各类梁的弯矩剪力计算汇总表89680

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表1 简单载荷下基本梁的剪力图与弯矩图
注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁
表2 各种载荷下剪力图与弯矩图的特征
表3 各种约束类型对应的边界条件
注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5 .
.
.
.
.
.
.
.
注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=
A
dA y I 2
2.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max
y I W =
3.i 称截面回转半径(mm ),其基本计算公式如下:A
I
i =
4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

.
2.单跨梁的内力及变形表(表2-6~表2-10)
(1)简支梁的反力、剪力、弯矩、挠度表2-6
(2)悬臂梁的反力、剪力、弯矩和挠度表2-7
(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8
(4)两端固定梁的反力、剪力、弯矩和挠度表2-9
(5)外伸梁的反力、剪力、弯矩和挠度表2-10
3.等截面连续梁的内力及变形表
(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)
1)二跨等跨梁的内力和挠度系数表2-11
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI
w 100ql 表中系数4
⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3
⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)
=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)
=(-36.75)+(-20.23)=-56.98kN
[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表2-12
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI
w 100ql 表中系数4
⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3⨯=。

3)四跨等跨连续梁内力和挠度系数表2-13
注:同三跨等跨连续梁。

4)五跨等跨连续梁内力和挠度系数表2-14
注:同三跨等跨连续梁。

(2)不等跨连续梁的内力系数(表2-15、表2-16)
1)二不等跨梁的内力系数表2-15
.
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)表示它为相应跨内的最大内力。

2)三不等跨梁内力系数表2-16 .
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最不利布置时的最大内力。

.
4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22) 符号说明如下:
刚度 )1(1223
υ-=Eh K
式中 E ——弹性模量;
h ——板厚; ν——泊松比;
ω、ωmax ——分别为板中心点的挠度和最大挠度;
M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩。

正负号的规定:
弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正。

四边简支 表2-17
三边简支,一边固定 表2-18
两边简支,两边固定表2-19
一边简支,三边固定表2-20
四边固定表2-21
两边简支,两边固定表2-22
5.拱的内力计算表(表2-23)
各种荷载作用下双铰抛物线拱计算公式表2-23
注:表中的K为轴向力变形影响的修正系数。

(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中I c——拱顶截面惯性矩;
A c——拱顶截面面积;
A——拱上任意点截面面积。

当为矩形等宽度实腹式变截面拱时,公式I=I c/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
此时,上式中的n可表达成如下形式:
下表中列出了矩形等宽度实腹式变截面拱的n值。

f/l 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 n 1.67 1.59 1.51 1.43 1.36 1.29 1.23 1.17 1.12 2)在水平荷载作用下的轴向力变形修正系数,近似取
K=1
(2)带拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中E——拱圈材料的弹性模量;
E1——拉杆材料的弹性模量;
A1——拉杆的截面积。

2)在水平荷载作用下的轴向力变形修正系数(略去拱圈轴向力变形影响)
式中f——为矢高;
l——为拱的跨度。

6.刚架内力计算表
内力的正负号规定如下:
V——向上者为正;
H——向内者为正;
M——刚架中虚线的一面受拉为正。

(1)“┌┐”形刚架内力计算(表2-24、表2-25)
“┌┐”形刚架内力计算表(一)表2-34
“┌┐”形刚架内力计算表(二)表2-35
(2)“”形刚架的内力计算(表2-26)“”形刚架的内力计算表表2-26。

相关文档
最新文档