.9就是这组数据的众数.【详解】解:由表格中的数据可得,视力4.9的学生所占的百分比最大,故全班视力情况的众数是4.9,故答案为:4.9.【点睛】本题考查了众数,解答本题的关键是明确众数的定义,会求一组数据的众数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.22.0.35【分析】根据概率的定义推测即可得出答案.【详解】解:随着摸球次数的增加,摸到红球的频率总是在0.35的附近摆动,显示出一定的稳定性,可以推测摸到红球的概率即是老师能以优惠价购买“冰墩墩”的概率为0.35,故答案为0.35.【点睛】本题主要考查了概率的定义,在做重复试验时,当试验次数很大时,事件A的频率总是会在一个常数的附近摆动,这就是频率的稳定性,我们用这个常数表示事件A发生的可能性大小,我们把刻画事件A发生可能性大小的数值成为事件A的概率,掌握概率的概念是解题的关键.23.1 3【分析】用列表法表示所有可能出现的结果情况,从中找出能配成紫色的情况,即可求出配紫的概率.【详解】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的结果,其中能配成紫色的有2种,所以,能配成紫色的概率为21=63,故答案为:13.。
(易错题精选)初中数学概率难题汇编附答案
(易错题精选)初中数学概率难题汇编附答案一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.6.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.9.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.11.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, 故选D .13.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .14.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20B .16C .12D .15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.17.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.18.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).A .2B .2πC .πD .2π【答案】D【解析】【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.【详解】∵半径为2的圆内接正方形边长为∴圆的面积为4π,正方形的面积为8, 则石子落在此圆的内接正方形中的概率是82=4ππ, 故选D .【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.19.下列说法正确的是( ).A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.20.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13 B .16 C .12 D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.。
(易错题精选)初中数学概率全集汇编含解析
(易错题精选)初中数学概率全集汇编含解析一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180︒【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193=,故选C.考点:简单事件的概率.3.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.4.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.5.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.6.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.7.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A.12B.14C.35D.23【解析】【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:46=23.【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C 【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.11.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16 【答案】D【解析】A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误; B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.13.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C 【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.15.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,10=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.16.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计【答案】A【解析】根据题意可得5位同学摸到红球的频率为85976357505010++++==,由此可得盒子里的红球比白球多.故选A.17.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个【答案】B【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:44x+=0.2,解得:x=16,故选:B..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系18.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
人教版初中数学概率易错题汇编附答案
人教版初中数学概率易错题汇编附答案一、选择题1.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误.故选C .【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88x x -的解为整数的概率是( )A .12B .13C .14D .23【答案】B【解析】【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88x x -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】 解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88x x -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8, ∴163π+≠8, ∴m ≠8, ∵分式方程8mx x -=3x+88x x -的解为整数, ∴m =2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mx x -=3x+88x x -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mx x -=3x+88x x -的解为整数的概率为26=13; 故选:B .【点睛】 本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.11.下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.13.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x 上的概率为( ) A .118 B .112 C .19 D .16【答案】C【解析】画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x 上的有(1,6),(2,3),(3,2),(6,1),∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .14.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164=,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1B .0.2C .0.3D .0.6 【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.17.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( ) A .16 B .13 C .12 D .56【答案】B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算.18.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个【答案】B【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:44x=0.2,解得:x=16,故选:B..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.。
人教版初中数学概率易错题汇编及答案
人教版初中数学概率易错题汇编及答案一、选择题1.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.2.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.3.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()A.12B.13C.23D.14【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可.【详解】画树形图得:一共有12种情况,两个球都是红球的有6种情况,故这两个球都是红球相同的概率是61= 122,故选A.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.6.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.13.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.14.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.15.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:下列结论:①黑色笔芯一共有16支;②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.【详解】解:① 根据表格的信息,得到黑色笔芯数=021*********⨯+⨯+⨯+⨯+⨯=,故①错误;② 每盒笔芯的数量为20支,∵每盒黑色笔芯的数量都≤6,∴每盒红色笔芯≥14,因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,故②正确;③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7故③正确④ 10盒笔芯一共有10×20=200(支),由详解①知黑色笔芯共有24支,将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,故④正确;综上有三个正确结论,故答案为C.【点睛】本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.16.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,根据勾股定理,大正方形的边长为226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.110【答案】A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.19.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.20.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.。
2020-2021初中数学概率易错题汇编及答案(1)
2020-2021初中数学概率易错题汇编及答案(1)一、选择题1.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C3.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.4.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.5【答案】B【解析】【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)?-=15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.5.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126 ==故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.6.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.7.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.14【答案】B【解析】【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可.【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个,∴P(中心对称图形)=34,故选B.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.8.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.9.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 10.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A.15B.110C.25D.225【答案】B【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=21 2010.故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.12.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13B .16C .12D .23【答案】A 【解析】 【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A . 【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.13.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45B .35C .25D .15【答案】B 【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.14.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.15.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:下列结论:①黑色笔芯一共有16支;②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.【详解】解:① 根据表格的信息,得到⨯+⨯+⨯+⨯+⨯=,黑色笔芯数=021*********故①错误;② 每盒笔芯的数量为20支,∵每盒黑色笔芯的数量都≤6,∴每盒红色笔芯≥14,因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,故②正确;③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7故③正确④ 10盒笔芯一共有10×20=200(支),由详解①知黑色笔芯共有24支,将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,故④正确;综上有三个正确结论,故答案为C.【点睛】本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.16.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.。
(易错题精选)初中数学概率解析含答案(1)
(易错题精选)初中数学概率解析含答案(1)一、选择题1.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.Q圆的直径正好是大正方形边长,∴22,∴2,222=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.3.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C 【解析】 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a- , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C . 【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.4.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,-2的中位数是4D .“367人中有2人同月同日出生”为确定事件 【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.5.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD .现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴»»»==AC CDDB , ∴∠AOC =∠COD =∠DOB =60°, ∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===, ∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°, ∴∠ODB =∠COD =60°, ∴OC ∥BD , ∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D . 【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.6.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件 【答案】C 【解析】 【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案. 【详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误. 故选C . 【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.7.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.下表显示的是某种大豆在相同条件下的发芽试验结果:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率mn0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是()A.①②③B.①②C.①③D.②③【答案】D【解析】【分析】利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.【详解】解:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,故选D.【点睛】本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C10.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C .两组数据平均数相同,则方差大的更不稳定,故C 选项错误;D ,数据5,6,7,7,8的中位数与众数均为7,正确, 故选D . 【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2C .3D .4【答案】B 【解析】 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.13.下列事件中,是必然事件的是( ) A .任意画一个三角形,其内角和是180° B .经过有交通信号灯的路口,遇到红灯 C .掷一次骰子,向上一面的点数是6 D .射击运动员射击一次,命中靶心 【答案】A 【解析】 【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可. 【详解】A .任意画一个三角形,其内角和是180°是必然事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.15.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.18.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.20.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。
人教版初中数学概率易错题汇编附答案解析
人教版初中数学概率易错题汇编附答案解析一、选择题1.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.19【答案】B【解析】【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种, ∴一辆向右转,一辆向左转的概率为29; 故选:B .【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解8.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.9.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.10.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C 【解析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A.15B.110C.25D.225【答案】B【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=21 2010=.故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.下列事件中,属于随机事件的是().A.凸多边形的内角和为500︒B.凸多边形的外角和为360︒C.四边形绕它的对角线交点旋转180︒能与它本身重合D.任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况, ∴这两个球上的数字之积为奇数的概率是21=126. 故选A .【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.16.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D .【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.17.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.18.下列说法正确的是( ).A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.。
2020-2021初中数学概率易错题汇编附答案解析
2020-2021初中数学概率易错题汇编附答案解析一、选择题1.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( )A.mn一定等于12B.mn一定不等于12C.mn一定大于12D.投掷的次数很多时,mn稳定在12附近【答案】D【解析】某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则投掷的次数很多时mn稳定在12附近,故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.2.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.7.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.8.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是( ) A .56B .13C .23D .16【答案】A 【解析】 【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A .大于12B .等于12C .小于12D .无法确定【答案】B 【解析】 【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能, ∴第3次正面朝上的概率是12. 故选:B . 【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.下列事件中,属于随机事件的是( ). A .凸多边形的内角和为500︒ B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边 【答案】C【解析】 【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答. 【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件. 故选:C . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.下列事件中,确定事件是( )A .向量BC uuu r 与向量CD uuu r是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形 【答案】B 【解析】 【分析】根据“必然事件和不可能事件统称确定事件”逐一判断即可. 【详解】A. 向量BC uuu r 与向量CD uuu r是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B . 【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.14.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.15.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.16.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P=,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是().A 2B.2πC2D.2π【答案】D【解析】【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.【详解】∵半径为2的圆内接正方形边长为2∴圆的面积为4π,正方形的面积为8,则石子落在此圆的内接正方形中的概率是82=4ππ,故选D.【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.19.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.20.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.。
2020-2021初中数学概率易错题汇编含答案解析(1)
2020-2021初中数学概率易错题汇编含答案解析(1)一、选择题1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.2.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .19【答案】A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.下列事件中,是必然事件的是( )A .任意掷一枚质地均匀的骰子,掷出的点数是奇数B .操场上小明抛出的篮球会下落C .车辆随机到达一个路口,刚好遇到红灯D .明天气温高达30C ︒,一定能见到明媚的阳光 【答案】B 【解析】 【分析】根据必然事件的概念作出判断即可解答. 【详解】解:A 、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A 错误; B 、操场上小明抛出的篮球会下落是必然事件,故B 正确; C 、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C 错误; D 、明天气温高达30C ︒,一定能见到明媚的阳光是随机事件,故D 错误; 故选:B . 【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C 【解析】 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x=52a,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.8.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D 【解析】【分析】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2184= 故选D .10.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定【答案】B 【解析】 【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是12∴抛掷第100次正面朝上的概率是12故答案选:B 【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.某人随意投掷一枚均匀的骰子,投掷了n 次,其中有m 次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( ) A .m n 一定等于12 B .m n 一定不等于12C .m n 一定大于12D .投掷的次数很多时,m n 稳定在12附近 【答案】D 【解析】某人随意投掷一枚均匀的骰子,投掷了n 次,其中有m 次掷出的点数是偶数,即掷出的点数是偶数的频率为mn, 则投掷的次数很多时mn稳定在12附近, 故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.13.下列事件是必然事件的是( ) A .打开电视机正在播放动画片 B .投掷一枚质地均匀的硬币100次,正面向上的次数为50C .车辆在下个路口将会遇到红灯D .在平面上任意画一个三角形,其内角和是180︒【答案】D 【解析】 【分析】直接利用随机事件以及必然事件的定义分别判断得出答案. 【详解】A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D . 【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.14.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .15.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2C .3D .4【答案】B【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.16.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C 【解析】 【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案. 【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域, 从转盘中找出蓝色区域的扇形有4份, 又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=,【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.17.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.18.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.19.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:23452---(3,2)(4,2)(5,2)3(2,3)---(4,3)(5,3)4(2,(3,---(5,由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(易错题精选)初中数学概率图文答案一、选择题1.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.【答案】D【解析】【分析】用中间正方形小孔的面积除以圆的总面积即可得.【详解】∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.【点睛】考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.4.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A 【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.7.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.8.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF部分的概率是()A.34B.14C.124D.125【答案】D【解析】【分析】求出AB,HG的边长,进而得到正方形GHEF的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.11.下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形 【答案】C 【解析】 【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【详解】A 、某个数的绝对值大于0,是随机事件,故此选项错误;B 、某个数的相反数等于它本身,是随机事件,故此选项错误;C 、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D 、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误. 故答案选C . 【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率( )A .大于12B .等于12C .小于12D .无法确定【答案】B 【解析】 【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.13.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.14.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D . 【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.15.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .16.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2C .3D .4【答案】B 【解析】 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD 内投针一次,则针扎在小正方形EFGH 内的概率是( )A .116B .120C .124D .125【答案】D 【解析】 【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积. 【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8 所以小正方形的边长为:862-=,小正方形的面积为4,226810+=,大正方形的面积为100. 所以针扎在小正方形EFGH 内的概率是41=10025,答案选D . 【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH 内的概率是小正方形与大正方形的面积比.18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.19.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为( )A .23B .13C .14D .16【答案】A【解析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123=,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.。