经AEC-Q101认证的瞬态抑制二极管
瞬态抑制二极管参数
1.5KE-瞬态抑制二极管型号
瞬态电压抑制二极管参数(TVS)资料Microsemi公司资料封装:DO-201
瞬态抑制二极管的选型
1、确定被保护电路的最大直流或连续工作电压、电路的额定标准电压和“高端”容限。
2、TVS额定反向关断VWM应大于或等于被保护电路的最大工作电压。
若选用的VWM太低,器件可
能进入雪崩或因反向漏电流太大影响电路的正常工作。
串行连接分电压,并行连接分电流。
3、TVS的最大箝位电压VC应小于被保护电路的损坏电压。
4、在规定的脉冲持续时间内,TVS的最大峰值脉冲功耗PM必须大于被保护电路内可能出现的峰值脉
冲功率。
在确定最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。
5、对于数据接口电路的保护,还必须注意选取具有合适电容C的TVS器件。
6、根据用途选用TVS的极性及封装结构。
交流电路选用双极性TVS较为合理;多线保护选用TVS阵
列更为有利。
7、温度考虑。
瞬态电压抑制器可以在-55~+150℃之间工作。
如果需要TVS在一个变化的温度工作,
由于其反向漏电流ID是随增加而增大;功耗随TVS结温增加而下降,从+25℃到+175℃,大约线性下降50%雨击穿电压VBR随温度的增加按一定的系数增加。
因此,必须查阅有关产品资料,考虑温度变化对其特性的影响。
P6KE TVS瞬态抑制二极管型号
工作温度范围-55-175℃功率消耗- 最低600W
TVS瞬态电压抑制二极管原理
TVS瞬态抑制二极管封装。
瞬态抑制二极管1.5KE型号参数规格书大全
Axial Lead Transient Voltage Suppressors (TVS)The 1.5KE series is designedspecifically to protect sensitive electronicequipment from voltage transients induced by lightning and other transientvoltage events.Uni-directional Bi-directionalu Glass passivated chip junction in DO-201 Packageu Low leakageu Uni and Bidirectional unitu Excellent clamping capabilityu1500W Peak power capability at 10 × 1000µs waveform Repetitionrate (duty cycle):0.01%u Fast response time: typically less than 1.0ps from 0 Volts to V BR minu Typical I R less than 5μA above 12V.u High Temperature soldering: 260°C/40 seconds at terminalsu Typical maximum temperature coefficient ΔV BR = 0.1% ×V BR@25°C×ΔTu Plastic package has Underwriters Laboratory Flammability 94V-0u Matte tin lead–free Platedu Halogen free and RoHS compliantu Typical failure mode is short from over-specified voltage or currentu Whisker test is conducted based on JEDEC JESD201A per its table4a and 4cu IEC-61000-4-2 ESD 15kV(Air), 8kV (Contact)u ESD protection of data lines in accordance with IEC 61000-4-2(IEC801-2)u EFT protection of data lines in accordance with IEC 61000-4-4(IEC801-4)TVS devices are ideal for the protection of I/O interfaces, V bus and othervulnerable circuits used in Telecom, Computer, Industrial and Consumerelectronic applications.Parameter Symbol Value Unit Peak Pulse Power Dissipation with a 10/1000µs waveform (Fig.1)(Note1), (Note 2)P PPM1500 Watts Peak Pulse Current with a 10/1000µs waveform.(Note1,Fig.3) I PP See Next Table Amps Power Dissipation on Infinite Heat Sink at T L=75°C P M(AV) 6.5 Watt Peak Forward Surge Current, 8.3ms Single Half Sine Wave (Note 3) I FSM200 Amps Maximum Instantaneous Forward Voltage at 25A for Unidirectional Only(Note 4)V F 3.5/5.0 Voltage Operating junction and Storage Temperature Range. T J , T STG-55 to +150 °C Notes:1. Non-repetitive current pulse, per Fig. 3 and derated above T A = 25°C per Fig.2.2. Mounted on 5.0mm x 5.0mm (0.03mm thick) Copper Pads to each terminal.3. 8.3ms single half sine-wave, or equivalent square wave, Duty cycle = 4 pulses per minutes maximum.4. V F < 3.5V for V BR < 200V and V F< 6.5V for V BR > 201V.AAxial Lead Transient Voltage Suppressors (TVS)Part NumberBreakdown Voltage V BR(V)@I T Uni Bi Reverse Stand-Off Voltage V RWM (V) MIN MAX Test Current I T (mA) Maximum Clamping Voltage V C @I PP (V) Maximum Peak Pulse Current I PP (A) Maximum Reverse Leakage I R @V RWM (μA)1.5KE6.8 1.5KE6.8C 5.5 6.12 7.48 10 10.8 138.89 1000 1.5KE6.8A 1.5KE6.8CA 5.8 6.46 7.14 10 10.5 142.86 1000 1.5KE7.5 1.5KE7.5C 6.1 6.75 8.25 10 11.7 128.21 500 1.5KE7.5A 1.5KE7.5CA 6.4 7.13 7.88 10 11.3 132.74 500 1.5KE8.2 1.5KE8.2C 6.6 7.38 9.02 10 12.5 120.00 200 1.5KE8.2A 1.5KE8.2CA 7.0 7.79 8.61 10 12.1 123.97 200 1.5KE9.1 1.5KE9.1C 7.4 8.19 10.01 1 13.8 108.70 50 1.5KE9.1A 1.5KE9.1CA 7.8 8.65 9.56 1 13.4 111.94 50 1.5KE10 1.5KE10C 8.1 9.00 11.00 1 15.0 100.00 10 1.5KE10A 1.5KE10CA 8.6 9.50 10.50 1 14.5 103.45 10 1.5KE11 1.5KE11C 8.9 9.90 12.10 1 16.2 92.59 5 1.5KE11A 1.5KE11CA 9.4 10.45 11.55 1 15.6 96.15 5 1.5KE12 1.5KE12C 9.7 10.80 13.20 1 17.3 86.71 5 1.5KE12A 1.5KE12CA 10.2 11.40 12.60 1 16.7 89.82 5 1.5KE13 1.5KE13C 10.5 11.70 14.30 1 19.0 78.95 5 1.5KE13A 1.5KE13CA 11.1 12.35 13.65 1 18.2 82.42 5 1.5KE15 1.5KE15C 12.1 13.50 16.50 1 22.0 68.18 5 1.5KE15A 1.5KE15CA 12.8 14.25 15.75 1 21.2 70.75 5 1.5KE16 1.5KE16C 12.9 14.40 17.60 1 23.5 63.83 5 1.5KE16A 1.5KE16CA 13.6 15.20 16.80 1 22.5 66.67 5 1.5KE18 1.5KE18C 14.5 16.20 19.80 1 26.5 56.60 5 1.5KE18A 1.5KE18CA 15.3 17.10 18.90 1 25.2 59.52 5 1.5KE20 1.5KE20C 16.2 18.00 22.00 1 29.1 51.55 5 1.5KE20A 1.5KE20CA 17.1 19.00 21.00 1 27.7 54.15 5 1.5KE22 1.5KE22C 17.8 19.80 24.20 1 31.9 47.02 5 1.5KE22A 1.5KE22CA 18.8 20.90 23.10 1 30.6 49.02 5 1.5KE24 1.5KE24C 19.4 21.60 26.40 1 34.7 43.23 5 1.5KE24A 1.5KE24CA 20.5 22.80 25.20 1 33.2 45.18 5 1.5KE27 1.5KE27C 21.8 24.30 29.70 1 39.1 38.36 5 1.5KE27A 1.5KE27CA 23.1 25.65 28.35 1 37.5 40.00 5 1.5KE30 1.5KE30C 24.3 27.00 33.00 1 43.5 34.48 5 1.5KE30A 1.5KE30CA 25.6 28.50 31.50 1 41.4 36.23 5 1.5KE33 1.5KE33C 26.8 29.70 36.30 1 47.7 31.45 5 1.5KE33A 1.5KE33CA 28.2 31.35 34.65 1 45.7 32.82 5 1.5KE36 1.5KE36C 29.1 32.40 39.60 1 52.0 28.85 5 1.5KE36A 1.5KE36CA 30.8 34.20 37.80 1 49.9 30.06 5 1.5KE39 1.5KE39C 31.6 35.10 42.90 1 56.4 36.60 5 1.5KE39A 1.5KE39CA 33.3 37.05 40.95 1 53.9 27.83 5 1.5KE43 1.5KE43C 34.8 38.70 47.30 1 61.9 24.23 5 1.5KE43A 1.5KE43CA 36.8 40.85 45.15 1 59.3 25.30 5 1.5KE47 1.5KE47C 38.1 42.30 51.70 1 67.8 22.12 5 1.5KE47A 1.5KE47CA 40.2 44.65 49.35 1 64.8 23.15 5 1.5KE51 1.5KE51C 41.3 45.90 56.10 1 73.5 20.41 5 1.5KE51A 1.5KE51CA 43.6 48.45 53.55 1 70.1 21.40 5 1.5KE56 1.5KE56C 45.4 50.40 61.60 1 80.5 18.63 5 1.5KE56A 1.5KE56CA 47.8 53.20 58.80 1 77.0 19.48 5 1.5KE62 1.5KE62C 50.2 55.80 68.20 1 89.0 16.85 5 1.5KE62A 1.5KE62CA 53.0 58.90 65.10 1 85.0 17.65 5 1.5KE68 1.5KE68C 55.1 61.20 74.80 1 98.0 15.31 5 1.5KE68A 1.5KE68CA 58.1 64.60 71.40 1 92.0 16.30 5 1.5KE75 1.5KE75C 60.7 67.50 82.50 1 108.0 13.89 5 1.5KE75A 1.5KE75CA 64.1 71.25 78.75 1 103.0 14.56 5 1.5KE82 1.5KE82C 66.4 73.80 90.20 1 118.0 12.71 5 1.5KE82A1.5KE82CA70.177.9086.101113.013.275AAxial Lead Transient Voltage Suppressors (TVS)Part Number Breakdown Voltage V BR(V)@I T UniBi Reverse Stand-Off Voltage V RWM (V) MIN MAX Test Current I T (mA)Maximum Clamping Voltage V C @I PP (V) Maximum Peak Pulse Current I PP (A) Maximum Reverse Leakage I R @V RWM (μA)1.5KE91 1.5KE91C 73.7 81.90 100.10 1 131.0 11.45 5 1.5KE91A 1.5KE91CA 77.8 86.45 95.55 1 125.0 12.00 5 1.5KE100 1.5KE100C 81.0 90.00 110.00 1 144.0 10.42 5 1.5KE100A 1.5KE100CA 85.5 95.00 105.00 1 137.0 10.95 5 1.5KE110 1.5KE110C 89.2 99.00 121.00 1 158.0 9.49 5 1.5KE110A 1.5KE110CA 94.0 104.50 115.50 1 152.0 9.87 5 1.5KE120 1.5KE120C 97.2 108.00 132.00 1 173.0 8.67 5 1.5KE120A 1.5KE120CA 102.0 114.00 126.00 1 165.0 9.09 5 1.5KE130 1.5KE130C 105.0 117.00 143.00 1 187.0 8.02 5 1.5KE130A 1.5KE130CA 111.0 123.50 136.50 1 179.0 8.38 5 1.5KE150 1.5KE150C 121.0 135.00 165.00 1 215.0 6.98 5 1.5KE150A 1.5KE150CA 128.0 142.50 157.50 1 207.0 7.25 5 1.5KE160 1.5KE160C 130.0 144.00 176.00 1 230.0 6.52 5 1.5KE160A 1.5KE160CA 136.0 152.00 168.00 1 219.0 6.85 5 1.5KE170 1.5KE170C 138.0 153.00 187.00 1 244.0 6.15 5 1.5KE170A 1.5KE170CA 145.0 161.50 178.50 1 234.0 6.41 5 1.5KE180 1.5KE180C 146.0 162.00 198.00 1 258.0 5.81 5 1.5KE180A 1.5KE180CA 154.0 171.00 189.00 1 246.0 6.10 5 1.5KE200 1.5KE200C 162.0 180.00 220.00 1 287.0 5.23 5 1.5KE200A 1.5KE200CA 171.0 190.00 210.00 1 274.0 5.47 5 1.5KE220 1.5KE220C 175.0 198.00 242.00 1 344.0 4.36 5 1.5KE220A 1.5KE220CA 185.0 209.00 231.00 1 328.0 4.57 5 1.5KE250 1.5KE250C 202.0 225.00 275.00 1 360.0 4.17 5 1.5KE250A 1.5KE250CA 214.0 237.50 262.50 1 344.0 4.36 5 1.5KE300 1.5KE300C 243.0 270.00 330.00 1 430.0 3.49 5 1.5KE300A 1.5KE300CA 256.0 285.00 315.00 1 414.0 3.62 5 1.5KE350 1.5KE350C 284.0 315.00 385.00 1 504.0 2.98 5 1.5KE350A 1.5KE350CA 299.3 332.50 367.50 1 482.0 3.11 5 1.5KE380 1.5KE380C 308.6 342.00 418.00 1 547.2 2.74 5 1.5KE380A 1.5KE380CA 324.9 361.00 399.00 1 524.4 2.86 5 1.5KE400 1.5KE400C 324.8 360.00 440.00 1 576.0 2.60 5 1.5KE400A 1.5KE400CA 342.0 380.00 420.00 1 552.0 2.72 5 1.5KE440 1.5KE440C 357.3 396.00 484.00 1 633.6 2.37 5 1.5KE440A 1.5KE440CA 376.2 418.00 462.00 1 607.2 2.47 5 1.5KE500 1.5KE500C 406.0 450.00 550.00 1 720.0 2.08 5 1.5KE500A 1.5KE500CA 427.5 475.00 525.00 1 690.0 2.17 5 1.5KE520 1.5KE520C 422.2 468.00 572.00 1 748.8 2.00 5 1.5KE520A 1.5KE520CA 444.6 494.00 546.00 1 717.6 2.09 5 1.5KE550 1.5KE550C 446.6 495.00 605.00 1 792.0 1.89 5 1.5KE550A 1.5KE550CA 470.3 522.50 577.50 1 759.0 1.98 5 1.5KE600 1.5KE600C 487.2 540.00 660.00 1 864.0 1.74 5 1.5KE600A 1.5KE600CA513.0570.00630.001 828.01.815Note:1. Suffix 'A ' denotes 5% tolerance device. Without 'A' denotes 10% tolerance device2. Add suffix 'C 'or ' CA ' after part number to specify Bi-directional devices3. For Bi-Directional devices having V R of 10 volts and under, the I R limit is doubleAATemperature Cycle JESD22-A104 Weight 0.032 ounce, 0.9 gramPressure Cooker JESD22-A102 Case JEDEC DO-201 Molded Plastic over glass passivated junctionHigh Temp. Storage JESD22-A103 Polarity Color band denotes cathode except BipolarHTRBJESD22-A108 TerminalMatte Tin-plated leads, Solderable per JESD22-B102DThermal ShockJESD22-A106Reflow ConditionLead –free assembly -Temperature Min (T s(min))150°C -Temperature Max (T s(max)) 200°CPre Heat- Time (min to max) (t s )60 -180 Seconds Average ramp up rate ( Liquidus Temp T L ) to peak3°C/second max T S(max) to TL - Ramp-up Rate3°C/second max - Temperature (T L ) (Liquidus) 217°CReflow- Time (min to max) (t s )60 -150 SecondsPeak Temperature (T P ) 260 +0/-5°CTime within 5°C ofactualpeakTemperature (t p )20 -40 Seconds Ramp-down Rate6°C/second max Time 25°C to peak Temperature (T P ) 8 minutes MaxDo not exceed280°CRamp-down PreheatTime to peak temperature(t 25℃ to peak)Ramp-upTime Physical SpecificationsEnvironmental SpecificationsSoldering Parameters。
aec-q101标准 -回复
aec-q101标准-回复什么是AEC-Q101标准?AEC-Q101是由全球汽车电子理事会(Automotive Electronics Council,简称AEC)制定的一项标准。
AEC成立于1994年,是由三大汽车制造商联合组建的非营利性组织,旨在制定汽车电子领域的技术标准和规范,以确保汽车电子产品的可靠性和一致性。
AEC-Q101作为AEC所制定的一项标准,旨在评估和验证电子元件在汽车环境下的可靠性。
为什么需要AEC-Q101标准?在汽车行业中,电子元件所面临的环境条件和工作要求与其他行业有很大的不同。
汽车电子元件需要在极端的温度、湿度、振动和电磁干扰等条件下正常工作,同时还必须保证在整个汽车使用寿命中的稳定性和可靠性。
因此,为了确保汽车电子产品的质量和可靠性,AEC-Q101标准应运而生。
AEC-Q101标准的内容和指导AEC-Q101标准主要包括了以下内容和指导:1. 环境和可靠性测试:AEC-Q101标准列出了一系列环境和可靠性测试的要求,包括温度循环、湿度试验、振动和冲击试验等。
这些测试旨在模拟汽车使用过程中的各种极端条件,以评估电子元件的耐久性和可靠性。
2. 电气特性测试:AEC-Q101标准还要求进行电气特性测试,包括与电压和电流相关的测试,以确保电子元件在汽车电气系统中能够正常工作并满足设计要求。
3. 元器件可靠性:AEC-Q101标准还对元器件可靠性提出了一系列要求。
这些要求涉及到元器件的失效率、失效模式和失效机制等方面,以确保元器件在汽车使用寿命内的可靠性。
4. 生产过程控制:AEC-Q101标准还要求制造商建立并执行一套完整的生产过程控制,并对生产过程中的各个环节进行监控和管理。
这样可以确保生产过程的一致性和可靠性,从而保证最终产品的质量。
AEC-Q101标准的应用和影响AEC-Q101标准广泛应用于汽车电子元件的设计、制造和测试过程中。
符合AEC-Q101标准的电子元件可以获得AEC-Q101认证,成为汽车行业中广泛使用的标准化元件。
VishaySiliconix推出新款通过AEC—Q101认证的40VN沟道TrenchFET功率MOSFET
基础 上 , 对电流 P a r k矢 量 模 信 号 进 行 小 波 包 分 解 , 求 相 应 子 『 4 1 侯 新 国, 吴正国, 夏立 , 等. 基i f - P a r k矢 量模 信 号 小波 分 解
频 带 的 小 波 包 分 解 系数 的 R MS值 ,并 将 其 作 为 轴 承 的 故 障
c o n f e r e n c e Re c o r d o f t h e 1 9 9 9 I E EE, 1 9 9 9 ( 1 ) : 1 9 7 — 2 0 4 .
v e c t o r [ J 】 . B e a i r n g , 2 0 1 2 ( 4 ) : 5 0 — 5 5 .
【 5 】 张 利 娜 .船 舶 感 应 电 机 轴 承 故 障 诊 断 系 统 的 研 究 【 D 】 . 大连 : 大连 海 事大 学 . 2 o o 8 . 【 6 】N a n d i S , T o l i y a t H A .C o n d i t i o n mo n i t o i r n g a n d f a u l t d i a g n o s i s o f e l e c t i r c lm a a e h i n e s -a r e v i e w 【 J J .I n d u s t r y
X U E Z HE N G - y u , Q I U C h i — d o n g , WA N G N i n g , e t 1 a .D e t e c -
t i o n me t h o d f o r f a u l t s o f mo t o r b e a r i n g s b a s e d o n D a r k’ s
SOCAY瞬态抑制二极管SMBJ24CA型号
SOCAY瞬态抑制二极管SMBJ24CA型号
硕凯电子(Sylvia)
一、产品图
1、为表面安装应用优化电路板空间
2、低泄漏
3、双向单元
4、玻璃钝化结
5、低电感
6、优良的钳位能力
7、600W的峰值功率能力在10×1000μ波形重复率(占空比):0.01%
8、快速响应时间:从0伏特到最小击穿电压通常小于1.0ps
9、典型的,在电压高于12V时,反向漏电流小于5μA
10、高温焊接:终端260°C/40秒
11、典型的最大温度系数△Vbr=0.1%x Vbr@25°C x△T
12、塑料包装有保险商实验室可燃性94V-0
13、无铅镀雾锡
14、无卤化,符合RoHS
15、典型失效模式是在指定的电压或电流下出现
16、晶须测试是基于JEDEC JESD201A每个表4a及4c进行的
17、IEC-61000-4-2ESD15kV(空气),8kV(接触)
18、数据线的ESD保护符合IEC61000-4-2(IEC801-2)
19、数据线的EFT保护符合IEC61000-4-4(IEC801-4)
三、应用范围
TVS器件非常适合保护I/O接口,Vcc总线和其他应用于电信、计算机、工业和消费电子应用的易损电路。
五、UL认证编号
六、I-V曲线特性
七、产品尺寸。
瞬变抑制二极管型号大全
INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #40266IR RL501 1.5KE15MICROSEM 1.5KE15 40267IR RL502 1.5KE150GI 1.5KE150 1.5KE10GI 1.5KE10 1.5KE150PAN JIT 1.5KE150 1.5KE10PAN JIT 1.5KE10 1.5KE150MICROSEM 1.5KE150 1.5KE10MICROSEM 1.5KE10 1.5KE150A GI 1.5KE150A 1.5KE100GI 1.5KE100 1.5KE150A PAN JIT 1.5KE150A 1.5KE100PAN JIT 1.5KE100 1.5KE150A MICROSEM 1.5KE150A 1.5KE100MICROSEM 1.5KE100 1.5KE15A GI 1.5KE15A 1.5KE100A GI 1.5KE100A 1.5KE15A PAN JIT 1.5KE15A 1.5KE100A PAN JIT 1.5KE100A 1.5KE15A MICROSEM 1.5KE15A 1.5KE100A MICROSEM 1.5KE100A 1.5KE16GI 1.5KE16 1.5KE10A GI 1.5KE10A 1.5KE16PAN JIT 1.5KE16 1.5KE10A PAN JIT 1.5KE10A 1.5KE16MICROSEM 1.5KE16 1.5KE10A MICROSEM 1.5KE10A 1.5KE160GI 1.5KE160 1.5KE11GI 1.5KE11 1.5KE160PAN JIT 1.5KE160 1.5KE11PAN JIT 1.5KE11 1.5KE160MICROSEM 1.5KE160 1.5KE11MICROSEM 1.5KE11 1.5KE160A GI 1.5KE160A 1.5KE110GI 1.5KE110 1.5KE160A PAN JIT 1.5KE160A 1.5KE110PAN JIT 1.5KE110 1.5KE160A MICROSEM 1.5KE160A 1.5KE110MICROSEM 1.5KE110 1.5KE16A GI 1.5KE16A 1.5KE110A GI 1.5KE110A 1.5KE16A PAN JIT 1.5KE16A 1.5KE110A PAN JIT 1.5KE110A 1.5KE16A MICROSEM 1.5KE16A 1.5KE110A MICROSEM 1.5KE110A 1.5KE170GI 1.5KE170 1.5KE11A GI 1.5KE11A 1.5KE170PAN JIT 1.5KE170 1.5KE11A PAN JIT 1.5KE11A 1.5KE170MICROSEM 1.5KE170 1.5KE11A MICROSEM 1.5KE11A 1.5KE170A GI 1.5KE170A 1.5KE12GI 1.5KE12 1.5KE170A PAN JIT 1.5KE170A 1.5KE12PAN JIT 1.5KE12 1.5KE170A MICROSEM 1.5KE170A 1.5KE12MICROSEM 1.5KE12 1.5KE18GI 1.5KE18 1.5KE120GI 1.5KE120 1.5KE18PAN JIT 1.5KE18 1.5KE120PAN JIT 1.5KE120 1.5KE18MICROSEM 1.5KE18 1.5KE120MICROSEM 1.5KE120 1.5KE180GI 1.5KE180 1.5KE120A GI 1.5KE120A 1.5KE180PAN JIT 1.5KE180 1.5KE120A PAN JIT 1.5KE120A 1.5KE180MICROSEM 1.5KE180 1.5KE120A MICROSEM 1.5KE120A 1.5KE180A GI 1.5KE180A 1.5KE12A GI 1.5KE12A 1.5KE180A PAN JIT 1.5KE180A 1.5KE12A PAN JIT 1.5KE12A 1.5KE180A MICROSEM 1.5KE180A 1.5KE12A MICROSEM 1.5KE12A 1.5KE18A GI 1.5KE18A 1.5KE13GI 1.5KE13 1.5KE18A PAN JIT 1.5KE18A 1.5KE13PAN JIT 1.5KE13 1.5KE18A MICROSEM 1.5KE18A 1.5KE13MICROSEM 1.5KE13 1.5KE20GI 1.5KE20 1.5KE130GI 1.5KE130 1.5KE20PAN JIT 1.5KE20 1.5KE130PAN JIT 1.5KE130 1.5KE20MICROSEM 1.5KE20 1.5KE130MICROSEM 1.5KE130 1.5KE200GI 1.5KE200 1.5KE130A GI 1.5KE130A 1.5KE200PAN JIT 1.5KE200 1.5KE130A PAN JIT 1.5KE130A 1.5KE200MICROSEM 1.5KE200 1.5KE130A MICROSEM 1.5KE130A 1.5KE200A GI 1.5KE200A 1.5KE13A GI 1.5KE13A 1.5KE200A PAN JIT 1.5KE200A 1.5KE13A PAN JIT 1.5KE13A 1.5KE200A MICROSEM 1.5KE200A 1.5KE13A MICROSEM 1.5KE13A 1.5KE20A GI 1.5KE20A 1.5KE15GI 1.5KE15 1.5KE20A PAN JIT 1.5KE20A 1.5KE15PAN JIT 1.5KE15 1.5KE20A MICROSEM 1.5KE20AINDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #1.5KE22GI 1.5KE22 1.5KE39GI 1.5KE39 1.5KE22PAN JIT 1.5KE22 1.5KE39PAN JIT 1.5KE39 1.5KE22MICROSEM 1.5KE22 1.5KE39MICROSEM 1.5KE39 1.5KE220GI 1.5KE220 1.5KE39A GI 1.5KE39A 1.5KE220PAN JIT 1.5KE220 1.5KE39A PAN JIT 1.5KE39A 1.5KE220A GI 1.5KE220A 1.5KE39A MICROSEM 1.5KE39A 1.5KE220A PAN JIT 1.5KE220A 1.5KE400GI 1.5KE400 1.5KE22A GI 1.5KE22A 1.5KE400PAN JIT 1.5KE400 1.5KE22A PAN JIT 1.5KE22A 1.5KE400A GI 1.5KE400A 1.5KE22A MICROSEM 1.5KE22A 1.5KE400A PAN JIT 1.5KE400A 1.5KE24GI 1.5KE24 1.5KE43GI 1.5KE43 1.5KE24PAN JIT 1.5KE24 1.5KE43PAN JIT 1.5KE43 1.5KE24MICROSEM 1.5KE24 1.5KE43MICROSEM 1.5KE43 1.5KE24A GI 1.5KE24A 1.5KE43A GI 1.5KE43A 1.5KE24A PAN JIT 1.5KE24A 1.5KE43A PAN JIT 1.5KE43A 1.5KE24A MICROSEM 1.5KE24A 1.5KE43A MICROSEM 1.5KE43A 1.5KE250GI 1.5KE250 1.5KE47GI 1.5KE47 1.5KE250PAN JIT 1.5KE250 1.5KE47PAN JIT 1.5KE47 1.5KE250A GI 1.5KE250A 1.5KE47MICROSEM 1.5KE47 1.5KE250A PAN JIT 1.5KE250A 1.5KE47A GI 1.5KE47A 1.5KE27GI 1.5KE27 1.5KE47A PAN JIT 1.5KE47A 1.5KE27PAN JIT 1.5KE27 1.5KE47A MICROSEM 1.5KE47A 1.5KE27MICROSEM 1.5KE27 1.5KE51GI 1.5KE51 1.5KE27A GI 1.5KE27A 1.5KE51PAN JIT 1.5KE51 1.5KE27A PAN JIT 1.5KE27A 1.5KE51MICROSEM 1.5KE51 1.5KE27A MICROSEM 1.5KE27A 1.5KE51A GI 1.5KE51A 1.5KE30GI 1.5KE30 1.5KE51A PAN JIT 1.5KE51A 1.5KE30PAN JIT 1.5KE30 1.5KE51A MICROSEM 1.5KE51A 1.5KE30MICROSEM 1.5KE30 1.5KE56GI 1.5KE56 1.5KE300GI 1.5KE300 1.5KE56PAN JIT 1.5KE56 1.5KE300PAN JIT 1.5KE300 1.5KE56MICROSEM 1.5KE56 1.5KE300A GI 1.5KE300A 1.5KE56A GI 1.5KE56A 1.5KE300A PAN JIT 1.5KE300A 1.5KE56A PAN JIT 1.5KE56A 1.5KE30A GI 1.5KE30A 1.5KE56A MICROSEM 1.5KE56A 1.5KE30A PAN JIT 1.5KE30A 1.5KE6.8GI 1.5KE6.8 1.5KE30A MICROSEM 1.5KE30A 1.5KE6.8PAN JIT 1.5KE6.8 1.5KE33GI 1.5KE33 1.5KE6.8MICROSEM 1.5KE6.8 1.5KE33PAN JIT 1.5KE33 1.5KE6.8A GI 1.5KE6.8A 1.5KE33MICROSEM 1.5KE33 1.5KE6.8A PAN JIT 1.5KE6.8A 1.5KE33A GI 1.5KE33A 1.5KE6.8A MICROSEM 1.5KE6.8A 1.5KE33A PAN JIT 1.5KE33A 1.5KE62GI 1.5KE62 1.5KE33A MICROSEM 1.5KE33A 1.5KE62PAN JIT 1.5KE62 1.5KE350GI 1.5KE350 1.5KE62MICROSEM 1.5KE62 1.5KE350PAN JIT 1.5KE350 1.5KE62A GI 1.5KE62A 1.5KE350A GI 1.5KE350A 1.5KE62A PAN JIT 1.5KE62A 1.5KE350A PAN JIT 1.5KE350A 1.5KE62A MICROSEM 1.5KE62A 1.5KE36GI 1.5KE36 1.5KE68GI 1.5KE68 1.5KE36PAN JIT 1.5KE36 1.5KE68PAN JIT 1.5KE68 1.5KE36MICROSEM 1.5KE36 1.5KE68MICROSEM 1.5KE68 1.5KE36A GI 1.5KE36A 1.5KE68A GI 1.5KE68A 1.5KE36A PAN JIT 1.5KE36A 1.5KE68A PAN JIT 1.5KE68A 1.5KE36A MICROSEM 1.5KE36A 1.5KE68A MICROSEM 1.5KE68AINDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #1.5KE7.5GI 1.5KE7.5 1.5SMCJ14PAN JIT TFMCJ14 1.5KE7.5PAN JIT 1.5KE7.5 1.5SMCJ14A PAN JIT TFMCJ14A 1.5KE7.5MICROSEM 1.5KE7.5 1.5SMCJ15PAN JIT TFMCJ15 1.5KE7.5A GI 1.5KE7.5A 1.5SMCJ150PAN JIT TFMCJ150 1.5KE7.5A PAN JIT 1.5KE7.5A 1.5SMCJ150A PAN JIT TFMCJ150A 1.5KE7.5A MICROSEM 1.5KE7.5A 1.5SMCJ15A PAN JIT TFMCJ15A 1.5KE75GI 1.5KE75 1.5SMCJ16PAN JIT TFMCJ16 1.5KE75PAN JIT 1.5KE75 1.5SMCJ160PAN JIT TFMCJ160 1.5KE75MICROSEM 1.5KE75 1.5SMCJ160A PAN JIT TFMCJ160A 1.5KE75A GI 1.5KE75A 1.5SMCJ16A PAN JIT TFMCJ16A 1.5KE75A PAN JIT 1.5KE75A 1.5SMCJ17PAN JIT TFMCJ17 1.5KE75A MICROSEM 1.5KE75A 1.5SMCJ170PAN JIT TFMCJ170 1.5KE8.2GI 1.5KE8.2 1.5SMCJ170A PAN JIT TFMCJ170A 1.5KE8.2PAN JIT 1.5KE8.2 1.5SMCJ17A PAN JIT TFMCJ17A 1.5KE8.2MICROSEM 1.5KE8.2 1.5SMCJ18PAN JIT TFMCJ18 1.5KE8.2A GI 1.5KE8.2A 1.5SMCJ18A PAN JIT TFMCJ18A 1.5KE8.2A PAN JIT 1.5KE8.2A 1.5SMCJ20PAN JIT TFMCJ20 1.5KE8.2A MICROSEM 1.5KE8.2A 1.5SMCJ20A PAN JIT TFMCJ20A 1.5KE82GI 1.5KE82 1.5SMCJ22PAN JIT TFMCJ22 1.5KE82PAN JIT 1.5KE82 1.5SMCJ22A PAN JIT TFMCJ22A 1.5KE82MICROSEM 1.5KE82 1.5SMCJ24PAN JIT TFMCJ24 1.5KE82A GI 1.5KE82A 1.5SMCJ24A PAN JIT TFMCJ24A 1.5KE82A PAN JIT 1.5KE82A 1.5SMCJ26PAN JIT TFMCJ26 1.5KE82A MICROSEM 1.5KE82A 1.5SMCJ26A PAN JIT TFMCJ26A 1.5KE9.1GI 1.5KE9.1 1.5SMCJ28PAN JIT TFMCJ28 1.5KE9.1PAN JIT 1.5KE9.1 1.5SMCJ28A PAN JIT TFMCJ28A 1.5KE9.1MICROSEM 1.5KE9.1 1.5SMCJ30PAN JIT TFMCJ30 1.5KE9.1A GI 1.5KE9.1A 1.5SMCJ30A PAN JIT TFMCJ30A 1.5KE9.1A PAN JIT 1.5KE9.1A 1.5SMCJ33PAN JIT TFMAJ33 1.5KE9.1A MICROSEM 1.5KE9.1A 1.5SMCJ33A PAN JIT TFMCJ33A 1.5KE91GI 1.5KE91 1.5SMCJ36PAN JIT TFMCJ36 1.5KE91PAN JIT 1.5KE91 1.5SMCJ36A PAN JIT TFMAJ36A 1.5KE91MICROSEM 1.5KE91 1.5SMCJ40PAN JIT TFMCJ40 1.5KE91A GI 1.5KE91A 1.5SMCJ40A PAN JIT TFMCJ40A 1.5KE91A PAN JIT 1.5KE91A 1.5SMCJ43PAN JIT TFMCJ43 1.5KE91A MICROSEM 1.5KE91A 1.5SMCJ43A PAN JIT TFMCJ43A 1.5SMCJ10PAN JIT TFMCJ10 1.5SMCJ45PAN JIT TFMCJ45 1.5SMCJ100PAN JIT TFMCJ100 1.5SMCJ45A PAN JIT TFMCJ45A 1.5SMCJ100A PAN JIT TFMCJ100A 1.5SMCJ48PAN JIT TFMCJ48 1.5SMCJ10A PAN JIT TFMCJ10A 1.5SMCJ48A PAN JIT TFMCJ48A 1.5SMCJ11PAN JIT TFMCJ11 1.5SMCJ5.0PAN JIT TFMCJ5.0 1.5SMCJ110PAN JIT TFMCJ110 1.5SMCJ5.0A PAN JIT TFMCJ5.0A 1.5SMCJ110A PAN JIT TFMCJ110A 1.5SMCJ51PAN JIT TFMCJ51 1.5SMCJ11A PAN JIT TFMCJ11A 1.5SMCJ51A PAN JIT TFMCJ51A 1.5SMCJ12PAN JIT TFMCJ12 1.5SMCJ54PAN JIT TFMCJ54 1.5SMCJ120PAN JIT TFMCJ120 1.5SMCJ54A PAN JIT TFMCJ54A 1.5SMCJ120A PAN JIT TFMCJ120A 1.5SMCJ58PAN JIT TFMCJ58 1.5SMCJ12A PAN JIT TFMCJ12A 1.5SMCJ58A PAN JIT TFMCJ58A 1.5SMCJ13PAN JIT TFMCJ13 1.5SMCJ6.0PAN JIT TFMCJ6.0 1.5SMCJ130PAN JIT TFMCJ130 1.5SMCJ6.0A PAN JIT TFMCJ6.0A 1.5SMCJ130A PAN JIT TFMCJ130A 1.5SMCJ6.5PAN JIT TFMCJ6.5 1.5SMCJ13A PAN JIT TFMCJ13A 1.5SMCJ6.5A PAN JIT TFMCJ6.5AINDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #1.5SMCJ60PAN JIT TFMCJ601H8RECTRON1H81.5SMCJ60A PAN JIT TFMCJ60A1J4B42THOMSON DB106 1.5SMCJ64PAN JIT TFMCJ641N1217INTL/ITT RL151G 1.5SMCJ64A PAN JIT TFMCJ64A1N1217A INTL/ITT RL151G 1.5SMCJ7.0PAN JIT TFMCJ7.01N1217B INTL RL151G 1.5SMCJ7.0A PAN JIT TFMCJ7.0A1N1218INTL/ITT RL152G 1.5SMCJ7.5PAN JIT TFMCJ7.51N1218A INTL/ITT RL152G 1.5SMCJ7.5A PAN JIT TFMCJ7.5A1N1218B INTL RL152G 1.5SMCJ70PAN JIT TFMCJ701N1219INTL/ITT RL153G 1.5SMCJ70A PAN JIT TFMCJ70A1N1219A INTL/ITT RL153G 1.5SMCJ75PAN JIT TFMCJ751N1219B INTL RL153G 1.5SMCJ75A PAN JIT TFMCJ75A1N1220INTL/ITT RL153G 1.5SMCJ78PAN JIT TFMCJ781N1220A INTL/ITT RL153G 1.5SMCJ78A PAN JIT TFMCJ78A1N1220B INTL RL153G 1.5SMCJ8.0PAN JIT TFMCJ8.01N1221INTL/ITT RL154G 1.5SMCJ8.0A PAN JIT TFMCJ8.0A1N1221A INTL/ITT RL154G 1.5SMCJ8.5PAN JIT TFMCJ8.51N1221B INTL RL154G 1.5SMCJ8.5A PAN JIT TFMCJ8.5A1N1222INTL/ITT RL154G 1.5SMCJ85PAN JIT TFMCJ851N1222A INTL/ITT RL154G 1.5SMCJ85A PAN JIT TFMCJ85A1N1222B INTL RL154G 1.5SMCJ9.0PAN JIT TFMCJ9.01N1223INTL/ITT RL155G 1.5SMCJ9.0A PAN JIT TFMCJ9.0A1N1223A INTL/ITT RL155G 1.5SMCJ90PAN JIT TFMCJ901N1223B INTL RL155G 1.5SMCJ90A PAN JIT TFMCJ90A1N1224INTL/ITT RL155G 10D05IR RL151G1N1224A INTL/ITT RL155G 10D1CODI1N49341N1224B INTL RL155G 10D1IR RL152G1N1225INTL RL156G 10D2CODI1N49351N1225A INTL RL156G 10D2IR RL153G1N1225B INTL RL156G 10D3IR RL154G1N1226INTL RL156G 10D4CODI1N49361N1226A INTL RL156G 10D4IR RL154G1N1226B INTL RL156G 10D5IR RL155G1N1563MOTOROLA RL202 10D6CODI1N49371N1564MOTOROLA RL203 10D6IR RL155G1N1564A MOTOROLA RL203 10D7IR RL156G1N1565MOTOROLA RL204 11DQ03IR SR1301N1565A MOTOROLA RL204 11DQ04IR SR1401N1566MOTOROLA RL204 11DQ05IR SR1501N1566A MOTOROLA RL204 11DQ06IR SR1601N1567MOTOROLA RL205 15B4B41TOSHIBA MP1511N1567A MOTOROLA RL205 15D4B41TOSHIBA MP1521N1568MOTOROLA RL205 15G4B41TOSHIBA MP1541N1568A MOTOROLA RL205 15J4B41TOSHIBA MP1561N1612INTL/ITT6A11B4B42THOMSON DB1011N1613INTL/ITT6A21D4B42THOMSON DB1021N1614INTL/ITT6A41DBM10SEMICOM DB1021N1615INTL/ITT6A41DBM20SEMICOM DB1021N1616INTL/ITT6A61DBM40SEMICOM DB1041N1617UPI1N5401G 1G4B42THOMSON DB1041N1618UPI1N5402G 1H1RECTRON1H11N1619UPI1N5404G 1H7RECTRON1H71N1620UPI1N5404GINDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #1N1907INTL/ITT RL151G1N2543ITT6A81N1908INTL/ITT RL152G1N2546INTL/ITT1N5400G 1N1909INTL/ITT RL153G1N2547ITT1N5401G 1N1910INTL/ITT RL154G1N2548ITT1N5402G 1N1911INTL/ITT RL154G1N2549ITT1N5404G 1N1912INTL/ITT RL155G1N2550ITT1N5404G 1N1913INTL/ITT RL155G1N2551ITT1N5406G 1N1914INTL/ITT RL156G1N2552ITT1N5406G 1N1915INTL/ITT RL156G1N2553ITT1N5407G 1N1916INTL/ITT RL157G1N2554ITT1N5407G 1N2069CODI/INTL1N40031N2555ITT1N5408G 1N2069A CODI/INTL1N40031N2556ITT1N5408G 1N2070CODI/INTL1N40041N2557ITT6A81N2070A CODI/INTL1N40041N2558ITT6A81N2071CODI/INTL1N40051N2561ITT6A81N2071A CODI/INTL1N40051N2562ITT6A81N2491INTL/ITT6A11N2566ITT6A11N2492INTL/ITT6A21N2567ITT6A21N2493INTL/ITT6A41N2568ITT6A41N2494INTL/ITT6A41N2569ITT6A41N2495INTL/ITT6A41N2570ITT6A61N2496INTL/ITT6A61N2571ITT6A61N2497INTL/ITT6A61N2572ITT6A81N2512INTL/ITT6A21N2573ITT6A81N2513INTL/ITT6A41N2849ITT RL154G 1N2514INTL/ITT6A41N2850ITT RL154G 1N2515INTL/ITT6A41N2851ITT RL155G 1N2518ITT6A21N2852ITT RL155G 1N2519ITT6A21N3640INTL/ITT RL154G 1N2520ITT6A41N3641INTL/ITT RL155G 1N2521INTL/ITT6A41N3642INTL/ITT RL156G 1N2522ITT6A61N4001GI/MOT/FAGOR1N4001 1N2523INTL/ITT6A61N4001GP GI1N4001G 1N2524INTL/ITT1N5400G1N4002GI/MOT/FAGOR1N4002 1N2525ITT1N5401G1N4002GP GI1N4002G 1N2526ITT1N5402G1N4003GI/MOT/FAGOR1N4003 1N2527ITT1N5404G1N4003GP GI1N4003G 1N2528ITT1N5404G1N4004GI/MOT/FAGOR1N4004 1N2529ITT1N5406G1N4004GP GI1N4004G 1N2530ITT1N5406G1N4005GI/MOT/FAGOR1N4005 1N2531ITT1N5407G1N4005GP GI1N4005G 1N2532ITT1N5407G1N4006GI/MOT/FAGOR1N4006 1N2533ITT1N5408G1N4006GP GI1N4006G 1N2534ITT1N5408G1N4007GI/MOT/FAGOR1N4007 1N2535ITT6A051N4007GP GI1N4007G 1N2536ITT6A11N4933GI/MOT/FAGOR1N4933 1N2537ITT6A21N4933GP GI1N4933G 1N2538ITT6A41N4934GI/MOT/FAGOR1N4934 1N2539ITT6A41N4934GP GI1N4934G 1N2540ITT6A61N4935GI/MOT/FAGOR1N4935 1N2541ITT6A61N4935GP GI1N4935G 1N2542ITT6A81N4936GI/MOT/FAGOR1N4936INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #1N4936GP GI1N4936G250JB10L IR MP2510 1N4937GI/MOT/FAGOR1N4937250JB1L IR MP252 1N4937GP GI1N4937G250JB2L IR MP252 1N4942GI1N4942250JB4L IR MP254 1N4942GP GI1N4942G250JB5L IR MP256 1N4944GI1N4944250JB6L IR MP256 1N4944GP GI1N4944G250JB8L IR MP258 1N4946GI1N4946250MDA4R IR MP254 1N4946GP GI1N4946G250MDA6R IR MP256 1N4947GI1N494725B4B41TOSHIBA MP251 1N4947GP GI1N4947G25D4B41TOSHIBA MP252 1N4948GI1N494825G4B41TOSHIBA MP254 1N4948GP GI1N4948G25J4B41TOSHIBA MP256 1N5391GI/MOT/FAGOR1N539125SP005GI MP256 1N5392GI/MOT/FAGOR1N539225SP01GI MP251 1N5393GI/MOT/FAGOR1N539325SP02GI MP252 1N5394GI/MOT/FAGOR1N539425SP04GI MP254 1N5395GI/MOT/FAGOR1N539525SP06GI MP256 1N5396GI/MOT/FAGOR1N539625SP08GI MP258 1N5397GI/MOT/FAGOR1N539725SP10GI MP2510 1N5398GI/MOT/FAGOR1N539828CPQ030IR SR3030C 1N5398GP GI RL206G28CPQ040IR SR3040C 1N5399GI/MOT/FAGOR1N539928CPQ050IR SR3050C 1N5400GI/MOT/FAGOR1N540028CPQ060IR SR3060C 1N5401GI/MOT/FAGOR1N54012A100SOLITRON1N5401 1N5402GI/MOT/FAGOR1N54022A1000SOLITRON1N5408 1N5404GI/MOT/FAGOR1N54042A15SOLITRON1N5400 1N5406GI/MOT/FAGOR1N54062A200SOLITRON1N5402 1N5407GI/MOT/FAGOR1N54072A30SOLITRON1N5400 1N5408GI/MOT/FAGOR1N54082A300SOLITRON1N5404 1N5817GI/MOT/FAGOR1N58172A400SOLITRON1N5404 1N5818GI/MOT/FAGOR1N58182A50SOLITRON1N5400 1N5819GI/MOT/FAGOR1N58192A500SOLITRON1N5406 1N5820GI/MOT/FAGOR1N58202A600SOLITRON IN5406 1N5821GI/MOT/FAGOR1N58212A800SOLITRON IN5407 1N5822GI/MOT/FAGOR1N58222KBB005IR RS201L 1P643FAGOR FR1012KBB10IR RS203L 1P644FAGOR FR1022KBB100IR RS207L 1P645FAGOR FR1032KBB100R IR RS207L 1P647FAGOR FR1042KBB10R IR RS202L 1P648FAGOR FR1052KBB20IR RS203L 1S20RECTOR1S202KBB20R IR RS203L 1S30RECTOR1S302KBB40IR RS204L 1S40RECTOR1S402KBB40R IR RS204L 1S50RECTOR1S502KBB60IR RS205L 1S60RECTOR1S602KBB60R IR RS205L 20E2R20IR SF304C2KBB80IR RS206L 20F2R07IR SF302C2KBB80R IR RS206L 20F2R15IR SF304C2KBP005GI RS201L 20F2S07IR SF302C2KBP01GI RS202L 20F2S15IR SF304C2KBP02GI RS203L 250JB05L IR MP25052KBP04GI RS204LINDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #2KBP06GI RS205L35MB5A IR MP3505 2KBP08GI RS206L35MB60A IR MP356 2KBP10GI RS207L35MB6A IR MP356 2W005M GI RC20135MB80A IR MP358 2W01M GI RC20235MB8A IR MP358 2W02M GI RC20335SP005GI MP3505 2W04M GI RC20435SP01GI MP351 2W06M GI RC20535SP02GI MP352 2W08M GI RC20635SP04GI MP354 2W10M GI RC20735SP06GI MP356 300JB005IR MP35135SP08GI MP358 300JB01L IR MP35235SP10GI MP3510 300JB02L IR MP3523N246GI RS101 300JB04L IR MP3543N247GI RS102 300JB06L IR MP3563N248GI RS103 30D1IR RL5013N249GI RS104 30D2IR RL5023N250GI RS105 30D3IR RL5043N251GI RS106 30DF1IR FR302(RL851)40CDQ020IR SR3020C 30DF2IR FR303(RL852)40CDQ030IR SR3030C 30DF4IR FR304(RL854)40CDQ035IR SR3035C 30DF6IR FR305(RL856)40CDQ040IR SR3040C 30DL1IR FR302(RL851)40CDQ045IR SR3045C 30DL2IR FR303(RL852)40D05IR6A0530DL4IR FR304(RL854)40D1IR6A130FQ030INTL SR3030C40D10IR6A1030FQ035INTL SR3035C40D2IR6A230FQ040INTL SR3040C40D4IR6A430FQ045INTL SR3045C40D6IR6A630FWJ2C12TOSHIBA SR3035C40D8IR6A830GWJ2C12TOSHIBA SR3045C50SQ030IR SR530 30S1IR1N540150SQ035IR SR540 30S10IR1N540850SQ040IR SR540 30S2IR1N540250SQ045IR SR550 30S3IR1N540450SQ060IR SR560 30S4IR1N54045KP10GI5KP10 30S5IR1N54065KP10PAN JIT5KP10 30S6IR1N54065KP10MICROSEM5KP10 30S8IR1N54075KP100GI5KP100 31DQ03IR SR3305KP100PAN JIT5KP100 31DQ04IR SR3405KP100MICROSEM5KP100 31DQ05IR SR3505KP100A GI5KP100A 31DQ06IR SR3605KP100A PAN JIT5KP100A 35MB05A IR MP35055KP100A MICROSEM5KP100A 35MB10IR MP3515KP10A GI5KP10A 35MB100A IR MP35105KP10A PAN JIT5KP10A 35MB10A IR MP35105KP10A MICROSEM5KP10A 35MB1A IR MP3525KP11GI5KP11 35MB20A IR MP3525KP11PAN JIT5KP11 35MB2A IR MP3525KP11MICROSEM5KP11 35MB4IR MP3545KP110GI5KP110 35MB40A IR MP3545KP110PAN JIT5KP110INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #5KP110MICROSEM5KP1105KP20A GI5KP20A 5KP110A GI5KP110A5KP20A PAN JIT5KP20A 5KP110A PAN JIT5KP110A5KP20A MICROSEM5KP20A 5KP110A MICROSEM5KP110A5KP22GI5KP22 5KP11A GI5KP11A5KP22PAN JIT5KP22 5KP11A PAN JIT5KP11A5KP22MICROSEM5KP22 5KP11A MICROSEM5KP11A5KP22A GI5KP22A 5KP12GI5KP125KP22A PAN JIT5KP22A 5KP12PAN JIT5KP125KP22A MICROSEM5KP22A 5KP12MICROSEM5KP125KP24GI5KP24 5KP12A GI5KP12A5KP24PAN JIT5KP24 5KP12A PAN JIT5KP12A5KP24MICROSEM5KP24 5KP12A MICROSEM5KP12A5KP24A GI5KP24A 5KP13GI5KP135KP24A PAN JIT5KP24A 5KP13PAN JIT5KP135KP24A MICROSEM5KP24A 5KP13MICROSEM5KP135KP26GI5KP26 5KP13A GI5KP13A5KP26PAN JIT5KP26 5KP13A PAN JIT5KP13A5KP26MICROSEM5KP26 5KP13A MICROSEM5KP13A5KP26A GI5KP26A 5KP14GI5KP145KP26A PAN JIT5KP26A 5KP14PAN JIT5KP145KP26A MICROSEM5KP26A 5KP14MICROSEM5KP145KP28GI5KP28 5KP14A GI5KP14A5KP28PAN JIT5KP28 5KP14A PAN JIT5KP14A5KP28MICROSEM5KP28 5KP14A MICROSEM5KP14A5KP28A GI5KP28A 5KP15GI5KP155KP28A PAN JIT5KP28A 5KP15PAN JIT5KP155KP28A MICROSEM5KP28A 5KP15MICROSEM5KP155KP30GI5KP30 5KP15A GI5KP15A5KP30PAN JIT5KP30 5KP15A PAN JIT5KP15A5KP30MICROSEM5KP30 5KP15A MICROSEM5KP15A5KP30A GI5KP30A 5KP16GI5KP165KP30A PAN JIT5KP30A 5KP16PAN JIT5KP165KP30A MICROSEM5KP30A 5KP16MICROSEM5KP165KP33GI5KP33 5KP16A GI5KP16A5KP33PAN JIT5KP33 5KP16A PAN JIT5KP16A5KP33MICROSEM5KP33 5KP16A MICROSEM5KP16A5KP33A GI5KP33A 5KP17GI5KP175KP33A PAN JIT5KP33A 5KP17PAN JIT5KP175KP33A MICROSEM5KP33A 5KP17MICROSEM5KP175KP36GI5KP36 5KP17A GI5KP17A5KP36PAN JIT5KP36 5KP17A PAN JIT5KP17A5KP36MICROSEM5KP36 5KP17A MICROSEM5KP17A5KP36A GI5KP36A 5KP18GI5KP185KP36A PAN JIT5KP36A 5KP18PAN JIT5KP185KP36A MICROSEM5KP36A 5KP18MICROSEM5KP185KP40GI5KP40 5KP18A GI5KP18A5KP40PAN JIT5KP40 5KP18A PAN JIT5KP18A5KP40MICROSEM5KP40 5KP18A MICROSEM5KP18A5KP40A GI5KP40A 5KP20GI5KP205KP40A PAN JIT5KP40A 5KP20PAN JIT5KP205KP40A MICROSEM5KP40A 5KP20MICROSEM5KP205KP43GI5KP43INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #5KP43PAN JIT5KP435KP6.5A MICROSEM5KP6.5A 5KP43MICROSEM5KP435KP60GI5KP60 5KP43A GI5KP43A5KP60PAN JIT5KP60 5KP43A PAN JIT5KP43A5KP60MICROSEM5KP60 5KP43A MICROSEM5KP43A5KP60A GI5KP60A 5KP45GI5KP455KP60A PAN JIT5KP60A 5KP45PAN JIT5KP455KP60A MICROSEM5KP60A 5KP45MICROSEM5KP455KP64GI5KP64 5KP45A GI5KP45A5KP64PAN JIT5KP64 5KP45A PAN JIT5KP45A5KP64MICROSEM5KP64 5KP45A MICROSEM5KP45A5KP64A GI5KP64A 5KP48GI5KP485KP64A PAN JIT5KP64A 5KP48PAN JIT5KP485KP64A MICROSEM5KP64A 5KP48MICROSEM5KP485KP7.0GI5KP7.0 5KP48A GI5KP48A5KP7.0PAN JIT5KP7.0 5KP48A PAN JIT5KP48A5KP7.0MICROSEM5KP7.0 5KP48A MICROSEM5KP48A5KP7.0A GI5KP7.0A 5KP5.0GI5KP5.05KP7.0A PAN JIT5KP7.0A 5KP5.0PAN JIT5KP5.05KP7.0A MICROSEM5KP7.0A 5KP5.0MICROSEM5KP5.05KP7.5GI5KP7.5 5KP5.0A GI5KP5.0A5KP7.5PAN JIT5KP7.5 5KP5.0A PAN JIT5KP5.0A5KP7.5MICROSEM5KP7.5 5KP5.0A MICROSEM5KP5.0A5KP7.5A GI5KP7.5A 5KP51GI5KP515KP7.5A PAN JIT5KP7.5A 5KP51PAN JIT5KP515KP7.5A MICROSEM5KP7.5A 5KP51MICROSEM5KP515KP70GI5KP70 5KP51A GI5KP51A5KP70PAN JIT5KP70 5KP51A PAN JIT5KP51A5KP70MICROSEM5KP70 5KP51A MICROSEM5KP51A5KP70A GI5KP70A 5KP54GI5KP545KP70A PAN JIT5KP70A 5KP54PAN JIT5KP545KP70A MICROSEM5KP70A 5KP54MICROSEM5KP545KP75GI5KP75 5KP54A GI5KP54A5KP75PAN JIT5KP75 5KP54A PAN JIT5KP54A5KP75MICROSEM5KP75 5KP54A MICROSEM5KP54A5KP75A GI5KP75A 5KP58GI5KP585KP75A PAN JIT5KP75A 5KP58PAN JIT5KP585KP75A MICROSEM5KP75A 5KP58MICROSEM5KP585KP78GI5KP78 5KP58A GI5KP58A5KP78PAN JIT5KP78 5KP58A PAN JIT5KP58A5KP78MICROSEM5KP78 5KP58A MICROSEM5KP58A5KP78A GI5KP78A 5KP6.0GI5KP6.05KP78A PAN JIT5KP78A 5KP6.0PAN JIT5KP6.05KP78A MICROSEM5KP78A 5KP6.0MICROSEM5KP6.05KP8.0GI5KP8.0 5KP6.0A GI5KP6.0A5KP8.0PAN JIT5KP8.0 5KP6.0A PAN JIT5KP6.0A5KP8.0MICROSEM5KP8.0 5KP6.0A MICROSEM5KP6.0A5KP8.0A GI5KP8.0A 5KP6.5GI5KP6.55KP8.0A PAN JIT5KP8.0A 5KP6.5PAN JIT5KP6.55KP8.0A MICROSEM5KP8.0A 5KP6.5MICROSEM5KP6.55KP8.5GI5KP8.5 5KP6.5A GI5KP6.5A5KP8.5PAN JIT5KP8.5 5KP6.5A PAN JIT5KP6.5A5KP8.5MICROSEM5KP8.5INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #5KP8.5A GI5KP8.5A AC500SEMICON RL506 5KP8.5A PAN JIT5KP8.5A AC600SEMICON RL506 5KP8.5A MICROSEM5KP8.5A AC800SEMICON RL508 5KP85GI5KP85AC880SEMICON RL508 5KP85PAN JIT5KP85AG01SANKEN1H45KP85MICROSEM5KP85AG01A SANKEN1H55KP85A GI5KP85A AG01A SANKEN1H65KP85A PAN JIT5KP85A AG01Y SANKEN1H25KP85A MICROSEM5KP85A AG01Z SANKEN1H35KP9.0GI5KP9.0AM01Z SANKEN1A35KP9.0PAN JIT5KP9.0AR25A GI RA2505 5KP9.0MICROSEM5KP9.0AR25B GI RA251 5KP9.0A GI5KP9.0A AR25D GI RA2510 5KP9.0A PAN JIT5KP9.0A AR25G GI RA252 5KP9.0A MICROSEM5KP9.0A AR25J GI RA254 5KP90GI5KP90AR25K GI RA256 5KP90PAN JIT5KP90AR25M GI RA258 5KP90MICROSEM5KP90AU01A SANKEN1H65KP90A GI5KP90A AU02SANKEN1F45KP90A PAN JIT5KP90A AU02A SANKEN1F55KP90A MICROSEM5KP90A AU02Z SANKEN1F360S05IR6A05B100T.I1N4002 60S10IR6A10B1000T.I1N4007 60S2IR6A2B125C GI RB154 60S4IR6A4B125C1500R FAGOR RB154 60S5IR6A6B125C2000/1000FAGOR RS204L 60S6IR6A6B250C GI RB155 60S8IR6A8B250C1500/1000FAGOR RS205L AA100SEMICON1N4002B250C1500R FAGOR RB155 AA1000SEMICON1N4007B380C GI RB156 AA200SEMICON1N4003B380C GI RB157 AA300SEMICON1N4004B380C1500/1000FAGOR RS207L AA400SEMICON1N4004B380C1500R FAGOR RB157 AA50SEMICON1N4001B40C GI RB152 AA500SEMICON1N4005B40C1500/1000FAGOR RS202L AA600SEMICON1N4005B40C1500R FAGOR RB152 AA800SEMICON1N4006B50FAGOR1N4001 AB100SEMICON RL501B500FAGOR1N4005 AB1000SEMICON RL510B600MICRO ELEC.1N4005 AB200SEMICON RL502B800FAGOR1N4006 AB300SEMICON RL504B80C GI RB153 AB400SEMICON RL504B80C1500/1000FAGOR RS203L AB50SEMICON RL501B80C1500R FAGOR RB153 AB500SEMICON RL506BA157FAGOR FR104 AB600SEMICON RL506BA158FAGOR FR105 AB800SEMICON RL508BA159FAGOR FR107 AC100SEMICON RL501BR705A ITT BR305 AC1000SEMICON RL510BR710A ITT BR310 AC200SEMICON RL502BR71A ITT BR31 AC300SEMICON RL504BR72A ITT BR32 AC400SEMICON RL504BR74A ITT BR34 AC50SEMICON RL501BR76A ITT BR36INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #BR78A ITT BR38BY214-800THOMSON6A8BR90A ITT BR805BY218-100THOMSON FR252 BR91A ITT BR81BY218-200THOMSON FR253 BR92A ITT BR82BY218-600THOMSON FR255 BR94A ITT BR84BY226PHILIPS RL155G BR96A ITT BR86BY229-200PHILIPS HER804 BR98A ITT BR88BY251FAGOR1N5402 BWX57-500THOMSON FR104G BY252FAGOR1N5404 BWX57-600THOMSON FR105G BY259-150SIEMENS FR153G BWX58-100THOMSON FR102G BY259-200SIEMENS FR153G BWX58-200THOMSON FR103G BY259-300SIEMENS FR154G BWX58-300THOMSON FR103G BY259-400SIEMENS FR154G BWX58-400THOMSON FR104G BY259-450SIEMENS FR155G BWX58-50THOMSON FR101G BY259-600SIEMENS FR155G BY103THOMSON RL157G BY296FAGOR/THOMSONFR302 BY113THOMSON RL205G BY297FAGOR/THOMSONFR303 BY126THOMSON RL151G BY298FAGOR/THOMSONFR304 BY127THOMSON RL155G BY299FAGOR/THOMSONFR306 BY134THOMSON1N4006G BY330THOMSON FR101G BY135THOMSON1N4003G BY331THOMSON FR102G BY137-400THOMSON RL154G BY337THOMSON FR106G BY137-800THOMSON RL156G BY338THOMSON FR107G BY152N THOMSON RL157G BY396FAGOR FR302 BY156THOMSON1N4007G BY397FAGOR FR303 BY192THOMSON RL851BY398FAGOR FR304 BY193THOMSON RL852BY399FAGOR FR306 BY194THOMSON RL854BY406GP T.I.FR104G BY195THOMSON RL856BY407T.I.FR105G BY198THOMSON RL854BY407GP T.I.FR105G BY201-250THOMSON FR103G BY550-100FAGOR RL501 BY201-350THOMSON FR103G BY550-200FAGOR RL502 BY201-450THOMSON FR104G BY550-400FAGOR RL504 BY201-550THOMSON FR104G BY550-50FAGOR RL500 BY201-650THOMSON FR105G BY550-600FAGOR RL506 BY202-250THOMSON FR153G BY550-800FAGOR RL508 BY202-350THOMSON FR154G BY771-100T.I.HER802 BY202-450THOMSON FR154G BY771-200T.I.HER803 BY202-550THOMSON FR155G BY771-400T.I HER804 BY202-650THOMSON FR155G BY771-600T.I HER805 BY207PHIL./AMPRX.FR105G BYD74A PHIL./AMPRX SF31 BY208-1000PHIL./AMPRX.FR107G BYD74B PHIL./AMPRX SF32 BY208-800PHIL./AMPRX.FR106G BYD74C PHIL./AMPRX SF33 BY210-400PHIL./AMPRX.FR104G BYD74D PHIL./AMPRX SF34 BY210-600PHIL./AMPRX.FR105G BYM10-100GI SM4002 BY210-800PHIL./AMPRX.FR106G BYM10-1000GI SM4007 BY212-750R THOMSON RL856BYM10-200GI SM4003 BY213-700R THOMSON RL856BYM10-400GI SM4004 BY214-100THOMSON6A1BYM10-50GI SM4001 BY214-200THOMSON6A2BYM10-600GI SM4005 BY214-400THOMSON6A4BYM10-800GI SM4006 BY214-50THOMSON6A05BYM11-100GI FSM102 BY214-600THOMSON6A6BYM11-200GI FSM103INDUSTRIAL Part No.MFT.RECTRONPart No.RECTRONDATABOOKPage #INDUSTRIALPart No.MFT.RECTRONPart No.RECTRONDATABOOKPage #BYM11-400GI FSM104BYW10-100PHIL./AMPRX FR151G BYM11-600GI FSM105BYW10-1000PHIL./AMPRX FR157G BYM11-800GI FSM106BYW10-1000R PHIL./AMPRX FR157G BYM12-100GI BYW10-100R PHIL./AMPRX FR152G BYM12-200GI HSM103BYW10-200PHIL./AMPRX FR153G BYM12-400GI HSM104BYW10-200R PHIL./AMPRX FR153G BYM12-50GI HSM101BYW10-300PHIL./AMPRX FR153G BYM13-20GI SM120BYW10-300R PHIL./AMPRX FR154G BYM13-30GI SM130BYW10-400PHIL./AMPRX FR154G BYM13-40GI SM140BYW10-400R PHIL./AMPRX FR154G BYM13-50GI SM150BYW10-50PHIL./AMPRX FR151G BYM13-60GI SM160BYW10-50R PHIL./AMPRX FR155G BYM26A PHIL./AMPRX HER302BYW10-600PHIL./AMPRX FR155G BYM26B PHIL./AMPRX HER305BYW10-600R PHIL./AMPRX FR156G BYM26C PHIL./AMPRX HER306BYW10-800PHIL./AMPRX FR156G BYM26D PHIL./AMPRX HER308BYW27-100THOMSON1N4002G BYQ28-100PHILIPS HER1602C BYW27-1000THOMSON1N4007G BYQ28-200PHILIPS HER1603C BYW27-200THOMSON1N4003G BYQ28-50PHILIPS HER1601C BYW27-400THOMSON1N4004G BYT03-200THOMSON SF34BYW27-50THOMSON1N4001G BYT08P-200A THOMSON HER803BYW27-600THOMSON1N4005G BYT08P-300A THOMSON HER804BYW27-800THOMSON1N4006G BYT08P-400P THOMSON HER805BYW29-100A THOMSON HER802 BYT11-1000THOMSON HER107BYW29-150A THOMSON HER803 BYT11-600THOMSON HER105BYW29-200A THOMSON HER803 BYT11-800THOMSON HER106BYW29-50A THOMSON HER801 BYT13-1000THOMSON HER308BYW299-50THOMSON SF301C BYT13-600THOMSON HER306BYW37PHIL./AMPRX1N4001G BYT13-800THOMSON HER307BYW38PHIL./AMPRX1N4002G BYT16-100THOMSON HER306BYW39PHIL./AMPRX1N4003G BYT16P-300THOMSON HER1604C BYW40PHIL./AMPRX1N4004G BYT16P-400THOMSON HER1605C BYW41PHIL./AMPRX1N4005G BYT71-100THOMSON HER802BYW42PHIL./AMPRX1N4006G BYT79-300PHILIPS HER1605C BYW43PHIL./AMPRX1N4007G BYV10-20PHIL./AMPRX SR120BYW51-100A THOMSON HER1602C BYV10-20A THOMSON1N5817BYW51-150A THOMSON HER1603C BYV10-30PHIL./AMPRX SR130BYW51-200A THOMSON HER1604C BYV10-40PHIL./AMPRX SR140BYW51-50A THOMSON HER1601C BYV10-60THOMSON SR160BYW60PHIL./AMPRX MP3505 BYV29-400PHIL./AMPRX HER805BYW61PHIL./AMPRX MP351 BYV36A PHIL./AMPRX HER103BYW62PHIL./AMPRX MP352 BYV36B PHIL./AMPRX HER104BYW64PHIL./AMPRX MP354 BYV36C PHIL./AMPRX HER105BYW68MULLARD MP358 BYV36D PHIL./AMPRX HER106BYW77P-100THOMSON SF302C BYV36E PHIL./AMPRX HER107BYW77P-200THOMSON SF304C BYV52-100THOMSON SF302C BYW77P-50THOMSON SF301C BYV52-150THOMSON SF303C BYW80-100A THOMSON HER802 BYV52-50THOMSON SF301C BYW80-150A THOMSON HER803 BYV72-100PHILIPS SF302C BYW80-200A THOMSON HER804 BYV79-100PHILIPS SF161C BYW80-50A THOMSON HER801 BYV79-150PHILIPS SF163C BYW81P-100A THOMSON HER1602C BYV79-200PHILIPS SF164C BYW81P-150A THOMSON HER1603CINDUSTRIAL Part No.MFT.RECTRON Part No.RECTRON DATA BOOK Page #INDUSTRIAL Part No.MFT.RECTRON Part No.RECTRON DATA BOOK Page #BYW81P-200A THOMSON HER1604C CTU-20S SANKEN HER1601C BYW81P-50A THOMSON HER1601C CTU-21S SANKEN HER1602C BYW98-150THOMSON SF32CTU-22S SANKEN HER1603C BYW98-200THOMSON SF33CTU-24R SANKEN HER1604C BYW98-50THOMSON SF31CTU-26R SANKEN HER1605C BYW99P-100THOMSON SF302C CTU-32U SANKEN HER3003C BYW99P-150THOMSON SF303C D100TRW 1N4007G BYW99P-200THOMSON SF304C D1201A RCA 1N4002BYX22-200PHIL./AMPRX RL153G D1201B RCA 1N4003BYX22-400PHIL./AMPRX RL154G D1201D RCA 1N4004BYX22-600PHIL./AMPRX RL155G D1201F RCA 1N4001BYX45-1000R PHIL./AMPRX RL157G D1201M RCA 1N4005BYX45-600R PHIL./AMPRX RL155G D1201N RCA 1N4006BYX45-800R PHIL./AMPRX RL156G D1201P RCA1N4007BYX58-100THOMSON FR102G D16LCA20SHINDENGENSF164C BYX58-200THOMSON FR103G D1NL20U 1H5BYX58-400THOMSON FR104G D1V20SHINDENGEN 1N4003BYX58-50THOMSON FR101G D1V40SHINDENGEN 1N4004BYX58-600THOMSON FR105G D1V60SHINDENGEN 1N4005BYX70-100PHIL./AMPRX.FR102G D2201A RCA FR152G BYX70-300PHIL./AMPRX.FR103G D2201B RCA FR153G BYX70-500PHIL./AMPRX.FR104G D2201D RCA FR154G BYX71-350PHIL./AMPRX.HER804D2201F RCA FR151G BYX71-600PHIL./AMPRX.HER805D2201M RCA FR155G BYX92-100THOMSON FR102G D2201N RCAFR156G BYX92-200THOMSON FR103G D2SB(A)10SHINDENGEN RS202L BYX92-300THOMSON FR104G D2SB(A)20SHINDENGEN RS203L BYX92-400THOMSON FR104G D2SB(A)40SHINDENGEN RS204L BYX92-50THOMSON FR101G D2SB(A)60SHINDENGEN RS205L BYY31THOMSON RL152G D3SB(A)10SHINDENGEN RS402M BYY32THOMSON RL153G D3SB(A)20SHINDENGEN RS403M BYY33THOMSON RL154G D3SB(A)40SHINDENGEN RS404M BYY34THOMSON RL155G D3SB(A)60SHINDENGEN RS405M BYY35THOMSON RL155G D5SB(A)10SHINDENGEN RS602M BYY36THOMSON RL155G D5SB(A)20SHINDENGEN RS603M BYY37THOMSON RL157G D5SB(A)40SHINDENGEN RS604M CTG-34SANKEN HER1605C D5SB(A)60SHINDENGEN RS605M CTL-21S SANKEN HER1602C DD10CODI 1N4007G CTL-22S SANKEN SF164C DD10J CODI 1N4007G CTL-23S SANKEN SF165C DF005GIDB101CTL-24S SANKEN SF166C DF005M GI/MOTOROLA DB101CTL-31S SANKEN HER3002C DF01GI DB102CTL-32S SANKEN HER3003C DF010GIDB107CTM-20S SANKEN HER1601C DF01M GI/MOTOROLA DB102CTM-21S SANKEN HER1602C DF01S GI DB102S CTM-22S SANKEN HER1603C DF02GIDB103CTM-24S SANKEN HER1604C DF02M GI/MOTOROLA DB103CTM-26S SANKEN HER1605C DF02S GI DB103S CTM-31S SANKEN HER1602C DF04GIDB104CTM-32S SANKEN HER1603C DF04M GI/MOTOROLA DB104CTM-34SSANKENHER1604CDF04SGIDB104S。
瞬态抑制二极管KE
A.General Description简要概述
TVS DIODE:瞬态抑制二极管是一种限压型的过电压保护器件,它又叫TVP、ABD,它能以PS级的速度把过高的电压限制在一个安全范围之内,从而起到保护后面电路的作用。
广泛应用在半导体及敏感的电子零件过电压、ESD保护,主要包括:消费类产品、工业产品、通迅、计算机、汽车、电源供应品、信号线路保护及军事、航天航空导航系统及控制系统上;反应速度快,电压抑制能力强,有Axial lead和SMD系列.
产品通过一系列的安全可靠认证如UL认证、无铅认证,符合IEC61000-4-2ESD、IEC61643-321:2001ABD测试
标准。
瞬态功率从400W至30,000W;
电压由5V至600V,或更高
也可为客户定制规格、符合ROHS要求
产品尺寸(mm)
C.Electrical Characteristics电气参数
D.产品重要特性曲线(TA=25℃unless otherwise noted)
E.术语定义
F.Order information定购信息
1000PCS/BOX
NOTE:TERMINAL PAD SOLDERABILITY:
MEETS EIA SPECIFICATION RS186-9E
AND ANSI、J-STD-002CATEGORY3.
器件的焊接符合美国标准协会J-STD-002要求。
AEC_Q101-001A
AEC - Q101 - REV -May 15, 1996 Automotive Electronics CouncilComponent Technical CommitteeATTACHMENT 1AEC – Q101-001HUMAN BODY MODEL (HBM)ELECTROSTATIC DISCHARGE (ESD)TESTMETHOD - 001DISCRETE COMPONENTHUMAN BODY MODEL (HBM)ELECTROSTATIC DISCHARGE (ESD) TEST1. SCOPE1.1 Description:The purpose of this specification is to establish a reliable and repeatable procedure fordetermining the HBM ESD sensitivity for discrete components.Documents:1.2 ReferenceEOS/ESD Association Specification STM5.1JEDEC Specification EIA/JESD22-A1141.3 Terms and Definitions:The terms used in this specification are defined as follows.Failure:1.3.1 ComponentA condition in which a component does not meet all the requirements of the acceptance criteria,as specified in section 5, following the ESD test.1.3.2 Device Under Test (DUT):An electronic component being evaluated for its sensitivity to ESD.1.3.3 Electrostatic Discharge (ESD):The transfer of electrostatic charge between bodies at different electrostatic potentials.1.3.4 Electrostatic Discharge Sensitivity:An ESD voltage level resulting in component failure.1.3.5 ESDSimulator:An instrument that simulates the human body model ESD pulse as defined in this specification.1.3.6 Human Body Model (HBM) ESD:An ESD pulse meeting the waveform criteria specified in this test method.1.3.7 Maximum Withstanding Voltage:The maximum ESD voltage at which, and below, the component is determined to pass the failure criteria requirements specified in section 4.1.3.8 PUT:The pin and/or terminal under test.1.3.9 Ringing current (IR):The high frequency current oscillation usually following the pulse rise time.1.3.10 Worst Case Pin and/or Terminal Pair (WCP):WCP is the pin and/or terminal pair representing the worst case waveform that is within the limits and closest to the minimum or maximum parameter values as specified in Table 1. The WCPshall be identified for each socket.2. EQUIPMENT:Apparatus:2.1 TestThe apparatus for this test consists of an ESD pulse simulator and DUT socket. Figure 1 showsa typical equivalent HBM ESD circuit. Other equivalent circuits may be used, but the actualsimulator must be capable of supplying pulses that meet the waveform requirements of Table 1, Figure 2, and Figure 3.100 pFC1Terminal ATerminal BS1S2R11500 ohmHigh VoltagePulse GeneratorDUTsocketFigure 1: Typical Equivalent HBM ESD CircuitNotes:1. Figure 1 is shown for guidance only; it does not attempt to represent all associated circuitcomponents, parasitics, etc..2. The performance of any simulator is influenced by its parasitic capacitance and inductance.3. Precautions must be taken in simulator design to avoid recharge transients and multiplepulses.4. R2, used for Equipment Qualification as specified in section 2.3, shall be a low inductance,1000 Volt, 500 ohm resistor with ±1% tolerance.5. Piggybacking of DUT sockets (the insertion of secondary sockets into the main DUT socket)is allowed only if the combined piggyback set (main DUT socket with the secondary DUT socket inserted) waveform meets the requirements of Table 1, Figure 2, and Figure 3. 6. Reversal of terminals A and B to achieve dual polarity is not permitted7. S2 should be closed 10 to 100 milliseconds after the pulse delivery period to ensure the DUTsocket is not left in a charged state. S2 should be opened at least 10 milliseconds prior to the delivery of the next pulse.2.2 Measurement Equipment:Equipment shall include an oscilloscope and current probe to verify conformance of the simulator output pulse to the requirements of this document as specified in Table 1, Figure 2, and Figure 3.2.2.1 Current Probe:The current probe shall have a minimum bandwidth of 350 Mhz and maximum cable length of 1 meter (Tektronix CT-1 or equivalent).2.2.2 Evaluation Loads:The two evaluation loads shall be: 1) a low inductance, 1000 volt, 500 ohm sputtered film resistor with + 1% tolerance, and 2) an 18 AWG tinned copper shorting wire. The lead length of both the shorting wire and the 500 ohm resistor shall be as short as possible and shall span the maximum distance between the worst case pin and/or terminal pair (WCP) while passing through the current probe as defined in section 2.2.1.2.2.3 Oscilloscope:The oscilloscope and amplifier combination shall have a minimum bandwidth of 350 Mhz, aminimum sensitivity of 100 milliamperes per large division and a minimum visual writing speed of4 cm per nanosecond.Qualification:2.3 EquipmentEquipment qualification must be performed during initial acceptance testing or after repairs aremade to the equipment that may affect the waveform. The simulator must meet the requirements of Table 1 and Figure 2 for five (5) consecutive waveforms at all voltage levels using the worstcase pin and/or terminal pair (WCP) on the highest pin count, positive clamp test socket DUTboard with the shorting wire per Figure 1. The simulator must also meet the requirements ofTable 1 and Figure 3 for five (5) consecutive waveforms at the 1000 volt level using the worstcase pin and/or terminal pair (WCP) on the highest pin count, positive clamp test socket DUTboard with the 500 ohm load per Figure 1. Thereafter, the test equipment shall be periodicallyqualified as described above; a period of one (1) year is the maximum permissible time between full qualification tests.2.4 Simulator Waveform Verification:The performance of the simulator can be dramatically degraded by parasitics in the dischargepath. Therefore, to ensure proper simulation and repeatable ESD results, it is recommended that waveform performance be verified on the worst case pin and/or terminal pair (WCP) using onlythe shorting wire per section 2.4.1. The worst case pin and/or terminal pair (WCP) for eachsocket and DUT board shall be identified and documented. The waveform verification shall beperformed when a socket/mother board is changed or on a weekly basis (if the equipment is used for at least 20 hours). If at any time the waveforms do not meet the requirements of Table 1 and Figure 2 at either the 1000 or 4000 volt level, the testing shall be halted until waveforms are incompliance.2.4.1 Waveform Verification Procedure:a. With the required DUT socket installed and with no component in the socket, attach ashorting wire in the DUT socket such that the worst case pin and/or terminal pair (WCP)is connected between terminal A and terminal B as shown in Figure 1. Place the currentprobe around the shorting wire.b. Set the horizontal time scale of the oscilloscope at 5 nanoseconds per division or less.c. Initiate a positive pulse at either the 1000 or 4000 volt level per Table 1. The simulatorshall generate only one (1) waveform per pulse applied.d. Measure and record the rise time, peak current and ringing current. All parameters mustmeet the limits specified in Table 1 and Figure 2.e. Initiate a negative pulse at either the 1000 or 4000 volt level per Table 1. The simulatorshall generate only one (1) waveform per pulse applied.f. Measure and record the rise time, peak current and ringing current. All parameters mustmeet the limits specified in Table 1 and Figure 2.g. Set the horizontal time scale of the oscilloscope at 100 nanoseconds per division orgreater and initiate a positive pulse at either the 1000 or 4000 volt level per Table 1. The simulator shall generate only one (1) waveform per pulse applied.h. Measure and record the decay time and ringing current. All parameters must meet thelimits specified in Table 1 and Figure 2.i. Initiate a negative pulse at either the 1000 or 4000 volt level per Table 1. The simulatorshall generate only one (1) waveform per pulse applied.j. Measure and record the decay time and ringing current. All parameters must meet the limits specified in Table 1 and Figure 2.Table 1: HBM Waveform SpecificationVoltage Level (V) Ipeak forShort,I ps(A)Ipeak for500 Ohm *I pr(A)Rise Timefor Short,t r(ns)Rise Timefor 500Ohm *t rr(ns)DecayTime forShort,t d(ns)RingingCurrentI R(A)1000 0.60 - 0.74 .375 - .55 2.0 - 10 5.0 - 25 130 - 170 15% ofI ps andI pr2000 1.20 - 1.46 NotApplicable 2.0 - 10 NotApplicable130 - 170 15% ofI ps andI pr4000 2.40 - 2.94 NotApplicable 2.0 - 10 NotApplicable130 - 170 15% ofI ps andI pr8000 4.80 - 5.86 NotApplicable 2.0 - 10 NotApplicable130 - 170 15% ofI ps andI pr* The 500 ohm load is used only during Equipment Qualification as specified in section 2.3.2.5 Automated ESD Test Equipment Relay Verification:If using automated ESD test equipment, the system diagnostics test shall be performed on allhigh voltage relays per the equipment manufacturer's instructions. This test normally measures continuity and will identify any open or shorted relays in the test equipment. Relay verificationmust be performed during initial equipment qualification and on a weekly basis. If the diagnostics test detects relays as failing, all sockets boards using those failed relays shall not be used untilthe failing relays have been replaced. The test equipment shall be repaired and requalified per section 2.3.(a) Pulse rise time, (t r)(b) Pulse decay time, (t d)Figure 2: HBM Current Waveforms through a Shorting WireAutomotive Electronics CouncilComponent Technical Committee(a) Pulse rise time, (t rr)Figure 3: HBM Current Waveform through a 500 Ohm Resistor ** The 500 ohm load is used only during Equipment Qualification as specified in section 2.3.3. TEST PROCEDURE:3.1 Sample Size:Each sample group shall be composed of ten (10) components per stress voltage level (for atotal sample size of 30 components as specified in Table 1 of AEC-Q101). Each sample group shall be stressed at one (1) stress voltage level, following the test flow diagram of Figure 4, using all pin and/or terminal combinations specified in section 3.2. Each stress voltage level requires a new sample group of ten (10) components.3.2 Pin and/or Terminal Combinations:Each pair of pins and/or terminals and all combinations of pin and/or terminal pairs for eachcomponent shall be subjected to test pulses at each stress voltage polarity following the ESDlevels stated in Figure 4. Any pin and/or terminal not under test shall be in an electrically open (floating) state.3.3 Test Temperature:Each component shall be subjected to ESD pulses at room temperature.3.4 Measurements:Prior to ESD testing, complete parametric testing (initial electrical verification) shall be performed on all sample groups and all components in each sample group per applicable user devicespecification at room temperature followed by hot temperature, unless specified otherwise in the user device specification. A data log of each component shall be made listing all parametermeasurements as defined in Table 2. The data log will be compared to the parametersmeasured during final electrical verification testing to determine the failure criteria of section 4.Procedure:3.5 DetailedThe ESD testing procedure shall be per section 3.2, Figure 4, and as follows:a. Follow the recommended test flow diagram of Figure 4.b Connect a selected PUT (see section 3.2) to terminal B.c. Connect an individual component pin and/or terminal to terminal A. Leave all othercomponent pins and/or terminals unconnected.d. Apply one (1) positive pulse at the specified voltage to the PUT. Wait a minimum of 500milliseconds before applying the next test pulse. The use of three (3) pulses at eachstress voltage polarity is also acceptable, and may be required per user agreement.e. Apply one (1) negative pulse at the specified voltage to the PUT. Wait a minimum of 500milliseconds before applying the next test pulse. The use of three (3) pulses at eachstress voltage polarity is also acceptable, and may be required per user agreement.f. Disconnect the PUT from testing and connect the next individual component pin and/orterminal to terminal A. Leave all other component pins and/or terminals unconnected.g. Repeat steps (d) through (f) until every pin and/or terminal not connected to terminal B ispulsed at the specified voltage (see section 3.2).h. Repeat steps (b) through (g) until all pin and/or terminal combinations have beenstressed.i. Test the next component in the sample group and repeat steps (b) through (h) until allcomponents in the sample group have been tested at the specified voltage level.j. Submit the components for complete parametric testing (final electrical verification) per the user device specification at room temperature followed by hot temperature, unlessspecified otherwise in the user device specification, and determine whether thecomponents meet the failure criteria requirements specified in section 4. It is permitted toperform the parametric testing (final electrical verification) per user device specificationafter all sample groups have been tested.k. Using a new sample group, select the next stress voltage level as specified in Figure 4 and repeat steps (b) through (j)l. Repeat steps (b) through (k) until failure occurs or the maximum withstanding voltage level has been reached.4. FAILURECRITERIA:A component will be defined as a failure if, after exposure to ESD pulses, the component fails anyof the following criteria:1. The component exceeds the allowable shift values for the specific key parameters listedin Table 2. Other component parameters and allowable shift values may be specified inthe user device specification. During initial parametric testing, a data log shall be madefor each component listing the applicable parameter measurement values. This data logwill be compared to the parameters measured during final parametric testing todetermine the shift value. Components exceeding the allowable shift value will bedefined as a failure.2. The component no longer meets the user device specification requirements. Completeparametric testing (initial and final electrical verification) shall be performed perapplicable user device specification at room temperature followed by hot temperature,unless specified otherwise in the user device specification.Table 2: Key Parameters and Allowable Shift ValuesComponent Type Parameters Maximum Allowable Shift ValuesBipolar I CES, I CBO, and I EBO Ten times (10X) the initialmeasurementFET I DSS and I GSS Ten times (10X) the initialmeasurementIGBT I CES and I GES Ten times (10X) the initialmeasurementDiode I R Ten times (10X) the initialmeasurementCRITERIA:5. ACCEPTANCEA component passes a voltage level if all components stressed at that voltage level and belowpass. All the samples must meet the measurement requirements specified in section 3 and the failure criteria requirements specified in section 4. Using the classification levels specified inTable 3, classify the components according to the highest ESD voltage level survived during ESD testing. The ESD withstanding voltage shall be defined for each component by the supplier.Table 3: Discrete Component HBM ESD Classification LevelsComponent ClassificationMaximum Withstand VoltageH0 ≤ 250 V H1A > 250 V to ≤ 500 V H1B > 500 V to ≤ 1000 V H1C > 1000 V to ≤ 2000 V H2 > 2000 V to ≤ 4000 V H3A > 4000 V to ≤ 8000 VH3B> 8000 VPASSFAIL FAILPASSFAIL PASSFAILPASS2 kVPASS FAIL FAIL PASS FAIL PASS 6 kV8 kV4 kV 1 kV 1 kV 500 V 250 V < 250 V 250 V 500 V 4 kV 2 kV > 8 kV6 kVNote 1:Classify the components according to the highest ESD voltage level survived during ESD testing.Figure 4: Discrete Component HBM ESD Test Flow DiagramRevision HistoryRev #-A Date of changeMay 15, 1996July 18, 2005Brief summary listing affected sectionsInitial Release.Revised the following: Sections 1.2, 2.1, 3.1, 3.5 (d and e), and 5;Tables 1 and 3; Figure 1. Revision to section 3.5 (d and e) reflectsa change from three (3) ESD pulses with a one (1) secondminimum delay between consecutive ESD pulses at each stresspolarity to one (1) ESD pulse with a 500 millisecond minimum delaybetween consecutive ESD pulses. This change is required to alignwith industry standards. The use of three (3) ESD pulses with aone (1) second minimum delay between consecutive ESD pulses isalso acceptable, and may be required per user agreement.Revision to Table 1 reflects a ±10% tolerance applied to all Ips(Ipeak for short) parameter values.。
瞬态抑制二极管SMAJ14A丝印BK单向TVS
瞬态抑制二极管SMAJ14A丝印BK单向TVS随着半导体技术和电子技术的发展,瞬态抑制二极管的体积越来越小、质量越来越轻、效率越来越高、可靠性也越来越优良,被广泛地运用到了生活中的各个方面。
SMAJ 系列是单向瞬态抑制二极管采用表面安装是一种二极管形式的高效能保护器件,具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差、箝位电压较易控制、无损坏极限、体积小等优点:特别适用于提供电子电路浪涌保护。
1:瞬态抑制二极管SMAJ14A丝印BK单向TVS现货参数:工作电压:14V击穿电压:15.6--17.2V钳制电压:23.2V峰值电流:17.2A工作温度:-55 °C至+150 °C测试电流:1mA塑料材料:UL 94V-0 认证快速响应少于 5.0 ns2:瞬态抑制二极管SMAJ14A丝印BK单向TVS现货常规特征:浪涌额定功率:400Watt封装形式:标准SMA(DO-214AC)封装环保要求:符合RoHS、Reach等环保要求;产品优点:响应时间快、瞬态功率大、漏电流低、击穿电压偏差、箝位电压较易控制、无损坏极限、体积小包装方式:盘装 2000PCS/盘3:瞬态抑制二极管SMAJ14A丝印BK单向TVS现货应用领域:家用电器;电子仪器;仪表;精密设备;计算机系统;通讯设备;RS232、485及 CAN等通讯端口;ISDN的保护;I/O端口;IC电路保护;音、视频输入;交、直流电源;电机、继电器噪声的抑制等各个领域.4:瞬态抑制二极管SMAJ14A丝印BK单向TVS现货尺寸图:5:公司常规现货情况:1:P6KE300CA;P6KE350CA;P6KE400CA;P6KE440CA;1.5KE10CA;SMAJ15CA;SMBJ18CA; 2:NTC5D-15;NTC5D-13;NTC10D-7;NTC5D-7;NTC10D-5;NTC20D-15;NTC47D-153:FESD5Z12V;FESD5B5VL;FESD0524P;ULC0524P;RCLAMP0524P;SERV05-4;SLVU2.8 4:MVR0402-180E0R8;SESD0402E050M24;SESD0603E050M24;SESD0402E100M055:RF60-005;RF60-010;RF60-017;RF60-020;RF60-030;RF60-040;RF60-050;RF60-065;6:14D471K;14D201K;14D221K;14D391K;14D330K;10D561K;10D361K;20D201K;7:10A10;6A10;SF56;SF58;1N4004;1N4001;1N4007;M7;US1G;S2K;KBPC3510;8:2RM230L-8;2RM600L-8;4532-231-LF;4532-601-LF;SMD1812-201;UN1812-200CSMD; 6:关于我们深圳市尧丰发科技有限公司成立2010年,是一家专业生产及销售的高新技术企业:拥有自己独立的品牌“YF”;公司主要产品有:NTC热敏电阻,压敏电阻,TVS二极管,ESD静电二极管,陶瓷放电管,半导体放电管,玻璃放电管,ESD静电抑制器;自恢复保险丝公司已通过了ISO9002国际质量标准体系、ISO9001:2008质量管理体系、ISO14001环境管理体系认证。
AEC_Q101中文标准规范
基于离散半导体元件应力测试认证的失效机理内容列表AEC-Q101 基于离散半导体元件应力测试认证的失效机理附录1: 认证家族的定义附录2: Q101 设计、构架及认证的证明附录3: 认证计划附录4: 数据表示格式附录5: 最小参数测试要求附录6: 邦线测试的塑封开启附录7: AEC-Q101与健壮性验证关系指南附件AEC-Q101-001: 人体模式静电放电测试AEC-Q101-002: 人体模式静电放电测试 (废止)AEC-Q101-003: 邦线切应力测试AEC-Q101-004: 同步性测试方法AEC-Q101-005: 静电放电试验–带电器件模型AEC-Q101-006: 12V系统灵敏功率设备的短路可靠性描述感谢任何涉及到复杂的技术文件都来自于各个方面的经验和技能。
为此汽车电子委员会由衷承认并感谢以下对该版文件有重大贡献的人:固定会员:Rick Forster Continental CorporationMark A. Kelly Delphi CorporationDrew Hoffman Gentex CorporationSteve Sibrel HarmanGary Fisher Johnson ControlsEric Honosowetz Lear Corporation技术成员:James Molyneaux Analog DevicesJoe Fazio Fairchild SemiconductorNick Lycoudes FreescaleWerner Kanert InfineonScott Daniels International Rectifier Mike Buzinski MicrochipBob Knoell NXP Semiconductors Zhongning Liang NXP SemiconductorsMark Gabrielle ON SemiconductorTom Siegel Renesas TechnologyTony Walsh Renesas TechnologyBassel Atallah STMicroelectronicsArthur Chiang VishayTed Krueger [Q101 Team Leader]Vishay其他支持者:John Schlais Continental Corporation John Timms Continental Corporation Dennis L. Cerney International Rectifier Rene Rongen NXP SemiconductorsThomas Hough Renesas TechnologyThomas Stich Renesas Technology本文件是专门的纪念:Ted Krueger (1955-2013)Mark Gabrielle (1957-2013)注意事项AEC文件中的材料都是经过AEC技术委员会准备、评估和批准的。
AEC-Q101认证测试项目有哪些?
半导体企业的首选AEC-Q101认证AEC-Q101认证为汽车级半导体分立器件应力测试,主要对汽车分立器件,元器件标准规范要求,如:车用光电耦合器:用于车用隔离件、接口转换器,光电耦合器(TLX9304、TLX9378、TLX9376),触摸屏控制盘,整卷分立器件等。
半导体企业要想打入汽车领域,成为各Tier1大厂供应链,必须取得两张门票:第一张门票即符合零失效(Zero Defect)的供应链质量管理标准ISO/TS16949规范(Quality Management System)。
第二张就是AEC-Q100认证了。
如果成功完成AECQ文件各要点需要的测试结果,那么将允许供应商声称他们的零件通过了AECQ认证。
供应商可以与客户协商,可以在样品尺寸和条件的认证上比文件要求的要放宽些,但是只有完成要求实现的时候才能认为零件通过了AECQ认证。
那么半导体企业如何做AEC-Q101认证呢?AEC-Q101认证包含了离散半导体元件(如晶体管,二极管等)最低应力测试要求的定义和参考测试条件,目的是要确定一种器件在应用中能够通过应力测试以及被认为能够提供某种级别的品质和可靠性。
根据AECQ101认证规范,离散半导体的最低温度的范围应为-40℃~+125℃,所有LED的最小范围应为40℃到85℃。
李工:189.5111.2068AEC-Q101认证要做哪些项目?测试项目要求:应力测试前后(电学测试)、预处理、目检、参数验证、高温反向偏压、高温栅偏压、温度循环、无偏高加速度应力、高压锅、高加速度应力测试、高温高湿反向偏压、间歇运行寿命、功率和温度循环、静电放电特性、破坏性物理分析、物理尺寸、端子强度、耐溶剂性、恒定加速械冲击、气密性、耐焊接热、可焊性、热阻、邦线强度、邦线剪切、芯片剪片、雪崩击穿、绝缘、短路可靠性、无铅。
如今汽车市场竞争激烈,不管是投标还是占领市场,要想尽早进入汽车领域并且立足,AECQ101认证将会是半导体企业的首选。
一文详解瞬态电压抑制二极管,看完再也不怕被忽悠了
一文详解瞬态电压抑制二极管,看完再也不怕被忽悠了提及电路保护元器件,对于行业人而言,能够夸夸其谈,三天三夜都说不完;而对于行外人或者刚入门的人而言,犹如看天书,稍不慎,很容易掉进盲区。
不可否认,在这个网络信息技术发达的时代,关于tvs管各种各类的信息随处可见,但,其真正有多少是专业、科学的,都有待考究和甄别。
为此,东沃电子,特意为大家科普下关于瞬态电压抑制二极管这方面的知识。
何为tvs管,有什么作用?TVS(Transient Voltage Suppressor)管,也称瞬态电压抑制二极管,是在齐纳二极管工艺基础上发明的一种新型高效电路保护元器件,p秒级别的响应时间和高浪涌吸收能力是tvs管的核心优势。
tvs管的工作原理,与常见的齐纳二极管极其相似,在一定范围内,均可以限制电路中两端的电压,使得两极间的电压箝位稳定在一个安全值,从而有效地保护电路中的精密元器免受破坏高压、高流、高涌破坏。
目前,tvs管广泛应用在家用电器、计算机系统、通讯设备、汽车电子、交/直流电源、电子镇流器、工业控制、医学、航空等方面。
如何区分tvs管的正负极和单双向?当瞬态电压抑制二极管这个产品在您手上时候,第一时间,要知道这个产品的正负极和单双向。
1)看标志:tvs管,有单向和双向之分,单向的一端呢,有细色环,接的是正极,而双向的呢,中间有两道环,或者没有任何标志,没极性。
2)看规格书:一般在第一页,双向为双向导通,单向为单向导通。
3)看型号:tvs管的型号命名是有规律的,大部分tvs管型号均能看出参数,具体可以咨询东沃电子,一家真正专注于电路保护元器件研发、生产、销售为一体的新兴企业。
4)借助万用表工具:单向一边又电压,直流方面有雪崩击穿特性;双向都有电压,直流方面,双向对称。
如何选择tvs管的型号?关于tvs管型号选择这个问题,东沃电子曾科普了很多这方面的知识。
在这里,就简单总结几点,如有不懂之处,东沃电子的技术人员随时随地为您解答,根据您的需求推荐最适合您的产品。
1.5KE系列瞬态电压抑制二极管(TVS管)
SIYUR1.5KE6.8 ...... 1.5KE440AW 极限值和温度特性 TA = 25℃ 除非另有规定。
Maximum Ratings & Thermal Characteristics Ratings at 25℃ ambient temperature unless otherwise specified.单位 Unit参数 Parameter符号 Symbols数值 Value 功率消耗P ppm Minimum 1500电特性 TA = 25℃ 除非另有规定。
Electrical Characteristics Ratings at 25℃ ambient temperaturePower Dissipation200峰值正向浪涌电流 8.3ms单一正弦半波Peak forward surge current 8.3 ms single half sine-waveAI FSM3.55.0V V F最大瞬间正向电压 I F = 100AMaximum Instantaneous Forward Voltage 20℃/W R θJA 典型热阻Typical Thermal Resistance Junction-to-lead℃Tj, TSTG-50 --- +175工作结温和存储温度Operating Junction And Storage Temperature Range瞬间电压抑制二极管Transient Voltage SuppressorsBreakdown Voltage 6.8 to 440V特征 Features机械数据 Mechanical Data转折电压 6.8 --- 440V·高温焊接保证 High temperature soldering guaranteed:265℃/10 秒, 0.375" (9.5mm)引线长度。
车规级AEC-Q101认证规范
车规级AEC-Q101认证规范汽车电⼦对元件的外部⼯作环境,如温度、湿度、发霉、粉尘、⽔、EMC以及有害⽓体侵蚀等的要求,根据不同的安装位置等有不同的需求,但⼀般都⾼于消费电⼦产品。
车规级元器件认证,是指我们如果需要打造⼀个满⾜车载等级要求的元器件,那么就必须要经历过的⼀系列认证,⽽AEC-Q 系列标准就是⾏业公认的车规元器件认证标准。
这⾥的AEC(Automotive Electronics Council)也就是汽车电⼦委员会。
这是⼀个由通⽤、福特和克莱斯勒为建⽴⼀套通⽤的零件资质及质量系统标准⽽设⽴的组织。
⽽Q则是Qualification的⾸字母。
半导体产业链可以分为上游⽀撑、中游制造和下游应⽤,其中上游⽀撑主要包含半导体材料、半导体⽣产设备、EDA 和 IP 核;中游制造包括芯⽚设计、晶圆制造和封装测试三⼤环节;下游应⽤覆盖汽车、⼯业控制、消费电⼦等领域。
2021年11⽉1⽇,国家新能源汽车技术创新中⼼提出,并主责起草的《车规级半导体功率器件测试认证规范》、《车规级半导体功率模块测试认证规范》和《车规级智能功率模块(IPM)测试认证规范》三项团体标准正式⾯向产业发布。
三项标准参照AECQ101、AQG324以及国军标等标准,按照汽车⾏业OEM和Tire1的要求,基于BJEV的路谱,综合考虑第三代半导体的特点和应⽤要求,规定了车规级Si基和SiC基功率半导体(器件、模块和组件)鉴定检验和质量⼀致性检验的抽样⽅案,以及试验和测试要求,形成了适⽤于国内车规级功率半导体的产品测试认证规范。
该规范为车规级功率半导体的测试认证、供货体系流程提供依据,充分指导⾃主车规级功率半导体技术的快速进步。
AEC-Q101是基于失效机制的分⽴半导体应⼒测试认证规范。
半导体分⽴器件被⼴泛应⽤到消费电⼦、计算机及外设、⽹络通信,汽车电⼦、led显⽰屏等领域,⽽汽车领域是全球半导体分⽴器件最⼤的应⽤市场。
随着汽车电⼦朝向智能化、信息化、⽹络化⽅向发展,新能源汽车的产销爆发性增长,半导体分⽴器件在汽车电⼦产品中的应⽤呈现出更加⼴阔的发展空间。
TVS瞬态抑制二极管
HFA-030L HFA 表示 3KA 系列,HFB:6KA, HFC:10KA, HFD:16KA, HFE:20KA 030 表示截止电压为 30V; L 表示结构类型;
8. 应用
3. 特点
限压型过压保护器件; 反应速度快,1pS,是所有防雷保护器件中最快的; 电容值高,相同功率规格下,截止电压越大电容越小;相同电压规格下,功 率越大电容越大;低电容系列:B6A B6C 35pF,SAC 50pF,LCE 100pF; 电压规格 5V-600V,电压偏差±5%; 漏电流低,一般为几个 µA。低电压规格(一般 10V 以下)下,漏电流大, 可以达到几十甚至几百 µA; 抑制电压能力强,限制电压能力是所有限压型保护器件中最强的; 性能可靠,使用寿命长; 有单双向之分,单向有色环,标有色环的是二极管的阴极,使用时接高电压 端。 瞬态功率 400W-30KW(10/1000µs 波形),HF 系列 HFA、HFB、HFC、HFD、 HFE 的通流量分别为 3KA、6KA、10KA、16KA、20KPA(8/20µs 波形); 封装多样化,有贴片式的 SMA、SMB、SMC 封装和直插式 DO-41、DO-15、 DO-201、P600 封装;
并联在电路中的限压型过压保护器件,限压能力强。通常用于二级电源和信 号电路的保护,以及防静电。
用于 5V 电源保护
9. 选型规则
1.截止电压大于电路正常工作电压; 2.击穿电压小于电路安全电压; 3.产品功率要大于电路中可能出现的浪涌最大功率; 4.钳位电压要小于后级被保护电路所承受的最大瞬态峰值电压;
DO-201
/ P600
AEC_Q100-001_rev_C
AEC - Q100-001 - REV-COctober 8, 1998 Automotive Electronics CouncilComponent Technical CommitteeATTACHMENT 1AEC - Q100-001 REV-CWIRE BOND SHEAR TESTAEC - Q100-001 - REV-COctober 8, 1998 Automotive Electronics CouncilComponent Technical CommitteeAcknowledgmentAny document involving a complex technology brings together experience and skills from many sources. The Automotive Electronics Counsel would especially like to recognize the following significant contributors to the development of this document:James T. Peace DaimlerChryslerRobert V. Knoell Visteon CorporationGerald E. Servais Delphi Delco Electronics Systems - RetiredMark A. Kelly Delphi Delco Electronics SystemsOctober 8, 1998 Automotive Electronics CouncilComponent Technical CommitteeChange NotificationThe following summary details the changes incorporated into AEC-Q100-001 Rev-C:•Section 1.3.4.4, Type 4 - Die Surface Contact: Corrected wording to reflect bond shear type where the shear tool contacts the die surface, rather than the bonding surface asstated in Rev - B.•Added new Section 1.3.5, Footprint: Added new definition for “footprint”; changed numbers of subsequent sections to reflect the addition.•Section 3.6 step b, Footprint Inspection of Aluminum Wedge/Stitch Bonds: Added wording to clarify method used to remove wire for footprint inspection.•Figure 3, Wire Bond Shear Types: Updated figure to reflect wording correction made to Type 4 - Die Surface Contact.•Minor wording changes were made to the following: Section 1.1, 1.3.1, 1.3.4.1, 1.3.4.5, 2.2,2.5,3.2, and 3.5.Component Technical CommitteeMETHOD - 001WIRE BOND SHEAR TESTText enhancements and differences made since the last revision of thisdocument are shown as underlined areas. Several figures have also beenrevised, but changes to these areas have not been underlined.1.SCOPE1.1DescriptionThis test establishes a procedure for determining the strength of the interface between a gold ball bond and a package bonding surface, or an aluminum wedge/stitch bond and a package bonding surface, on either pre-encapsulation or post-encapsulation devices. This strength measurement is extremelyimportant in determining two features:1)the integrity of the metallurgical bond which has been formed.2)the reliability of gold and aluminum wire bonds to die or package bonding surfaces.This test method can be used only when the ball height and diameter for ball bonds, or the wire height(1.25 mils and larger at the compressed bond area) for wedge/stitch bonds, are large enough andadjacent interfering structures are far enough away to allow suitable placement and clearance (e.g.,above the bonding surface and between adjacent bonds) when performing the wire bond shear test.The wire bond shear test is destructive. It is appropriate for use in process development, processmonitoring, and/or quality assurance.1.2Reference DocumentsNot Applicable1.3Terms and DefinitionsThe terms and definitions shall be in accordance with the following sections.1.3.1Ball BondThe welding of a thin wire, usually gold, to a die bonding surface, usually an aluminum alloy bond pad, using a thermal compression or thermosonic wire bonding process. The ball bond includes the enlarged spherical portion of the wire (sometimes referred to as the nail head and formed by the flame-off and first bonding operation in thermal compression and thermosonic process), the underlying bonding surface,and the intermetallic weld interface. For the purposes of this document, all references to ball bonds are applicable to gold ball bonds on die bonding surfaces; other ball bond material combinations mayrequire a new set of failure criteria (see section 4.1).Component Technical Committee 1.3.2Bonding SurfaceEither 1) the die surface (e.g., die bond pad) or 2) the package bonding surface (e.g., plated leadframe post or finger, downbond to the flag or paddle, etc.) to which the wire is ball, wedge, or stitch bonded.1.3.3Bond ShearA process in which an instrument uses a chisel shaped tool to shear or push a ball or wedge/stitch bond off the bonding surface (see Figure 1). The force required to cause this separation is recorded and is referred to as the bond shear strength. The bond shear strength of a gold ball bond, when correlated to the diameter of the ball bond, is an indicator of the quality of the metallurgical bond between the gold ball bond and the die bonding surface metallization. The bond shear strength of an aluminumwedge/stitch bond, when compared to the manufacturer’s bond wire tensile strength, is an indicator of the integrity of the weld between the aluminum wire and the die or package bonding surface.Shear Tool h Specimen ClampTest SpecimenBondingBond Weld Area Bond C LSurface Figure 1: Bond Shear set-up1.3.4Definition of Bond Shear Types for Ball and Wedge/Stitch Bonds (see Figure 3)1.3.4.1Type 1 - Bond LiftA separation of the entire wire bond from the bonding surface with only an imprint being left on the bonding surface. There is very little evidence of intermetallic formation or welding to the bonding surface metallization.1.3.4.2Type 2 - Bond ShearA separation of the wire bond where: 1) A thin layer of bonding surface metallization remains with the wire bond and an impression is left in the bonding surface, or 2) Intermetallics remain on the bonding surface and with the wire bond, or 3) A major portion of the wire bond remains on the bonding surface.Component Technical Committee1.3.4.3Type 3 - CrateringA condition under the bonding surface metallization in which the insulating layer (oxide or interlayerdielectric) and the bulk material (silicon) separate or chip out. Separation interfaces which show pits ordepressions in the insulating layer (not extending into the bulk) are not considered craters. It should be noted that cratering can be caused by several factors including the wire bonding operation, the post-bonding processing, and even the act of wire bond shear testing itself. Cratering present prior to theshear test operation is unacceptable.1.3.4.4Type 4 - Die Surface ContactThe shear tool contacts the die surface and produces an invalid shear value. This condition may be due to improper placement of the specimen, a die surface not parallel to the shearing plane, a low shearheight, or instrument malfunction. This bond shear type is not acceptable and shall be eliminated fromthe shear data.1.3.4.5Type 5 - Shearing SkipThe shear tool removes only the topmost portion of the ball or wedge/stitch bond. This condition may be due to improper placement of the specimen, a die surface not parallel to the shearing plane, a high shear height, or instrument malfunction. This bond shear type is not acceptable and shall be eliminated from the shear data.1.3.4.6Type 6 - Bonding Surface LiftA separation between the bonding surface metallization and the underlying substrate or bulk material.There is evidence of bonding surface metallization remaining attached to the ball or wedge/stitch bond.1.3.5FootprintAn impression of the compressed wedge/stitch bond area created in the bonding surface during theultrasonic wire bonding process. The bond footprint area is normally larger than the actual metallurgical weld interface.1.3.6Shear Tool or ArmA tungsten carbide, or equivalent, chisel with specific angles on the bottom and back of the tool toinsure a shearing action.1.3.7Wedge/Stitch BondThe welding of a thin wire, usually aluminum, to a die or package bonding surface using an ultrasonicwire bonding process. The wedge bond, sometimes referred to as a stitch bond, includes thecompressed (ultrasonically bonded) area of the bond wire and the underlying bonding surface. Whenwedge/stitch bonding to an aluminum alloy bonding surface, no intermetallic exists because the twomaterials are of the same composition; but rather the two materials are combined and recrystallized bythe ultrasonic energy of the welding process. For the purposes of this document, all references towedge/stitch bonds are applicable to aluminum wedge/stitch bonds only; gold wedge/stitch bonds arenot required to be wire bond shear tested.Component Technical Committee2.APPARATUS AND MATERIALThe apparatus and materials required for wire bond shear testing shall be as follows:2.1Inspection EquipmentAn optical microscope system or scanning electron microscope providing a minimum of 30Xmagnification.2.2Measurement EquipmentAn optical microscope or measurement system capable of measuring the wire bond diameter to within ±0.1 mil.2.3WorkholderFixture used to hold the device being tested parallel to the shearing plane and perpendicular to theshear tool. The fixture shall also eliminate device movement during wire bond shear testing. If using a caliper controlled workholder, place the holder so that the shear motion is against the positive stop ofthe caliper. This is to insure that the recoil movement of the caliper controlled workholder does notinfluence the wire bond shear test.2.4Wire Bond Shear EquipmentThe wire bond shear equipment must be capable of precision placement of the shear tool approximately0.1 mil above the topmost part of the bonding surface. This distance (h) shall insure the shear tool doesnot contact the die or package bonding surface and shall be less than the distance from the topmostpart of the bonding surface to the center line (C L) of the ball or wedge/stitch bond.2.5Bond Shear ToolRequired shear tool parameters include but are not limited to: flat shear face, sharp shearing edge, and shearing width of 1.5 to 2 times (1.5X to 2X) the bond diameter or bond length. The shear tool should be designed to prevent plowing and drag during wire bond shear testing. The shear tool should be cleanand free of chips (or other defects) that may interfere with the wire bond shear test.3.PROCEDURE3.1CalibrationBefore performing the wire bond shear test, it must be determined that the equipment has beencalibrated in accordance with the manufacturer's specifications and is presently in calibration.Recalibration is required if the equipment is moved to another location.Component Technical Committee3.2Visual Examination of Wire Bonds to be Shear Tested After DecapsulationBefore performing wire bond shear testing on a device which has been opened using wet chemicaland/or dry etch techniques, the bonding surfaces shall be examined to insure there is no absence ofmetallization on the bonding surface area due to chemical etching. Ball or wedge/stitch bonds onbonding surfaces with evidence of degradation from chemical attack or absence of metallization shallnot be used for wire bond shear testing. Wire bonds on bonding surfaces without degradation fromchemical attack may not be attached to the bonding surface due to other causes (e.g., packagestress). These wire bonds are considered valid and shall be included in the shear data as a zero (0)gram value. Wire bonds must also be examined to ensure adjacent interfering structures are far enough away to allow suitable placement and clearance (above the bonding surface and between adjacent wire bonds) when performing the wire bond shear test.3.3Measurement of the Ball Bond Diameter to Determine the Ball Bond Failure CriteriaOnce the bonding surfaces have been examined and prior to performing wire bond shear testing, thediameter of all ball bonds (from at least one representative sample to be tested) shall be measured and recorded. For asymmetrical ball bonds, determine the average using both the largest (d large) and the smallest diameter (d small) values (see Figure 2). These ball bond diameter measurements shall beused to determine the mean, or average, diameter value. The resulting mean, or average, ball bonddiameter shall then be used to establish the failure criteria as defined in section 4.1. If process-monitor data has established the nominal ball bond diameter, then that value may be used to determine thefailure criteria as defined in section 4.1.SYMMETRICALASYMMETRICALFigure 2: Ball bond diameter measurement (symmetrical vs. asymmetrical)Component Technical Committee3.4Wire Bond Shear Test ProcedureThe wire bond shear testing procedure shall be performed as follows:a.The wire bond shear equipment shall pass all self diagnostic tests prior to performing the wirebond shear test.b.The wire bond shear equipment and test area shall be free of excessive vibration or movement.Examine the shear tool to verify it is in good condition and is not bent or damaged. Check theshear tool to verify it is in the up position.c.Adjust the workholder to match the device being tested. Secure the device to the workholder.Make sure the die or package bonding surface is parallel to the shearing plane of the shear tool.It is important that the shear tool does not contact the bonding surface or adjacent structuresduring the shearing operation as this will give incorrect high readings.d.Position the device so that the wire bond to be tested is located adjacent to the shear tool.Lower the shear tool (or raise the device depending upon wire bond shear equipment used) toapproximately the die or package bonding surface but not contacting the surface (approximatelythe thickness of the wire bond above the die or package bonding surface).e.For ball bond shear testing, position the ball bond to be tested so that the shear motion willtravel perpendicular to the die edge. Wire bond shear testing is required for ball bonds locatedat the die bonding surface interface only.f.For aluminum wedge/stitch bond shear testing, a wire height at the compressed bond area of1.25 mils and larger is required. For wires too small for wire bond shear testing (less than 1.25mils in height at the compressed bond area), only a footprint inspection is required (see section3.6). Position the wedge/stitch bond to be tested so that the shear motion will travel toward thelong side of the wedge/stitch bond and is free of any interference (i.e. shear the outsidewedge/stitch bond first and then shear toward the previously sheared wedge/stitch bond). Wirebond shear testing is required for aluminum wedge/stitch bonds located at die and packagebonding surfaces; gold wedge/stitch bonds are not required to be wire bond shear tested.g.Position the shear tool a distance of approximately one ball bond diameter (or one aluminumwire diameter for wedge/stitch bonds) from the wire bond to be shear tested and shear the wirebond.3.5Examination of Sheared Wire BondsAll wire bonds shall be sheared in a planned/defined sequence so that later visual examination candetermine which shear values should be eliminated due to an improper shear. The wire bonds shall be examined using at least 30X magnification to determine if the shear tool skipped over the wire bond(type 5) or the shear tool scraped or plowed into the die surface (type 4). See Figure 3 for bond shear types and illustrations.Readings in which either a bond shear type 4 or 5 defective shear condition occurred shall be eliminated from the shear data. Bond shear type 1, 2, 3, and 6 shall be considered acceptable and included in the shear data.Component Technical CommitteeSheared wire bonds in which a bond shear type 3 cratering condition has occurred shall be investigated further to determine whether the cracking and/or cratering is due to the wire bonding process or the act of wire bond shear testing. Cratering caused prior to the wire bond shear test operation isunacceptable. Cratering resulting from the act of wire bond shear testing shall be consideredacceptable and included in the shear data.3.6Footprint Inspection of Aluminum Wedge/Stitch Bondsa.All aluminum wire bonding processes to both die and package bonding surfaces shall have abond footprint inspection performed.b.For wires too small for wire bond shear testing (less than 1.25 mils in height at the compressedbond area), the wires shall be removed at the wedge/stitch bond location using a small sharpblade to peel or pluck the wire bond from the bonding surface. The removal of the aluminumwire shall be sufficient such that the wire bond interface can be visually inspected and themetallurgical wire bond area determined.c.For larger wires (greater than 1.25 mils in height at the compressed bond area), the wires shallbe inspected after wire bond shear testing to examine the failure mode and to determine thewedge/stitch bond footprint coverage.3.7Bond Shear DataData shall be maintained for each wire bond sheared. The data shall identify the wire bond (location,ball bond and/or wire diameter, wire material, method of bonding, and material bonded to), the shearstrength, and the bond shear type (as defined in section 1.3.4 and Figure 3).4.FAILURE CRITERIAThe following failure criteria are not valid for devices that have undergone environmental stress testing or have been desoldered from circuit boards.4.1Failure Criteria for Gold Ball BondsThe gold ball bonds on a device shall be considered acceptable if the minimum individual and sampleaverage ball bond shear values are greater than or equal to the values specified in Figure 4 and Table 1.This criteria is applicable for gold wire ball bonds on aluminum alloy bonding surfaces. Other material combinations may require a new set of failure criteria.Alternate minimum ball bond shear values may be proposed by the supplier if supporting data justifies the proposed minimum values.4.2Failure Criteria for Aluminum Wedge/Stitch BondsThe aluminum wedge/stitch bonds on a device shall be considered acceptable if the minimum shearvalues are greater than or equal to the manufacturer’s bond wire tensile strength.In addition, the percent of the wedge/stitch bond footprint in which bonding occurs shall be greater than or equal to 50%. If it is necessary to control the wire bonding process using SPC for percent coverage,a C pk value can be calculated to this limit.Component Technical CommitteeComponent Technical CommitteeMINIMUM SHEAR VALUESBALL BOND DIAMETER (mils)2.25 2.53.0 3.25 3.5 3.754.25 4.5 4.755.0 5.252.0S H E A R S T R E N G T H (g r a m s )1.7501020304050607080901001102.75 4.0Figure 4: Minimum acceptable individual and sample average ball bond shear values *, see Table 1for exact ball bond shear values ** (Shear values are applicable for gold wire ball bonds on aluminum alloy bonding surfaces)Component Technical CommitteeTable 1: Minimum acceptable individual and sample average ball bond shear values ** (Shear values are applicable for gold wire ball bonds on aluminum alloy bonding surfaces)Ball Bond Diameter(mils)MinimumSample Average(grams)Minimum IndividualShear Reading(grams)2.012.6 5.7 2.114.0 6.8 2.215.58.1 2.317.19.5 2.418.810.9 2.520.612.4 2.622.414.0 2.724.415.6 2.826.517.42.928.619.23.030.821.1 3.133.223.1 3.235.625.1 3.338.127.2 3.440.729.4 3.543.431.7 3.646.234.1 3.749.136.5 3.852.139.13.955.241.74.058.344.3 4.161.647.1 4.265.050.0 4.368.452.9 4.471.955.8 4.575.659.0 4.679.362.1 4.783.165.3 4.887.068.64.991.072.05.095.175.5October 8, 1998 Component Technical CommitteeAutomotive Electronics CouncilRevision HistoryRev #-A BC Date of changeJune 9, 1994May 19, 1995Sept. 6, 1996Oct. 8, 1998Brief summary listing affected sectionsInitial Release.Added copyright statement.Deleted old Sections 1.3.4, 1.3.5, 3.3, 3.9, and 5.0. Added new Sections1.3.1, 1.3.2, 1.3.6, 3.4 (steps a through g), and 3.6 (steps a through c).Revised the following: Sections 1.1, 1.2, 1.3.1, 1.3.2, 1.3.3, 1.3.4(1.3.4.1 through 1.3.4.6), 1.3.5, 1.3.6, 2.1, 2.2, 2.4, 2.5, 3.1, 3.2, 3.3, 3.4(a, b, c, d, e, f, and g), 3.5, 3.6 (a, b, and c), 3.7, 4.0, 4.1, and 4.2; Table1; Figures 1, 3, and 4.Added new Section 1.3.5. Revised the following: Sections 1.1, 1.3.1,1.3.4.1, 1.3.4.4, 1.3.4.5,2.2, 2.5,3.2, 3.5, 3.6 (b), Figure 3.。
AECQ相关
标签:AECQAECQ信息汇总最近在整理元器件方面的资料,涉及ROSH与AECQ的信息,下面整理了AE CQ的信息。
克莱斯勒、福特和通用汽车为建立一套通用的零件资质及质量系统标准而设立了汽车电子委员会(AEC),AEC 是“Automotive Electronics Council:汽车电子协会”之略,是主要汽车制造商与美国的主要部件制造商汇聚一起成立的、以车载电子部件的可靠性以及认定标准的规格化为目的的团体,AEC建立了质量控制的标准。
同时,由于符合AEC规范的零部件均可被上述三家车厂同时采用,促进了零部件制造商交换其产品特性数据的意愿,并推动了汽车零件通用性的实施,为汽车零部件市场的快速成长打下基础。
主要的汽车电子成员有:Autoliv, Co ntinental, Delphi, Johnson Controls 和Visteon。
AEC-Q100:主要用于预防产品可能发生各种状况或潜在的故障状态,引导零部件供货商在开发的过程中就能采用符合该规范的芯片。
AEC-Q100对每一个芯片个案进行严格的质量与可靠度确认,确认制造商所提出的产品数据表、使用目的、功能说明等是否符合最初需求的功能,以及在连续使用后个功能与性能是否能始终如一。
A EC-Q100标准的目标是提高产品的良品率,这对芯片供货商来说,不论是在产品的尺寸、合格率及成本控制上都面临很大的挑战。
AEC-Q100又分为不同的产品等级,其中第1级标准的工作温度范围在-40℃-1 25℃之间,最严格的第0级标准工作温度范围可达到-40℃-150℃。
0 等级:环境工作温度范围-40℃-150℃1 等级:环境工作温度范围-40℃-125℃2 等级:环境工作温度范围-40℃-105℃3 等级:环境工作温度范围-40℃-85℃4 等级:环境工作温度范围0℃-70℃AEC - Q100 Rev - G base: 集成电路的应力测试标准(不包含测试方法)AEC-Q100-001 邦线切应力测试AEC-Q100-002 人体模式静电放电测试AEC-Q100-003 机械模式静电放电测试AEC-Q100-004 集成电路闩锁效应测试AEC-Q100-005 可写可擦除的永久性记忆的耐久性、数据保持及工作寿命的测试AEC-Q100-006 热电效应引起的寄生闸极漏电流测试AEC-Q100-007 故障仿真和测试等级AEC-Q100-008 早期寿命失效率(ELFR)AEC-Q100-009 电分配的评估AEC-Q100-010 锡球剪切测试AEC-Q100-011 带电器件模式的静电放电测试AEC-Q100-012 12V 系统灵敏功率设备的短路可靠性描述AEC - Q101 Rev - C: 分立半导体元件的应力测试标准(包含测试方法)* AEC - Q101-001 - Rev-A: 人体模式静电放电测试* AEC - Q101-002 - Rev-A: 机械模式静电放电测试* AEC - Q101-003 - Rev-A: 邦线切应力测试* AEC - Q101-004 - Rev-: 同步性测试方法* AEC - Q101-005 - Rev-A: 带电器件模式的静电放电测试* AEC - Q101-006 - Rev-: 12V 系统灵敏功率设备的短路可靠性描述AEC - Q200 Rev - C: 半导体被动元件的应力测试标准(包含测试方法)* AEC - Q200-001 - Rev-A: 阻燃性能测试* AEC - Q200-002 - Rev-A: 人体模式静电放电测试* AEC - Q200-003 - Rev-A: 断裂强度测试* AEC - Q200-004 - Rev-: 自恢复保险丝测量程序* AEC - Q200-005 - Rev-: PCB板弯曲/端子邦线应力测试* AEC - Q200-006 - Rev-: 端子应力(贴片元件)/切应力测试* AEC - Q200-007 - Rev-: 电压浪涌测试AEC-Q001 零件平均测试指导原则提出了所谓的参数零件平均测试(PPAT)方法。