黄冈市黄梅县2017-2018学年七年级下期末考试数学试题(有答案)

合集下载

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·合肥期中) 下列四个选项中,正确是()A .B . 2﹣3=﹣6C .D . (﹣5)4÷(﹣5)2=﹣522. (2分)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A . 130°B . 110°C . 70°D . 20°3. (2分) (2017七下·海安期中) 在平面直角坐标系中,点(-1,m2+1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)以方程组的解为坐标的点(x,y)位于平面直角坐标系中的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2017七下·岳池期末) 若,则下列不等式错误的是()A .B .C .D .6. (2分)下列调查中,比较适合用全面调查方式的是()A . 了解某班同学立定跳远的情况B . 了解某种品牌奶粉中是否含三聚氰胺C . 了解一批炮弹的杀伤半径D . 了解全国青少年喜欢的电视节目7. (2分)在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A .B .C .D .8. (2分)用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。

上述四个方法中,正确的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分) (2017八上·三明期末) 能说明命题“对于任何实数a,a2≥a”是假命题的一个反例可以是()A . a=﹣2B . a=1C . a=0D . a=0.210. (2分)(2020·梧州模拟) 小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,a代表最喜欢参加兵乒球运动;b代表最喜欢参加羽毛球运动;c代表最喜欢气排球运动;d代表最喜欢篮球运动,下图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即d)的百分率与人数是()A . 24,26%B . 33,26.4%C . 28,22.4%D . 25,23.6%二、填空题 (共6题;共6分)11. (1分) (2016八上·长春期中) ﹣27的立方根是________.12. (1分)七(2)班全体同学准备分成几个小组比赛,若每组7人,就多出3人,若每组8人,就会少5人,若设七(2)班共有x名同学,共分为y个小组,则可列方程组________13. (1分)宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有________ 种.14. (1分)某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x盒,可列不等式组为________15. (1分)如图,∠1=82°,∠2=98°,∠4=80°,∠3=________16. (1分) (2020七下·云梦期中) 如图,长方形BCDE的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点同时出发,沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位/秒匀速运动,则两个物体运动后的第2020次相遇地点的坐标是________.三、解答题 (共8题;共87分)17. (10分) (2018七下·龙岩期中)(1)解方程:(2)解方程:(x-5)3 .18. (7分) (2020七下·金华期中) 阅读材料,解答问题:在(x²+ax+b)(2x²-3x-1)的结果中,x3项的系数为-5,x²项的系数为-6,求a,b的值。

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

2017-2018七年级数学下册期末试卷(有答案) (14)

2017-2018七年级数学下册期末试卷(有答案) (14)

2017-2018学年第二学期七年级期末数学试题一、选择题(每小题3分,共30分) 1.下列运算正确的是( ) A .623a a a =⋅B .()632a a = C .()3322a a -=- D .6332a a a =+2.4的算术平方根是( )A .2B .2-C .2±D .2 3.若b a >,则下列各式中一定成立的是( ) A .22+>+b aB .bc ac <C .b a 22->-D .b a ->-334.如图,给出下列条件:其中,能判断AB ∥DC 的是( ))) ①∠1=∠2 ②∠3=∠4 ③∠B=∠DCE ④∠B=∠D .A . ①或④B . ②或③C .①或③D . ②或④ 5.已知,不等式组⎩⎨⎧>+->05x ax 只有3个整数解,则a 的取值范围是( )A .21<<xB .21<≤xC .21≤<xD .21≤≤x6.下列各式能用平方差公式计算的是( ) A.)2)(2(a b b a -+;B.)121)(121(--+-x x ;C.)2)((b a b a -+;D.)12)(12(+--x x7.关于x ,y 的方程组的解满足x+y=6,则m 的值为( ) A .﹣1 B .2 C .1D .48.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是( )A .x >0B .x >2C .x <0D .x <29.下列命题中,①长为5㎝的线段AB 沿某一方向平移10㎝后,平移后线段AB 的长为10㎝ ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两条直线平行;⑤两个角的两边分别平行,则这两个角相等.真命题个数有( ) A .1个B .2个C .3个D .4个10.如图,矩形纸片按图(1)中的虚线第一次折叠得图(2),折痕与矩形一边的形成的∠1=65°,再按图(2)中的虚线进行第二折叠得到图(3),则∠2的度数为( ) A .20° B .25° C .30° D .35°二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.一种花瓣的花粉颗粒直径约为0.0000065m,这个数用科学记数法表示为______m.12.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=______.13.若2m=3,2n=5,则23m﹣2n=______.14.写出命题“若2a=4b,则a=2b”的逆命题:______.15.已知n边形的内角和是一个五边形的外角和的2倍,则n=______.16.已知x、y满足,则x2﹣y2的值为______.17.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=______°.(第17题)(第18题)18.如图,△ABC的两条中线AM、BN相交于点O,已知△BOM的面积为2,则四边形MCNO的面积为。

2017-2018年度七年级期末数学试题(含答案)

2017-2018年度七年级期末数学试题(含答案)

12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。

全卷满分120分。

考试时间为120分钟。

考试结束后,将本试题和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。

一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018 学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分) 1.若分式 有意义,则 x 应满足的条件是()A .x ≠0B .x ≥ 3C .x ≠3D .x ≤32.下列各式中① ;② ; ③; ④(x ≥1); ⑤ ;⑥ 一定是二次根式的有()个.A .3B . 4C .5D .63.用科学记数法表示﹣ 0.0000027 记为( )A .﹣ 27×10﹣ 7B .﹣ 0.27×10﹣ 4C .﹣ 2.7×10﹣ 6D .﹣ 270× 10﹣8 4.分式的值为 0,则()A .x=2B . x=﹣2C .x=±2D .x=0 5.下列二次根式中,最简二次根式是( )A .B .C .D .6.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .2.5B . 2C .D .7.下列计算正确的是( )A .2a 5 +a 5=2a 10B .3 ] 2(﹣ ) 6 6. 55 5﹣5C .[ (﹣ a )÷a=a =a =0=a =aD a8.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为 a ,若直吸管在罐外部分还剩余 3,则吸管的总长度 b (罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣11.甲、乙两地之间的高速公路全长200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为.14.若 y=2++2,则 x﹣y=.15.若直角三角形的两边长为 6 和 8,则第三边长为.16.分解因式:﹣ 3x2y+6xy2﹣3y3=.17.若 5x=2,5y=3,则 53x﹣2y的值为.18.已知关于 x 的方程=3 的解是正数,则 m 的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B 的面积分别为 1,2,3,4,则正方形 G 的面积为.20.算++⋯的:.+ +三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2) 6 +2x.22.解方程:(1)=1(2)= 1..已知x=,y=,求x2+xy+y2的.2324.已知 a2+b2+4a 6b+13=0,分解因式: x2+ax b.25.先化,再求:(1)6a2( 2a 1)(3a+2) +( a+2)( a 2),其中 a=(2)÷(x 2),其中 x=3.26.如,小用一方形片 ABCD行折,已知片 AB 8cm, BC 10cm.折叠点 D 落在 BC上的点 F (折痕 AE),求此 EC的度?27.某服装商一种季衫能市,就用8000元一批衫,面市后果然供不求,服装商又用 17600 元了第二批种衫,所数量是第一批数量的 2 倍,但价了8 元.商家售种衫每件定价都是100 元,最后剩下 10 件按 8 折售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥ 3C.x≠3 D.x≤3【考点】 62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵ x﹣3≠0,∴x≠3.故选 C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B. 4 C.5D.6【考点】 71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的 a2≥0,符合二次根式的定义,故正确.④(x≥1)中的 x﹣1≥0,符合二次根式的定义,故正确.⑤是开 3 次方,故错误.⑥中的x2 2x 1=(x 1)2≥0,符合二次根式的定义,故正确.+ ++故选: B.3.用科学记数法表示﹣0.0000027记为()A.﹣ 27×10﹣7 B.﹣ 0.27×10﹣4C.﹣2.7×10﹣6 D.﹣ 270× 10﹣8【考点】 1J:科学记数法—表示较小的数.﹣ n【分析】绝对值小于 1 的负数也可以利用科学记数法表示,一般形式为 a× 10,与较大数的科个数所决定.﹣6【解答】解:﹣ 0.0000027=﹣ 2.7× 10,4.分式的值为0,则()A.x=2 B. x=﹣2 C.x=±2 D.x=0【考点】 63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0 且 x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为 0,∴x2﹣ 4=0 且 x+2≠ 0,解x2﹣4=0 得x=±2,而x≠﹣2,∴x=2.故选 A.5.下列二次根式中,最简二次根式是()A.B.C.D.【考点】 74:最简二次根式.【分析】 D 选项的被开方数中,含有能开得尽方的因数2; B、 C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式; A 它的因式的指数都是1,所以 D 选项符合最简二次根式的要求.【解答】解:∵ B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选 A.6.如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B. 2C.D.【考点】 29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选 D.7.下列计算正确的是()A.2a5 +a5=2a10 B.3]2(﹣) 6 6.5 5 5﹣50C.[ (﹣ a)÷a=a=a =0=a =a D a【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式 =3a5,故 A 错误;(B)原式 =,故B错误;(D)原式 =1,故 D 错误;故选( C)8.如图是一个圆柱形饮料罐,底面半径是5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤16【考点】 KU:勾股定理的应用.【分析】如图,当吸管底部在O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高;当吸管底部在 A 点时吸管在罐内部分 a 最长,此时 a 可以利用勾股定理在Rt△ ABO中即可求出,进而【解答】解:如图,连接BO, AO,当吸管底部在 O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高,即a=12;当吸管底部在 A 点时吸管在罐内部分 a 最长,即线段 AB 的长,在Rt△ABO 中,AB===13,故此时 a=13,所以 12≤ a≤ 13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤ b≤ 16.故选: D.9.下列计算正确的是()A.B.C.D.【考点】 79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解: A、与不能合并,本选项错误;B、=÷=,本选项正确;C、5 与不能合并,本选项错误;D、==,本选项错误;10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣【考点】 74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣ a化成最简二次根式为,故选 A.11.甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了 20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.【考点】 B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据“甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意得=? .故选: D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.【考点】 KV:平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点 A 和 B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB即为最短路线.展开后由勾股定理得: AB2=202+(20+20)2=5×202,故 AB==20cm.故选: C.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为a( a+b)( a﹣ b).【考点】 69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a( a﹣ b),a2+ab=a(a+b),故最简公分母是 a(a+b)(a﹣b).故答案是: a(a+b)(a﹣b).14.若 y=2++2,则 x﹣y=.【考点】 72:二次根式有意义的条件.【分析】根据被开方数大于等于0 列式求出 x 的值,再求出 y 的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且 5﹣x≥ 0,解得 x≥ 5 且 x≤5,∴x=5,y=2,∴x﹣y=5﹣2= .故答案为:.15.若直角三角形的两边长为 6和 8,则第三边长为10 或 2.【考点】 KU:勾股定理的应用.【分析】分情况考虑:当较大的数8 是直角边时,根据勾股定理求得第三边长是10;当较大的数 8 是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当 6 和 8 为直角边时,第三边长为=10;②当 8 为斜边, 6为直角边时,第三边长为=2 .故答案为: 10 或2 .223216.分解因式:﹣ 3x y+6xy ﹣3y =﹣3y(x﹣y).【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣ 3y(x﹣y)217.若 5x=2,5y=3,则 53x﹣2y的值为.【考点】 48:同底数幂的除法; 47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 53x=23=8, 52y=32=9,53x﹣2y=53x÷52y=8÷ 9= ,故答案为:.18.已知关于 x 的方程=3 的解是正数,则m 的取值范围是m>﹣ 6 且 m≠﹣ 4.【考点】 B2:分式方程的解.【分析】首先求出关于x 的方程=3 的解,然后根据解是正数,再解不等式求出m 的取值范围.∵方程的解是正数,∴m+6>0 且 m+6≠2,解个不等式得m> 6 且 m≠ 4.故答案: m> 6 且 m≠ 4.19.如所示,所有四形都是正方形,所有的三角形都是直角三角形,其中正方形 D,C,A, B 的面分1,2,3,4,正方形 G 的面 10 .【考点】 KQ:勾股定理.【分析】根据勾股定理可知正方形A、B 的面之和等于正方形E的面,同法可求正方形F、G的面.【解答】解:正方形的面分A、B、C、D、 E、F、G.根据勾股定理可知: E=A+B=7, F=C+D=3,G=E+F=10,故答案 10.20.算+++⋯+的:1.【考点】 79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式 =1+++⋯+=1.故答案1.三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2)﹣6+2x.【考点】 78:二次根式的加减法; 49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式 =5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3 y5=;(2)原式 =×3﹣+2 =(2﹣3+2)=.22.解方程:(1)=1(2)=﹣ 1.【考点】 B3:解分式方程.【分析】(1)分式方程两边同乘( x﹣ 3)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边同乘( x2﹣4)去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【解答】(1)解:两边同时乘以( x﹣ 3)得:( 1﹣ x)﹣ 1=x﹣3,整理得, 2x=3,解得: x= ,经检验 x=是原方程的解;2 2 2 (2)解:方程两边同时乘以( x ﹣4)得,﹣( x+2) +16=﹣x +4,整理得, 4x=8,经检验 x=2 是原方程的增根,故原方程无解..已知x=,y=,求x2+xy+y2的值.23【考点】 7A:二次根式的化简求值.【分析】根据题意求出x+y 和 xy 的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵ x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知 a2+b2+4a﹣ 6b+13=0,分解因式: x2+ax﹣b.【考点】 AE:配方法的应用; 1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b 的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解: a2+b2 +4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣ 3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣( 2a﹣1)(3a+2) +( a+2)( a﹣ 2),其中 a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】 6D:分式的化简求值; 4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a 的值计算即可;(2)先算括号里面的,再约分,代入 x 的值计算即可.【解答】接:(1)原式 =6a2﹣ 6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当 a=﹣时,原式=;(2)原式 =÷(﹣),=÷=?=,当 x=﹣3时,原式=.26.如图,小红用一张长方形纸片 ABCD进行折纸,已知该纸片宽 AB 为 8cm,长 BC为 10cm.折叠时顶点 D 落在 BC边上的点 F 处(折痕为 AE),求此时 EC的长度?【考点】 PB:翻折变换(折叠问题).【分析】由折叠的性质得 AF=AD=10cm,DE=EF,先在 Rt△ABF中运用勾股定理求 BF,再求 CF,设 EC=xcm,用含 x 的式子表示 EF,在 Rt△CEF中运用勾股定理列方程求 x 即可.【解答】解:∵四边形 ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知: AD=AF=10cm,DE=EF,设EC=xcm,则 EF=ED=(8﹣x)cm, AF=AD=10cm,在 Rt△ABF中, BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),222在 Rt△CEF中, CF+CE=EF,即 42+x2(﹣)2,= 8 x解得 x=3,即 EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一批购进数量的 2 倍,但单价贵了8 元.商家销售这种衬衫时每件定价都是100 元,最后剩下 10 件按 8 折销售,很快售完.(2)在这两笔生意中,商家共盈利多少元?【考点】 B7:分式方程的应用.【分析】( 1)设第一批进货的单价为x 元/ 件,根据第二批这种衬衫所购数量是第一批购进数量的 2 倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x 元/ 件,由题意 2×=,解得 x=80,经检验, x=80 是原分式方程的解,且符合题意,答:第一次进货单价为80(元 / 件),第二次进货单价为88(元 / 件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:× 100+×+10=4200(元)答:商家总盈利为4200 元.。

2017-2018学年新课标最新湖北省七年级数学下学期期末试卷1及答案解析-精品试卷

2017-2018学年新课标最新湖北省七年级数学下学期期末试卷1及答案解析-精品试卷

2017-2018学年湖北省黄冈市七年级(下)期末数学试卷一、选择题1.64的立方根是()A.4 B.±4 C.8 D.±82.下列各数:,,,﹣1.414,,0.1010010001…中,无理数有()A.1个 B.2个 C.3个 D.4个3.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个 B.2个 C.3个 D.4个4.已知方程组的解满足x+y=2,则k的算术平方根为()A.4 B.﹣2 C.﹣4 D.25.为了了解2014年我市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A.21000名学生是总体B.每名学生是总体的一个个体C.1000名学生的视力是总体的一个样本D.上述调查是普查6.已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.7.爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:()二、填空题8.若n<<n+1,且n是正整数,则n= .9.如图,在平面直角坐标系中,A、B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.10.如图,直线a、b与直线c相交,且a∥b,∠α=105°,则∠β=.11.浠水县实验中学九(1)班全体同学的综合素质评价“运动与健康”方面的等级统计图如图所示,其中评价为“A”所在扇形的圆心角是度.12.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.13.已知x+2y+3z=54,3x+y+2z=47,2x+y+z=31,则x+y+z的值是.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别落在D′,C′的位置上,ED′与BC交于G 点,若∠EFG=56°,则∠AEG= .15.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,则B2016的横坐标为.三、解答题(共75分)16.计算:(1)﹣|﹣|﹣()﹣|﹣2|(2)﹣12﹣(﹣2)3×﹣×|﹣|+2÷()2.17.解方程组(1)(2).18.解不等式组:,并把解集在数轴上表示出来.19.如图,已知DE⊥AC于E点,BC⊥AC于点C,FG⊥AB于G点,∠1=∠2,求证:CD⊥AB.20.为提升我国中西部教育水平,自2008年开始,教育部开始实施“支持中西部地区招生协作计划”,今年4月25日教育部会同国家发改委,给各地教育部门发出《2016年部分地区跨省生源计划调控方案》,2016年湖北省和江苏省共调出高校招生计划78000名,其中江苏省比湖北省少调出5%,求湖北省、江苏省今年各调出高校招生计划多少名?21.某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好得了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)a= ,b= ;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?22.如图,在平面直角坐标系中,已知点a(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.23.浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.参考答案与试题解析一、选择题1.64的立方根是()A.4 B.±4 C.8 D.±8【考点】立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方等于64,∴64的立方根等于4.故选A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.下列各数:,,,﹣1.414,,0.1010010001…中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】无理数.【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断.【解答】解:,,,﹣1.414,,0.1010010001…中,无理数有,0.1010010001…共两个,故选B.【点评】此题考查了无理数的定义,关键要掌握无理数的三种形式,要求我们熟练记忆.3.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.已知方程组的解满足x+y=2,则k的算术平方根为()A.4 B.﹣2 C.﹣4 D.2【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组中两方程相加表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,①+②得:3(x+y)=k+2,解得:x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.为了了解2014年我市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A.21000名学生是总体B.每名学生是总体的一个个体C.1000名学生的视力是总体的一个样本D.上述调查是普查【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、每名学生的视力是总体的一个个体,故此选项错误;C、1000名学生的视力是总体的一个样本,故此选项正确;D、上述调查是抽样调查,不是普查,故此选项错误;故选:C.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.6.已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集;点的坐标.【分析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.【解答】解:根据题意,得:,解不等式①,得:a>﹣,解不等式②,得:a<1,∴该不等式组的解集为:﹣<a<1,故选:C.【点评】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:()【考点】二元一次方程组的应用.【分析】设小明9:00时看到的两位数,十位数为x,个位数为y,根据两位数之和为6可列一个方程,再根据匀速行驶,9:00~9:45时行驶的里程数除以时间等于9:45~12:00时行驶的里程数除以时间列出第二个方程,解方程组即可.【解答】解:设小明9时看到的两位数,十位数为x,个位数为y,即为10x+y;则9:45时看到的两位数为x+10y,9:00~9:45时行驶的里程数为:(10y+x)﹣(10x+y);则12:00时看到的数为100x+y,9:45~12:00时行驶的里程数为:(100x+y)﹣(10y+x);由题意列方程组得:,解得:,所以9:00时看到的两位数是27,故选:D.【点评】本题考查了二元一次方程组的运用,及二元一次方程组的解法.正确理解题意并列出方程组是解题的关键.二、填空题8.若n<<n+1,且n是正整数,则n= 3 .【考点】估算无理数的大小.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大致范围,从而可确定出n的值.【解答】解:∵9<13<16,∴3<<4.∵n是正整数,∴n=3.故答案为:3.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.9.如图,在平面直角坐标系中,A、B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为 2 .【考点】坐标与图形变化-平移.【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:根据题意,A、B两点的坐标分别为A(3,0),B(0,2),若A1的坐标为(4,b),B1(a,3)即线段AB向上平移1个单位,向右平移1个单位得到线段A1B1;则:a=0+1=1,b=0+1=1,a+b=2.故答案为:2.【点评】此题主要考查图形的平移及平移特征,掌握在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解答此题的关键.10.如图,直线a、b与直线c相交,且a∥b,∠α=105°,则∠β=75°.【考点】平行线的性质.【分析】先求得∠α的对顶角的度数,再根据平行线的性质,计算∠β的度数.【解答】解:∵∠α=105°,∴∠α的对顶角为105°,又∵a∥b,∴∠β=180°﹣105°=75°.故答案为:75°【点评】本题主要考查了平行线的性质,本题解法多样,也可以利用∠β的内错角或同位角求得∠β的度数.11.浠水县实验中学九(1)班全体同学的综合素质评价“运动与健康”方面的等级统计图如图所示,其中评价为“A”所在扇形的圆心角是108 度.【考点】扇形统计图.【分析】利用360度乘以对应的百分比即可求解.【解答】解:评价为“A”所在扇形的圆心角是:360°×(1﹣35%﹣20%﹣15%)=108°.故答案是:108.【点评】本题考查的是扇形统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.12.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为﹣.【考点】解一元一次不等式组;一元一次方程的解.【分析】根据不等式组的解集即可得出关于a、b而愿意方程组,解方程组即可得出a、b值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程ax+b=0为2x+1=0,解得:x=﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出a、b值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.13.已知x+2y+3z=54,3x+y+2z=47,2x+y+z=31,则x+y+z的值是25 .【考点】解三元一次方程组.【分析】组成方程组,先消元,变成二次一元方程组,求出x、z的值,再求出y的值,即可求出答案.【解答】解:∵x+2y+3z=54①,3x+y+2z=47②,2x+y+z=31③,∴③﹣②得:﹣x﹣z=﹣16,x+z=16④,①﹣②×2得:﹣5x﹣z=﹣40,5x+z=40⑤,由④和⑤组成方程组,解得:x=6,z=10,把x=6,z=10代入③得:12+y+10=31,解得:y=9,所以x+y+z=6+9+10=25,故答案为:25.【点评】本题考查了三元一次方程组的应用,能把三元一次方程组转化成二元一次方程组是解此题的关键.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别落在D′,C′的位置上,ED′与BC交于G 点,若∠EFG=56°,则∠AEG= 68°.【考点】平行线的性质.【分析】先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.【解答】解:∵AD∥BC,∴∠DEF=∠GFE=56°,由折叠可得,∠GEF=∠DEF=56°,∴∠DEG=112°,∴∠AEG=180°﹣112°=68°.故答案为:68°【点评】本题以折叠问题为背景,主要考查了平行线的性质,解题时注意:矩形的对边平行,且折叠时对应角相等.15.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,则B2016的横坐标为22017..【考点】坐标与图形性质.【分析】观察不难发现,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可.【解答】解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3),2=21、4=22、8=23,∴A n(2n,3),∵B(2,0),B1(4,0),B2(8,0),B3(16,0),2=21、4=22、8=23,16=24,∴B n(2n+1,0),∴B2016的横坐标为22017.故答案为:22017.【点评】本题考查了坐标与图形性质,观察出点A、B系列的横坐标的变化规律是解题的关键,也是本题的难点.三、解答题(共75分)16.计算:(1)﹣|﹣|﹣()﹣|﹣2|(2)﹣12﹣(﹣2)3×﹣×|﹣|+2÷()2.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根定义,绝对值的代数意义化简,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣2﹣+﹣+2=2﹣;(2)原式=﹣1+1﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解方程组(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①+②得:9x=3,即x=,把x=代入①得:y=,则方程组的解为;(2)方程组整理得:,①+②×5得:26y=52,即y=2,把y=2代入②得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解两个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得:x≥﹣2.则不等式组的解集是﹣2≤x<2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.如图,已知DE⊥AC于E点,BC⊥AC于点C,FG⊥AB于G点,∠1=∠2,求证:CD⊥AB.【考点】平行线的判定与性质.【分析】根据垂直于同一直线的两直线互相平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠DCF,然后求出∠1=∠DCF,根据同位角相等两直线平行可得GF∥CD,再根据垂直于同一直线的两直线互相平行证明.【解答】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质以及垂直的判定,垂直于同一直线的两直线平行,熟记性质是解题的关键.20.为提升我国中西部教育水平,自2008年开始,教育部开始实施“支持中西部地区招生协作计划”,今年4月25日教育部会同国家发改委,给各地教育部门发出《2016年部分地区跨省生源计划调控方案》,2016年湖北省和江苏省共调出高校招生计划78000名,其中江苏省比湖北省少调出5%,求湖北省、江苏省今年各调出高校招生计划多少名?【考点】二元一次方程组的应用.【分析】设湖北省调出x名,江苏省调出y名,根据题意可得等量关系:①湖北省和江苏省调出人数=78000名;②江苏省调出人数=湖北省调出人数×(1﹣5%),根据等量关系列出方程组,再解即可.【解答】解:设湖北省调出x名,江苏省调出y名,则,解得,答:湖北省调出40000名,江苏省调出38000名.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.21.某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好得了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)a= 60 ,b= 0.15 ;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)利用频率的公式,频率=即可求解;(2)根据(1)的结果即可直接作出;(3)利用总数3000乘以对应的频率即可求解.【解答】解:(1)a=200×0.30=60,b==0.15;(2);(3)3000×0.40=1200名答:成绩“优”等的大约有1200名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.如图,在平面直角坐标系中,已知点a(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.【考点】坐标与图形性质.【分析】(1)由点的坐标得出BC=3,即可求出△ABC的面积;(2)求出OA=2,OB=4,由S四边形ABOP=S△AOB+S△AOP和已知条件得出方程,解方程即可.【解答】解:(1)∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;(2)∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=×4×2+×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,∴P(﹣8,1).【点评】本题考查了坐标与图形性质、三角形和四边形面积的计算;熟练掌握坐标与图形性质,由题意得出方程是解决问题(2)的关键.23.浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的风扇的进价和售价,B型号的风扇的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【考点】四边形综合题.【分析】(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°【点评】此题是四边形综合题,主要考查了非负数的性质,四边形的面积的计算方法,角平分线的意义,解本题的关键是用整体思想解决问题,也是本题的难点.。

2017-2018学年度第二学期期末考试七年级数学试题及答案

2017-2018学年度第二学期期末考试七年级数学试题及答案

火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年人教版七年级(下册)期末数学试卷含答案

2017-2018学年人教版七年级(下册)期末数学试卷含答案

2017-2018学年七年级(下)期末数学试卷220一、细心选一选(每小题分,共分)下列每个小题都给出四个备选答案,其中只有一个是符合题意的,请把符合题意选项的字母填在下表相应的方格内 12.(分)下列调查适合抽查方法调查的是()A.为了了解你所在班级中有多少同学需要近视眼镜B.为了了解你们学校七年级中有多少同学需要近视眼镜C.为了了解你们学校有多少教师骑自行车来学校上班 D.为了了解你所在班级中有多少同学喜欢足球22.(分)下列说法错误的是()A2 B.的平方根是±.是无理数 C D.是有理数.是分数321xO.(分)如图,半径为圆,在轴上从原点开始向右滚动一周后,落定点M的坐标为()A02π B2π0 Cπ0 D0π.(,).(,).(,).(,)242m2m1.(分)在平面直角坐标系中,若为实数,则点(﹣,+)在() A B C D.第一象限.第二象限.第三象限.第四象限52.(分)不等式组的解集在数轴上表示正确的是() A B C... D. 62ABCDDBBC2=50°1.(分)如图,∥,⊥,∠,则∠的度数是()A40° B50° C60° D140°.... 72M32N32MNxy.(分)已知点(,﹣),(﹣,﹣),则直线与轴、轴的位置关系分别为() A B.相交,相交.平行,平行C D.垂直相交,平行.平行,垂直相交827298.(分)已知一个正方体的体积是立方厘米,现在要在它的个角上分别8665截去个大小相同的小正方体,使得截去后余下的体积是立方厘米,则截去的每个小正方体的棱长是() A8 B6 C4 D2.厘米.厘米.厘米.厘米 92“”“.(分)鸡兔同笼是我国民间流传的诗歌形式的数学题:鸡兔同笼不知数,100”x三十六头笼中露,看来脚有只,几多鸡儿几多兔解决此问题,设鸡为y只,兔为只,则所列方程组正确的是() A B..C D..102600900.(分)某种商品的进价为元,出售时标价为元,后来由于该商品5%积压,商店准备打折销售,但要保证利润率不低于,则最低可打()A9 B8 C7 D6.折.折.折.折318二、填空题(每小题分,共分)1132.3 .(分)比较大小.2123x2yy2=0xy= .(分)已知|﹣|+(+),则﹣.1333x442x2 .(分)不等式﹣≥+(﹣)的最小整数解是.143α=.(分)如图,有一条直的等宽纸带按图折叠时,则图中∠.15324.(分)如图所示是小刚一天小时中的作息时间分配的扇形统计图,那么他的阅读时间是分钟. 163Pxyxy=xyP“”.(分)如果点(,)的坐标满足+,那么称点为和谐点,请你写出三个和谐点的坐标.52三、完成下列各题(共分)217431.(分)计算:(﹣)+|﹣|﹣.184.(分)解方程组.1951x.(分)解不等式:﹣+.206AB.(分)线段在直角坐标系中的位置如图. 1AB()写出、两点的坐标. 2yCBCC()在轴上找点,使长度最短,写出点的坐标.3ACBCABC()连接、并求出三角形的面积.4ABCBABC()将三角形平移,使点与原点重合,画出平移后的三角形. 111。

2017-2018学年七年级(下)期末数学试卷

2017-2018学年七年级(下)期末数学试卷

2017-2018 学年七年级(下)期末数学试卷一、选择题(本大题共12 小题,每小题 3 分,共 36 分) 1 . 36 的平方根是( )A .﹣ 6B . 36C .±D .± 62.在平面直角坐标系中,点 M (﹣ 6, 4)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列调查中,调查方式选择合理的是( )A .为了了解全国中学生的视力情况,选择全面调查B .为了了解一批袋装食品是否含有防腐剂,选择全面调查C .为了检测某城市的空气质量,选择抽样调查5.若 x> y ,则下列式子中错误的是(A . x+ > y+B . x ﹣ 3> y ﹣ 3 6.如图,在数轴上标有字母的各点中,与实数 对应的点是(A . AB . BC . CD . D7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣ 2,2) ,黑棋 B 所在点的坐标是( 0, 4) ,D .为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查D .﹣ 3x>﹣ 3y10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多存粮 y 吨,则有( )D . 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来 A .B .C .D .3x+4y=5 的解的是(无解,则实数 a 的取值范围是(A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1 12.如图 1 是长方形纸带,∠ DEF=10°,将纸带沿EF 折叠成图 2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少(13.14.写出一个第四象限的点的坐标 .15.不等式﹣ 3x+6> 0 的正整数解有 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 . 11.若不等式组120° D . 110°二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)A . 160°B . 150°C .三、解答题(本大题共 6 小题,共 46 分)19.解方程组:20.如图,已知∠ DAB+∠ D=180°, AC 平分∠DAB ,且∠ CAD=25°,∠B=95° .求:∠∠ DCA 的度数.请将以下解答补充完整,解:因为∠ DAB+∠ D=180°所以 DC ∥ AB ( )所以∠ DCE=∠ B ( )又因为∠ B=95°,所以∠ DCE= °;因为 AC 平分∠ DAB ,∠ CAD=2°5 ,根据角平分线定义,所以∠ CAB= = °,因为 DC ∥ AB所以∠ DCA=∠ CAB , ( )所以∠ DCA= °.17.关于 x , y 的方程组 的解满足 x+y=6,则m的值DCE 和18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶22.如图,∠1+∠ 2=180 °,∠3=∠ B.(Ⅰ)求证: AB∥ EF;DE与 BC的位置关系,并证明你的结论.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价如表所示:1 )该商场购进甲、乙两种矿泉水各多少箱?2)全部售完 500 箱矿泉水,该商场共获得利润多少元?2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12 小题,每小题3 分,共 36 分)1 . 36 的平方根是()A.﹣ 6 B. 36 C.±D.± 6【考点】21:平方根.【分析】依据平方根的定义求解即可.【解答】解:∵(±6) 2=36,∴ 36 的平方根是±6.故选: D.2.在平面直角坐标系中,点M(﹣6, 4)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据点M 的坐标确定出所在的象限即可.【解答】解:在平面直角坐标系中,点M(﹣6, 4)在第二象限,故选 B3.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、为了了解全国中学生的视力情况,人数较多,应选择抽样调查,故错误;B、为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,故错误;C、为了检测某城市的空气质量,选择抽样调查,正确;D、为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,故错误;故选: C.4.不等式x+5< 2 的解在数轴上表示为()C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得, x< 2﹣ 5,合并同类项得,x<﹣3,在数轴上表示为;故选 D.5.若x> y,则下列式子中错误的是()A. x+ > y+ B.x﹣3> y﹣ 3 C.> D.﹣3x>﹣3y【考点】C2:不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1 ,可得x+ > y+ ,故 A 选项正确;B、根据不等式的性质1,可得x﹣ 3> y﹣ 3,故 B 选项正确;C、根据不等式的性质2,可得 > ,故 C选项正确;D、根据不等式的性质3,可得﹣3x<﹣ 3y,故 D 选项错误;故选: D.6.如图,在数轴上标有字母的各点中,与实数对应的点是()A. A B. B C. C D. D【考点】29:实数与数轴.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵4< 5< 9,∴ 2< < 3.故选C.7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣2,2),黑棋 B 所在点的坐标是(0, 4),现在轮到黑棋走,黑棋放到点 C 的位置就获得胜利,点 C 的坐标是()【考点】D3:坐标确定位置.【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C 的坐标.【解答】解:由题意可得,如图所示的平面直角坐标系,故点 C的坐标为(3, 3),8.如图,直线a∥ b, c 是截线.若∠ 2=4∠ 1 ,则∠ 1 的度数为(JA:平行线的性质.【分析】根据两直线平行,同旁内角互补可得∠1+∠ 2=180°,然后把∠ 2 换成∠ 1 列出方程求解即可.【解答】解:∵a∥ b,∴∠1+∠ 2=180°,【分析】将各对 x 与 y 的值代入方程检验即可得到结果.【解答】解: A 、将x=1, y= 代入 3x+4y=5 的左边得: 3× 1+4×=5,右边为 5,左边 =右边,不合题意;B 、将 x=﹣1, y=2 代入 3x+4y=5 的左边得: 3×(﹣ 1) +4×2=5,右边为 5,左边 =右边,不合题意; C 、 将 x=0, y= 代入 3x+4y=5 的左边得:3× 0+4 × =5, 右边为 5, 左边 =右边, 不合题意;D 、将x= , y=0 代入 3x+4y=5 的左边得: 3 × +4× 0= ,右边为5,左边≠右边,符合题意,故选 D . 10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来存粮 y 吨,则有( )A . C . D .【考点】 9A :二元一次方程组的应用.【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的 60%,从乙仓库运出存粮的 40%.结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨,甲仓∵∠ 2=4∠1 ,∴∠ 1+4∠1=180°, 解得∠3x+4y=5 的解的是()B .库、乙仓库共存粮450 吨.【解答】解:设甲仓库原来存粮x 吨,乙仓库原来存粮y吨.根据题意得:.故选C.无解,则实数a 的取值范围是(11.若不等式组A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1【考点】 CB :解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 【解答】解:, 由①得, x ≥﹣ a ,由②得, x< 1,∵不等式组无解,∴﹣ a ≥ 1 ,解得: a ≤﹣ 1.故选: D .12.如图1 是长方形纸带,∠ DEF=10°,将纸带沿 EF 折叠成图2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少( )A . 160°B . 150°C . 120°D . 110°【考点】 PB :翻折变换(折叠问题) ; LB :矩形的性质.【分析】 由矩形的性质可知 AD ∥ BC , 由此可得出∠ BFE=∠ DEF=10°, 再根据翻折的性质可知每翻折一次减少一个∠ BFE 的度数,由此即可算出∠ CFE 度数.ABCD 为长方形,∴ AD ∥ BC ,∴∠ BFE=∠ DEF=10° .由翻折的性质可知:∠ EFC=180° ﹣∠ BFE=170° ,∠ BFC=∠ EFC ﹣∠BFE=160°,∠ CFE=∠ BFC ﹣∠ BFE=150° . 故选 B .二、填空题(本大题共6 小题,每小题 3 分,共 18 分)13. = ﹣ 2 . 【考点】 24:立方根.【分析】因为﹣2 的立方是﹣ 8,所以 的值为﹣ 2.【解答】解: =﹣ 2. a 的取值范围.故答案为:﹣ 2.14.写出一个第四象限的点的坐标 【考点】 D1:点的坐标.【分析】根据第四项限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:写出一个第四象限的点的坐标( 1 ,﹣ 1 ) ,故答案为: ( 1,﹣ 1) .15.不等式﹣ 3x+6> 0 的正整数解有 1 .【考点】 C7:一元一次不等式的整数解.【分析】 首先利用不等式的基本性质解不等式, 再从不等式的解集中找出适合条件的正整数即可.【解答】解:移项得:﹣ 3x>﹣ 6,系数化为 1 得: x< 2,则正整数解为: 1 .故答案为: 1 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 28% .【考点】 V8:频数(率)分布直方图.【分析】用 40~ 42 的人数除以总人数即可得.【解答】解:由图可知,职工人数最多年龄段的职工人数占总人数的百分比为× 100%=28%,故答案为: 28%.17.关于x , y 的方程组 的解满足 x+y=6,则 m 的值为 ﹣ 1 .1,﹣ 1) (答案不唯一)【分析】首先应用代入法,求出关于x, y 的方程组的解,然后根据x+y=6,求出m 的值为多少即可.【解答】解:由②,可得:x=5m﹣ 2③,把③代入①,解得y=4﹣ 9m,∵ x+y=6,∴ 5m ﹣ 2+4﹣ 9m=6,解得 m=﹣ 1 .故答案为:﹣ 1 .18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是21 .【考点】9A:二元一次方程组的应用.【分析】设掷中外环区、内区一次的得分分别为x, y 分,根据等量关系列出方程组,再解方程组即可.【解答】解:设掷中 A 区、 B 区一次的得分分别为x,y 分,依题意得:解这个方程组得:,则小亮的得分是2x+3y=6+15=21 分.故答案为21 ;三、解答题(本大题共 6 小题,共 46 分)19.解方程组:【分析】先把原方程组化为一般方程的形式,再消元求解即可.【解答】解:原方程组可化为,① +②得:y= ,把 y 的值代入①得:x= .所以此方程组的解是20.如图,已知∠DAB+∠ D=180°, AC 平分∠DAB,且∠CAD=25°,∠B=95° .求:∠DCE 和∠ DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠ D=180°所以DC∥ AB(同旁内角互补,两直线平行)所以∠DCE=∠ B(两直线平行,同位角相等)又因为∠B=95°,所以∠ DCE= 95AC平分∠DAB,∠CAD=2°5 ,根据角平分线定义,所以∠ CAB= ∠ CAD= 25因为DC∥ AB所以∠DCA=∠ CAB,(两直线平行,内错角相等)所以∠ DCA=25CAB=∠ CAD.再由DC∥ AB 得出∠DCA=∠ CAB,进而JB:平行线的判定与性质.DAB+∠ D=180°得出95;∠ CAD, 25;两直DC∥ AB,故可得出∠DCE=∠ B.再由∠B=95°可得出∠DCE的度数,由角平分线的定义可知∠可得出结论.【解答】解:∵∠DAB+∠ D=180° ,∴ DC∥ AB(同旁内角互补,两直线平行)∴∠DCE=∠ B(两直线平行,同位角相等)又∵∠ B=95°,∴∠DCE=9°5;∵ AC 平分∠DAB,∠CAD=2°5,∴∠CAB=∠ CAD=2°5,∵ DC∥ AB∴∠ DCA=∠ CAB , (两直线平行,内错角相等)∴∠ DCA=2°5 .故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;线平行,内错角相等; 25.21 .解不等式组: ,并在数轴上表示它的解集.【考点】 CB :解一元一次不等式组; C4:在数轴上表示不等式的解集.故不等式组的解集为;﹣ 1 < x ≤ 1 .在数轴上表示为:.22.如图,∠ 1+∠ 2=180 °,∠ 3=∠ B .(Ⅰ)求证: AB ∥ EF ;(Ⅱ)试判断 DE 与 BC 的位置关系,并证明你的结论.【考点】 JB :平行线的判定与性质.【分析】 ( 1 )要证明∠ AED=∠ C ,则需证明 DE ∥ BC .根据等角的补角相等,得∠ DFE=∠ 2,根据内错角相等,得直线 EF ∥ AB ;( 2)由 EF ∥ AB ,得到∠ 3=∠ ADE ,从而∠ ADE=∠ B ,即可证明结论.【解答】证明: ( 1 )∵∠ 1+∠ 2=180°,∠ 1+∠ DFE=180° , ∴∠ DFE=∠ 2,∴ EF ∥ AB ;( 2) DE ∥ BC ,理由如下:由( 1)知 EF ∥ AB ,∴∠ 3=∠ ADE .又∠ 3=∠ B ,∴∠ ADE=∠ B ,x>﹣ 1,由②得,x ≤ 1,∴ DE∥ BC,∴∠AED=∠ C,∴ DE∥ BC.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有500 人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是54 度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】( 1 )利用 C的人数÷所占百分比可得被调查的学生总数;( 2)利用总人数减去其它各项的人数 =A的人数,再补图即可;( 3)计算出 B 所占百分比,再用 360° × B所占百分比可得答案;( 4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:( 1) 140÷ 28%=500(人),故答案为:500;( 2)A的人数:500﹣ 75﹣ 140﹣ 245=40(人);补全条形图如图:( 3)75÷ 500× 100%=15%,360 °× 15%=54°,故答案为:54;( 4)245÷ 500× 100%=49%,3600 × 49%=1764(人).24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价( 1 )该商场购进甲、乙两种矿泉水各多少箱?( 2)全部售完500 箱矿泉水,该商场共获得利润多少元?【考点】9A:二元一次方程组的应用.【分析】( 1 )设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800 元资金购进甲、乙两种矿泉水共500 箱,列出方程组解答即可;( 2)总利润=甲的利润+乙的利润.【解答】解:( 1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水 y 箱,由题意得解得:答:商场购进甲种矿泉水300 箱,购进乙种矿泉水200 箱.( 2) 300 ×(36﹣ 24) +200×(48﹣ 33)=3600+3000=6600(元).答:该商场共获得利润6600 元.。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。

1个B。

2个C。

3个D。

4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。

原点B。

x轴上C。

y轴上D。

x轴上或y轴上3.不等式组2x-1>1。

4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。

图形的平移是指把图形沿水平方向移动B。

“相等的角是对顶角”是一个真命题C。

平移前后图形的形状和大小都没有发生改变D。

“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。

1500B。

1000C。

150D。

5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。

①③④B。

①②③C。

①②④D。

②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。

8.-364的绝对值等于______。

9.不等式组{x-2≤x-1>的整数解是______。

10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。

11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。

某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。

12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。

则老师知道XXX与XXX之间的距离是______。

13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试七 年 级 数 学 试 卷注意事项:1.本卷共4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。

3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。

一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.9的算术平方根是( )A .3±B .3C .3±D .32.如图,AB ∥CD ,那么( )A .∠1=∠4B .∠1=∠3C .∠2=∠3D .∠1=∠53.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .30°B .35°C .45°D .50° 4.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1)D .(0,1)5.若代数式237x +的值是非负数,则x 的取值范围是( ) A .x ≥23 B .x ≥-32 C .x >23 D .x >-326.张老师对本班50名学生的血型作了统计,列出如下的统计表,则本班A 组别 A 型 B 型 AB 型 O 型频率 0.3 0.2 0.1 0.4A .20人B . 15人C .10人D .5人7.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?若设生产螺栓x 人,生产螺帽y 人,则列方程组( )A .901524x y x y +=⎧⎨=⎩B .901548x y x y +=⎧⎨=⎩C .903024x y x y +=⎧⎨=⎩D .902(15)24x y x y +=⎧⎨-=⎩ 8.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( ) A .4 B .-4 C .8 D .-8(第3题图)(第2题图)9.如果不等式组213(23)x x x m ->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥210.某种商品价格为33元/件,某人只带有2元和5元两种面值人民币足够多张数,买了一件这种商品,若不找零钱,则付款方式中两种面值人民币张数之和最少与张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和15张D .9张和16张二、填空题:(本题有6个小题,每小题3分,共18分)11.若x ,y 为实数,且|x +2|+2y -=0,则2x +y 的值为 .12.若xy >0,且x +y <0,则点M (x ,y )在第________象限.13.已知21x y =⎧⎨=-⎩是方程ax +5y =15的一个解,则a 的平方根为________. 14.已知:点A (m ,2)到y 轴的距离为3,则m =________.15.我们定义 a b ad bc c d =-.如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2.则不等式1<1 3 4x <3 的解集为__________.16.如图,所有正方形的中心均在坐标原点,且各边与坐标轴平行,从内到外,它们的边长依次为3,5,7,9,…,顶点依次为1A ,2A ,3A ,4A ,…,则顶点2018A 的坐标是__________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 计算:23|3|2716(2)---+--.18.(本题满分6分) 解方程组3262317x y x y -=⎧⎨+=⎩.(第16题图)19.(本题满分7分)有这样一道不等式的题目21532x x ++-≥□. 学生:老师,小明把这道题后面的部分擦掉了.老师:哦,如果我告诉你这道题的正确答案是x ≥7,且□是一个常数,你能把这个常数补上吗?学生:我知道了.根据以上信息,请你求出□中的数.20.(本题满分7分) 解不等式组4332(4)1372(2)5x x x -⎧--<-⎪⎨⎪-+<⎩ ,并把解集表示在数轴上.21.(本题满分8分) 如图,∠A =∠ADE ,∠C =∠E .(1)若∠EDC =3∠C ,求∠C 的度数;(2)求证:BE ∥CD .22.(本题满分8分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)若该中学有2400名学生,请估计其中有多少名学生能在1.5 h 内完成家庭作业?.(第22题图)(第21题图)(第20题图)23.(本题满分8分)为了更好地引导在校学生知善、行善、扬善、乐善,并逐步实现“日行一善”到“善行一生”,某校计划组织师生共368人参加“日行一善”活动.若租用7辆大型客车和5辆中型客车恰好全部坐满,已知每辆大型客车座位数比中型客车座位数多20个.(1)求每辆大型客车和每辆中型客车座位数;(2)由于参加活动的人数增加了50人,学校决定调整租车方案,在租用车辆总数不变的情况下,为了保证每一位参加活动的师生都有坐位,求租用中型客车的最大值.24.(本题满分10分)阅读材料:对x ,y 定义一种新运算“T ”,规定:T(x ,y )=2ax by x y-+(其中a ,b 均为非0常数,且x +y ≠0). 如T(1,0)=12010a b a -=+,若T(2,1)=43,T(1,-2)=-7. (1)求T(2,3)的值;(2)若关于c 的不等式组T(-3,5+3)T(,2)2c c m c c <⎧⎨-<⎩恰好有3个整数解,求实数m 的取值范围.25.(本题满分12分)在平面直角坐标系中,点A ,B 分别是x 轴,y 轴上的点,且OA =a ,OB =b ,其中a ,b 满足(a +b -32)2+16b a -+=0,将点B 向左平移18个单位长度得到点C .(1)求点A ,B ,C 的坐标.(2)点M ,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位长度/秒的速度向左运动,同时点N 从点A 以2个单位长度/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM =ON 时,求t 的值;②是否存在一段时间,使得S四边形NACM <12S 四边形BOAC ?若存在,求出t 的取值范围;若不存在,请说明理由.(第25题图)。

2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷_0

2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷_0

2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的算术平方根为()A.±4B.±C.D.﹣a2.(3分)点A(4,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在﹣1,π,,3.14,﹣中,无理数的个数是()A.1个B.2个C.3个D.4个4.(3分)若5x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0B.1C.2D.35.(3分)下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间6.(3分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=36°,∠2=56°,则∠3的度数为()A.92°B.88°C.56°D.36°7.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.58.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)+(y﹣)2=0,则xy=.10.(3分)已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.11.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.12.(3分)已知关于x的不等式组的整数解共有5个,则a的取值范围是.13.(3分)如图,已知a∥b,∠1=36°,则∠2=.14.(3分)如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为.15.(3分)已知a,b为两个连续整数,且,则a+b=.16.(3分)下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是.三、解答题(8小题,共72分)17.(5分)计算:5+|﹣1|﹣++(﹣1)2017.18.(8分)解不等式组:并写出它的所有整数解.19.(8分)如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.20.(9分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴(同角的补角相等)①∴(内错角相等,两直线平行)②∴∠ADE=∠3()③∵∠3=∠B()④∴(等量代换)⑤∴DE∥BC()⑥∴∠AED=∠C()⑦21.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.22.(10分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?23.(10分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?24.(12分)“端午节”是中华民族古老的传统节日.甲、乙两家超市在“端午节”当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x元的该种粽子.(1)补充表格,填写在“横线”上:(2)列式计算说明,如果顾客在“端午节”当天购买该种粽子超过200元,那么到哪家超市花费更少?2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷参考答案一、选择题(每小题3分,共24分)1.C;2.D;3.B;4.A;5.C;6.A;7.A;8.D;二、填空题(每小题3分,共24分)9.1;10.;11.42;12.﹣3<a≤﹣2;13.36°;14.140°;15.7;16.28;三、解答题(8小题,共72分)17.;18.;19.;20.∠EFD=∠2;AB∥EF;两直线平行,内错角相等;已知;∠ADE=∠B;同位角相等,两直线平行;两直线平行,同位角相等;21.(0,4);(﹣1,1);(3,1);22.;23.200;40;60;72;24.10+0.95x;10+0.95x;30+0.9x;。

2017-2018学年新课标最新湖北省七年级数学下学期期末试卷及答案解析-精品试卷

2017-2018学年新课标最新湖北省七年级数学下学期期末试卷及答案解析-精品试卷

2017-2018学年湖北省黄冈市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.的算术平方根是()A. B.C.±D.2.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在﹣1,π,,﹣中,无理数的个数是()A.1个B.2个C.3个D.4个4.若3x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.35.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间6.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠C=∠CBE D.∠C+∠ABC=180°7.不等式组的正整数解的个数是()A.1 B.2 C.3 D.48.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A.B.C.D.二、填空题(每小题3分,共24分)9.= .10.已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= °.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果,那么.13.如图,已知a∥b,∠1=36°,则∠2= .14.三河中学在全县中学生运动会上,共派出了30名运动员,占所有运动员总数的5%,则这次运动会全县共有名运动员.15.已知整数k满足k<<k+1,则k的值为.16.在平面直角坐标中,将线段AB平移至线段CD的位置,使点A与C重合,若点A(﹣1,2),点B(﹣3,﹣2),点C(2,1),则点D的坐标是.三、解答题17.计算:|1﹣|+(﹣2)2.18.解下列二元一次方程组:(1)(2).19.解下列不等式(组),并把它们的解集表示在数轴上.(1)x﹣3(x﹣2)≥4(2).20.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?21.已知(3a+b ﹣4)2+|a ﹣2b+1|=0,求3a ﹣2b 的值.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?23.如图,直线a ∥b ,射线DF 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,求∠2的度数.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?25.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案与试题解析一、选择题(每小题3分,共24分)1.的算术平方根是()A. B.C.±D.【考点】算术平方根.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故选:B.2.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣2,﹣3)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.3.在﹣1,π,,﹣中,无理数的个数是()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数定义:无限不循环小数叫做无理数可得答案.【解答】解:π,是无理数,共2个,故选:B.4.若3x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.3【考点】解二元一次方程组;同类项.【分析】利用同类项的定义列出方程组,求出方程组的解得到a与b的值,即可确定出a﹣b 的值.【解答】解:∵3x2a+b y2与﹣4x3y3a﹣b是同类项,∴,①+②得:5a=5,即a=1,把a=1代入①得:b=1,则a﹣b=1﹣1=0,故选A5.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选:C.6.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠C=∠CBE D.∠C+∠ABC=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项不正确;B、根据内错角相等,两直线平行可得AD∥BC,故此选项正确;C、根据内错角相等,两直线平行可得AB∥CD,故此选项错误;D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项错误;故选:B.7.不等式组的正整数解的个数是()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出x的取值,根据x是正整数解得出x的可能取值.【解答】解:,由①得x>3;由②得x<5.5;由以上可得3<x<5.5,∵x为正整数,∴不等式组的正整数解是:4,5,个数是2.故选:B.8.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设每副羽毛球拍为x元,每副乒乓球拍为y元,根据等量关系:①购买1副羽毛球拍和1副乒乓球拍共需50元;②用320元可买6副同样的羽毛球拍和10副同样的乒乓球拍;列方程组即可求解.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,由题意得.故选:B.二、填空题(每小题3分,共24分)9.= ﹣4 .【考点】立方根.【分析】谁的立方等于﹣64,谁就是﹣64的立方根.【解答】解:∵(﹣4)3=﹣64,∴=﹣4,故答案为﹣4,10.已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.【考点】二元一次方程的解.【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把x=1,y=8代入方程得:3m﹣8=﹣1,解得:m=,故答案为:11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= 42 °.【考点】垂线;对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.【考点】命题与定理.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.如图,已知a∥b,∠1=36°,则∠2= 36°.【考点】平行线的性质.【分析】根据对顶角相等可得∠3=∠1,再根据两直线平行,同位角相等解答.【解答】解:由对顶角相等可得,∠3=∠1=36°,∵a∥b,∴∠2=∠3=36°.故答案为:36°.14.三河中学在全县中学生运动会上,共派出了30名运动员,占所有运动员总数的5%,则这次运动会全县共有600 名运动员.【考点】频数与频率.【分析】设全县的运动员有x名,根据题意列出方程求出x的值即可.【解答】解:设全县的运动员有x名∴×100%=5%,∴解得:x=600故答案为:60015.已知整数k满足k<<k+1,则k的值为7 .【考点】估算无理数的大小.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大致范围,从而可确定出k的值.【解答】解:∵49<56<64,∴7<<8.∵k为整数,∴k=7.故答案为:7.16.在平面直角坐标中,将线段AB平移至线段CD的位置,使点A与C重合,若点A(﹣1,2),点B(﹣3,﹣2),点C(2,1),则点D的坐标是(0,﹣3).【考点】坐标与图形变化﹣平移.【分析】先根据A(﹣1,2)与点C(2,1)是对应点,得到平移的方向与距离,再根据点B(﹣3,﹣2)得出对应点D的坐标.【解答】解:由题得,A(﹣1,2)与点C(2,1)是对应点,∴平移的情况是:向右平移3个单位,向下平移1个单位,∵点B(﹣3,﹣2)的对应点D的横坐标为﹣3+3=0,纵坐标为﹣2﹣1=﹣3,即D的坐标为(2,﹣3).故答案为:(0,﹣3)三、解答题17.计算:|1﹣|+(﹣2)2.【考点】实数的运算.【分析】原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果.【解答】解:原式=﹣1+4=+3.18.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×4+②得:11x=22,即x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②×2得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.19.解下列不等式(组),并把它们的解集表示在数轴上.(1)x﹣3(x﹣2)≥4(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解(1)去括号,得:x﹣3x+6≥4,移项,得:x﹣3x≥4﹣6,合并同类项,得:﹣2x≥﹣2,系数化为1,得:x≤1.将解集表示在数轴上如下:(2)解不等式x﹣5<1+2x,得:x>﹣6,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为x≥2,将不等式解集表示在数轴上如下:20.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?【考点】二元一次方程组的应用.【分析】设甲、乙两个旅游团个有x人、y人,根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程组,再解即可.【解答】解:设甲、乙两个旅游团各有x人、y人,由题意得:,解得,答:甲、乙两个旅游团各有35人、20人.21.已知(3a+b﹣4)2+|a﹣2b+1|=0,求3a﹣2b的值.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据完全平方式恒大于等于0,绝对值也恒大于等于0,且两者相加等于0,得到两个加数同时为0,得到关于a与b的方程组,求出方程组的解求出a与b的值,然后把a与b 的值代入所求的式子中,化简可得值.【解答】解:∵(3a+b﹣4)2≥0,|a﹣2b+1|≥0.依题意得,解得:,∴3a﹣2b=3×1﹣2×1=1.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?【考点】一元一次不等式的应用.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x 道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.23.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.【考点】平行线的性质.【分析】先过点D作DG∥b,根据平行线的性质求得∠CDG和∠GDE的度数,再相加即可求得∠CDE的度数.【解答】解:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.【解答】解(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).25.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x 台,电压锅y 台,根据图表中的数据列出关于x 、y 的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.2017年3月3日。

2017-2018七年级数学下册期末试卷(有答案)(1).docx

2017-2018七年级数学下册期末试卷(有答案)(1).docx

七年级(下)期末数学试卷一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.的平方根是()A.2 B.± 2 C.D.±3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 17.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成组.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=,◆ =.13.若x﹣y|+=0,则 xy 1的值为.|+14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为(只填序号)三、(本大题共两小题,每小题8 分,共 16 分)22﹣|﹣2)15.化简:()+ ﹣( +|16.解不等式组,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.18.如,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并明理由.五、(本大共两小,每小10 分,共 20 分)19.根据要求,解答下列(1)解下列方程(直接写出方程的解即可)①的解②的解③的解(2)以上每个方程的解中,x 与 y 的大小关系.(3)你构造一个具有以上外形特征的方程,并直接写出它的解.20.操作与探究:(1)数上的点 P 行如下操作:先把点P 表示的数乘以,再把所得数的点向右平移1 个位,得到点 P 的点 P′.点 A,B 在数上,段 AB 上的每个点行上述操作后得到段A′B,′其中点 A,B 的点分 A′, B′.如 1,若点 A 表示的数是 3,点 A′表示的数是;若点B′表示的数是 2,点 B 表示的数是;已知段AB上的点E上述操作后得到的点E′与点 E 重合,点 E 表示的数是.(2)如 2,在平面直角坐系xOy 中,正方形ABCD及其内部的每个点行如下操作:把每个点的横、坐都乘以同一个数 a,将得到的点先向右平移 m 个位,再向上平移 n 个位( m>0,n >0),得到正方形A′B′C及′其D′内部的点,其中点A,B 的点分A′,B′.已知正方形ABCD内部的一个点 F 上述操作后得到的点 F′与点 F 重合,求点 F 的坐.六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生6000 人,请你估计“活动时间不小于4 天”的大约有多少人?22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案与试题解析一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】 D1:点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P 在平面直角坐标系的第一象限.故选: A.2.的平方根是()A.2 B.± 2 C.D.±【考点】 22:算术平方根; 21:平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选 D.3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】 V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解: A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选: D.4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.【考点】 26:无理数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解: 3.1415926 是有理数,是有理数,π是无理数,=6 是有理数.故选 C.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°【考点】 JA:平行线的性质; KN:直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠ A=35°,然后利用平行线的性质得到∠1=∠ B=35°.【解答】解:如图,∵ BC⊥ AE,∴∠ ACB=90°.∴∠ A+∠B=90°.又∵∠ B=55°,∴∠ A=35°.又CD∥AB,∴∠1=∠A=35°.6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 1【考点】 92:二元一次方程的解.【分析】把 x 与 y 的值代入方程计算即可求出k 的值.【解答】解:把代入方程得: 2k﹣ 1=3,解得: k=2,故选 A7.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.【考点】 C6:解一元一次不等式; C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:移项,得: 2x﹣x≥﹣ 1,合并同类项,得: x≥﹣1,故选: A.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()A.6 B. 8 C.10D.12【考点】 Q2:平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为8 个单位的△ ABC沿边 BC向右平移 1 个单位得到△ DEF,又∵ AB+BC+AC=8,8∴四边形 ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.故选: C.9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.【考点】 99:由实际问题抽象出二元一次方程组.【分析】设男生有x 人,女生有 y 人,根据男女生人数为20,共种了 52 棵树苗,列出方程组成方程组即可.【解答】解:设男生有x 人,女生有 y 人,根据题意得,.故选: D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1【考点】 CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 a 的取值范围.【解答】解:,由①得, x≥﹣ a,由②得, x<1,∵不等式组无解,∴﹣ a≥ 1,解得: a≤﹣ 1.故选: D.二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成 6 组.【考点】 V7:频数(率)分布表.【分析】根据组数 =(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:∵在样本数据中最大值与最小值的差为40﹣19=21,又∵组距为 4,∴组数 =21÷4=5.25,∴应该分成 6 组.故答案为: 6.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=17,◆ =9.【考点】 98:解二元一次方程组.【分析】根据二元一次方程组的解法即可求答案.【解答】解:将x=4 代入 3x﹣y=3∴12﹣y=3∴y=9将x=4,y=9 代入 2x+y∴2x+y=8+9=17故答案为: 17;913.若 | x﹣y|+=0,则 xy+1 的值为5.【考点】 23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】依据非负数的性质可求得x、 y 的值,然后代入计算即可.【解答】解:∵|x﹣ y=0,|+∴x﹣y=0,y﹣2=0,解得: x=2,y=2.∴x y+1=4+1=5.故答案为: 5.14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为①②④(只填序号)【考点】 O1:命题与定理.【分析】①根据新定义的运算法则,可计算出A⊕ B=(3,1),A?B=0;②设 C(x3,y3),根据新定义得 A⊕B=(x1+x2,y1+y2),B⊕C=( x2+x3, y2+y3),则x1+x2=x2+x3, y1+y2 =y2+y3,于是得到 x1=x3,y1=y3,然后根据新定义即可得到 A=C;③由于 A⊙B=x1x2+y1y2, B⊙C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1=y3,所以 A ≠C;④根据新定义的运算法则,可得(A⊕ B)⊕ C=A⊕( B⊕ C)=( x1+x2+x3,y1+y2+y3).【解答】解:①∵ A( 1, 2),B(2,﹣ 1),∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣ 1),即 A⊕ B=(3,1),A⊙B=0,故①正确;②设 C(x3,y3),则 A⊕B=( x1+x2, y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕ B=B⊕C,所以 x1+x2=x2+x3,y1+y2 =y2+y3,则 x1=x3,y1=y3,所以 A=C,故②正确;③A⊙B=x1x2+y1y2, B⊙ C=x2x3+y2y3,而A⊙ B=B⊙C,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1 =y3,所以 A≠C,故③不正确;④因为( A⊕B)⊕ C=(x1+x2 +x3,y1+y2+y3),A⊕( B⊕ C) =( x1+x2+x3,y1+y2+y3),所以( A⊕B)⊕ C=A⊕( B⊕C),故④正确.综上所述,正确的命题为①②④.故答案为:①②④.三、(本大题共两小题,每小题8 分,共 16 分).化:()2+ ( 2+|2| )15【考点】 2C:数的运算.【分析】原式利用乘方的意,的代数意化,算即可得到果.【解答】解:原式 = +2+2=1 2.16.解不等式,把不等式的解集在数上表示出来,并求出不等式的整数解的和.【考点】 CB:解一元一次不等式;C4:在数上表示不等式的解集.【分析】先求出不等式的解集,在数上表示不等式的解集,求出整数解,即可得出答案.【解答】解:∵解不等式①得:x≤1,解不等式②,得x> 1,∴原不等式的解集是:1< x≤ 1,其解集在数上表示如所示:,∴不等式的整数解有1,0,1,2,∴原不等式的所有整数解的和是1+0+1+2=2.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.【考点】 22:算平方根.【分析】(1)根据前面的等式得出律解答即可;(2)利用数字之化:22+1=5,32+1=10,⋯而得出律求出即可.【解答】解:(1)①;②;③;④,所以第⑤个等式应为,故答案为:;(2)用含自然数 n(n>1)的式子表达以上各式所反映的规律为:.18.如图,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并说明理由.【考点】 JB:平行线的判定与性质.【分析】首先根据平行线的性质得到∠1=∠ 3,再根据等量关系得到∠3=∠ 2,再根据平行线的判定得到 DE∥FG,从而得到 DE与 FG的位置关系.【解答】解: DE 与 FG是平行的,理由如下:∵AC∥FG,∴∠ 1=∠3.又∵∠ 1=∠ 2,∴∠ 3=∠2.∴DE∥FG.五、(本大题共两小题,每小题10 分,共 20 分)19.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】 97:二元一次方程组的解.【分析】( 1)观察方程组发现第一个方程的x 系数与第二个方程y 系数相等, y 系数与第二个方程 x 系数相等,分别求出解即可;(2)根据每个方程组的解,得到x 与 y 的关系;(3)根据得出的规律写出方程组,并写出解即可.【解答】解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y20.操作与探究:(1)对数轴上的点 P 进行如下操作:先把点P 表示的数乘以,再把所得数对应的点向右平移1 个单位,得到点 P 的对应点 P′.点 A,B 在数轴上,对线段 AB 上的每个点进行上述操作后得到线段A′B,′其中点 A,B 的对应点分别为 A′,B′.如图 1,若点 A 表示的数是﹣ 3,则点 A′表示的数是0;若点B′表示的数是2,则点 B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E′与点 E 重合,则点 E 表示的数是.(2)如图 2,在平面直角坐标系xOy 中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数 a,将得到的点先向右平移 m 个单位,再向上平移 n 个单位( m>0,n> 0),得到正方形 A′B′C及′其D′内部的点,其中点 A,B 的对应点分别为 A′,B′.已知正方形 ABCD内部的一个点 F 经过上述操作后得到的对应点 F′与点 F 重合,求点 F 的坐标.【考点】 Q3:坐标与图形变化﹣平移;13:数轴; LE:正方形的性质; Q2:平移的性质.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点 B 表示的数为 a,根据题意列出方程求解即可得到点 B 表示的数,设点 E 表示的数为 b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点 F的坐标为( x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点 A′:﹣ 3×+1=﹣1+1=0,设点 B 表示的数为 a,则a+1=2,解得 a=3,设点 E 表示的数为 b,则b+1=b,解得 b= ;故答案为: 0,3,;(2)根据题意得,,解得,设点 F 的坐标为( x,y),∵对应点 F′与点 F 重合,∴x+ =x, y+2=y,解得 x=1,y=4,所以,点 F的坐标为( 1,4).六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生 6000 人,请你估计“活动时间不小于 4 天”的大约有多少人?【考点】 V8:频数(率)分布直方图; V5:用样本估计总体; VB:扇形统计图.【分析】(1)根据扇形统计图各部分所占百分比之和为1 解答;(2)活动时问为 5 天、 7 天的学生人数,用总人数乘以百分比即可;(3)用 360°乘以活动时间为 4 天的百分比即可;(4)用样本估计总体,即可计算.【解答】解:(1)a=1﹣( 10%+15%+30%+15%+5%) =25%,七年级学生总数: 20÷10%=200(人).(2)活动时问为 5 天的学生数: 200×25%=50(人);活动时问为 7 天的学生数: 200×5%=10(人);补全频数分布直方图如图所示.(3)活动时间为 4 天的扇形所对的圆心角的度数是360°× 30%=108°.(4)该市七年级学生活动时间不小于 4 天的人数是 6000×(30%+25%+15%+5%) =4500(人).22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可以得到相应的二元一次方程,从而可以求得一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)根据题意可以列出相应的关系式,从而可以求得有几种方案.【解答】解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,,解得.即一辆大型渣土运输车一次运输8 吨,一辆小型渣土运输车一次运输 5 吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、 y 辆,,解得或或,故有三种派车方案,第一种方案:大型运输车18 辆,小型运输车 2 辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接 PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】 JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠ CFE 互补,所以易证AB∥CD;(2)利用( 1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即 EG⊥PF,故结合已知条件GH⊥EG,易证 PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠ 3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠ HPQ的大小不变,是定值45°.【解答】解:(1)如图 1,∵∠ 1 与∠ 2 互补,∴∠ 1+∠2=180°.又∵∠ 1=∠ AEF,∠ 2=∠ CFE,∴∠ AEF+∠ CFE=180°,∴AB∥CD;(2)如图 2,由( 1)知, AB∥CD,∴∠ BEF+∠ EFD=180°.又∵∠ BEF与∠ EFD的角平分线交于点P,∴∠ FEP+∠ EFP= (∠ BEF+∠ EFD)=90°,∴∠ EPF=90°,即 EG⊥ PF.∵GH⊥EG,∴PF∥GH;(3)∠ HPQ的大小不发生变化,理由如下:如图 3,∵∠ 1=∠2,∴∠ 3=2∠2.又∵ GH⊥ EG,∴∠ 4=90°﹣∠ 3=90°﹣ 2∠ 2.∴∠ EPK=180°﹣∠ 4=90°+2∠2.∵PQ 平分∠ EPK,∴∠ QPK= ∠EPK=45°+∠2.∴∠ HPQ=∠QPK﹣∠ 2=45°,∴∠ HPQ的大小不发生变化,一直是45°.20。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷一、选择题(每小题3分,共24分)
1.
1
16
的算术平方根为()
A.±4 B.±1
4
C.
1
4
D.﹣
1
4
2.点A(4,﹣3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在﹣1,π,2,3.14,﹣81中,无理数的个数是() A.1个 B.2个 C.3个 D.4个
4.若5x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()
A.0 B.1 C.2 D.3
5.下面的调查中,不适合抽样调查的是()
A.一批炮弹的杀伤力的情况
B.了解一批灯泡的使用寿命
C.全面人口普查
D.全市学生每天参加体育锻炼的时间
6.如图,直线l
1,l
2
,l
3
交于一点,直线l
4
∥l
1
,若∠1=36°,∠2=56°,则∠3的度数
为()
A.92° B.88° C.56° D.36°
7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A
1B
1
,则a+b的值为()
A.2 B.3 C.4 D.5
8.小亮解方程组,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()
二、填空题(每小题3分,共24分)
9.=0,则xy= .
10.已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.
11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= °.
12.已知关于x的不等式组的整数解共有5个,则a的取值范围是.13.如图,已知a∥b,∠1=36°,则∠2= .
14.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为.
15.已知a,b为两个连续整数,且,则a+b= .
16.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是.
三、解答题(8小题,共72分)
17.计算:5+|﹣1|﹣.
18.解不等式组:并写出它的所有整数解.
19.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.
20.(9分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠ C.
解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)
∴(同角的补角相等)①
∴(内错角相等,两直线平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
∴(等量代换)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦
21.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,
﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A
1B
1
C
1

(1)在图中画出△A
1B
1
C
1

(2)点A
1,B
1
,C
1
的坐标分别为、、;
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.
22.(10分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?
23.(10分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
24.(12分)“端午节”是中华民族古老的传统节日.甲、乙两家超市在“端午节”当天对一种原来售价相同的粽子分别推出了不同的优惠方案.
甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;
乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.
设某位顾客购买了x元的该种粽子.
(1)补充表格,填写在“横线”上:
x
(单位:元)实际在甲超市的花

(单位:元)
实际在乙超市的花

(单位:元)
0<x≤200x x
200<x≤300x
x>300
(2)列式计算说明,如果顾客在“端午节”当天购买该种粽子超过200元,那么到哪家超市花费更少?
2017-2018学年湖北省黄冈市黄梅县七年级(下)期末数学试卷
参考答案
一、选择题(每小题3分,共24分)
1-2:CDBAC 6-8:AAD
二、填空题(每小题3分,共24分)
9.1.
10.
11.42.
12.﹣3<a≤﹣2.
13.36°.
14.140°.
15.7.
16.28.
三、解答题(8小题,共72分)
17.解:原式=5+1﹣2+3﹣1=6.
18.解:,
解不等式①,得,
解不等式②,得x<2,
∴原不等式组的解集为,
它的所有整数解为0,1.
19.解:∵AB∥CD,∠1=50°,
∴∠CFE=∠1=50°.
∵∠CFE+∠EFD=180°,
∴∠EFD=180°﹣∠CEF=130°.
∵FG平分∠EFD,
∴∠DFG=∠EFD=65°.
∵AB∥CD,
∴∠BGF+∠DFG=180°,
∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.
20.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)
∴∠EFD=∠2(同角的补角相等)①
∴AB∥EF(内错角相等,两直线平行)②
∴∠ADE=∠3(两直线平行,内错角相等)③
∵∠3=∠B(已知)④
∴∠ADE=∠B(等量代换)⑤
∴DE∥BC(同位角相等,两直线平行)⑥
∴∠AED=∠C(两直线平行,同位角相等)⑦.
故答案为:∠EFD=∠2;AB∥EF;两直线平行,内错角相等;已知;∠ADE=∠B;同位角相等,两直线平行;两直线平行,同位角相等.
21.解:(1)如图所示:
(2)由图可得:A
1(0,4)、B
1
(﹣1,1);C
1
(3,1),
故答案为:(0,4)、(﹣1,1)、(3,1);
(3)设P(0,y),再根据三角形的面积公式得:
S
△PBC
=×4×|h|=6,解得|h|=3,
求出y的值为(0,1)或(0,﹣5).
22.解:设甲、乙两个旅游团各有x人、y人,由题意得:

解得,
答:甲、乙两个旅游团各有35人、20人.
23.解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,
故本次调查中,一共调查了:70÷35%=200人,
故答案为:200;
(2)根据科普类所占百分比为:30%,
则科普类人数为:n=200×30%=60人,
m=200﹣70﹣30﹣60=40人,
故m=40,n=60;
故答案为:40,60;
(3)艺术类读物所在扇形的圆心角是:×360°=72°,
故答案为:72;
(4)由题意,得(册).
答:学校购买其他类读物900册比较合理.
24.解:(1)200+(x﹣200)×95%=10+0.95x;200+(x﹣200)×95%=10+0.95x;
300+(x﹣300)×90%=30+0.9x.
填表如下:
x
(单位:元)实际在甲超市的花

(单位:元)
实际在乙超市的花

(单位:元)
0<x≤200x x
200<x≤30010+0.95x x x>30010+0.95x30+0.9x (2)200+(x﹣200)×95%=300+(x﹣300)×90%,解得 x=400.
当200<x<400 时,顾客到甲超市花费更少.
当x=400时,顾客到甲、乙超市的花费相同.
当x>400时,顾客到乙超市花费更少.
故答案为:10+0.95x;10+0.95x;30+0.9x.。

相关文档
最新文档