二阶低通滤波传递函数介绍.docx

合集下载

38-表41二阶滤波器的标准传递函数,零、极点分布以及幅频特性示意图

38-表41二阶滤波器的标准传递函数,零、极点分布以及幅频特性示意图

[ R ]/ 1k / 51%
10 k
12 V
74 1
10 k
12 V
图4—29 50Hz陷波器的幅频特性及输入输出波形
4—2—5
R
全通滤波器的幅频特性
是平行于频率轴的直线, 所以它对频率没有选择性。
R -
人们主要利用其相位频率 特性,作为相位校正电路
ui

uo
或相位均衡电路。图4—
R1
C
30所示,是一个一阶全通
滤波器或移相器,其传递 图4—30一阶全通滤波器(移相器)电路
函数为
Auf
(s)

1 1

sR1C sR1C
Auf ( j ) 1
( j ) 2 arctan RC
(4—40) (4—41a)
(4—41b)
A (ω ) 1
0 ω
(ω )
0
1 /R 1 C
R1
C4
R5
ui

R
C
2
3
A +
uo
Rp
(a )
图4—25带通滤波器
| A(jω) |
| A(jω) |
A(ω0) 0.707A(ω0)
R2
0
ω0
ω BW= ω0
0
ω01 ω02 ω03
ω
Q
(b)
(c)
图4—25 (a)电路;(b)幅频特性;(c)调节R2,幅频特性移动
4.3.4 带阻滤波电路(BEF)
带阻滤波器。因为
Ao s
Au
f
(s)

1
s2

Q
o s
Q
o2

二阶低通滤波传递函数介绍

二阶低通滤波传递函数介绍

二阶低通滤波器为了改进一阶低通滤波器的频率特性,可采用二阶低通滤波器。

一个二阶低通滤波器包含两个 如图所示为二阶低通滤波器的一般电路。

此一般电路对于二阶高通滤波器也同样适用。

图6—2-3所示的滤波器是同相 放大器。

在图6-2-3中,零频增益为気=!诗(6-2-5)在节点A 可得气打=叫(龄 + 耳 + FJ -u v Y 3-u n Y 2(6・24)在节点B 可得将式(6-2-8 )代人式(6-2-6),转变到复频域,可得一般二阶低通滤波器的传递函数为r ----- c oRC 支路,(6-2-7) (6 2呂)L;YR RATG(J )R KC仆3厲(&29)对于上图所示的二阶低通滤波器,其传递函数为在构成二阶低通滤波器时,只需选择巧,殇,蚝,%。

导纳的值即可。

例如,当选择 丫1 = 1/R 1 , 丫2 =1/R 2, Y3 = sC i Y 4=S C 2时,则构成图6 - 2 - 4所示的二阶低通滤波器门然角频率为(6-2-10)(6-242)式零频增益为粗尼系数为为了进一步简化计算,选取Q =C 2 = C.R, - = R.则式(6-2-14) ^(6-2-15)可进一步简化为1气=五f = 3 - G o采用频率归一化的方法.则上述二阶低通滤波器的传递函数为"VS 】如图6 -2 -5所示为二阶低通滤波器的幅频特性曲线,其阻带衰减特性的斜率为— 40dB / 10oct ,克服了一阶低通滤波器阻带衰减太慢的缺点。

二阶低通滤波器的各个参数,影响其滤波特性,如阻尼系数苫的大小,决定了幅频特性有无峰值,或 谐振峰的高低。

如图6 =2-6所示为苫对二阶低通滤波器幅频特性的影响。

GiwMdB) (6-243)为了简化计算■通常选G = C. = 式(6212人式(6213)可简化为1 c 7心阻(6-2-14) (6-2-15)(6-2-16) (6-2-17)(6*2-18)G(a))(dB)。

二阶有源滤波器传递函数

二阶有源滤波器传递函数

二阶有源滤波器传递函数二阶有源滤波器是一种常用的信号处理电路,用于对输入信号进行滤波,以满足特定的频率响应要求。

它的传递函数描述了输入信号与滤波器输出信号之间的关系。

二阶有源滤波器的传递函数一般可以表示为H(s) = K * (s^2 + a*s + b) / (s^2 + c*s + d),其中s是复频域变量,K、a、b、c、d是与滤波器的电路参数有关的常数。

传递函数中的分子部分(s^2 + a*s + b)表示滤波器对输入信号的增益特性,而分母部分(s^2 + c*s + d)则表示滤波器对输入信号的相位特性。

通过调整滤波器的参数,可以实现不同的频率响应,从而实现对信号的滤波处理。

在二阶有源滤波器中,常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

它们在不同的频率范围内具有不同的特性,可以用于滤除或增强特定频率的信号成分。

低通滤波器具有通过低频信号而抑制高频信号的特性,常用于去除高频噪声或保留低频信号。

高通滤波器则具有抑制低频信号而通过高频信号的特性,常用于去除低频噪声或提取高频信号。

带通滤波器可以通过一定的频率范围内的信号,常用于信号调理和频率分析。

带阻滤波器则可以抑制一定的频率范围内的信号,常用于去除特定频率的干扰信号。

通过调整二阶有源滤波器的参数,可以改变滤波器的频率响应,从而实现对输入信号的精确滤波。

例如,可以通过调整滤波器的截止频率来控制滤波器的通带范围。

此外,通过调整滤波器的阻尼系数和品质因数等参数,还可以改变滤波器的衰减特性和相位响应。

二阶有源滤波器在实际应用中具有广泛的应用,例如在音频处理、通信系统和仪器仪表等领域。

它可以通过滤波器设计和参数调整来满足不同应用的需求,并实现对输入信号的精确处理。

二阶有源滤波器的传递函数描述了滤波器的输入输出关系,通过调整滤波器的参数可以实现对信号的精确滤波。

不同类型的滤波器可以满足不同的频率响应要求,广泛应用于各个领域。

通过深入理解和应用二阶有源滤波器,可以实现对信号处理的精确控制,提高系统性能和信号质量。

二阶低通滤波器参数计算

二阶低通滤波器参数计算

二阶低通滤波器参数计算摘要:一、引言二、二阶低通滤波器的定义和特点三、二阶低通滤波器参数的计算方法1.截止频率2.传递函数3.频率响应四、二阶低通滤波器参数计算的实际应用五、总结正文:一、引言在信号处理领域,滤波器是一种广泛应用的技术。

二阶低通滤波器是其中一种常见的滤波器类型,它的主要作用是在保留信号的低频部分的同时,衰减高频部分。

为了更好地理解和应用二阶低通滤波器,我们需要了解其参数计算方法。

二、二阶低通滤波器的定义和特点二阶低通滤波器是一种具有两个极点的低通滤波器,它的传递函数为:H(s) = A(s) / (1 + ω_n^2s^2)。

其中,A(s) 是滤波器的幅频特性,ω_n 是滤波器的截止角频率,s 是复变量。

二阶低通滤波器的主要特点是,在截止频率ω_n 处,滤波器的幅频特性下降到一半。

三、二阶低通滤波器参数的计算方法1.截止频率截止频率ω_n 是二阶低通滤波器的关键参数,决定了滤波器能够通过的信号频率范围。

根据系统的物理特性(如电容、电感等)可以计算出截止频率ω_n。

2.传递函数二阶低通滤波器的传递函数H(s) 可以通过公式H(s) = A(s) / (1 +ω_n^2s^2) 计算。

其中,A(s) 是滤波器的幅频特性,可以通过对信号进行模拟滤波得到。

3.频率响应频率响应是描述滤波器对不同频率信号的处理效果的指标。

可以通过计算滤波器在各个频率点的幅频特性值,得到频率响应。

四、二阶低通滤波器参数计算的实际应用在实际应用中,二阶低通滤波器的参数计算可以帮助我们更好地设计和优化滤波器。

例如,在通信系统中,通过调整截止频率,可以实现对不同频率信号的滤波,从而提高信号质量。

五、总结本文介绍了二阶低通滤波器的参数计算方法,包括截止频率、传递函数和频率响应。

这些计算方法对于理解和应用二阶低通滤波器具有重要意义。

二阶低通滤波器标准形式

二阶低通滤波器标准形式

二阶低通滤波器标准形式低通滤波器是一种信号处理器件,它可以使通过的信号频率低于截止频率的信号通过,而高于截止频率的信号被抑制。

在实际应用中,常常使用二阶低通滤波器来实现这一功能。

二阶低通滤波器是指其传递函数具有二次多项式的形式。

标准形式是指传递函数可以化简为一个正规的、无平方项的形式。

这种形式的好处是可以方便地设计和分析滤波器的性能。

在二阶低通滤波器的标准形式中,其传递函数可以表示为以下形式:H(s) = K / (s^2 + s/Q + 1)其中,H(s)表示传递函数,K表示系统增益,s表示复频域变量,Q表示品质因数。

传递函数的分母是一个二次多项式,其形式为s^2 + s/Q + 1。

这是由于二阶低通滤波器主要考虑到截止频率和滚降率两个因素。

传递函数的分子为常数项K,用来调整滤波器的增益。

品质因数Q是一个反映滤波器相应特性的重要参数。

当Q值较大时,滤波器的幅频特性会呈现出较为尖锐的特性,有较小的过渡带宽,并呈现出较高的共振峰。

而Q值较小时,滤波器的幅频特性会呈现较为平缓的特性,具有较大的过渡带宽,但缺乏共振峰。

在实际设计中,我们可以通过调整系统增益K和品质因数Q来实现所需的滤波器性能。

增益K可以通过放大或衰减滤波器的输入或输出信号来调整。

而品质因数Q则可以通过调整滤波器的带宽来达到。

二阶低通滤波器的标准形式具有一些明显的特点。

首先,其传递函数的分母是一个二次多项式,这样可以方便地分析滤波器的阶数和频率响应。

其次,标准形式使得滤波器的设计和调整变得简单和直观。

最后,由于是一个常数增益的滤波器,可以方便地进行增益的补偿和调整。

除了标准形式外,二阶低通滤波器还可以有其他形式的表达。

例如,可以表示为巴特沃斯形式、切比雪夫形式和椭圆形式等。

每种形式都有其特定的设计和性能特点,可以根据具体的应用需求选择适合的形式。

总之,二阶低通滤波器的标准形式是一种简化的滤波器表示形式,方便了低通滤波器的设计和分析。

设计人员可以通过调整系统增益和品质因数来实现所需的滤波器性能。

巴特沃斯二阶低通滤波器

巴特沃斯二阶低通滤波器

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。

巴特沃斯函数只是在ω=0处精确地逼近理想低通特性,在通带内随着ω增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但是陀螺仪的有用输出信号本就在低频段,对通带边界的滤波要求不高,因此巴特沃斯滤波器就可以满足要求。

要求巴特沃斯滤波器通带上限截止频率fc=30HZ ,阻带下限截止频率fs=80HZ ,通带最大衰减3max =A db ,阻带最小衰减为15min =A db 。

由式(1)-(4)可得巴特沃斯低通滤波器为二阶。

1110max 1.0≈-=A ε (1)49.1995.0622.30lg 110110lg 110110lg 3.05.11.01.0max min =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--A A (2) 85.01.7lg 302802lg lg 2==⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛ππc s w w (3)75.185.049.1lg 110110lg lg max min 1.01.0==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-->c s A A w w n (4) 用302⨯⨯πs 代替121)(2++=s s s H 中的s 得到去归一化后的滤波器传递函数为式(5)所示。

6.354944.2666.35494)(2++=s s s H (5) 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示,只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出滤波电路的参数。

图2 二阶低通滤波典型电路32212312112212111111)(R R C C s C R C R C R s R R C C s H +⎪⎪⎭⎫ ⎝⎛+++-= (6)式(5)与式(6)对比可得:6.3549411221=R R C C (7) 4.266111231211=++C R C R C R (8) 6.3549413221=R R C C (9) 令C 1=0.1uf ,R 2=R 1= R 3,解得R 2=R 1= R 3=6.6K ,C 2=0.6uf ,至此巴特沃斯滤波器构造完成。

二阶低通滤波传递函数介绍

二阶低通滤波传递函数介绍

二阶低通滤波传递函数介绍在数字信号处理中,低通滤波器常用于去除不需要的高频噪声或频率成分,保留所需的低频信号。

二阶低通滤波器是指其传递函数为二阶多项式的低通滤波器。

传递函数一般采用有理函数形式,定义为输出与输入信号之间的比例关系。

对于一个二阶低通滤波器,其传递函数可以表示为:H(s)=K/(s^2+2ζω_0s+ω_0^2)其中,H(s)为传递函数,s为复变量,K为增益系数,ζ为阻尼比,ω_0为截止频率。

传递函数中的复变量s代表一个复平面上的频率变量,可以写成s=ο+jω的形式,其中ο为实部,j为虚数单位,ω为频率。

传递函数中的K、ζ、ω_0分别为滤波器的增益系数、阻尼比和截止频率。

增益系数K是用来调整滤波器的放大倍数,阻尼比ζ是用来控制滤波器的响应速度和稳定性,截止频率ω_0则决定了滤波器的频率特性。

当滤波器中的阻尼比ζ小于1时,系统呈现过阻尼的特性,当阻尼比ζ等于1时,系统呈现临界阻尼的特性,当阻尼比ζ大于1时,系统呈现欠阻尼的特性。

这三种特性分别对应着不同的频率响应曲线。

根据传递函数的形式,可以推导出二阶低通滤波器的幅频响应和相频响应。

幅频响应描述了信号在不同频率下经过滤波器后的变化程度,而相频响应描述了信号的相位在不同频率下经过滤波器后的变化程度。

通过分析滤波器的幅频响应和相频响应,我们可以了解该滤波器对输入信号的影响,并选择合适的滤波器参数以满足特定的应用需求。

1.平滑特性:二阶低通滤波器可以实现对信号的平滑处理,滤除高频噪声,使信号更加清晰。

2.相位延迟:由于滤波器会引起信号的相位变化,因此滤波器的相位延迟是需要考虑的重要因素。

在设计滤波器时,我们需要确保滤波器引入的相位延迟不会对信号的时域特性产生明显的影响。

3.截止频率选择:截止频率是决定滤波器性能的重要参数,它决定了滤波器对不同频率信号的响应程度。

合理选择截止频率可以实现对信号的有效滤波,避免对有用信号的损失。

4.抽样频率:在数字信号处理中,抽样频率是指输入信号的采样频率。

二阶低通滤波器传递函数

二阶低通滤波器传递函数

二阶低通滤波器传递函数
二阶低通滤波器是一种常用的滤波器,它具有综合滤波和单频滤波的优劣。

下面就来说说它的传递函数:
1. 传递函数公式:二阶低通滤波器的传递函数有多种形式,如一般表达形式、指数衰减表达形式、Hilbert变换后表达形式等,但它们都可以被表示为:H(jw) =
1/(1 + j (2πf/f0) + (2πf/f0)^2)。

2. 分析含义:低通滤波器的传递函数反映了滤波器的频率响应特性,其中H是传递函数,j是虚数单位,w表示角频率,f表示输入信号的频率,f0表示截断频率。

由传递函数可以看出,当f < f0时,H(jw)的值接近1,说明滤波器对低于截断频率的输入信号具有很高的通过,也就是说滤波器是对低频信号具有很高的通过率;而对于f > f0时,H(jw)的值接近0,说明滤波器对高于截断频率的输入信号具有很高的阻抗,也就是说滤波器是对高频信号具有很高的阻抗率。

3. 冲激响应:冲激响应就是滤波器在激励信号时的频率响应,主要分为振幅响应和相位响应。

一般来说,对于低通滤波器来说,随着频率的升高,滤波器的振幅响应和相位响应都是衰减的,而当输入信号的频率低于截断频率时,滤波器的振幅响应和相位响应则会接近1和0.
4. 滤波器特性:滤波器的特性可以从其传递函数中来归纳总结,它包括截止特性、带宽、变化而破坏的特性、失真特性等。

总的来说,二阶低通滤波器的传递函数表示了滤波器的频率响应特性,包括冲激响应和滤波器的特性,所以它是搞清楚滤波器的行为的关键因素。

阶滤波电路--传递函数

阶滤波电路--传递函数

Au
( s)
R1
R2 1
sC
sR2C 1 sR1C
f Au (s) 高通滤波器
Au
( s)
R2
1 sC
(R2
1 sC
)
R2
1
R1
R1 1 sR2C
f Au (s) 低通滤波器
R
+
Ui
-
+
C
RL
Uo
-
Aup
RL
1
R RL
1 f p 2 (R // RL )C
带负载后,通带放大倍数降低! 带负载后,通带截止频率升高!
无源滤波电路通带放大倍数及截止频率随负载变化!
四、有源滤波电路
UP
R
Ui 1
1 Ui jwc 1 jwRc
jwc
Uo U p
不受负载影响!
有源滤波电路中通过拉氏变换采用象函数进行计算
Uo
R
Ui
1
jwc
1 Ui jwc 1 jwRc
jwc
Au
Uo
1
1 jwRc
Ui
单位:弧度/秒
R
+
Ui
-
+
C
Uo
-
幅值:
Au
1 1 (WRC)2
频率f ,单位:赫兹. WT 2
相角: arctanWRC
W 2f
Au
1
1 (WRC)2
1
1 ( f 2 RC)2
f Au
R(S) R
ZC
(S)
1 SC
ZL (S) SL
输出量与输入量之比称为传递函数。
Aus

低通滤波传递函数

低通滤波传递函数

低通滤波传递函数
低通滤波器是一种信号处理器,它允许通过低频信号,同时阻止高频信号。

低通滤波器的传递函数由一个分子和一个分母组成,可以用以下公式表示:
H(s) = Y(s) / X(s) = 1 / (1 + s/ωc)
其中,s 是拉氏变换的实部,ωc 是截止频率。

当s = jω 时,公式变为:
H(jω) = 1 / (1 + jω/ωc)
这个公式可以用来计算低通滤波器的频率响应,以确定信号在不同频率下的衰减和相移。

限制高频信号的截止频率越低,传递函数越接近于 1,将更多的低频信号通过滤波器。

除了常用的一阶和二阶低通滤波器,还有高阶低通滤波器。

高阶低通滤波器具有更陡的滚降,可以在更高的频率上实现更好的抑制。

高阶低通滤波器的传递函数由更复杂的分子和分母组成,但其基本形式仍然是:
H(s) = 1 / (1 + s/ωc)^n
其中,n 是高阶滤波器的阶数。

传递函数的图形说明了在低通滤波器中,高频信号会被抑制,低频信号可以通过滤波器的信号通道。

在截止频率之前,传递函数等于1,所以低频信号保持不变。

在截止频率之后,传递
函数的值开始下降,因此高频信号会被过滤掉。

总之,低通滤波器的主要作用是去除信号中的高频噪声,并允许低频信号通过。

滤波器的传递函数是描述其行为的数学公式,这些公式可以分析信号的响应和下降速度。

随着阶数的增加,低通滤波器的截止频率越低,抑制高频噪声的能力越强。

二阶rc低通滤波器截止频率计算

二阶rc低通滤波器截止频率计算

二阶rc低通滤波器截止频率计算二阶RC低通滤波器是指由两个电阻和两个电容构成的滤波器电路,其传递函数为:H(s)=1/(1+sRC+s²R²C²)其中,s为复频域变量,R为电阻值,C为电容值。

截止频率是指滤波器对信号幅值进行削弱的频率点,计算二阶RC低通滤波器的截止频率需要先将传递函数化简为标准形式。

标准形式为:H(s)=ωn²/(s²+2ζωn+ωn²)其中,ωn为系统的自然频率,ζ为阻尼比。

通过比较两个传递函数的系数,可以得到ωn和ζ与RC的关系。

根据传递函数H(s)的系数,可以得到:ωn²=1/(R²C²)2ζωn=1/RC解这个方程组,可以得到ωn和ζ的具体值。

在计算截止频率时,通常取阻尼比ζ为1/√2,这样可以得到二阶RC低通滤波器的标准截止频率。

带入阻尼比ζ为1/√2,可以得到:ωn=1/(RC)这个式子表明,二阶RC低通滤波器的截止频率只与RC的乘积有关。

因此,二阶RC低通滤波器的截止频率计算方法为:f=1/(2πRC)其中,f为截止频率。

这个公式表明,截止频率只与电阻值和电容值有关,与滤波器的阶数无关。

例如,如果取R=10kΩ,C=1μF,则截止频率f=1/(2π*10k*1μ)≈15.92Hz。

使用这个截止频率可以确定在输入信号频率高于15.92Hz时,二阶RC低通滤波器对信号进行有效的滤波。

不过需要注意的是,以上只是理论计算的结果,实际使用时还需要考虑电路的误差、负载影响等因素。

同时,在设计滤波器时还需要根据具体应用需求选择适当的电阻和电容值,以达到期望的滤波效果。

因此,在实际设计中,通常会进行一些测试和调整,以获得更准确的截止频率。

二阶低通滤波器 自然频率

二阶低通滤波器 自然频率

二阶低通滤波器自然频率-概述说明以及解释1.引言1.1 概述二阶低通滤波器是一种常用的信号处理器件,主要用于抑制高频信号和噪声,保留低频信号。

它通过改变信号的频率特性,将高频成分的能量衰减,从而实现信号的滤波效果。

在信号处理领域,滤波器是一种非常重要的工具,它可以对信号进行频率选择性的处理。

而低通滤波器则是最基本的一种滤波器,它通过允许低于某个临界频率的信号通过,而将高于该频率的信号进行衰减。

二阶低通滤波器相较于一阶低通滤波器具有更高的滤波效果和更加复杂的频率响应。

它的特点是具有较为平滑的振荡响应,且具有较为陡峭的切除频率。

具体来说,二阶低通滤波器是由两个一阶低通滤波器级联而成,通过二阶系统的结构,可以更好地实现对输入信号的频率选择性处理。

其频率响应曲线在临界频率处呈现出特殊的形状,即在该频率处存在谐振现象。

通过改变二阶低通滤波器的参数和结构设计,可以实现对不同频率信号的滤波效果。

在实际应用中,二阶低通滤波器有着广泛的应用场景,如音频处理、图像处理、通信系统等领域。

本文将对二阶低通滤波器的定义、原理、传递函数及频率响应、设计方法,以及其应用场景和优缺点进行详细介绍和探讨。

通过对二阶低通滤波器的研究和应用,进一步深化对信号处理和滤波器的理解,为未来的研究和应用提供参考依据。

1.2文章结构1.2 文章结构本文按照以下方式组织和呈现信息:引言部分包含三个子部分,分别是概述、文章结构和目的。

在概述部分,我们将简要介绍二阶低通滤波器的基本概念和作用。

在文章结构部分,我们将详细说明本文的结构和目录安排。

在目的部分,我们说明本文的写作目的和意义。

正文部分分为四个子部分,包括二阶低通滤波器的定义和原理、二阶低通滤波器的传递函数和频率响应、二阶低通滤波器的设计方法以及二阶低通滤波器的应用场景和优缺点。

在每个子部分中,我们将详细介绍该主题的相关理论、公式和实际应用。

结论部分由四个子部分组成,包括对二阶低通滤波器的总结和评价、对未来研究和应用的展望、结论以及感谢和致谢。

有源二阶低通滤波器工作原理

有源二阶低通滤波器工作原理

有源二阶低通滤波器工作原理
源二阶低通滤波器是一种被广泛应用于信号处理、音频和视频处理等领域的电路。

其主要功能是将高于一定频率的杂波信号滤掉,同时保留低于该频率的有效信号。

它由一个由电容和电阻组成的RC滤波器以及一个运放组成。

电容和电阻通过一种特定的方式组合起来,形成了一个二阶滤波器的传递函数。

该传递函数可以用来描述滤波器对信号的处理效果。

在该滤波器中,信号通过电容和电阻进入运放,进而被分成两个分支进行处理。

其中一支分支的输出信号会被另一分支所控制,这样就可以将高频信号滤除。

通过这种方式,源二阶低通滤波器可以有效过滤掉杂波信号,从而提高信号的质量。

此外,该滤波器结构简单、工作稳定,并且易于设计和实现,因此在很多应用领域得到广泛应用。

二阶低通滤波器的设计说明

二阶低通滤波器的设计说明

摘要滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。

滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。

二阶低通滤波器可用压控和无限增益多路反馈。

采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。

压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。

本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。

关键字:二阶低通滤波器,multisim仿真分析,电路设计目录第一章课程设计任务及要求 (2)1.1设计任务 (2)1.2设计要求 (2)第二章系统设计方案选择 (3)2.1 总方案设计 (3)2.2子框图的作用 (3)2.3 方案选择 (4)第三章系统组成及工作原理 (4)3.1有源二阶压控滤波器 (5)3.2无限增益多路反馈有源滤波器 (6)第四章单元电路设计、参数计算、器件选择 (7)4.1二阶压控低通滤波器设计及参数计算 (7)4.2无限增益多路反馈有源滤波器的设计及参数计算 (8)第五章电路组装及调试 (9)5.1压控电压源二阶低通滤波电路 (9)5.2无限增益多路负反馈二阶低通滤波器 (10)第六章总结与体会................................... 错误!未定义书签。

参考文献 (12)附录一芯片介绍: (13)附录二元件清单 (14)附录三实物图 (15)第一章课程设计任务及要求1.1设计任务1、学习RC有源滤波器的设计方法;2、由滤波器设计指标计算电路元件参数;3、设计二阶RC有源滤波器(低通);4、掌握有源滤波器的测试方法;5、测量有源滤波器的幅频特性。

(完整word版)-二阶有源低通滤波器 设计-

(完整word版)-二阶有源低通滤波器 设计-

一题目要求与方案论证1.1(设计题题目)二阶有源低通滤波器1.1.1题目要求设计二阶有源低通滤波器。

要求截止频率f0=1000HZ;通带内电压放大倍数A=15,品质因数Q=0.707。

分析电路工作原理,设计电路图,列出电路的传递函数,正确选择电路中的参数。

1.1.2 方案论证(1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。

因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。

根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。

滤波器分为无源滤波器与有源滤波器两种:①无源滤波器:由电感L、电容C及电阻R等无源元件组成②有源滤波器:一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。

利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

从功能来上有源滤波器分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)、全通滤波器(APF)。

其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。

当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF 并联,就构成BEF。

在实用电子电路中,还可能同时采用几种不同型式的滤波电路。

滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。

工作原理:二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。

常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。

巴特沃斯二阶低通滤波器

巴特沃斯二阶低通滤波器

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。

巴特沃斯函数只是在ω=0处精确地逼近理想低通特性,在通带内随着ω增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但是陀螺仪的有用输出信号本就在低频段,对通带边界的滤波要求不高,因此巴特沃斯滤波器就可以满足要求。

要求巴特沃斯滤波器通带上限截止频率fc=30HZ ,阻带下限截止频率fs=80HZ ,通带最大衰减3max =A db ,阻带最小衰减为15min =A db 。

由式(1)-(4)可得巴特沃斯低通滤波器为二阶。

1110max 1.0≈-=A ε (1)49.1995.0622.30lg 110110lg 110110lg 3.05.11.01.0max min =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--A A (2) 85.01.7lg 302802lg lg 2==⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛ππc s w w (3)75.185.049.1lg 110110lg lg max min 1.01.0==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-->c s A A w w n (4) 用302⨯⨯πs 代替121)(2++=s s s H 中的s 得到去归一化后的滤波器传递函数为式(5)所示。

6.354944.2666.35494)(2++=s s s H (5) 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示,只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出滤波电路的参数。

图2 二阶低通滤波典型电路32212312112212111111)(R R C C s C R C R C R s R R C C s H +⎪⎪⎭⎫ ⎝⎛+++-= (6)式(5)与式(6)对比可得:6.3549411221=R R C C (7) 4.266111231211=++C R C R C R (8) 6.3549413221=R R C C (9) 令C 1=0.1uf ,R 2=R 1= R 3,解得R 2=R 1= R 3=6.6K ,C 2=0.6uf ,至此巴特沃斯滤波器构造完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶低通滤波器
为了改进一阶低通滤波器的频率待性
,
可采川二阶低通滤波器。

一个二阶低通滤波器包含两个RC 支路, 如图所示为二阶低通滤波器的•般虫路‘,此-•般电路对丁-二阶高通滤波器也同样适川。

图6-2-3所示的滤波器是同相放大器。

在图6—2—3中,零频增益为
G 。

二 1 +普
(625)
在节点4可得
叫人=你(齐+丫2 +岭)- %岭一叫岭
=u A (y, + £ + «)-叭岭一晋
(6-2-6)
在节点B 可得
« (人 + rj 叭岭二叫(均+
岭)=亠才亠
nt )
it = --------- ---------- ------- —
A
G 必
将式(6—2—8)代人式(6—2—6),转变到复频域,可得一般二阶低通滤波器的传递函数为
(6-2-7) (6-2-8)
在构成二阶低通滤波器时,只需选择巧,场,虹,%o 导纳的值即可。

例如,当选择Yi=1/Ri, 丫2 =
1/R2, Y3=S GY4=S C2时,则构成图6-2-4所示的二阶低通滤波器。

对丁•上图所示的二阶低通滤波器,其传递两数为
口然角频率为
(6212)
G(S )=特| :
3($)
■齐场 + + 匕 + 岭)+ Y 2Y.(\ -G O )
(6-2-9)
/($)
式屮■零频增益为
(6-2-10)
(6211)
G(eXdB)
为了进一步简化计算,选取G = C 2 = C,R, = 则式(6-2-14).式(6・2・15)可进一
步简化为
I
气一屁
—3 - G 。

采用频率归一化的方法,则上述二阶低通滤波器的传递函数为
如图6-2-5所示为二阶低通滤波器的輛频特性曲线,其阻带衰减特性的斜率为一40dB /10oct, 克服了一阶低通滤波器阻带衰减太慢的缺点。

二阶低通滤波器的各个参数,影响其滤波特性,如阻尼系数苫的大小,决定了幅频特性有无峰值,或 谐振峰的高低。

如图6=2-6所示为苫对二阶低通滤波器幅频特性的彩响。

阻尼系数为
旺陌
iR.C ;
—加+
J 斌"")、/证
(6-2-13)
(6-2-14) (6-2-15)
(6-2-16) (6-2-17)
(6-2-18)
05
G(®)(dB)。

相关文档
最新文档