《线性代数A》期末复习题++答案

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试试题A及解答

线性代数期末考试试题A及解答
令正交矩阵 ,则 ,上述正交矩阵T所得正交变换 即为所求-----------(12分)
3、此二次型矩阵特征值有负值,,故二次型不正定。--------------------(14分)
六、
1、证明: -------------(3分)
,故 可逆,且 ----(5分)
2、证明:因为 为正交矩阵且 , ------------(1分)
-------(4分)
,故 -----------------(5分)
六 证明题
1、若 阶矩阵 满足 ,求证 可逆,并求 。
2、设五阶正交矩阵 满足 ,求证:矩阵 的秩 。
线性代数A参考答案及评分标准
一、填空
1、负;46。2、4;2; 与 。
3、 ; 。4、 。
5、 6、 。
7、0; 。8、 ;2; 。
二、计算
1、 --(3分)=
--------------(5分)= ------------------(6分)
得到齐次线性方程组的基础解系
三、 --------(2分)
故 时, ,方程组有解---------(4分)
此时方程组的一般解为: ,得一个特解
导出组的一个基础解系, -----------------(10分)
通解为 ( , 为任意常数)…(12分)
四、 ,
得到 的特征值 ---------------(4分)
三(12 )设线性方程组 ,当 为何值时 能与对角形矩阵相似,求参数 的值。
五(14 )二次型
(1)写出二次型的矩阵 。
(2)用正交变换法将此二次型化为标准形并写出所做的正交变换 以及二次型的标准形。
(3)此二次型是否正定,说明理由。
5.四阶矩阵 的行列式 则 , , 的列向量组线性关。

2019-2020-1《线性代数》期末试卷(A)答案及评分标准

2019-2020-1《线性代数》期末试卷(A)答案及评分标准

A卷2019-2020-1《线性代数》期末试卷(A)答案及评分标准《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期 2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人注意事项:1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4. 本试卷正文共7页。

说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分)1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+ 等于【 0 】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【 2 】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【 1 】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【 -8 】.二、选择题(共5个小题,每小题3分)1. 设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【 A 】.(A) 2-; (B) 21-; (C) 1-; (D) 2.2. 矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【 A 】.(A) 210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (B)210110001⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 110120001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D) 110110001⎛⎫⎪ ⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【 A 】.(A) ||0A =; (B) ||1A =; (C) A 可逆; (D) A 满秩.4. 设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【D 】.(A) 4; (B) 8; (C) 0; (D) 1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【 B 】.(A) 2=a ; (B) 1=a ; (C) 3=a ; (D) 以上选项都不对.三、求解下列各题(共3小题,每小题7分)1. 若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k . 解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得=3+0=+2+20=323211λλλλλλk 由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k = 6. ----------7分 2. 设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得 0=+B E A又 02=122010012=+≠--E A----------2分因此 0=B因此可得 5=-a . ----------7分3. 设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为 -1,t ,3,因此A 的特征值也为 -1,t ,3 利用特征值的性质可得21132(4)3t a t a ++=-++⎧⎨-=-⎩ ----------5分 解得12a t ==,. ----------7分四、(共2小题,每小题8分)1.求向量组123410311301,,,217242140⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪ ⎪⎝⎭, 把A 进行行变换,化为行最简形, ()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2. 问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量, 即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -, ----------6分而114300000A E a -⎛⎫⎪-= ⎪ ⎪⎝⎭,因此可知0≠a . ----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解; ----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为1. ----------4分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ,正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p , ----------12分令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=. ----------14分七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1. “设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由. 解:该结论成立。

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数A期末复习题答案

线性代数A期末复习题答案

一、填空题1.11111111---x 是关于x 的一次多项式,该式中一次项的系数是21111)1(32=--+。

2. 已知四阶行列式D 中第三列元素依次为1-,2,0,1,它们的余子式依次分别为5,3,7-,4,则1502)1(433323134343333323231313-=-+--=+++=M M M M A a A a A a A a D 。

3.已知a bc d c b d a D dbc a a b dc=,则14243444A A A A +++=11011a bc c bd dbc a bd =。

4.已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是ns ,阶矩阵。

5.已知⎪⎪⎪⎭⎫ ⎝⎛=40060852b A 是奇异阵,则=b 0。

6.设方阵A 满足0322=--E A A ,则=-1A )2(31E A -。

7.设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---31310032310000520021。

8. ⎪⎪⎭⎫ ⎝⎛-=1011A ,k 为自然数,则=kA ⎪⎪⎭⎫⎝⎛-101k 。

9.若A 为n 阶方阵,且E AA T =,则=A 11-或。

10. 若n 阶方阵A 的秩小于n ,则A 的行列式等于零。

11. 设A 为3阶方阵,且3=A ,则*1A A -+=36443111==+---A A A 。

12.已知⎪⎪⎪⎭⎫ ⎝⎛=200020002A ,满足B A AB +=,则=B A =⎪⎪⎪⎭⎫⎝⎛200020002。

13. 设A 为n 阶方阵,且2=A ,则=A 212+n ,=*A 12-n 。

14. 若A 为n 阶方阵,且E AA T =,1-=A 则=+E A 0。

15. 设A 为5阶方阵,且21=A ,试求=--1*)3(A A A A A 3231)(311*-=-=--。

线性代数期末试题及参考答案

线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,<)不是初等矩阵。

<A )001010100 (B>100000010 (C>10002001(D>100012012.设向量组123,,线性无关,则下列向量组中线性无关的是<)。

<A )122331,,<B )1231,,<C )1212,,23<D)2323,,23.设A 为n 阶方阵,且250AA E。

则1(2)A E <)(A> A E (B>EA (C>1()3A E (D>1()3A E 4.设A 为n m 矩阵,则有<)。

<A )若n m,则b Ax 有无穷多解;<B )若n m,则0Ax 有非零解,且基础解系含有m n个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax 有唯一解;<D )若A 有n 阶子式不为零,则0Ax仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似<B )AB ,但|A-B|=0<C )A=B<D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。

每小题2分,共10分>1.A 是n 阶方阵,R ,则有A A。

< )2.A ,B 是同阶方阵,且0AB ,则111)(A B AB 。

< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

( >4.若B A,均为n 阶方阵,则当B A 时,B A,一定不相似。

( >5.n 维向量组4321,,,线性相关,则321,,也线性相关。

< )三、填空题<每小题4分,共20分)1.0121n n。

2.A 为3阶矩阵,且满足A3,则1A=______,*3A。

线性代数A_复习题2011-1

线性代数A_复习题2011-1

4.0000000004321a a a a =( )(A) 4321a a a a (B ) -4321a a a a (C) 24321a a a a (D)-24321a a a a 6.设A 为n 阶行列式,则kA =( ) (A)A k (B)Ak⋅ (C ) A kn(D) A kn⋅7.设A ,B 均为n (n>2) 阶行列式,则( )(A)B A B A +=+ (B) B A B A -=-(C ) B A AB ⋅= (D)B A OBA O ⋅=9.已知333231232221131211a a a a a a a a a =3,则232333132222321221123111352352352a a a a a a a a a a a a ---=( ) (A) 18 (B ) -18 (C) -9 (D)2710.41332211000000a b a b b a b a =( )(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C) (21a a -21b b )(43a a -43b b ) (D ) (41a a -41b b )(32a a -32b b )11.记行列式347534453542333322212223212---------------x x x xx x x x x x x x x x x x 为f(x),则方程f(x)=0根的个数为(A) 1 (B ) 2 (C) 3 (D)4 12.设A 为n 阶方阵,则A =0的必要条件是 (A) A 的两行元素对应成比例(B ) A 中必有一行为其余行的线性组合 (C) A 中有一行元素全为零(D) A 中任一行为其余行的线性组合13.是A 三阶矩阵,A =2,A 的伴随矩阵为*A ,则*A 2=( )(A) 4 (B) 8 (C) 16 (D ) 3215.如果D=333231232221131211a a a a a a a a a =M ≠0, 2322213332311312111222222222a a a a a a a a a D =,那么1D =( ) (A) 2M (B)-2M (C) 8M (D ) -8M16. 如果D=333231232221131211a a a a a a a a a =1,1D = 333231312322212113121111324324324a a a a a a a a a a a a ---,那么1D =( ) (A) 8 (B )-12 (C) 24 (D) -2417.已知11111321--x 是关于x 的一次多项式,该式中x 的系数为( ) (A) -1 (B) 2 (C) 3 (D ) 119.已知a ,b 为整数,且满足081100000=-a bb a,则( ) (A) a=1,b=0 (B )a=0,b=0 (C)a=0,b=1 (D) a=1,b=1 20.设A 为三阶矩阵,A =a, 则其伴随矩阵*A 的行列式*A=( )(A) a (B ) 2a (C) 3a (D) 4a 21.设A ,B ,C 为n 阶方阵,且ABC=I ,则( )(A) ACB=I (B)CBA=I (C) BAC=I (D ) BCA=I 22.设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则( ) (A )A A =* (B )1-*=n AA (C )nA A=*(D )1-*=AA23.设A ,B 均为n ×n 阶矩阵,则必有( )(A )B A B A +=+ (B )AB=BA(C )BA AB = (D )111)(---+=+B A B A24.设A ,B 为n 阶方阵,且AB= O ,则必有( )(A )若r(A)=n, 则B=O (B )若A ≠O, 则B=O(C )或者A= O , 或者B=O (D )O B A =+25.设A 是n ×m 阶矩阵,C 是n 阶可逆矩阵,r(A)=r ,B=AC ,r(B)= 1r ,则( ) (A ) r >1r (B ) r<1r(C ) r =1r (D )1r 和r 的关系依而定 26.若A 为n 阶可逆矩阵,则下列各式正确的是( ) (A )112)2(--=A A (B )O AA ≠*(C )AAA 11)(--*=(D )T T T A A ])[(])[(111---=27.设A ,B 均为n 阶非零矩阵,且AB =O,则A 和B 的秩( ) (A) 必有一个等于零 (B)一个等于n ,一个小于n (C) 都等于n (D ) 都小于n28.设n 阶方阵A 经初等变化后所得方阵记为B ,则( ) (A) B A = (B) B A ≠(C) B A ⋅>0 (D ) ,若0=A 则0=B 29.A ,B 均为n 阶矩阵,下列各式中成立的为( ) (A) 2222)(B AB A B A ++=+ (B) T T T B A AB =)((C) O B O A O AB ===或则, (D ) ,若0=+AB A 则00=+=B I A ,或30.设A ,B ,B A +,11--+B A 均为n 阶可逆矩阵,则111)(---+BA等于(A )11--+B A (B )B A + (C )B B A A 1)(-+ (D )1)(-+B A31.设n 元齐次线性方程组AX=0的系数矩阵A 的秩为r ,则AX=0有非零解的充分必要条件是( )(A) r=n (B ) r<n (C) r ≥n (D) r>n 32.设A 是n 阶可逆矩阵,*A 是A 伴随矩阵,则( )(A ) 1-*=n AA (B) A A =* (C) nA A =* (D) 1-*=A A33.设n 阶矩阵A 非奇异(n ≥2),*A 是A 伴随矩阵,则( ) (A ) ()A A A n 2-**= (B) ()A A A n 1+**= (C) ()A AAn 1-**= (D) ()A AAn 2+**=34.设n 维向量⎪⎭⎫⎝⎛=21,0,0,21 α, 矩阵A=I -αα',B=I+2αα',其中I 为n 阶单位矩阵,则(A )0 (B )-I (C )I (D )I+αα'35.设A ,B 为同阶可逆矩阵,则 (A) AB=BA(B) 存在可逆矩阵P 使得B AP P =-1 (C) 存在可逆矩阵C 使得B AC C =' (D) 存在可逆矩阵P 和Q 使得B PAQ = 36.下列命题中不正确的是( ) (A) 初等矩阵的逆也是初等矩阵 (B ) 初等矩阵的和也是初等矩阵 (C) 初等矩阵都是可逆的 (D) 初等矩阵的转置仍初等矩阵38.设A 是任一阶方阵,*A 是A 伴随矩阵,又k 为常数,且k ≠0,±1,则必有()*kA =(A) *A k (B ) *-A kn 1(C) *A k n (D) *-A k139.设A ,B ,C 为n 阶方阵,若AB=BA ,AC=CA ,则ABC 等于(A ) BAC (B )CBA (C )BCA (D )CAB40.622211211=a a a a 若,则12020221221112--a a a a 的值为( ) (A) -12 (B )12 (C) 18 (D) 0 41.设A ,B 都是n 阶矩阵,且AB =O,则下列一定成立的为( ) (A )A= O , 或者B=O (B )A ,B 都不可逆 (C )A ,B 中至少有一个不可逆 (D )A+B=O42.设A ,B 均为n 阶矩阵,且满足等式AB =O,则必有( ) (A ),0=A 或0=B (B )A= O , 或B=O(C )A+B=O (D )O B A =+ 44.设A ,B 均为n 阶可逆矩阵,则AB 的伴随矩阵*)(AB = (A) **B A (B) 11--B A AB(C) 11--A B (D ) **A B46.设A ,B 均为n 阶矩阵,且22))((B A B A B A -=-+,则必有( ) (A )A= B (B )A=I (C )AB=BA (D )B=I 47.设A 为n 阶矩阵,且0≠=a A ,*A 是A 的伴随矩阵,则*A=( )(A )1-n a (B )1+n a (C )n a (D )a48.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛=1302α,⎪⎪⎪⎭⎫ ⎝⎛=7033α与向量⎪⎪⎪⎭⎫ ⎝⎛-=2211β,⎪⎪⎪⎭⎫ ⎝⎛=5122β,⎪⎪⎪⎭⎫ ⎝⎛=333x β等秩,则x=( )(A) -1 (B) -2 (C) 3 (D ) 1 49.设有向量组()4,2,1,11-=α,()2,1,3,02=α,()14,7,0,33=α,()0,2,2,14-=α,()10,5,1,25=α,则该向量组的极大线性无关组是( )(A) ;321,,ααα (B ) ;421,,ααα (C) ;521,,ααα (D) ;5421,,,αααα 50.已知向量组4321,,,αααα线性无关,则向量组4312ααα++,42αα-,43αα+,2αα+,3212ααα++的秩是(A )1 (B )2 (C )3 (D )4 51.设A ,B 为n 阶方阵,A ≠0,AB=0则( )(A) B=0 (B ) 00==A B 或 (C) BA=0 (D) ()222B A B A +=-52.A ,B 为n 阶方阵,则( ) (A) A 或B 可逆,必有AB 可逆 (B ) A 或B 不可逆,必有AB 不可逆 (C) A 且B 可逆,必有A+B 可逆(D) A 且B 不可逆,必有A+B 不可逆53.A 为n 阶方阵,则下列矩阵中是对称矩阵的有( ) (A)A A '- (B)()阶矩阵为任意n C C CA ' (C )A A ' (D)A A '+254.设A 为三阶方阵,且2=A ,则*-+A A 14=( )(A) 214(B) 12 (C)6 (D ) 10855.设A ,B 为n 阶方阵,且()E AB =2,则下列各式中可能不成立的是( ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2)( 56.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 57.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 58.设A 为n ×n 阶矩阵,如果r(A)<n , 则(A) A 的任意一个行(列)向量都是其余行(列)向量的线性组合(B) A 的各行向量中至少有一个为零向量(C )A 的行(列)向量组中必有一个行(列)向量是其余各行(列)向量的线性组合 (D)A 的行(列)向量组中必有两个行(列)向量对应元素成比例 59.设向量组s ααα,,2,1 线性无关的充分必要条件是(A) s ααα,,2,1 均不为零向量(B) s ααα,,2,1 任意两个向量的对应分量不成比例 (C) s ααα,,2,1 中有一个部分向量组线性无关(D ) s ααα,,2,1 中任意一个向量都不能由其余S-1个向量线性表示60.向量组的秩就是向量组的 (A) 极大无关组中的向量 (B) 线性无关组中的向量 (C ) 极大无关组中的向量的个数 (D) 线性无关组中的向量的个数 61.下列说法不正确的是( ) (A ) 如果r 个向量r ααα,,2,1 线性无关,则加入k 个向量k βββ,,2,1 后,仍然线性无关 (B) 如果r 个向量r ααα,,2,1 线性无关,则在每个向量中增加k 个分量后所得向量组仍然线性无关 (C)如果r 个向量r ααα,,2,1 线性相关,则加入k 个向量后,仍然线性相关 (D)如果r 个向量r ααα,,2,1 线性相关,则在每个向量中去掉k 个分量后所得向量组仍然线性相关62.设n 阶方阵A 的秩r<n ,则在A 的n 个行向量中 (A ) 必有r 个行向量线性无关(B) 任意r 个行向量均可构成极大无关组 (C) 任意r 个行向量均线性无关(D) 任一行向量均可由其他r 个行向量线性表示 63.设方阵A 的行列式0=A ,则A 中 (A) 必有一行(列)元素为零 (B) 必有两行(列)成比例(C ) 必有一行向量是其余行(列)向量的线性组合 (D) 任一行向量是其余行(列)向量的线性组合 64.设矩阵A=),,,,(54321ααααα经过初等行变换后变为⎪⎪⎪⎭⎫⎝⎛-=311012110231111A ,则A 的秩为3,i α为A 的第i 列向量, 且( )成立 (A ) s αααα++=214 (B) s αααα++=21423 (C) s αααα++-=2142 (D)列向量组线性无关 65.设n 元齐次线性方程组的一个基础解系为η1 ,η2 ,η3 ,η4则()也是该齐次线性方程组的基础解系 (A )1443,3221,,ηηηηηηηη----(B )1443,3221,,ηηηηηηηη++++(C )4321321,211,,ηηηηηηηηηη++++++(D )1443,3221,,ηηηηηηηη--++66.设A 是m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是( ) (A )A 的列向量线性无关 (B)A 的列向量线性相关 (C)A 的行向量线性无关 (D)A 的行向量线性相关67.n 元线性方程组AX=b ,r (A ,b )<n ,那么方程AX=b(A)无穷多组解 (B)有唯一解 (C)无解 (D )不确定 68.设向量组321,,ααα线性无关,则下列向量组中,线性无关的是(A) 133221,,αααααα-++(B) 3213221,,ααααααα++++(C ) 1332213,32,2αααααα+++(D) 321321321553,222,ααααααααα-++-++69.向量组s ααα,,,21 线性无关的充分条件是 (A)s ααα,,,21 均不为零向量(B)s ααα,,,21 中任意两个向量的分量均不成比例(C )s ααα,,,21 中任意一向量均不能由其余s-1个向量线性表示 (D)s ααα,,,21 中有一部分向量线性无关70.设m ααα,,,21 均为n 维向量, 那么下列结论正确的是( ) (A) 若02211=+++m m k k k ααα , 则m ααα,,,21 线性相关(B )若对任一组不全为零的数m k k k ,,,21 都有02211≠+++m m k k k ααα ,则m ααα,,,21 线性无关(C)若m ααα,,,21 线性相关则对任一组不全为零的数m k k k ,,,21 都有02211=+++m m k k k ααα(D) 若000021=+++m ααα , 则m ααα,,,21 线性无关 71.已知向量组4321,,,αααα线性无关则向量组 (A) 14433221,,,αααααααα++++线性无关 (B) 14433221,,,αααααααα----线性无关 (C) 14433221,,,αααααααα-+++线性无关 (D) 14433221,,,αααααααα--++线性无关72.当向量组m ααα,,,21 线性相关时, 使等式02211=+++m m k k k ααα 成立的常数m k k k ,,,21 为( )(A)任意一组常数(B)任意一组不全为零的常数(C )某些特定的不全为零的常数(D)唯一一组不全为零的常数 73.下列命题正确的是( )(A) 若向量组线性相关, 则其任意一部分向量也线性相关 (B) 线性相关的向量组中必有零向量(C) 向量组中部分向量线性无关, 则整个向量组必线性无关 (D ) 向量组中部分向量线性相关, 则整个向量组必线性相关74.如果向量b 可由向量组s ααα,,,21 线性表示, 则下列结论中哪个正确 (A )存在一组数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立(B)存在一组不全为零的数使s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (C)存在一组全为零的数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (D)对b 的线性表达式唯一75.设向量组s ααα,,,21 的秩为r ,则 (A) 必定r<s(B) 向量组中任意小于r 个向量部分组无关 (C) 向量组中任意r 个向量线性无关 (D ) 向量组任意r+1个向量线性相关 76.设向量组Ⅰ: ⎪⎪⎪⎭⎫⎝⎛=3121111a a a α,⎪⎪⎪⎭⎫ ⎝⎛=3222122a a a α,⎪⎪⎪⎭⎫⎝⎛=3323133a a a α 向量组Ⅱ: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=413121111a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=423222122a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=433323133a aa a β, 则( ) (A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关77.设向量组Ⅰ: ()1111,,c b a =α,()2222,,c b a =α,()3333,,c b a =α向量组Ⅱ:()11111,,,d c b a =β,()22222,,,d c b a =β,()33333,,,d c b a =β, 则( )(A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关 78.若s ααα,,,21 为n 维向量组,且秩(s ααα,,,21 )=r, 则 (A) 任意r 个向量线性无关 (B ) 任意r+1个向量线性相关(C) 该向量组存在唯一极大无关组(D) 该向量组在s>r 时, 由若干个极大无关组79.设t ααα,,,21 和s βββ,,,21 为两个n 维向量组, 且秩(t ααα,,,21 )=秩(s βββ,,,21 )=r, 则 (A)两向量组等价, 也即可相互线性表出 (B)秩(t ααα,,,21 ,s βββ,,,21 )=r(C )当t ααα,,,21 被s βββ,,,21 线性表出时,两向量组等价 (D)当s=t 时,两向量组等价80.设向量s αααα+++= 21(s>1), 而s s ααβααβααβ-=-=-=,,,221 则( )(A )秩(s ααα,,,21 )=秩(s βββ,,,21 ) (B)秩(s ααα,,,21 )>秩(s βββ,,,21 ) (C)秩(s ααα,,,21 )<秩(s βββ,,,21 )(D)不能确定秩(s ααα,,,21 )与秩(s βββ,,,21 )间的关系 81.向量组s ααα,,,21 线性无关的充分条件是 (A) s ααα,,,21 均为非零向量(B) s ααα,,,21 中任意两个向量的分量不成比例(C ) s ααα,,,21 中任意一个向量不能被其余向量线性表示 (D) s ααα,,,21 中有一个部分组线性无关 82.设A 为n 阶方阵, 且r(A)=r<n, 则中 (A )必有r 个行向量线性无关 (B)任意r 个行向量线性无关 (C)任意r 个行向量构成极大无关组(D)任意一个行向量都能被其他r 个行向量线性表示 83.A 是m ×n 矩阵, r(A)=r 则A 中必( )(A)没有等于零的r-1阶子式至少有一个r 阶子式不为零 (B )有不等于零的r 阶子式所有r+1阶子式全为零 (C)有等于零的r 阶子式没有不等于零的r+1阶子式 (D)任何r 阶子式都不等于零任何r+1阶子式都等于零 84.设s ααα,,,21 和t βββ,,,21 均为nR 中向量,且秩(s ααα,,,21 )=秩(t βββ,,,21 )=r ,则( ) (A)两个向量组相等价(B)秩(s ααα,,,21 ,t βββ,,,21 )=r(C )当s ααα,,,21 能被t βββ,,,21 线性表示时两向量组等价 (D)当s=t 时两向量组等价 85.能表成向量()1,0,0,01=α,()1,1,1,02=α,()1,1,1,13=α的线性组合的向量是( ) (A) ()1,1,0,0 (B )()0,1,1,2 (C)()1,0,1,3,2- (D)()0,0,0,0,86.已知()3,2,11=α, ()2,1,32-=α,()x ,3,23=α 则x=( )时321,,ααα线性相关。

线性代数复习题部分参考答案

线性代数复习题部分参考答案

线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。

线性代数复习题含答案

线性代数复习题含答案

(C )a +a ,a +a ,a +a (D )a −a ,a −a ,a −a
1 2 2 3 3 1 1 2 2 3 3 1
分析:(A )含有0 的向量组一定线性相关,0 +0a2 +0a3 0 ;
分析:∵A 的特征值是 1,2,−3 .
∴ A −E 0 , A −2E 0 , A +3E 0 .
∴ (A )A −E ,(D )A −2E ,(C )A +3E 不可逆.
二. 填空题
1. 已知a31a21a13a5k a44 是 5 阶行列式中的一项且带正号,则i 5 ,k 2 .
⎪ 21 1 22 2 2n n 2


n n−1 n−2 2 1 n n−1 n−2 2 1
共交换了n −2 次;……;r 与r 交换,共交换了 1 次.
2 1
( )
(A )D D (B )D =−D (C )D =−1 2 D (D )D =−1 D
(C )一定无解 (D )不能确定是否有解
分析:系数行列式D 0 =⇒R A <n ,方程组无解或无穷多解
( )
( ) ( )
) 1 ( ) 1
⎛a11 a12 a13 ⎞
2 1 2 1 2 ( ) 1 2 ( ) 1
分析:r 依次与r ,r ,,r ,r 交换,共交换了n −1次(r 移到第 1 行);r 依次与r ,,r ,r 交换,
1 2 3
----------------------- Page 2-----------------------
(A )0,a ,a (B )a ,2a ,a

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

线性代数A期末练习题五参考答案

线性代数A期末练习题五参考答案
13
4 3 =0 4
2、设 3 阶矩阵 A 的特征值为 1, −1,1 ,则行列式 A3 + 2 A − E = .
分析:记 f ( x) = x3 + 2x − 1,所以 f ( A) = A3 + 2 A − E ,由于 A 的特征值为 1, −1,1 ,
所以
f ( A) = A3 + 2A − E 的特征值分别为 f (1) =2, f (−1) =−4, f (1) =2 。故
1 1 1 1 1 1
(α1
,α1
+
α
2
,α1
+
α2
+
α3
)
= (α1
,α2
,α3
)
0
1
1


0
1
1 是可逆矩阵
0 0 1 0 0 1
所以 R (α1 ,α1 + α2 ,α1 += α2 + α3 ) R (α= 1 ,α2 ,α3 ) 3 ,且 α1 ,α2 ,α3 与
α1 ,α1 + α2 ,α1 + α2 + α3 等价,从而 α1 ,α1 + α2 ,α1 + α2 + α3 也是一组基础解系。
−3 2 0
0
0 =
1 4
−21
−54
−27
9 21 12
−3 2
3
6
2
−1
−1
1
2
五、设向量组 α1
=
1 4

α2
=
1

−6
α3
=
−2 2
, α4

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2.(6 分)设 n 阶方阵 A 满足 A2 + 9 A + 7 E = 0, ,求证 A − 2 E 可逆且求其逆.
⎛ 0 1 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 −4 3 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3、 (8 分)解矩阵方程 ⎜ 1 0 0 ⎟ X ⎜ 0 0 1 ⎟ = ⎜ 2 0 −1 ⎟ . ⎜ 0 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 1 −2 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
浙江科技学院 2009-2010 学年第一学期线性代数A考试试卷A卷 一、填空题(每小题 4 分,共 20 分)
1. 已知 4 阶行列式 D 的第二行元素分别为 1、2、3、4,与它们对应的余子式依次 为 4、 −3 、2、 −1 ,则 D =__________ . 2. 设 A 是三阶方阵, A* 是其伴随矩阵, | A |=
第 3 页
⎛1 0 0 ⎞ ⎛ 1 2 1⎞ ⎜ ⎟ ⎟ −1 5.(8 分)解: A= (α 1 , α 2 , α 3 )= ⎜ 1 2 3 ⎟ , B= ( β1 , β 2 , β 3 )= ⎜ ⎜- 1 1 3 ⎟, P = A B , ⎜1 3 4 ⎟ ⎜ 0 1 - 1⎟ ⎝ ⎠ ⎝ ⎠ 2 1 ⎞ ⎛ 1 ⎜ ⎟ 由 ( A, B ) ⎯⎯ →( E , A B ), 求得P = A B = ⎜ 5 1 −14 ⎟ ⎜ −4 −1 10 ⎟ ⎝ ⎠
第 4 页
⎛ 1 0 5 ⎜ ⎜ 令 P = ( p1 , p2 , p3 ) = ⎜ −2 0 5 ⎜ 1 ⎜ 0 ⎝ 2 ⎞ 5⎟ 1 ⎟ ,则 P 为正交矩阵, 5⎟ ⎟ 0 ⎟ ⎠
从而 x = Py 为正交变换,使 f = − y12 + 2 y2 2 + 4 y32 四、证明题(6 分) 证:设 k1α1 + k 2α 2 + k3α 3 + k 4 (α 5 − α 4 ) = 0, 由 R(I)=R(II)=3, 得 α 4 可由 α 1 ,α 2 ,α 3 惟一线性表示, 设为 α 4 = l1α1 + l2α 2 + l3α 3 , 代入得 (k1 − l1 k 4 )α 1 + (k 2 − l 2 k 4 )α 2 + (k 3 − l3 k 4 )α 3 + k 4α 5 = 0, 因为 α1 , α 2 , α 3 , α 5 线性无关, 所以 k1 − l1 k 4 = k 2 − l 2 k 4 = k 3 − l 3 k 4 = k 4 = 0, 从而 k1 = k 2 = k 3 = k 4 = 0 ,得证。

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷 (综合卷)一、填空与选择题(本题满分30分,每空3分)1. 如果矩阵1232636A x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭正定,则x 的取值范围是( 9x > ).2. 设3阶方阵11133112k -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,若存在3阶非零方阵B ,使得=0AB ,则k =( 3- ),方阵B 的秩()R =B ( 1 ),=B ( 0 ).3. 行列式10010010a bab a b ab a b aba b++=++( 432234a a b a b ab b ++++ ).4. 已知线性方程组()12312312321232320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩无解,则=a ( -1 ).5. 设3阶方阵A 相似于方阵B ,若A 有特征值1,1,2,-,则+=B E ( -4 ).6. 已知123,,ααα线性相关,而234,,ααα线性无关,则1234,,,αααα中 (4α )不能用另外3个向量线性表示.7. 如果123,,ξξξ是向量组A 的极大无关组,则:( A )也是向量组A 的极大无关组. (A )122331,,ξξξξξξ+++ (B )1223321,,2ξξξξξξξ++++ (C )1213321,,23ξξξξξξξ++++ (D )1323321,,32ξξξξξξξ++++ 8. 123,,,αααβ线性无关,而123,,,αααγ线性相关,则( D ).(A) 123,,,αααβγ+c 线性相关. (B) 123,,,αααβγ+c 线性无关. (C) 123,,,αααβγ+c 线性相关. (D)123,,,αααβγ+c 线性无关.二、 (本题满分10分) 已知矩阵430210001⎛⎫⎪= ⎪ ⎪-⎝⎭A ,3阶方阵B 满足()1*--=-B E A E ,求1-B . 解:()()()()1*---=--B E B E B E A E ,()()**---=B A E E A E E ,()**-=B A E A ,()**-=B A A EA A A ,()-=B A E A A E ,又2=A ,于是()22-=B E A E ,()122-=BE A E ,从而 ()131021112102223002-⎛⎫-- ⎪⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭B E A E A =。

线性代数A及答案

线性代数A及答案

2005学年第2学期线性代数期末考试试卷( A 卷 )一. 填空题 (本题共有10个小题, 每小题3分)1. 设305021311121A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则矩阵A 的秩()r A =__________. 2. 设A 为3阶方阵,行列式2A =,则3A =________.3. 设矩阵20003101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与400020002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,则x =_________. 4. 设A 是n 阶方阵且240A A E +-=, 则()1A E --=_________.5.()222,,2332f x y z x y z ayz =+++是正定二次型,则a 的取值范围是______.6. 若向量()1,2,0与(),,0x y 线性无关,则x 与y 的关系应为__________.7. 向量[]1,4,0,2T∂=与[]2,2,1,3Tβ=-的距离和内积分别为_________和___________.8. 设10246311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为3阶非零矩阵,且0AB =,则a =___________.9. 设0是矩阵10102010A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的特征值,则a =___________. 10. 在MA TLAB 软件中,det(A ) 表示求__________.二. 选择题(本题共有5个小题, 每个小题都给出代号 (A), (B), (C), (D) 的四个结论, 其中只有一个结论是正确的。

每小题3分。

)1. 设A 是n 阶方阵,则下列4个式子中表明A 是正交矩阵的式子为( )(A) 1AA E -=(B) AA E = (C) 1TA A -=(D) 1A =±2. 已知,A B ,C 为n 阶方阵,则下列性质不正确的是( )(A) AB BA = (B) ()()AB C A BC =(C)()A B C AC BC +=+(D) ()C A B CA CB +=+3. 已知方程组Ax b =对应的齐次方程组为0Ax =,则下列命题正确的是( )(A) 若0Ax =只有零解,则Ax b =一定有唯一解。

线性代数-期末测试题及其答案

线性代数-期末测试题及其答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.11111111---x 是关于x 的一次多项式,该式中一次项的系数是21111)1(32=--+。

2. 已知四阶行列式D 中第三列元素依次为1-,2,0,1,它们的余子式依次分别为5,3,7-,4,则1502)1(433323134343333323231313-=-+--=+++=M M M M A a A a A a A a D 。

3. 已知a b c dcb d aD d b c aa b d c=,则14243444A A A A +++=11011a b c c b d d bc a bd =。

4. 已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是ns ,阶矩阵。

5. 已知⎪⎪⎪⎭⎫⎝⎛=40060852b A 是奇异阵,则=b 0。

6. 设方阵A 满足0322=--E A A ,则=-1A)2(31E A -。

7. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---31310032310000520021。

8.⎪⎪⎭⎫ ⎝⎛-=1011A ,k 为自然数,则=kA ⎪⎪⎭⎫⎝⎛-101k 。

9. 若A 为n 阶方阵,且E AA T=,则=A 11-或。

10. 若n 阶方阵A 的秩小于n ,则A 的行列式等于零。

11. 设A 为3阶方阵,且3=A ,则*1A A -+=36443111==+---A A A 。

12. 已知⎪⎪⎪⎭⎫ ⎝⎛=200020002A ,满足B A AB +=,则=B A =⎪⎪⎪⎭⎫⎝⎛200020002。

13. 设A 为n 阶方阵,且2=A ,则=A 212+n ,=*A 12-n 。

14. 若A 为n 阶方阵,且E AA T=,1-=A 则=+E A 0。

15. 设A 为5阶方阵,且21=A ,试求=--1*)3(A A A A A 3231)(311*-=-=--。

16. 已知矩阵⎪⎪⎪⎭⎫⎝⎛=054032100A ,则()r A =3。

17. 设向量组T )1,2,1,1(1=α,T )2,0,0,1(2=α,T k ),8,4,1(3---=α线性相关,则参数k =2。

18. 设()nm ija A ⨯=,若n m <,则A 的列向量组线性相关。

19. 设A 为n m ⨯矩阵,非齐次线性方程组b AX =有解的充分必要条件是)()()(B r b A r A r == 。

20. 线性方程组0321=++x x x 的一个基础解系是⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=101,01121ξξ。

21. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=5364425313421111A ,则齐次线性方程组0=AX 的基础解系包含的向量个数为1)(=-A r n 。

22. 设A 是秩为r 的n m ⨯阶矩阵,则齐次线性方程组0=AX 的任一基础解系所含解向量的个数均为r n -。

二、计算题1. 计算行列式 (1)1333313333133331=D ; (2)1001247313226184--;(3)ccb b a a ------1100110011001; (4)n (222)...............2 (32)22 (222)2 (221)。

解:(1)802000020000201111101333313333131111101333313333131010101013333133331333311134,3,24,3,2-=---====-=+=r r i r r i i i D 解:(2)45292275510812922035250108112357410816123157420001481622313742100132311434-==----==-=----+r r r r c c解:(3)cc b c c b b ccb b ac c b b a a r r r r --=----=----=------++11010011101101110011001001110011001100112121111=--=cc解:(4)n...222 (2) (32)22 (22)22 (221))!2(2200001222200012,,4,3,1--=--=-=n n r r ni i2. 设A,B 均为n 阶矩阵,3||2||-==B ,A ,求|2|1-B A T 。

解:111231122|2|+--⋅-=⋅=⋅=n n T n TB A B A BA 3. 设A 为3阶方阵,31=A ,求行列式1*)2(3--A A 的值,其中*A 为A 的伴随矩阵。

解:83827)23(23213)2(313*3*1*1*====-=----A A A A A A A4. 已知()TA 321=,TB ⎪⎭⎫ ⎝⎛=31211,T AB C =,求3C ,nC解:TAB C = ,T T T T T T B A B A B A AB AB AB C ))(())()((3==∴332131211=⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=A B T ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==12333212312119312113219323TAB C 个n TT T n AB AB AB C )())((=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛===---123332123121133])())([(111n T n T n T T T AB B A B A B A B A 个 5. 设n 阶方阵A 和B 满足条件E AB A =-2,且已知⎪⎪⎪⎭⎫ ⎝⎛--=100110111A ,求矩阵B 。

解:E AB A =-2⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=-=⇒-0000001201001102111001101111A A B 6. 设⎪⎪⎪⎭⎫⎝⎛-=101011324A ,且有关系式X A AX 2+=,求矩阵X 。

解:XA AX 2+=A X E A =-⇒)2(A E A X 1)2(--=构造223423100346(2)110110~~010236101101001247A E A ⎛⎫⎛⎫⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ ⎪⎪⎪⎭⎫ ⎝⎛---=∴742632643X7. 已知⎪⎪⎪⎭⎫ ⎝⎛---=231043210A ,⎪⎪⎪⎭⎫⎝⎛----=251041214B ,求X ,Y 使⎩⎨⎧=-=+B Y X A Y X 3。

解:⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=+=12000110148000440441)(41B A X , ⎪⎪⎪⎭⎫ ⎝⎛----=-=111042111X A Y8. 已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4553251101413223211a A 的秩是3,求a 的值。

解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=02000231000421051101~~3211455324132251101~4553251101413223211aa a A 所以,当2=a 时,3)(=A r 。

9. 设1234012300120001A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,求1A -。

解:()⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=10001000110011000110111000111111~10001000010021000010321000014321E A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----100010002100010012100010********~10001000210001001110011010110111~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10001000210001001210001001210001~,所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-10002100121001211A 10. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111t α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=1112t α,试确定t 的范围,使1α,2α线性无关。

解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00001011~00101011~001111~111111),(21t t t t t t t A αα,当01≠-t ,即1≠t 时, 2)(=A r ,从而1α,2α线性无关。

11. 判别向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12011α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=10212α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=03123α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41524α的线性相关性,求它的秩和它的一个最大线性无关组,并把其余向量用这个最大线性无关组表示。

解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=4011130251202211A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----0000220051202211~2200512051202211~ 3)(=A r ,3),,,(4321=ααααr ,所以4321,,,αααα线性相关,321,,ααα为一最大无关组。

继续化行阶梯形为最简形⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000110030101001~000110060204011~0000110051202211~000022005120221132143αααα-+=∴12. 讨论对于b 的不同取值,向量组T )1,4,3,1(1--=α,T b ),5,4,1(2--=α,T)3,3,1,2(3-=α,T )0,3,2,1(4--=α的秩,并求出对应该值的一个最大线性无关组。

解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------==1510151015101211~031335421431211),,,(4321b b A αααα⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----00002)2(50015101211~2)2(500000015101211~b b b b ∴ 当2≠b 时,3)(=A r ,最大无关组:0A 321,,ααα;当2=b 时,2)(=A r , 而最大无关组:0A '21,αα。

13. 已知向量组1α,2α,3α线性无关,向量组211ααβk -=,322ααβ+=,133ααβk +=线性相关,求k 值。

解: 考虑0332211=++βββx x x0)()()(332221131=+++-++⇒αααx x x kx kx x ,由向量组1α,2α,3α线性无关⎪⎩⎪⎨⎧=+=+-=+⇒000322131x x x kx kx x ,而321,,βββ线性相关⇔线性方程组有非零解01100101=-⇔k k012=-k 1±=⇒k14. 求齐次线性方程组12341234123400220x x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪--+=⎩的基础解系及通解。

相关文档
最新文档