最新七年级下册数学期末考试试题(含答案)

合集下载

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。

()2. 一个数既是偶数又是奇数。

()3. 任何两个数的和都是正数。

()4. 任何两个数的差都是负数。

()5. 任何两个数的积都是正数。

()三、填空题(每题1分,共5分)1. 5的平方根是______。

2. 下列数中,最大的是______(2,3,0,5)。

3. 两个相邻的自然数之和是______。

4. 下列数中,最小的数是______(3,4,2,1)。

5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。

四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。

2. 请简述什么是绝对值。

3. 请简述什么是分数。

4. 请简述什么是比例。

5. 请简述什么是方程。

五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。

2. 若一个数的三分之一是4,求这个数。

3. 若一个数的二分之一是5,求这个数。

4. 若一个数的四分之一是3,求这个数。

5. 若一个数的五分之一是2,求这个数。

六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。

2. 请分析什么是反比例函数,并举例说明。

七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。

2. 请用尺规作一个半径为3cm的圆。

八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。

门票设个人票和团队票两大类。

个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。

1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。

3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

新人教版七年级数学下册期末考试题【含答案】

新人教版七年级数学下册期末考试题【含答案】

新人教版七年级数学下册期末考试题【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一5的绝对值是( )A .5B .15C .15-D .-55.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、A5、B6、B7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、-74、15、16、48三、解答题(本大题共6小题,共72分)1、3x .2、3 53、(1)(4,-2);(2)作图略,(3)6.4、60°5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。

新人教版七年级数学下册期末考试(含答案)

新人教版七年级数学下册期末考试(含答案)

新人教版七年级数学下册期末考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.下列图形具有稳定性的是( )A .B .C .D .5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+27.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④ 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.2的相反数是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x y x y --=⎧⎨-=⎩2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天. (1)若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?(3)学校需要每天支付甲修理组、乙修理组修理费分别为80元,120元.任务完成后,两修理组收到的总费用为1920元,求甲修理组修理了几天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、D7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、0.4、205、﹣2.6、7三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、50°.4、36平方米5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)需8天可以修好这些套桌椅;(2)甲修理组离开6天;(3)甲修理组修理了6天.。

2023-2024学年重庆市渝北区七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝北区七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝北区七年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案。

其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)下列实数中为无理数的是()A.B.0.13C.D.2.(4分)已知a<b,下面四个不等式中不正确的是()A.3a<3b B.a+3<b+3C.﹣3a<﹣3b D.a﹣3<b﹣33.(4分)在平面直角坐标系中,点A(2,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,能判定AB∥DC的是()A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠D+∠BCD=180°5.(4分)下列命题是真命题的是()A.垂直于同一条直线的两直线垂直B.相等的角是对顶角C.过直线外一点,有且只有一条直线与已知直线平行D.内错角相等6.(4分)如图,已知点O在直线MN上,OA平分∠PON,OB平分∠POM,则∠AOB的度数为()A.90°B.60°C.45°D.无法确定7.(4分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)一副三角板按如图放置,其中∠CAB=∠DAE=90°,∠B=45°,∠D=30°,若∠CAD=155°,则∠1的度数是()A.20°B.25°C.35°D.45°9.(4分)某车间有18名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓40只或螺母100只,要求一个螺栓配两个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?设分配x人生产螺栓,y人生产螺母,则下列方程组正确的是()A.B.C.D.10.(4分)若关于x的方程4(2﹣x)+x=ax的解为正整数,且关于y的不等式组有解,则满足条件的所有整数a的值之积是()A.0B.2C.﹣2D.﹣3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。

2023-2024学年海南省海口市七年级(下)期末数学试卷及答案解析

2023-2024学年海南省海口市七年级(下)期末数学试卷及答案解析

2023-2024学年海南省海口市七年级(下)期末数学试卷一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)若5﹣2(x﹣1)=1,则x等于()A.﹣4B.4C.﹣3D.32.(3分)若a>﹣b,则下列不等式一定成立的是()A.a+b<0B.1﹣a<1+b C.D.﹣2+b<﹣2﹣a3.(3分)当代数式4x+2的值小于代数式x﹣4的值时,x的取值范围是()A.x<﹣2B.x>﹣2C.x>2D.x<24.(3分)已知y=kx+3,当x=﹣4时,y=1,则k的值为()A.﹣1B.1C.﹣D.5.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.86.(3分)下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(3分)一副三角板按图所示方式叠放,若AE∥BC,则∠α等于()A.75°B.95°C.105°D.115°8.(3分)如图,在△ABC中,CD⊥AB于点D、E是CD上一点,若△BDE≌△CDA,AB=14,AC=10,则△BDE的周长为()A.22B.23C.24D.269.(3分)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A .108°B .120°C .126°D .132°10.(3分)如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A '处,连接A ′C ,则∠BA 'C 等于()A .45°B .57.5°C .60°D .67.5°11.(3分)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 的对应点D 恰好落在边BC 上,点C 的对应点为点E ,连接EC .下列结论一定正确的是()A .AB =BD B .∠B =∠ECAC .AC =DED .EC ⊥BC12.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .二、填空题(每小题3分,共12分)13.(3分)由,得到用x表示y的式子为y=.14.(3分)已知x、y满足方程组,则x﹣y的值为.15.(3分)如图,△ABC是等边三角形,点D、E、F分别在AB、BC、AC上,若∠1=∠2,∠DFE=80°,则∠EDF=度.16.(3分)利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图所示,则桌子的高度是cm.三、解答题(共72分)17.(18分)(1)解方程:;(2)解方程组:;(3)求不等式组的所有整数解.18.(9分)若关于x、y的二元一次方程组的解满足4x+y=15,求k的值.19.(10分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).20.(9分)如图,在△ABC中,∠B=45°,点D、E是BC边上两点,∠BAD=∠BDA,∠EAC=∠C,AE⊥AB于点A.求∠DAE、∠DAC和∠BAC的度数.21.(12分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC和△A1B1C1的顶点均在格点上,且△ABC≌△A1B1C1.(1)画出△ABC关于直线x对称的△A2B2C2;(2)画出△A3B3C3,使△A3B3C3和△ABC关于点O成中心对称;(3)△A2B2C2与△A3B3C3是否对称?若对称,请在图中画出对称轴或对称中心;(4)写出一种由△ABC经过轴对称、平移和旋转变换得到△A1B1C1的过程.22.(14分)在△ABC中,AB>AC,AD平分∠BAC,点P是直线BC上的一点,PE⊥AD于点E,交直线AB于点F,交直线AC于点G.设∠ABC=x,∠ACB=y.(1)如图1,当点P在线段BC的延长线上时,①若∠ABC=38°,∠ACB=82°,求∠PFA、∠BPF和∠AGP的度数;②求∠BPF和∠AGP的度数(用含有x、y的代数式表示);(2)如图2,如图3,当点P分别在线段DC和BD上时,判断(1)②中的结论是否成立,若不成立请写出正确的结论.2023-2024学年海南省海口市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.【分析】根据解一元一次方程的步骤解答即可.【解答】解:5﹣2(x﹣1)=1,去括号得:5﹣2x+2=1,移项得:﹣2x=1﹣5﹣2,合并同类项得:﹣2x=﹣6,系数化为1得:x=3.故选:D.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.2.【分析】根据不等式的性质结合特值法逐项判断即可.【解答】解:由a>﹣b得:A.不妨设a=2,b=﹣1,则a+b>0,故本选项不合题意;B.﹣a<b,∴1﹣a<1+b,故本选项符合题意;C.,故本选项不合题意;D.b>﹣a,∴﹣2+b>﹣2﹣a,故本选项不合题意;故选:B.【点评】本题考查了不等式的性质,熟记不等式的基本性质是解答本题的关键.3.【分析】根据题意列出不等式解答即可.【解答】解:根据题意,得4x+2<x﹣4,移项、合并同类项,得3x<﹣6,系数化为1,得x<﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.4.【分析】把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,然后进行计算即可解答.【解答】解:把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,4k=3﹣1,4k=2,k=,故选:D.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.5.【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.【点评】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.7.【分析】根据平行线的性质定理及三角形外角性质求解即可.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠α=∠EDC+∠C,∠C=30°,∴∠α=75°,故选:A.【点评】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.8.【分析】由全等三角形的性质可得DE=DA,BE=CA,即可得△BDE的周长BD+DE+BE=BD+DA+CA =BA+CA,即可求解.【解答】解:∵△BDE≌△CDA,∴DE=DA,BE=CA,∴△BDE的周长BD+DE+BE=BD+DA+CA=BA+CA,∵AB=14,AC=10,∴△BDE的周长为BA+CA=14+10=24.故选:C.【点评】本题主要考查全等三角形的性质,掌握全等三角形的性质是解题的关键.9.【分析】利用多边形内角和及正多边形性质易得∠ABC=108°,AB=BC,再由等边三角形性质可得∠AFB=∠ABF=60°,AB=BF,那么∠CBF=48°,BF=BC,再利用等边对等角及三角形内角和定理求得∠BFC的度数,最后利用角的和差即可求得答案.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=(5﹣2)×180°÷5=108°,AB=BC,∵△ABF为等边三角形,∴∠AFB=∠ABF=60°,AB=BF,∴∠CBF=∠ABC﹣∠ABF=108°﹣60°=48°,BF=BC,∴∠BFC=∠BCF=(180°﹣48°)÷2=66°,∴∠AFC=∠AFB+∠BFC=60°+66°=126°,故选:C.【点评】本题主要考查多边形内角和及正多边形的性质,由题意求得BF=BC,从而求得∠BFC的度数是解题的关键.10.【分析】由正方形的性质和折叠的性质可得AB=BC=BA',∠DBC=45°,即可求解.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠DBC=45°,∵将正方形ABCD沿BE对折,使点A落在对角线BD上的A'处,∴AB=A'B,∴A'B=BC,∴∠BA'C=∠BCA'=67.5°,故选:D.【点评】本题考查了正方形的性质,折叠的性质,等腰三角形的性质,证明A'B=BC是解题的关键.11.【分析】根据旋转性质逐项分析判断即可.【解答】解:A、若AB=BD,则△ABD为等边三角形,旋转角必须为60°,没有这个条件,故原说法错误,不符合题意;B、根据旋转性质,∠BAD=∠CAE,AB=AD,AC=AE,故∠B=∠ECA正确,符合题意;C、若AC=DE,则DE=AE,就有AC=BC,而题目没有这个条件,故原说法错误,不符合题意;D、若EC⊥BC,则∠ACE+∠ACB=90°,继而∠B+∠ACB=90°,而题目中没有说△ABC是直角三角形,故原说法错误,不符合题意.故选:B.【点评】本题考查了旋转的性质,掌握旋转的性质是本题的关键.12.【分析】根据如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50,可以列出相应的方程组.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.二、填空题(每小题3分,共12分)13.【分析】先移项,把y的系数化为1,即可求解.【解答】解:,﹣=3﹣x,y=﹣6+2x,故答案为:﹣6+2x.【点评】本题考查了二元一次方程中的化简移项,关键在于移项时的变号问题.14.【分析】一般解法是求得方程组的解,把x,y的值代入到代数式求值,但观察方程组未知数的系数特点,把两方程分别看作整体,直接相减,即可求得x﹣y的值.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.【点评】此题考查解二元一次方程组,注意此题的简便方法.15.【分析】由等边三角形的性质得出∠B=60°,再根据三角形外角的性质得出∠DEF+∠2=∠B+∠1,结合已知∠1=∠2,得出∠DEF=∠B=60°,最后根据三角形内角和定理即可求出∠EDF的度数.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵∠DEC是△DBE的外角,∴∠DEC=∠B+∠1,即∠DEF+∠2=∠B+∠1,∵∠1=∠2,∴∠DEF=∠B=60°,∵∠DFE=80°,∴∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣60°﹣80°=40°,故答案为:40.【点评】本题考查了等边三角形的性质,三角形外角的性质,三角形内角和定理,熟练掌握这些知识点是解题的关键.16.【分析】设桌子的高度是x cm,长方体木块截面的长比宽多y cm,观察图形,根据各边之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设桌子的高度是x cm,长方体木块截面的长比宽多y cm,依题意得:,解得:,∴桌子的高度是75cm.故答案为:75.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题(共72分)17.【分析】(1)按照解一次方程的步骤解答即可;(2)利用加减消元法解方程组即可;(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,即可确定出整数解.【解答】解:(1),4(2x+3)﹣3(4x﹣3)=24,8x+12﹣12x+9=24,﹣4x=3,x=﹣;(2),整理得,②﹣①得:4y=8,解得y=8,把y=8代入①得:2x﹣8=3,解得x=,∴;(3),解不等式①,得x<2.解不等式②,得x>﹣4.∴该不等式组的解集是:﹣4<x<2.∴所有整数解为:﹣3,﹣2,﹣1,0,1.【点评】本题考查了一元一次不等式的整数解、解一元一次方程、二元一次方程组的解,熟练掌握各自的解法是解本题的关键.18.【分析】②+①×12得出5x+2y=0,求出关于x、y的方程组,再代入求出k即可.【解答】解:,②+①×12得,5x+2y=0,∴,解得,代入①得,20﹣25=k,∴k=﹣5.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能求出x、y的值是解此题的关键.19.【分析】设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据小明的爸爸和妈妈的对话找到等量关系列出方程组求解即可.【解答】解:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤),答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【点评】本题考查了二元一次方程组的应用,解题的关键是根据题目找到等量关系并列出方程组.20.【分析】利用三角形的内角和定理先求出∠AEB,再求出∠C,再利用角的和差关系、三角形的外角与内角和的关系求出∠DAE、∠DAC和∠BAC的度数.【解答】解:∵AE⊥AB,∴∠BAE=90°.∵∠B=45°,∴∠AEB=45°.∵∠EAC=∠C,∠AEB=∠EAC+∠C,∴∠EAC=∠C=22.5°.∴∠BAC=∠BAE+∠EAC=90°+22.5°=112.5°.∵∠BAD=∠BDA,∠B=45°,∴∠BAD=∠BDA=67.5°.∴∠DAC=∠BAC﹣∠BAD=112.5°﹣67.5°=45°,∠DAE=∠BAE﹣∠BAD=90°﹣67.5°=22.5°.【点评】本题主要考查了三角形的内角和,掌握三角形的内角和定理及推论、角的和差关系等知识点是解决本题的关键.21.【分析】(1)分别作出三个顶点关于直线x的对称点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点O的对称点,再首尾顺次连接即可;(3)由图形可得其对称轴;(4)结合图形,对照平移变换、轴对称变换和旋转变换的概念求解即可.【解答】解:(1)如图所示:(2)如图所示:(3)△A2B2C2与△A3B3C3是轴对称,对称轴如图所示:(4)将△ABC以点B为旋转中心,逆时针旋转90°后,再向右平移6个单位得到△△A1B1C1.【点评】本题主要考查作图—平移变换、轴对称变换和旋转变换,解题的关键是掌握平移变换、轴对称变换和旋转变换的定义和性质.22.【分析】(1)①先求出∠BAC=60°,根据AD平分∠BAC得∠BAD=30°,再根据PF⊥AD,得∠AEF=90°,则∠PFA=60°,进而得∠BFP=120°,由此可得∠BPF的度数;然后根据∠BAC=60°,∠PFA=60°可得∠AGF=60°,由此可得∠AGP的度数;②先求出∠BAC=180°﹣x﹣y,根据AD平分∠BAC得∠BAD=∠CAD=90°﹣x﹣y,再根据PF⊥AD得∠AEF=90°,则∠PFA=x+y,证明∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再证明∠AGP=∠PFA+∠BAC,由此可得∠AGP的度数;(2)在图2中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD得∠AEG=90°,由此可得∠AGP的度数;在图3中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD可得∠AEG=90°,由此可得∠AGP的度数.【解答】解:(1)①∵∠ABC=38°,∠ACB=82°,∴∠BAC=180°﹣(∠ABC+∠ACB)=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∵PF⊥AD,∴∠AEF=90°,∴∠PFA=180°﹣(∠AEF+∠BAD)=180°﹣(90°+30°)=60°,∴∠BFP=180°﹣∠PFA=120°,∴∠BPF=180°﹣(∠BFP+∠ABC)=180°﹣(120°+38°)=22°,∵∠BAC=60°,∠PFA=60°,∴∠AGF=180°﹣(∠BAC+∠PFA)=60°,∴∠AGP=180°﹣∠AGF=120°,∴∠PFA=60°;∠BPF=22°;∠AGP=120°.②∵∠ABC=x,∠ACB=y,∴∠BAC=180°﹣(∠ABC+∠ACB)=180°﹣x﹣y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∵PF⊥AD,∴∠AEF=90°,∴∠AFE=90°﹣∠BAD=90°﹣(90°﹣x﹣y)=x+y,∵∠AFE+∠BFP=180°,∠BFP+∠ABC+∠BPF=180°,∴∠AFE=∠ABC+∠BPF即x+y=x+∠BPF,∴∠BPF=y﹣x,∵∠ACB=y,∴∠PCG=180°﹣∠ACB=180°﹣y,∴∠PGC=180°﹣(∠PCG+∠BPF)=180°﹣(180°﹣y+y﹣x)=y+x∴∠AGP=180°﹣∠PGC=180°﹣y﹣x,∴∠BPF=y﹣x;∠AGP=180°﹣y﹣x,(2)在图2中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x+y)=y+x;在图3中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x﹣y)=y+x.【点评】此题主要考查了三角形的内角和定理,角平分线的定义,角的计算,准确识图,熟练掌握三角形的内角和定理,角平分线的定义,角的计算是解决问题的关键。

2024年全新七年级数学下册期末试卷及答案(仁爱版)

2024年全新七年级数学下册期末试卷及答案(仁爱版)

2024年全新七年级数学下册期末试卷及答案(仁爱版)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 81D. 2432. 下列哪个数是负数?()A. 2B. 0C. 1/2D. 23. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()A. 16cmB. 18cmC. 20cmD. 22cm4. 若一个圆的半径是5cm,则这个圆的面积是()A. 25πcm²B. 50πcm²C. 100πcm²D. 200πcm²5. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则这个长方体的体积是()A. 24cm³B. 36cm³C. 48cm³D. 64cm³二、判断题(每题1分,共5分)1. 任何数的平方都是正数。

()2. 若两个数的和为正数,则这两个数中必有一个是正数。

()3. 一个等腰三角形的底边长等于腰长。

()4. 一个圆的直径等于半径的两倍。

()5. 一个长方体的体积等于长、宽、高的乘积。

()三、填空题(每题1分,共5分)1. 一个数的立方根是2,则这个数是______。

2. 若一个数的平方根是5,则这个数是______。

3. 若一个等腰三角形的底边长为10cm,腰长为6cm,则这个三角形的周长是______cm。

4. 若一个圆的半径是6cm,则这个圆的面积是______cm²。

5. 若一个长方体的长、宽、高分别为6cm、4cm、3cm,则这个长方体的体积是______cm³。

四、简答题(每题2分,共10分)1. 简述有理数的加法法则。

2. 简述等腰三角形的性质。

3. 简述圆的面积公式。

4. 简述长方体的体积公式。

5. 简述因式分解的概念。

五、应用题(每题2分,共10分)1. 若一个数的立方根是3,求这个数的平方根。

2. 若一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的面积。

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。

A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。

A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。

()2. 任何两个有理数相乘都是无理数。

()3. 一个等边三角形的三个角都是60度。

()4. 两个锐角之和一定大于90度。

()5. 任何两个等腰三角形的底角相等。

()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。

2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。

3. 下列哪一个数是无理数______。

4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。

5. 下列哪一个图形是矩形______。

四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。

2. 简述勾股定理及其应用。

3. 简述有理数的定义和性质。

4. 简述平行四边形的性质和判定。

5. 简述等边三角形的性质和判定。

五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。

2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。

新人教版七年级数学下册期末考试题(附答案)

新人教版七年级数学下册期末考试题(附答案)

新人教版七年级数学下册期末考试题(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如果23a b-=22()2a b aba a b+-⋅-的值为()A3B.23C.33D.37.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.因式分解:2218x -=______.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=k x的表达式; (2)求点B 的坐标;(3)求△OAP 的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、A6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、()()2a b a b++.3、2(x+3)(x﹣3).4、2m≤-5、±26、±3三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、﹣1≤x<2.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)20%;(2)6006、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版数学精品教学资料七年级数学下学期期末水平测试试卷题号 一二三四 五 总 分 11 12 13 14 15 16 17 18 19 20 21 22 得分一、单项选择题(共5个小题,每小题3分,满分15分)1.在平面直角坐标系中,点P (2,3)在 ( )A .第一象限B .第二象限C .第二象限D .第二象限 2.下列长度的三条线段能组成三角形的是( )A .1、2、3B .4、5、9C .20、15、8D .5、15、83.不等式32 x ≥5的解集在数轴上表示正确的是 ( )4. 将题图所示的图案通过平移后可以得到的图案是 ( )5. 下列调查中,适宜采用全面调查(普查)方式的是 ( )A .对全国中学生心理健康现状的调查B .对我国首架大型民用飞机零部件的检查C .对我市市民实施低碳生活情况的调查D .对市场上的冰淇淋质量的调查二、填空题(共5个小题,每小题3分,满分15分) 6. 十边形的外角和是_____________度.A .B .C .D .第4题图A B C D78. 如图,B 、A 、E 三点在同一直线上,请你添加一个条件,使AD //BC .你所添加的条件是______________(不允许添加任何辅助线).9. 若不等式组⎩⎨⎧>->024x ax 的解集21<<-x 是,则a = .10.线段AB 两端点的坐标分别为A (2,4),B (5,2),若将线段AB 平移,使得点B 的对应点为点C (3,-1).则平移后点A 的对应点的坐标为 . 三、解答题(每小题5分,共5个小题,满分25分) 11.(5分)解方程组:⎩⎨⎧-==+1422x y y x12.(5分)解方程组:⎩⎨⎧=--=+1923932y x y x13.(5分)解不等式312-x ≤643-x ,并把它的解集在数轴上表示出来.14.(5分)直线AB ,CD 相交于点O ,∠BOC =40º,(1)写出∠BOC 的邻补角;(2)求∠AOC ,∠AOD ,∠BOD 度数.15.(5分)某农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm ).对样本数据适当分组后,列出了如下频数分布表:(1)分组的组距是______________,组数是_____________;(2)估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比.四、解答题(共5个小题,每小题6分,满分30分)16.(5分)解不等式组⎪⎩⎪⎨⎧>--<+5)1(32)4(21x x x17.(6分)如图,已知∠1=∠2=∠3=62º,求∠4.18.(6分)已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向 右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每 个小方格边长均为1个单位长度) . (1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标.19.(6分)如图,在△ABC 中,CD 是∠ACB 的平分线,∠A=80º,∠B=40º,求∠BDC 的度数.20.(6分)某中学计划对本校七年级480名学生按“学科”、“文体”、“手工”三个项目安排课外兴趣小组,小明从所有学生中随机抽取50名学生进行问卷调查,并将统计结果制成如下的统计表和统计图.4132abDABC(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级学生参加“手工”的人数.五.解答题(共2个小题,满分15分)21.(7分)老师布置了一个探究活动:用天平和砝码测量壹元硬币和伍角硬币的质量.(注:同种类的每枚硬币质量相同).聪明的孔明同学经过探究得到以下记录:请你用所学的数学知识计算出一枚壹元硬币多少克,一枚伍角硬币多少克.22.(8分)如图,六边形ABCDEF 的内角都相等,∠DAB =60º. (1)证明:AB //DE ;(2)写出图中其它平行的线段(不要求证明).学科文体手工项目下学期初中期末水平测试试卷七年级数学参考答案与评分建议1. A ;2.C ;3.D ;4.A ;5.B.6.360;7.140;8.∠EAD=∠B 或∠DAC=∠C 或∠B+∠DAB=180°; 9.-1;10.(0,1).11.解:把②代入①得:2142=-+x x …………………………1分解得:21=x . ………………………………………………………3分把21=x 代入②得:11214=-⨯=y ………………………………4分∴方程组的解为⎪⎩⎪⎨⎧==121y x . …………………………………………………………5分12.解:①×2得:1864-=+y x ③……………………………………1分②×3得:5769=-y x ④ ………………………………………………2分 ③+④得:3913=x∴3=x ……………………………………………………………………3分 把3=x 代入①得:9332-=+⨯y ∴5-=y………………………………………………………………4分∴原方程组的解是⎩⎨⎧-==53y x………………………………………………5分13.解:原不等式可以化为22134()x x -≤- ……………………………1分即4324-≤-x x…………………………………………2分∴2-≤x……………………………………………………3分(数轴上表示正确得2分)14.解:(1)∠BOC 的邻补角是∠BOD 与∠AOC.……………2分(2)∵∠BOC=40°∴∠AOD=∠BOC=40° ………………………………………………3分∵∠BOC+∠AOC=180°∴∠AOC=180°-∠BOC=180°-40°=140°………………………4分 ∴∠BOD=∠AOC=140°. …………………………………………5分 ∴∠AOC 、∠AOD 、∠BOD 的度数分别为140°、40°、140°.15.解:(1)0.5cm ;6.……………………………………………2分(2)(12+13+10)÷50=70%.………………………………………4分答:估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比为70%.……………………………………………5分 16.解:由①得:0<x……………………………………………2分 由②得:1-<x………………………………………4分 ∴不等式组的解集为1-<x .………………………………………6分17.解:∵∠1=∠3∴a ∥b………………………2分 ∴∠5=∠2=62°…………………4分∴∠4=180°-∠5=180°-62°=118°……6分18.解:(1)(图略)………………………………………3分(2)A 1(4,-2),B 1(1,-4),C 1(2,-1). …………………6分 (每写对1个顶点坐标得1分)19.解:∵∠A+∠B+∠ACB=180°∴∠ACB=180°-∠A -∠B=180°-80°-40°=60° ……………2分∵CD 是∠ACB 的平分线 ∴0011603022ACD ACB ∠=∠=⨯= …………………………………4分∴∠BDC=∠ACD+∠A=30°+80°=110°………………………6分20.解:(1)统计表2分,统计图2分.兴趣小组 划 记频数 百分比 学科 文体 10 20% 手工1530% 合计5a b(2)480×30%=144(人)答:参加 “手工”的人数144人.…………………………………6分21.解:设一枚壹元硬币x 克,一枚伍角硬币y 克,……………1分依题意得:10152010154x yx y +=⎧⎨=+⎩……………………………………………4分解得:⎩⎨⎧==8.31.6y x…………………………………………………6分答:一枚壹元硬币6.1克,一枚伍角硬币3.8克. ………………………7分22.(1)证明:六边形的内角和为:00720180)26(=⨯-……………1分∵六边形ABCDEF 的内角都相等 ∴每个内角的度数为:720°÷6=120°……………………………2分又∵∠DAB =60°,四边形ABCD 的内角和为360°∴∠CDA =360°-∠DAB -∠B -∠C =360°-60°-120°-120°=60°……………………………………………………………………………4分∴∠EDA =120°-∠CDA =120°-60°=60° ∴∠EDA =∠DAB=60°……………………………………………5分∴AB DE //(内错角相等,两直线平行) ……………………………6分 (2)EF ∥BC ,AF ∥CD ,EF ∥AD ,BC ∥AD.……………………………8分(写出2对平行线得1分,写出4对平行线得2分)。

相关文档
最新文档