定向耦合器方向性的分析

合集下载

一种耦合组件、定向耦合器、提高定向耦合器方向性的方法与流程

一种耦合组件、定向耦合器、提高定向耦合器方向性的方法与流程

一种耦合组件、定向耦合器、提高定向耦合器方向性的方法与流程导言在无线通信领域,耦合组件是一种常用的器件,用于将无线信号从一个系统传输到另一个系统。

定向耦合器作为一种重要的耦合组件,具有将信号定向传输的能力。

然而,传统的定向耦合器在实际应用中存在一些问题,例如方向性不足等。

因此,本文将介绍一种改进的定向耦合器,以提高其方向性,同时给出相关的方法及流程。

1. 耦合组件的基本原理耦合组件是一种用于传输无线信号的器件,通常由两个互相连接的端口组成。

它的基本原理是通过电磁场的相互作用,将输入信号从一个端口传输到另一个端口。

在传统的耦合组件中,信号的传输是均匀的,没有明显的方向性。

2. 定向耦合器的基本结构和工作原理定向耦合器是一种特殊的耦合组件,它具有将信号按照一定比例分配到不同的端口的能力。

它通常由一个主端口和多个辅助端口组成。

其基本结构包括耦合器主体、耦合线圈和耦合孔,工作原理是通过耦合线圈和耦合孔之间的电磁场相互作用,实现信号的定向传输。

3. 定向耦合器的问题然而,传统的定向耦合器在实际应用中存在一些问题,其中之一是方向性不足。

由于设计限制或制造误差,定向耦合器无法实现较高的方向性,导致信号的传输存在一定的误差,影响系统的性能。

4. 提高定向耦合器方向性的方法为了解决定向耦合器方向性不足的问题,可以采取以下方法:4.1 优化设计通过优化定向耦合器的设计,可以改善其方向性。

例如,可以对耦合线圈和耦合孔的尺寸、形状进行调整,以使得电磁场的分布更加均匀,提高定向耦合器的方向性。

4.2 材料选择选择合适的材料也可以提高定向耦合器的方向性。

某些材料具有较强的电磁场传导能力,可以降低信号的传输损耗,提高定向耦合器的方向性。

4.3 精密制造精密制造是提高定向耦合器方向性的重要方法之一。

通过精细加工和严格控制制造工艺,可以降低制造误差,提高定向耦合器的方向性。

4.4 反馈控制引入反馈控制机制,可以实时调整定向耦合器的参数,使其在工作过程中动态适应信号的变化,从而提高方向性。

定向耦合器的测量方法

定向耦合器的测量方法

耦合度 10log(
输入端输入功率 ) 耦合端输出功率
方向性:理想的定向耦合器只耦合输入端的功率, 但是实际的定向耦合器总 会耦合一部分输出端的反射功率,方向性就是表示耦合端耦合反射功率的指标, 其计算方法为输出端的反射功率与耦合端输出功率的比值,公式为
耦合度 10log(
输出端反射功率 ) 耦合端输出功率
图 2 典型的网络分析仪(安捷伦 8714ES/3G)
测试步骤
耦合度的测量 1. 如图 3 所示连接好设备和仪器; 2. 将网络分析仪测试频段调节为定向耦合器的工作频段; 3. 连接好后, 网络分析仪会显示该定向耦合器在工作频段内的耦合度曲线, 可以通过移动光标查看频段内不同频率下耦合器的耦合度(dB络分析仪: 网络分析仪可直接测量有源或无源、可逆或不可逆的双口和单 口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。 自动网络分析仪能对测量结果逐点进行误差修正, 并换算出其他几十种网络参数,
如输入反射系数、 输出反射系数、 电压驻波比、 阻抗 (或导纳) 、 衰减 (或增益) 、 相移和群延时等传输参数以及隔离度和定向度等, 典型的网络分析仪如图 2 所示。
输出端口
定向耦合器
输入端口
耦合端口 输出端口 网络分析仪 输入端口
图 4 定向耦合器方向性的测量框图
输入端口 定向耦合器 耦合端口 输出端口 网络分析仪 输入端口 输出端口
图 3 定向耦合器耦合度的测量框图
方向性的测量 1. 如图 4 所示连接好设备和仪器(将网络分析仪的信号输出端连接到定向耦 合器的输出端口,模拟定向耦合器输出端的反射功率); 2. 将网络分析仪测试频段调节为定向耦合器的工作频段; 3. 连接好后, 网络分析仪会显示该定向耦合器在工作频段内的方向性曲线, 可以通过移动光标查看频段内不同频率下耦合器的方向性(dB) 。

定向耦合器

定向耦合器

定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。

主要技术指标有方向性、驻波比、耦合度、插入损耗。

基本简介定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。

定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。

但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。

定向耦合器是把两根传输线放置在足够近的位置使得一条线上的功率可以耦合到另一条线上的元件。

它的两个输出端口的信号幅度可以相等也可以不等,一种应用特别广泛的耦合器是3dB 耦合器,这种耦合器的两个输出端口输出信号的幅度是相等的。

在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe小孔耦合理论,Cohn和Levy等人也做了很多贡献。

随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。

随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。

这样就出现了各种传输线定向耦合器。

第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。

定向耦合器是一种具有方向性的功率耦合(分配)元件。

它是一种四端口元件,通常由称为直通线(主线)和耦合线(副线)的两段传输线组合而成。

直通线和耦合线之间通过一定的耦合机制(例如缝隙、孔、耦合线段等)把直通线功率的一部分(或全部)耦合到耦合线中,并且要求功率在耦合线中只传向某一输出端口,另一端口则无功率输出。

定向耦合器方向性的分析

定向耦合器方向性的分析

定向耦合器方向性的分析目前公司许多产品都用到定向耦合器,但在应用过程中都需要大量调试其方向性来满足指标要求,为了减小调试时间以及调试过程中产生的一些不稳定因素,让产品在设计时就能满足指标要求或在产品中增加一些可调器件来降低调试时间和增加产品的可靠性。

一、定向耦合器为什么会有方向性上图为一段平行耦合传输线,当传输线1-4中有交变电流i I流过时,由于2-3线与1-4线靠得很近,所以2-3线中就有耦合来的能量,这个能量可通过电场(以耦合电容表示)又通过磁耦合(以耦合电感表示)耦合过来的。

通过C m的耦合在2-3线中产生的电流i c2和i c3,同时由于i I的交变磁场作用,在2-3线上有感应电流i L,根据电磁感应定律,感应电流i L的方向与i I相反。

由上图可以看到,若有能量从端口1口输入,端口2是耦合口,端口4是输出端,端口3上有电耦合电流i c3和磁耦合电流i L,这两个电流是方向相反能量相同,相互抵消了,故端口3为隔离端,也使得定向耦合器变得有方向性了。

二、如何改善耦合器的方向性图二图三图一是一段耦合微带线,上面什么也没有,仿真的结果为图二,可以看出这时耦合器的方向性很差,就个2dB,但在这段耦合微带上覆盖一层与基片相同厚度的介质后,得到的仿真结果为图三,这时方向性有很大的改善,有20dB左右。

这个在我们实际的设计时已经应用到了,就是在主杆旁边直接用微带线来进行耦合,在调试时去改变腔深对方向性变化很明显,这是因为耦合微带的电场分别处在空气和介质中,所以它的奇模和耦模的相速不相同的,在隔离端的信号就不能相互抵消,方向就会变差,当覆盖一层介质后,电场就只在介质中传输,奇模和耦模的相速就变得相同了,方向就会得到很大的改善。

2、旋转耦合附杆,使之与传输主杆形成一个角度,这在实际应用中很多例子,这和第一种方法是同种道理,改变奇、耦模的电角度来改变它的相速,使方向性变好。

图五在图一的基础上,在隔离端加一电容后仿真的结果,可以看出。

深入讨论定向耦合器的方向性

深入讨论定向耦合器的方向性

深入讨论定向耦合器的方向性- 方向性对功率、驻波比和回波损耗测量的影响方向性在决定射频功率、电压驻波比和回波损耗测量精度方面扮演着重要的 角色。

由于方向性产生的误差可能会严重影响基于测试结果所得出的结论。

本文就方向性的问题进行了深入的探讨。

BXT™ Technologies zh@Application NoteAN-0802深入讨论定向耦合器的方向性前言:在通过式功率测量中,定向耦合器的方向性在 决定射频功率、驻波比和回波损耗测量精度方面扮 演着重要的角色。

由方向性产生的误差可能会严重 影响基于测试结果所得出的结论,本文就方向性的 问题进行了深入的探讨。

图 1 是一个用通过式功率计在线测量发射系统 的例子,表 1 则阐述了方向性对测量精度的影响。

图 1 驻波比的测量精度取决于功率计的方向性表 1 定向耦合器方向性对测量精度的影响 项目 功率计的方向性实际天线 VSWR VSWR 测量范围 VSWR 测量误差 实际发射机正向功率 正向功率测量范围 正向功率测量误差 实际天线反射功率 反射功率测量范围 反射功率测量误差指标 25dB1.50(回波损耗-14dB) 1.33 至 1.69 (回波损耗-16.9 至-11.8 dB) -0.17 至+0.19 (回波损耗-2.9 至+2.2 dB) 20.0 W 19.54 至 20.45 W -2.3% 至+2.25% W 0.8 W 0.41 至 1.31 W -48.3%至+64.1% W40dB1.50(回波损耗-14dB) 1.47 至 1.53(回波损耗-14.4 至-13.5 dB) -0.03 至+0.03(回波损耗-0.4 至+0.5 dB) 20.0 W 19.92 至 20.08 W -0.4% 至+0.4% W 0.8 W 0.72 至 0.88W -9.8%至+10.3% W表 1 表明, 方向性为 25dB 的功率计或天线监 测仪的测量误差要比方向性为 40dB 时大得多, 这 种误差将影响判断天线是否符合指标, 同时也会在 监测天线时造成误报警。

定向耦合器的基础知识解析

定向耦合器的基础知识解析

定向耦合器的基础知识解析
 定向耦合器是一种极具使用价值的无源射频器件,其可从主传输路径中提取一小部分能量,并将其导向至一个或多个耦合端口。

由于耦合端口与主传输路径之间具有高隔离度时较为有利,因此定向耦合器端口间的隔离度通常较高。

目前,主要有两种类型的定向耦合器:具有一个耦合端口和一个端接端口的标准定向耦合器;以及具有正向和反向耦合端口的双定向耦合器。

此外,还存在其他类型的双定向耦合器,根据耦合至正向或反向端口的耦合端口的种类,这些双定向耦合器被称为正向耦合器和反向耦合器。

 常见定向耦合器示意图
 需要注意的重要一点是,定向耦合器所提供的耦合量对主传输路径插入损耗的理论最小值具有直接影响。

端口的耦合量越小,插入损耗越低。

通常,耦合端口的额定功率水平低于主传输路径的额定功率水平,当主传输路径功率与耦合强度的差值超出耦合端口的功率处理能力时,则可能发生故障。

一般情况下,采用精密内部匹配端接方式的三端口定向耦合器的定向性高于采。

定向耦合器指标

定向耦合器指标

定向耦合器指标定向耦合器是一种常用的微波器件,主要用于功率的分配和组合,以及信号的测量和处理。

其性能指标对于整个系统的性能至关重要。

本文将对定向耦合器的主要性能指标进行详细介绍。

一、耦合度耦合度是定向耦合器最重要的性能指标之一,它表示耦合端口输出信号与输入信号之比。

通常用分贝(dB)来表示。

耦合度的选择取决于系统的具体需求,如需要将主信号的多少部分分流出来,以及需要将多少功率传输到负载等。

一般来说,耦合度越高,意味着更多的功率被分流出来,反之则更少的功率被分流。

在设计定向耦合器时,需要根据系统的具体要求和用途,选择合适的耦合度。

二、方向性方向性是定向耦合器的另一个重要指标,它表示定向耦合器对指定方向的信号具有较高的传递系数,而对相反方向的信号具有较低的传递系数。

方向性的大小取决于定向耦合器的设计结构和工艺水平。

一般来说,方向性越高,意味着定向耦合器的信号传递性能越好,越能有效地抑制反向信号的干扰。

因此,在某些需要防止信号反向泄漏或提高信号传输可靠性的系统中,应选择高方向性的定向耦合器。

三、隔离度隔离度表示定向耦合器的输出端口之间的信号相互隔离的程度。

理想的定向耦合器应具有完全的隔离,以避免信号在各输出端口之间的相互干扰。

然而,由于各种因素的影响,实际的定向耦合器隔离度总是存在一定的限制。

隔离度的高低取决于定向耦合器的设计、工艺和材料等因素。

在实际应用中,应根据系统的具体要求选择隔离度合适的定向耦合器,以保证系统的稳定性和可靠性。

四、带宽带宽表示定向耦合器正常工作的频率范围。

理想的定向耦合器应在较宽的频带内具有一致的传输特性和相位特性。

然而,由于各种因素的影响,实际的定向耦合器带宽总是存在一定的限制。

带宽的大小取决于定向耦合器的设计、工艺和材料等因素。

在实际应用中,应根据系统的具体要求和用途选择带宽合适的定向耦合器,以保证系统的正常工作和稳定性。

五、驻波比驻波比(VSWR)表示定向耦合器输入端的电压最大值与最小值之比。

定向耦合器

定向耦合器

1实验六 定向耦合器特性的测量及应用目的:研究定向耦合器的特性及其应用。

原理:定向耦合器是微波测量和其它微波系统中常见的微波器件,它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带等几种类型。

图1为其结构示意图。

它主要包括主线和副线两部分,彼此之间通过种种形式小孔、缝、隙等进行耦合。

因此,从主线端上“1”输入的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”),图2为本实验所用的十字定向耦合器,耦合器中端口之一终端接一内装的匹配负载。

主线副线图1(一)定向耦合器的主要特性参量有二:为了便于解释耦合度和方向性,画出了定向耦合器传输示意图(图3),图中P 1、P 2分别为主线输入、输出功率;P F 3为副线1243主线副线图3P3F1243主线副线P 1P 23RP P 1P 22中正向输出功率,P R 3为副线中反向输出功率。

(1)耦合度(或过度衰减)C 如图3(a )所示,主线输入功率P 1,与副线中正向输出功率P F 3之比,称为定向耦合的耦合度,若以分贝(db )表示则:C=10logFP P 31(db) (6.1) (2)方向性D如图3所示,副线中正向输出功率P F 3与反向输出功率P R 3之比称为定向耦合器的方向性,若以分贝表示,则:D=logRFP P 33(db) (6.2) 有时,反映定向程度的指标也用隔离度D ’来表示。

隔离度表示主线输入功率P 与副线反向输出功率之比,即D=10logRP P 31(db) (6.3) 由式子(2)D=10logR F P P 33=10log R P P31=D ’-C (6.4) 从上可知,定向耦合器的方向性等于隔离度与耦合度之差,理想的定向耦合器的方向性D →∞;也就是说,当各端均匹配端接时,若功率从主线端“1”输入,则副线仅端“3”有输出,而端“4”无输出;即端“1”与端“4”彼此隔离;端“2”与端“3”彼此隔离,实际的定向耦合器隔离端的耦合隔离的理想器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定向耦合器方向性的分析
目前公司许多产品都用到定向耦合器,但在应用过程中都需要大量调试其方向性来满足指标要求,为了减小调试时间以及调试过程中产生的一些不稳定因素,让产品在设计时就能满足指标要求或在产品中增加一些可调器件来降低调试时间和增加产品的可靠性。

一、定向耦合器为什么会有方向性
上图为一段平行耦合传输线,当传输线1-4中有交变电流i I流过时,由于2-3线与1-4线靠得很近,所以2-3线中就有耦合来的能量,这个能量可通过电场(以耦合电容表示)又通过磁耦合(以耦合电感表示)耦合过来的。

通过C m的耦合在2-3线中产生的电流i c2和i c3,同时由于i I的交变磁场作用,在2-3线上有感应电流i L,根据电磁感应定律,感应电流i L的方向与i I相反。

由上图可以看到,若有能量从端口1口输入,端口2是耦合口,端口4是输出端,端口3上有电耦合电流i c3和磁耦合电流i L,这两个电流是方向相反能量相同,相互抵消了,故端口3为隔离端,也使得定向耦合器变得有方向性了。

二、如何改善耦合器的方向性
Port1Port2 Port3Port4
图三
图一是一段耦合微带线,上面什么也没有,仿真的结果为图二,可以看出这时耦合器的方向性很差,就个2dB,但在这段耦合微带上覆盖一层与基片相同厚度的介质后,得到的仿真结果为图三,这时方向性有很大的改善,有20dB左右。

这个在我们实际的设计时已经应用到了,就是在主杆旁边直接用微带线来进行耦合,在调试时去改变腔深对方向性变化很明显,这是因为耦合微带的电场分别处在空气和介质中,所以它的奇模和耦模的相速不相同的,在隔离端的信号就不能相互抵消,方向就会变差,当覆盖一层介质后,电场就只在介质中传输,奇模和耦模的相速就变得相同了,方向就会得到很大的改善。

2、旋转耦合附杆,使之与传输主杆形成一个角度,这在实际应用中很多例子,这和第一种方法是同种道理,改变奇、耦模的电角度来改变它的相速,使方向性变好。

Port1Port2
1 Port3Port4。

相关文档
最新文档