高考文理科椭圆大题运用

合集下载

2020版高考数学(理科)大一轮精准复习精练:9.3椭圆及其性质含解析

2020版高考数学(理科)大一轮精准复习精练:9.3椭圆及其性质含解析

9.3 椭圆及其性质挖命题【考情探究】分析解读从近5年高考情况来看,椭圆的定义、标准方程、几何性质一直是高考命题的热点,其中离心率问题考查较频繁,对直线与椭圆的位置关系的考查,常与向量、圆、三角形等知识相结合,多以解答题的形式出现,解题时,要充分利用数形结合、转化与化归思想,注重数学思想在解题中的指导作用.破考点【考点集训】考点一椭圆的定义及标准方程1.(2018湖北十堰十三中质检,6)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为( )A.+=1B.+=1C.+=1D.+=1答案A2.(2018山东烟台二模,15)已知F(2,0)为椭圆+=1(a>b>0)的右焦点,过F且垂直于x轴的弦长为6,若A(-2,),点M为椭圆上任一点,则|MF|+|MA|的最大值为.答案8+考点二椭圆的几何性质1.(2018山东青岛城阳期末,7)若椭圆+=1的焦距为4,则实数a的值为( )A.1B.21C.4D.1或9答案D2.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器——“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为( )A. B. C. D.答案A3.(2018河南南阳、信阳等六市联考,16)椭圆C:+=1的上、下顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是.答案考点三直线与椭圆的位置关系1.(2018安徽合肥模拟,8)已知椭圆C:+y2=1,若一组斜率为的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为( )A.-2B.2C.-D.答案A2.(2018广东广州模拟,10)已知点M(-1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“椭型直线”的是( )A.①③B.①②C.②③D.③④答案C炼技法【方法集训】方法求椭圆离心率或取值范围的方法1.(2018江西赣南五校联考,15)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.答案-12.(2017福建四地六校模拟,15)已知椭圆C:+=1(a>b>0)和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围是. 答案3.(2018河北衡水中学八模,15)已知椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),若椭圆上存在点P使=,则该椭圆离心率的取值范围为.答案(-1,1)过专题【五年高考】A组统一命题·课标卷题组考点一椭圆的定义及标准方程(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=-.从而|PQ|=|x1-x2|=-.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=-.设-=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.思路分析(1)通过直线AF的斜率求得c的值,通过离心率求得a,进而求出b2,从而得到E的方程;(2)设出直线l的方程和点P、Q的坐标,联立直线l与椭圆方程,利用弦长公式求得|PQ|的长,根据点到直线的距离公式求得△OPQ边PQ上的高,从而表示出△OPQ的面积,利用换元法和基本不等式即可得到当面积取得最大值时k的值,从而得直线l的方程.解题关键对于第(2)问,正确选择参数,表示出△OPQ的面积,进而巧妙利用换元法分析最值是解题的关键.考点二椭圆的几何性质1.(2018课标Ⅱ,12,5分)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )A. B. C. D.答案D2.(2017课标Ⅲ,10,5分)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.答案A3.(2016课标Ⅲ,11,5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A. B. C. D.答案A考点三直线与椭圆的位置关系(2018课标Ⅰ,19,12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.解析(1)由已知得F(1,0),l的方程为x=1,由已知可得,点A的坐标为或.所以AM的方程为y=-x+或y=x-.(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,直线OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=-+-,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0,从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.B组自主命题·省(区、市)卷题组考点一椭圆的定义及标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.答案x2+y2=12.(2015陕西,20,12分)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==,由d=c,得a=2b=2-,可得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=-.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|=-=-.由|AB|=,得-=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,=.所以AB的斜率k AB=--因此直线AB的方程为y=(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|=-=-.由|AB|=,得-=,解得b2=3.故椭圆E的方程为+=1.解题关键对于第(2)问,利用弦长及韦达定理或点差法构造关于参数的方程是解题的关键.考点二椭圆的几何性质1.(2018北京,14,5分)已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N 的离心率为.答案-1;22.(2015重庆,21,12分)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q 两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解析(1)由椭圆的定义,有2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,得2c=|F1F2|===2,即c=,从而b=-=1.故所求椭圆的标准方程为+y2=1.(2)解法一:连接F1Q,如图,设点P(x0,y0)在椭圆上,且PF1⊥PF2,则+=1,+=c2,求得x0=±-,y0=±.由|PF1|=|PQ|>|PF2|得x0>0,从而|PF1|2=-+=2(a2-b2)+2a-=(a+-)2.由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PF2,|PF1|=|PQ|,知|QF1|=|PF1|.因此(2+)|PF1|=4a,即(2+)(a+-)=4a,于是(2+)(1+-)=4,解得e==-.解法二:连接F1Q,由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=|PF1|,因此,4a-2|PF1|=|PF1|,得|PF1|=2(2-)a,从而|PF2|=2a-|PF1|=2a-2(2-)a=2(-1)a.由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e===--==-.考点三直线与椭圆的位置关系(2018天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A 的坐标为(b,0),且|FB|·|AB|=6.(1)求椭圆的方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O 为原点),求k的值.解析(1)设椭圆的焦距为2c,由已知有=,又由a2=b2+c2,可得2a=3b.由已知可得,|FB|=a,|AB|=b,由|FB|·|AB|=6,可得ab=6,从而a=3,b=2.所以,椭圆的方程为+=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2.又因为|AQ|=,而∠OAB=,故|AQ|=y2.由=sin∠AOQ,可得5y1=9y2.由方程组消去x,可得y1=.易知直线AB的方程为x+y-2=0,消去x,可得y2=.由方程组-由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2-50k+11=0,解得k=或k=.所以,k的值为或.解题关键利用平面几何知识将=sin∠AOQ转化为点P、Q坐标间的关系是解决第(2)问的关键.方法归纳求椭圆标准方程的基本方法(1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭圆方程;(2)待定系数法:这是求椭圆方程的常用方法,基本步骤为①根据已知条件判断焦点的位置;②根据焦点的位置设出所求椭圆的方程;③根据已知条件,建立关于a、b、c的方程组,注意c2=a2-b2的应用;④解方程组,求得a、b的值,从而得出椭圆的方程.C组教师专用题组考点一椭圆的定义及标准方程1.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|= .答案122.(2014课标Ⅱ,20,12分,0.185)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据c=-及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1<0,则--即代入C的方程,得+=1.②将①及c=-代入②得-+=1.解得a=7,故b2=4a=28,故a=7,b=2.考点二椭圆的几何性质1.(2017浙江,2,5分)椭圆+=1的离心率是( )A. B. C. D.答案B2.(2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M 是线段AB的中点,则椭圆C的离心率等于.答案3.(2013辽宁,15,5分)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e= .答案4.(2015安徽,20,13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B 的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为,又k OM=,从而=.进而得a=b,c=-=2b.故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为-.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为-.又点-T在直线AB上,且k NS·k AB=-1,从而有-解得b=3.所以a=3,故椭圆E的方程为+=1.评析本题考查椭圆的方程、几何性质以及对称问题,利用方程思想解决点关于直线的对称问题,考查利用待定系数法求椭圆的方程,考查学生的运算求解能力和化归思想的应用.5.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为+=1.设P(x 0,y 0).由F 1(-c,0),B(0,c),有 =(x 0+c,y 0), =(c,c). 由已知,有 · =0, 即(x 0+c)c+y 0c=0. 又c ≠0,故有 x 0+y 0+c=0.① 又因为点P 在椭圆上, 故+=1.②由①和②可得3+4cx 0=0.而点P 不是椭圆的顶点,故x 0=- c,代入①得y 0=, 即点P 的坐标为 -. 设圆的圆心为T(x 1,y 1),则x 1=-=-c,y 1== c,进而圆的半径r= - - =c.设直线l 的斜率为k,依题意,直线l 的方程为y=kx.由l 与圆相切,可得 =r,即- -=c,整理得k 2-8k+1=0,解得k=4± . 所以直线l 的斜率为4+ 或4- .评析 本题主要考查椭圆的标准方程和几何性质、直线方程、圆的方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.6.(2014江苏,17,14分)如图,在平面直角坐标系xOy 中,F 1、F 2分别是椭圆 +=1(a>b>0)的左、右焦点,顶点B 的坐标为(0,b),连接BF 2并延长交椭圆于点A,过点A 作x 轴的垂线交椭圆于另一点C,连接F 1C.(1)若点C 的坐标为,且BF 2= ,求椭圆的方程;(2)若F 1C ⊥AB,求椭圆离心率e 的值.解析 设椭圆的焦距为2c,则F 1(-c,0),F 2(c,0). (1)因为B(0,b),所以BF 2= =a. 又BF 2= ,故a= .因为点C在椭圆上,所以+=1,解得b 2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得-所以点A的坐标为-.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为-.因为直线F1C的斜率为----=-,直线AB的斜率为-,且F1C⊥AB,所以-·-=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.评析本题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力.考点三直线与椭圆的位置关系1.(2018江苏,18,14分)如图,在平面直角坐标系xOy中,椭圆C过点,焦点F1(-,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.解析解法一:(1)因为椭圆C的焦点为F1(-,0),F2(,0),所以可设椭圆C的方程为+=1(a>b>0).又点在椭圆C上,所以-解得因此,椭圆C的方程为+y2=1.因为圆O的直径为F1F2,所以其方程为x2+y2=3.(2)①设直线l与圆O相切于P(x0,y0)(x0>0,y0>0),则+=3.所以直线l的方程为y=-(x-x0)+y0,即y=-x+.由消去y,得(4+)x2-24x0x+36-4=0.(*)因为直线l与椭圆C有且只有一个公共点,所以Δ=(-24x0)2-4(4+)(36-4)=48(-2)=0.因为x0,y0>0,所以x0=,y0=1.因此,点P的坐标为(,1).②因为三角形OAB的面积为,所以AB·OP=,从而AB=.设A(x1,y1),B(x2,y2),由(*)得x1,2=-,所以AB2=(x1-x2)2+(y1-y2)2=·-.因为+=3,所以AB2=-=,即2-45+100=0.解得=(=20舍去),则=,因此P的坐标为.则直线l的方程为y=-x+3.解法二:(1)由题意知c=,所以圆O的方程为x2+y2=3,因为点在椭圆上,所以2a=--+-=4,所以a=2.因为a2=b2+c2,所以b=1,所以椭圆C的方程为+y2=1.(2)①由题意知直线l与圆O和椭圆C均相切,且切点在第一象限,所以直线l的斜率k存在且k<0,设直线l的方程为y=kx+m(k<0,m>0),将直线l的方程代入圆O的方程,得x2+(kx+m)2=3,整理得(k2+1)x2+2kmx+m2-3=0,因为直线l与圆O相切,所以Δ=(2km)2-4(k2+1)(m2-3)=0,整理得m2=3k2+3,将直线l的方程代入椭圆C的方程,得+(kx+m)2=1,整理得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C相切,所以Δ=(8km)2-4(4k2+1)(4m2-4)=0,整理得m2=4k2+1,所以3k2+3=4k2+1,因为k<0,所以k=-,则m=3,将k=-,m=3代入(k2+1)x2+2kmx+m2-3=0,整理得x2-2x+2=0,解得x1=x2=,将x=代入x2+y2=3,解得y=1(y=-1舍去),所以点P的坐标为(,1).②设A(x1,kx1+m),B(x2,kx2+m),由①知m2=3k2+3,且k<0,m>0,因为直线l和椭圆C相交,所以结合②的过程知m2<4k2+1,解得k<-,将直线l的方程和椭圆C的方程联立可得(4k2+1)x2+8kmx+4m2-4=0,解得x1,2=-,所以|x1-x2|=,因为AB=--=|x1-x2|=·,O到l的距离d==,所以S△OAB=···=·-··=,解得k2=5,因为k<0,所以k=-,则m=3,即直线l的方程为y=-x+3.解后反思(1)常用待定系数法求圆锥曲线方程.(2)①直线与圆相切,常见解题方法是设切点求切线方程,由于涉及直线与椭圆相切,因此也可设出直线方程求解.②因为△AOB的面积为,而△AOB的高为,所以解题关键是求AB的长,可利用弦长公式AB=--=·-=·|x1-x2|(x1、x2分别为A、B的横坐标)求解.2.(2017天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.解析(1)设F的坐标为(-c,0).依题意,=,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=,故D.所以|AD|=1-=.又因为△APD的面积为,故××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-y-3=0.方法总结 1.利用待定系数法求圆锥曲线标准方程的三个步骤:(1)作判断:根据焦点位置设方程;(2)找等量关系;(3)解方程得结果.2.解决直线与圆锥曲线位置关系问题的基本策略:(1)巧设直线方程:当已知直线与x轴交点固定时,常设为x=my+b的形式,这样可避免对斜率是否存在的讨论;(2)注意整体代入思想的应用,利用根与系数的关系可以简化运算,提高运算的效率和正确率.3.(2016浙江,19,15分)如图,设椭圆+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,故x1=0,x2=-.因此|AP|=|x1-x2|=·.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知,|AP|=,|AQ|=,故=,所以(-)[1+++a2(2-a2)]=0.由于k1≠k2,k1,k2>0得1+++a2(2-a2)=0,因此=1+a2(a2-2),①因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤,由e==-得,所求离心率的取值范围为0<e≤.4.(2015福建,18,13分)已知椭圆E:+=1(a>b>0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(m∈R)交椭圆E于A,B两点,判断点G-与以线段AB为直径的圆的位置关系,并说明理由.解析(1)由已知得解得所以椭圆E的方程为+=1.(2)解法一:设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).所以y1+y2=,y1y2=-,从而y0=.所以|GH|2=+=+=(m2+1)+my0+.=--=-=-=(1+m2)(-y1y2),故|GH|2-=my0+(1+m2)y1y2+=-+=>0,所以|GH|>.故点G-在以AB为直径的圆外.解法二:设点A(x1,y1),B(x2,y2),则=,=.由-得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而·=+y1y2=54+y1y2=(m2+1)y1y2+54m(y1+y2)+2516=-3(2+1)2+2+5222+2+2516=172+216(2+2)>0,所以cos<,>>0.又,不共线,所以∠AGB为锐角.故点G-在以AB为直径的圆外.评析本题主要考查椭圆、圆、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届四川第一次诊断,6)设椭圆+=1(m>0,n>0)的一个焦点与抛物线x2=8y的焦点相同,离心率为,则m-n=( )A.2-4B.4-3C.4-8D.8-4答案A2.(2019届云南师范大学附属中学12月月考,12)已知椭圆C:+=1的右焦点为F,过点F有两条互相垂直的直线l1,l2,l1与椭圆C相交于点A,B,l2与椭圆C相交于点C,D,则下列叙述不正确的是( )A.存在直线l1,l2使得|AB|+|CD|值为7B.存在直线l1,l2使得|AB|+|CD|值为C.四边形ABCD的面积存在最大值,且最大值为6D.四边形ABCD的面积存在最小值,且最小值为答案D3.(2018四川达州模拟,7)以圆x2+y2=4与x轴的交点为焦点,以抛物线y2=10x的焦点为一个顶点且中心在原点的椭圆的离心率是( )A. B. C. D.答案C4.(2018湖北重点中学4月联考,7)已知椭圆+=1的左、右焦点分别为F1、F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则△ABF1内切圆的半径为( )A. B.1 C. D.答案D5.(2018广东清远模拟,11)已知m、n、s、t∈R+,m+n=3,+=1,其中m、n是常数且m<n,若s+t的最小值是3+2,满足条件的点(m,n)是椭圆+=1的一条弦的中点,则此弦所在直线的方程为( )A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0答案D6.(2018广西桂林、百色等三市联考,12)已知椭圆+=1(a>b>0)上一点A关于原点的对称点为点B,F 为其右焦点,若AF⊥BF,设∠ABF=α,且α∈,则该椭圆离心率e的取值范围为( )A.-B.C. D.答案A二、填空题(共5分)7.(2017湖南东部六校4月联考,15)设P,Q分别是圆x2+(y-1)2=3和椭圆+y2=1上的点,则P、Q两点间的最大距离是.答案三、解答题(共50分)8.(2019届安徽黄山八校联考,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=,点P 是椭圆的上顶点的一个动点,△PF1F2面积的最大值是4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四点,AC与BD相交于点F1,·=0,且||+||=,求此时直线AC的方程.解析(1)由题意知,当点P是椭圆的上顶点或下顶点时,△PF1F2面积取得最大值,此时,=·2c·b=4,又e==,结合a2=b2+c2,所以a=4,b=2,c=2.所以所求椭圆的方程为+=1.(2)由(1)知F1(-2,0),由·=0得AC⊥BD.①当直线AC与BD有一条直线的斜率不存在时,||+||=14,不符合题意;②设直线AC的斜率为k(k存在且不为0),则直线BD的斜率为-.直线AC的方程为y=k(x+2),联立消去y得(3+4k2)x2+16k2x+16k2-48=0,设A(x1,y1),C(x2,y2),则x1+x2=-,x1x2=-,所以||=|x1-x2|=.同理可得||=,由||+||==,解得k2=1,故直线AC的方程为y=±(x+2).思路分析(1)根据离心率e=,△PF1F2面积的最大值是4,结合a2=b2+c2,即可求出a、b,从而得结果;(2)直线与曲线方程联立,根据根与系数关系,弦长公式将||+||用k表示,解方程即可得k的值.方法点拨求椭圆标准方程时一般利用待定系数法,根据条件确定关于a,b,c的方程组,解出a,b,即可得到椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后利用根与系数的关系解决相关问题.涉及弦中点的问题常常用“点差法”解决.9.(2019届重庆期中,20)已知椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,并且F2为抛物线C2:y2=2px(p>0)的焦点,C2的准线被椭圆C1和圆x2+y2=a2截得的弦长分别为2和4.(1)求C1和C2的方程;(2)已知动直线l与抛物线C2相切(切点异于原点),且直线l与椭圆C1相交于M,N两点,若椭圆C1上存在点Q,使得+=λ(λ≠0),求实数λ的取值范围.解析(1)由题得⇒a=2,b=2,p=2c=4,故C1:+=1,C2:y2=8x.(2)由题意知直线l的斜率存在且不为0,设l:x=my+n(m≠0),M(x1,y1),N(x2,y2),Q(x0,y0).联立⇒y2-8my-8n=0,因为l与C2相切,故Δ1=(-8m)2+4×8m=0⇒2m2+n=0.联立⇒(m2+2)y2+2mny+n2-8=0,所以y1+y2=-,y1y2=-,Δ2>0⇒n2<4m2+8,由Δ1=0知2m2=-n,所以n2<-2n+8⇒n∈(-4,2),又2m2=-n>0,因此n∈(-4,0),由+=λ⇒由根与系数的关系,得而点Q(x0,y0)在椭圆上,即+2=8,代入得+=8⇒λ2==,n∈(-4,0),令t=4-n,t∈(4,8),则λ2=2-.令f(t)=t+-8,易知f(t)在(4,8)上单调递增,所以λ2∈(0,4)⇒λ∈(-2,0)∪(0,2).10.(2018四川南充模拟,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率e=.(1)求椭圆的标准方程;(2)若P是椭圆上的任意一点,求·的取值范围.解析(1)∵|F1F2|=2,椭圆的离心率e=,∴c=1,a=2,∴b=,∴椭圆的标准方程为+=1.(2)设P(x,y),∵A(-2,0),F1(-1,0),∴·=(-1-x)(-2-x)+y2=x2+3x+5,由椭圆方程得-2≤x≤2,二次函数图象开口向上,对称轴为直线x=-6<-2,当x=-2时,·取到最小值0,当x=2时,·取到最大值12.∴·的取值范围是[0,12].11.(2018广东茂名模拟,20)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且·=.(1)求弦AB的长;(2)当直线l的斜率k=,且直线l'∥l时,l'交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x 轴围成一个等腰三角形.解析(1)由题意可知2c=2,c=,F(,0),设A(x0,y0),B(-x0,-y0),则M,N--,由·=-=,则+=5,则|AB|=2=2.(2)证明:直线l的斜率k=,则l:y=x,y0=x0,由+=5,得A(2,1),将c=代入椭圆方程解得a=2,b=,∴椭圆的方程为+=1.由题意设l':y=x+m(m≠0),联立整理得x2+2mx+2m2-4=0,Δ=4m2-4(2m2-4)>0,即m∈(-2,0)∪(0,2).设直线AP,AQ的斜率分别为k1,k2,P(x1,y1),Q(x2,y2),则k1=--,k2=--.由x2+2mx+2m2-4=0,可得x1+x2=-2m,x1x2=2m2-4,所以k1+k2=--+--=------=------=-----=------=0,即k1+k2=0.∴直线AP,AQ与x轴围成一个等腰三角形.。

2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理

2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理

命题角度5.2 :直线与椭圆位置关系1.已知椭圆 的两个焦点为且经过点 ⑴求椭圆•的方程; ⑵过 的直线与椭圆-交于| ■两点(点」位于 轴上方),若人 ;,且—■:: ,求直线的斜率的取值范围.£十几1 並【答案】(1);( 2).【解析】试题分析:(2)联立直线与椭圆的方程,结合韦达定理得到关于实数 £斜率 的取值范围是k=.试题解析;⑴由椭圆定义2。

= |阴| + |跖| = 4,有a = 2f c =从而W +-w 3(y =+1) ⑵设直线=比& + i)(A >0),有|兰+邑=]设百0") 玖%y)有% = -久仏y 1y 3=^(y 1+y 3)S 讐二戏戶人#一ST2 <A<3f注洁訂》解得0C 冬乎.3^4Jt==a, A = +y,由已矢皿=¥・2.已知椭圆C 的中心在原点,焦点在 x 轴上,离心率e 2 •以两个焦点和短轴的两个端点2为顶点的四边形的周长为 8,面积为2^3 •(I)求椭圆C 的方程;(n)若点P X o ,y 。

为椭圆C 上一点,直线I 的方程为3x °x • 4y °y -12=0,求证:直线I 与椭圆C 有且只有一个交点.(1)由题意可得 , i — -- + —,—则椭圆方程为k 的不等式,求解不等式可得直线的J 整理得任+斗a+^fc 2 ■【来源】【全国市级联考】广西桂林 ,百色,梧州,北海,崇左五市2017届高三5月联合模拟理 科数学试题2 2【答案】(I )- y 1 ;( II )详见解析•4 3【解析】试题分析:2 2(1) 利用题意求得b 「3, c =1,椭圆C 的方程为 —1 .4 3(2) 首先讨论当y 。

=0的情况,否则联立直线与椭圆的方程, 结合直线的特点整理可得直线 I 与 椭圆C 有且只有一个交点.试题解析:(I >依题意,设椭圆c 的方程为4 + = 焦距为丸,由题设条件知,4^=8, “2,2x 丄x 2c xb= 2-^5 , b 1= / = 4』所以“省,c = b 或— C = j3 (经检验不合题意舍去), 故椭圆。

高中数学6个大题全部问法及解题思路

高中数学6个大题全部问法及解题思路

2001-2016年山东卷高考数学6大专题出题方向及解题思路高考数学大题结构安排:A、三角函数与向量的结合B、概率论C、立体几何D、曲线(椭圆双曲线抛物线圆锥曲线)E、数列F、导数(全国卷不等式或者极限)解题方法浅析:其实高考大题并不可怕,它就是一个按部就班的过程,只要你能把握每个知识点的出题方向,每个方向的解题思路,随便怎么都可以拿到65分的,甚至猛一点的可以拿75分。

那么我就简单的说一下我的想法和思路,希望对大家有帮助。

a、三角函数与向量:考点:对于这类题型我们首先要知道它的出题方向:向量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦定理,难度一般不大。

只要你能熟练掌握公式,这类题都不是问题。

题型:这部分大题一般都是涉及以下的题型:最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移问题等解题思路:第一步求定义域第二步就是根根据向量公式将表示出来:其表示共有两种方法,一种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),即,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),即第三步就是三角函数的化简:化简的方法都是涉及到三角函数的诱导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),还有就是倍角半角公式(只要题目中的角度出现一半或者两倍的关系,一定要此方法),最后可能就是用到三角函数的展开公式(注意辅助角公式的应用)第四步就是将化简为一个整体的式子(如y=a的形式)根据题目要求来解答:最值(值域):要首先求出的范围,然后求出y的范围单调性:首先明确sin函数的单调性,然后将代入sin函数的单调范围解出x的范围(这里一定要注意2的正负性)周期性:利用公式求解对称性:要熟练掌握sin、cos、tan函数关于轴对称和点对称的公式,同时解题过程中不要忘记了加上周期性。

未知数的取值范围:请文科生参照第九套试卷第二问的做法;平移问题:永远记住左右平移只是对x做变化,上下平移就是对y做变化,永远切记。

2023年高考数学(理科)一轮复习课件——椭圆 第二课时 直线与椭圆

2023年高考数学(理科)一轮复习课件——椭圆 第二课时 直线与椭圆
第九章 平面解析几何
索引
内容 索引
考点突破 题型剖析
分层训练 巩固提升
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 直线与椭圆的位置关系
1.若直线 y=kx+1 与椭圆x52+my2=1 总有公共点,则 m 的取值范围是( D )
A.m>1
B.m>0
C.0<m<5且m≠1
2,且过点1, 22.
(1)求椭圆C的方程;
解 由题意得2c=2,即c=1,所以a2=b2+c2=b2+1. 将1, 22代入b2x+2 1+by22=1,可得b2+1 1+21b2=1, 即2b2+b2+1=2b2(b2+1),整理得(2b2+1)(b2-1)=0, 解所得以椭b2=圆-C12的(舍方)或程为b2x=22+1,y2则=1a.2=2,
索引
训练 1 (1)已知椭圆xa22+by22=1(a>b>0),点 F 为左焦点,点 P 为下顶点,平行于 FP 的直线 l 交椭圆于 A,B 两点,且 AB 的中点为 M1,12,则椭圆的离心率
为( A )
2
1
A. 2
B.2
1
3
C.4
D. 2
解析 设A(x1,y1),B(x2,y2), ∵AB 的中点为 M1,12,∴x1+x2=2,y1+y2=1. ∵∵xaP212F+∥by212l=,1∴,kxaP222F+=byk222l==-1. bc=xy11- -yx22.
索引
(2)过椭圆 C 左焦点 F1 的直线 l(不与坐标轴垂直)与椭圆 C 交于 A,B 两点, 若点 H-31,0满足|HA|=|HB|,求|AB|.
解 由题意得F1(-1,0). 设直线l的方程为y=k(x+1)(k≠0),A(x1,y1),B(x2,y2), 联立椭圆C与直线l的方程, 可得x2+2k2(x+1)2=2, 整理得(2k2+1)x2+4k2x+2k2-2=0, Δ=16k4-4(2k2+1)(2k2-2)=8(k2+1)>0, 则 x1+x2=-2k42k+2 1,x1x2=22kk22+ -12.

高考理科第一轮复习课件(8.5椭圆)

高考理科第一轮复习课件(8.5椭圆)

于是|MB|+|MC|= 2 |BD|+ 2 |CE|
3 3
= 2 (|BD|+|CE|)= 2 〓39=26. 又26>|BC|=24,
根据椭圆的定义知,点M的轨迹是以B,C为焦点的椭圆. ∵2a=|MB|+|MC|=26,∴a=13.又2c=|BC|=24, ∴c=12. ∴b2=a2-c2=132-122=25.
【思路点拨】(1)根据椭圆的简单性质,利用数形结合的思 想,将|AF1|,|F1F2|,|F1B|用含a,c的代数式表示,再由其成等 比数列构建a,c的方程,转化为关于离心率e的方程,得e. (2)①先根据 e 2, 将待定系数a,b减为一个系数b,再根据
3
椭圆C上任意点P(x,y)满足椭圆C的方程,将|PQ|中两个变量减
S OAB
从而确定出m的值,n的值.问题得解.
2 2 2 2 m m 1 3 3 , 2 1 m 2 2 1 2 m 2 2 3 3
【规范解答】(1)由简单性质知|AF1|=a-c,|F1F2|=2c,
|F1B|=a+c,又三者成等比数列,所以|F1F2|2=|AF1||F1B|, 即4c2=a2-c2,a2=5c2,所以 e 2 1 ,
x 2 y2 其方程为 1. 4 3 x 2 y2 答案: 1 4 3
(2)由题意知|PF1|+|PF2|=2a, PF1 PF2 .
∴|PF1|2+|PF2|2=|F1F2|2=4c2,


∴(|PF1|+|PF2|)2-2|PF1||PF2|=4c2,
∴2|PF1||PF2|=4a2-4c2=4b2.
2 2 故所求的轨迹方程为 x y 1 y 0 .

人教版2020高考数学(理科)一轮复习课时作业:52 椭圆_含解析

人教版2020高考数学(理科)一轮复习课时作业:52 椭圆_含解析

课时作业52 椭圆一、选择题1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( A )A .4B .3C .2D .5解析:由题意知|OM |=12|PF 2|=3, ∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.2.(2019·开封模拟)曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k =1(k <9)的( D )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:因为c 21=25-9=16,c 22=(25-k )-(9-k )=16,所以c 1=c 2,所以两个曲线的焦距相等.3.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( C )A.306B.7C.306或7D.56或7 解析:由题意知m 2=36,解得m =±6.当m =6时,该圆锥曲线表示椭圆,此时a =6,b =1,c =5,则e =306;当m =-6时,该圆锥曲线表示双曲线,此时a =1,b =6,c =7,则e =7.故选C.4.(2019·贵州六盘水模拟)已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( A )A .4B .6C .8D .12解析:由|PF 1|+|PF 2|=4, |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60° =|F 1F 2|2,得3|PF 1|·|PF 2|=12, 所以|PF 1|·|PF 2|=4,故选A.5.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( C )A.14B.13C.12D.23 解析:由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c )·b 3,得a =2c ,即e =c a =12,故选C.6.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( B )A.⎝ ⎛⎭⎪⎫5-12,1B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝ ⎛⎭⎪⎫3-12,1 D.⎝ ⎛⎭⎪⎫0,3-12解析:设正方形的边长为2m ,∵椭圆的焦点在正方形的内部,∴m >c .又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,∴0<e <5-12.故选B. 二、填空题7.(2019·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为x 225+y 216=1.解析:设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r .所以|PC 1|+|PC 2|=10>|C 1C 2|=6,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.8.(2019·四川南充模拟)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是 3.解析:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a =3,所以b 2=3,即b = 3.9.(2019·云南昆明质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是(-3,0)或(3,0).解析:记椭圆的两个焦点分别为F 1,F 2, 有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25, 当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).10.(2019·南宁市摸底联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是32.解析:设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0, 所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2-=14,于是椭圆的离心率e =c a =1-b 2a 2=32.三、解答题11.(2019·云南曲靖模拟)已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32.(1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意可得⎩⎨⎧a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1.由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+32x 2+m 32x 1+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.12.已知椭圆C :x 23m +y 2m =1,直线l :x +y -2=0与椭圆C 相交于两点P ,Q ,与x 轴交于点B ,点P ,Q 与点B 不重合.(1)求椭圆C 的离心率;(2)当S △OPQ =2时,求椭圆C 的方程;(3)过原点O 作直线l 的垂线,垂足为N .若|PN |=λ|BQ |,求λ的值.解:(1)a 2=3m ,b 2=m ,c 2=2m ,e 2=c 2a 2=23,故e =63.(2)设P (x 1,y 1),Q (x 2,y 2),将x +y -2=0代入椭圆C 的方程并整理得4x 2-12x +12-3m =0,依题意,由Δ=(-12)2-4×4×(12-3m )>0得m >1.且有⎩⎨⎧x 1+x 2=3,x 1x 2=12-3m4,|PQ |=1+k 2|x 1-x 2|=2·9-(12-3m )=6m -1, 原点到直线l 的距离d =2,所以S △OPQ =12|PQ |·d =12×6·m -1×2=2,解得m =73>1,故椭圆方程为x 27+3y 27=1.(3)直线l 的垂线为ON :y =x ,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,解得交点N (1,1). 因为|PN |=λ|BQ |,又x 1+x 2=3,所以λ=|PN ||BQ |=|x 1-1||x 2-2|=|2-x 2||x 2-2|=1,故λ的值为1.13.(2019·合肥市质量检测)如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( D )A .20B .10C .2 5D .4 5解析:由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N 的横坐标为c ,联立方程,得⎩⎨⎧x =c ,x 2a 2+y 24=1,得N (c ,4a ),∴H (0,2a ),M (-2c ,-2a ).把点M 的坐标代入椭圆方程得4c 2a 2+(-2a )24=1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,解得a 2=5,∴a = 5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D.14.(2019·南昌摸底调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解:(1)由题知e =c a =32,2b =2,又a 2=b 2+c 2, ∴b =1,a =2,∴椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·(-8km4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,②由①②得0≤m 2<65,120<k 2≤54, ∵原点O 到直线l 的距离d =|m |1+k 2, ∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是[0,2147). 尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·郑州市第一次质量预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点和上顶点分别是A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率的平方为( B )A.32B.3-52 C.-1+52D.3-12解析:如图,由题意得,A (-a,0),B (0,b ),由在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,得点P 是以点O 为圆心,线段F 1F 2为直径的圆x 2+y 2=c 2与线段AB 的切点,连接OP ,则OP ⊥AB ,且OP =c ,即点O 到直线AB 的距离为c .又直线AB 的方程为y =ba x +b ,整理得bx -ay +ab =0,点O 到直线AB 的距离d =abb 2+a 2=c ,两边同时平方整理得,a 2b 2=c 2(a 2+b 2)=(a 2-b 2)(a 2+b 2)=a 4-b 4,可得b 4+a 2b 2-a 4=0,两边同时除以a 4,得(b 2a 2)2+b 2a 2-1=0,可得b 2a 2=-1+52,则e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1--1+52=3-52,故选B. 16.(2019·重庆六校联考)如图,记椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界为曲线C ,P 是曲线C 上的任意一点,给出下列四个命题:①P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值;②曲线C 关于直线y =x ,y =-x 均对称; ③曲线C 所围区域的面积必小于36; ④曲线C 的总长度不大于6π. 其中正确命题的序号是②③.解析:对于①,若点P 在椭圆x 225+y 29=1上,P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故①错;对于②,联立两个椭圆的方程,得⎩⎪⎨⎪⎧x 225+y 29=1,y 225+x 29=1,得y 2=x 2,结合椭圆的对称性知,曲线C 关于直线y =x ,y =-x 均对称,故②正确;对于③,曲线C 所围区域在边长为6的正方形内部,所以其面积必小于36,故③正确;对于④,曲线C 所围区域的内切圆为半径为3的圆,所以曲线C 的总长度必大于圆的周长6π,故④错.故答案为②③.。

高二数学椭圆试题

高二数学椭圆试题

高二数学椭圆试题1.已知椭圆过和点.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,且,求直线的方程.【答案】(1);(2).【解析】(1)由已知将已知两点的坐标代入椭圆G的方程中,可得到关于的方程组,解此方程组就可求得的值,进而就可写出椭圆G的方程.(2)首先注意到由题意可得到直线的斜率存在,且.从而可用斜截式设出直线的方程,代入椭圆G的方程消元得到一个一元二次方程,则此方程一定有两个不同的解,所以,可得到的取值范围;再由,得到,结合韦达定理可用的代数式表示出线段MN的中点的坐标,然后由就可求出的值,从而求得直线的方程.试题解析:(1)因为椭圆过点和点.所以,由,得.所以椭圆的方程为 4分(2)显然直线的斜率存在,且.设直线的方程为.由消去并整理得, 5分由, 7分设,,中点为,得, 8分由,知,所以,即.化简得,满足.所以 12分因此直线的方程为 14分【考点】1.椭圆的的方程;2.直线与椭圆的位置关系.2.已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.【答案】(1);(2).【解析】(1)本小题中为焦点三角形,其周长为,又,两式组成方程组从而易求出,即可写出椭圆方程;(2)本小题中直线的方程可设为(其中不存在是不可能的),与椭圆方程联立消y,利用韦达定理与中点坐标公式,可得M点坐标(用k,m表示),当三点共线,则有即可解出k的值,又消y后的方程的可得m的范围,而点到直线的距离可用m表示,利用函数观点可求出的取值范围.试题解析:(1)由已知得,且,解得,又,所以椭圆的方程为.(2)当直线与轴垂直时,由椭圆的对称性可知:点在轴上,且与原点不重合,显然三点不共线,不符合题设条件.所以可设直线的方程为,由消去并整理得:①则,即,设,且,则点,因为三点共线,则,即,而,所以,此时方程①为,且因为,所以.【考点】椭圆的定义及标准方程,性质,直线与椭圆相交问题,设而不解思想,韦达定理,方程与函数思想,化归思想.3.与椭圆有公共焦点,且离心率的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆焦点为,又,则,所以,焦点在x轴上,故选C.【考点】椭圆与双曲线的标准方程与几何性质.4.若点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为()A.B.C.D.【答案】A【解析】因为,设,则又因为,所以因为对称轴,而,因此当时,的最大值为.【考点】二次函数最值5.若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为()A.199B.200C.99D.100【答案】B【解析】椭圆上的点到右焦点最大距离为:a+c=3,到右焦点最小距离是a-c=1,2=(n-1)d,要使,且n最大,有d=,由此能求出n的最大值.【考点】(1)椭圆的定义;(2)等差数列.6.已知椭圆过点,且离心率.(1)求椭圆的标准方程;(2)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1);(2).【解析】(1)本小题通过待定系数法列出两个关于的方程,通过解方程组求出椭圆的方程,包含着二次方的运算需掌握;(2)本小题是直线与椭圆的位置关系的问题,这类题目的常用思路就是联立直线方程和椭圆方程通过消元得到一个一元二次方程,确定判别式的情况,正确书写、利用韦达定理,由,两点(不是左右顶点),椭圆的右顶点为,且满足,根据向量的数量积为零,可得到关于两个根的等式,再利用韦达定理可得关于的等式,从而就可得出相应的结论.试题解析:(1)即∴椭圆方程为 4分又点在椭圆上,解得∴椭圆的方程为 6分(2)设,由得,8分所以,又椭圆的右顶点,,解得 10分,且满足当时,,直线过定点与已知矛盾 12分当时,,直线过定点综上可知,当时,直线过定点,定点坐标为 14分.【考点】1.直线与椭圆的位置关系;2.韦达定理;3.平面向量的数量积;4.过定点的问题;5.直线与椭圆的综合问题.7.已知点分别是椭圆为:的左、右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点,若直线与双曲线的一条渐近线平行,则椭圆的离心率为( )A.B.C.D.【答案】C【解析】将点代入:,得,∴,∵过点作直线的垂线交直线于点,,设,得,解得,∴.∵直线与双曲线的一条渐近线平行,∴,即,整理,得,解得,故选C.【考点】1、椭圆的几何性质;2、双曲线的性质.8.椭圆的焦距等于()A.20B.16C.12D.8【答案】B【解析】椭圆中的关系是,,焦距是,题中,所以,所以焦距为16,故选B.【考点】椭圆的几何性质(椭圆的焦距).9.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。

2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质

2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质
2.若点P在椭圆上,F为椭圆的一个焦点,则 (1)b≤|OP|≤a; (2)a-c≤|PF|≤a+c.
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,

2018届高考数学总复习作业 54椭圆的概念及其性质含答案(理科)

2018届高考数学总复习作业 54椭圆的概念及其性质含答案(理科)

配餐作业(五十四) 椭圆的概念及其性质(时间:40分钟)一、选择题1.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析 如图,设椭圆的另外一个焦点为F ,则△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =43。

故选C 。

答案 C2.(2016²广东适应性测试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为53,椭圆上一点P到两焦点的距离之和为12,则b =( )A .8B .6C .5D .4解析 由题意得2a =12,e =c a =53,解得a =6,c =25,所以b =a 2-c 2=4,故选D 。

答案 D3.(2016²湖北八校二联)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析 由题意知a =3,b =5。

由椭圆定义知|PF 1|+|PF 2|=6。

在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线性质可推得PF 2⊥x 轴,所以|PF 2|=b 2a=53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B 。

答案 B4.(2016²呼和浩特调研)设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B 向x 轴作垂线,若垂足恰好为椭圆的两个焦点,则k 等于( )A.32 B .±32C .±12D.12解析 由题意可得,c =1,a =2,b =3,不妨取A 点坐标为⎝⎛⎭⎪⎫1,±32,则直线的斜率k =±32。

考点42 椭圆——2021年高考数学专题复习真题练习

考点42 椭圆——2021年高考数学专题复习真题练习

7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点 带入能成立的就是答案 8.线性规划题目直接求交点带入比较大小即可(这个看楼下的说用这条要碰运 气,文科可以试试。) 9.遇到这样的选项 A 1/2 B 1 C 3/2 D 5/2 这样的话答案一般是 D 因为 B 可以看 作是 2/2 前面三个都是出题者凑出来的 如果答案在前面 3 个的话 D 应该是 2(4/2).
9 16
25 16
25 16
16 25
1
4.已知椭圆的中点在原点,焦点在坐标轴上,且长轴长为 12,离心率为 ,则椭圆的方程为________.
3
5.设 F1 、 F2 为椭圆 C :
x2 a2
y2 b2
1a
b
0 的左、右焦点,经过 F1 的直线交椭圆 C

A 、 B 两点,
若 F2 AB 的面积为 4 3 的等边三角形,则椭圆 C 的方程为______________.
94
7.已知斜率为 k1 k1 0 的直线 l 与椭圆 x2 y2 1交于 A , B 两点,线段 AB 的中点为 C ,直线 OC
4
( O 为坐标原点)的斜率为 k2 ,则 k1 k2

如何学好数学
1.圆锥曲线中最后题往往联立起来很复杂导致 k 算不出,这时你可以取特殊值 法强行算出 k 过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解 的表达式,就 ok 了 2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差 2 倍的小的 就是答案,体积找到差 3 倍的小的就是答案,屡试不爽! 3.三角函数第二题,如求 a(cosB+cosC)/(b+c)coA 之类的先边化角然后把第一题算 的比如角 A 等于 60 度直接假设 B 和 C 都等于 60°带入求解。省时省力! 4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想 不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直 接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有 2 分可以 得! 5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简 单! 6.高考选择题中求条件啥的充要和既不充分也不必要这两个选项可以直接排除! 考到概率超小 7.选择题中考线面关系的可以先从 D 项看起前面都是来浪费你时间的

2020年高考理科数学之高频考点解密19 椭圆(解析版)

2020年高考理科数学之高频考点解密19 椭圆(解析版)

解密19 椭圆考点1 椭圆的定义与标准方程调研1 对于常数m 、n ,“0mn >”是“方程221mx ny +=表示的曲线是椭圆”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】若方程221mx ny +=表示的曲线是椭圆,则有0,0,m n m n >>≠,所以“0mn >”是“方程221mx ny +=表示的曲线是椭圆”的必要不充分条件.故选B .调研2 过椭圆2222:1(0)+=>>x y C a b a b的上顶点与右顶点的直线方程为240+-=x y ,则椭圆C 的标准方程为A .221164+=x yB .221204+=x yC .221248+=x yD .221328+=x y【答案】A【解析】直线方程为240+-=x y ,令x =0,则y =2,得到椭圆的上顶点坐标为(0,2),即b =2, 令y =0,则x =4,得到椭圆的右顶点坐标为(4,0),即a =4,从而得到椭圆方程为221164+=x y ,故选A . 调研3 椭圆x 24+y 2t=1上任意一点到其中一个焦点的距离恒大于1,则t 的取值范围为________________.【答案】(3,4)∪(4,254) 【解析】当t >4时,椭圆x 24+y 2t=1表示焦点在y 轴上的椭圆,则a =√t ,b =2,c =√t −4,由题意可得a −c =√t −√t −4>1,解得4<t <254;当0<t <4时,椭圆x 24+y 2t=1表示焦点在x 轴上的椭圆,则a =2,b =√t ,c =√4−t ,由题意可得a −c =2−√t −4>1,解得3<t <4;综上可知,实数t 的取值范围是(3,4)∪(4,254).☆技巧点拨☆求椭圆的方程有两种方法:(1)定义法,根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.(2)待定系数法,这种方法是求椭圆的方程的常用方法,其一般步骤是:①做判断,根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论);②设方程,根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>;③找关系,根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-);④得椭圆方程,解方程组,将解代入所设方程即可. 【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且.考点2 椭圆的简单几何性质调研1 椭圆x 2a 2+y 2b 2=1(a >0,b >0)的长轴两端点为(−4,0),(4,0),离心率为12,则短轴长为 A .8 B .4 C .4√3 D .2√3【答案】C【解析】由椭圆的性质得a =4,e =ca =12,则c =2, 又b 2=a 2−c 2=16−4=12,即b =2√3, 所以短轴长为2b =4√3.故选C . 调研2 已知椭圆C :x 236+y 227=1的右焦点为F ,点P(1,3),若点Q 是椭圆C 上的动点,则ΔPQF 周长的最大值为 A .2√13 B .17 C .30 D .17+√13【答案】D【解析】设椭圆C 的左焦点为F ′,则△PQF 的周长l =|QF |+|QP |+|PF |=2a −|QF ′|+|QP |+|PF |≤2a +|PF ′|+|PF |=12+5+√13=17+√13,当点Q 为PF ′的延长线与椭圆C 的交点时取等号,故选D .调研3 若椭圆2214x y m+=上一点到两焦点的距离之和为3m -,则此椭圆的离心率为A B 7C .7D .37或59【答案】A【解析】由题意得,230a m =->,即3m >,若24a =,即2a =,则34m -=,74m =>,不合题意,因此2a m =,即a =3m =-,解得9m =,即3a =,c ==离心率为e =.故选A . 【名师点睛】此题主要考查椭圆的定义、方程、离心率等有关方面的知识与运算技能,属于中低档题型,也是常考题.在解决此类问题时,要充分利用椭圆的定义,即椭圆上的点到两个定点(即两个焦点)的距离之和为定长(即长轴长2a ),在焦点位置不确定的情况,有必要分两种情况(其焦点在x 轴或是y 轴)进行讨论,从而解决问题.调研4 已知椭圆2222by a x +=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得12MF F △中,1221sin sin MF F MF F a c∠∠=,则该椭圆离心率的取值范围为A .(0-1)B .,12⎛⎫⎪ ⎪⎝⎭C .0,2⎛ ⎝⎭D .-1,1)【答案】D【解析】由正弦定理可得:122112sin sin MF MF MF F MF F =∠∠,结合题意可得12MF MF ca=,所以1212MF MF MF MF caa c+==+,根据椭圆的定义可得122MF MF a +=,所以12acMF a c=+,222a MF a c=+,易知21MF MF >.因为M 为椭圆上一点,所以2a c MF a c -<<+,即22a a c a c a c-<<++,整理得2220c ac a +->,所以2210e e +->11e <<. 故选D .☆技巧点拨☆1.利用椭圆几何性质解题时的注意点及技巧:(1)注意椭圆几何性质中的不等关系,在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系;(2)利用椭圆几何性质的技巧:求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.2.求椭圆离心率问题的一般思路:求椭圆离心率或其范围时,一般是根据题意设出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2,消去b 即可求得离心率或离心率的范围.考点3 直线与椭圆的位置关系调研1 已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C 的标准方程为A .22=1128x y + B .22=1124x y + C .22=132x y + D .22=13x y + 【答案】C【解析】由△AF 1B 的周长为,可知1212|||||4|||AF AF BF BF a +++==,解得a =(M N ,设点00(,)A x y ,由直线AM 与AN 的斜率之积为-23,=23-,即22002(3)3y x =--①.又2200213x y b +=,所以22200(1)3x y b =-②,由①②解得22b =,所以椭圆C的标准方程为22132x y +=.故选C . 【名师点睛】此题主要考查椭圆方程,由椭圆定义可得出焦半径的性质,由椭圆上的点和顶点连线的斜率乘积可得出关系式,考查了斜率的坐标表示以及点在椭圆方程上的灵活应用,属于中档题型,也是常考考点.数形结合法是数学解题中常用的思想方法之一,通过“以形助数,以数解形”,根据数列与形之间的对应关系,相互转化来解决问题.调研2 过点()31,P 且倾斜角为3π4的直线与椭圆22221(0)+=>>x y a b a b相交于A ,B 两点,若=u u u v u u u v AP PB ,则该椭圆的离心率为 A .12 B.2 C.3D.3【答案】C【解析】设()()1122,,,A x y B x y ,=Q u u u v u u u vAP PB ,∴P 是线段AB 的中点,则1232+=x x ,1212+=y y ,过点()31,P 且倾斜角为3π4的直线方程为()13-=--y x ,即4=-+y x ,联立直线与椭圆方程22221(0)+=>>x y a b a b 得222241⎧⎪⎪-+⎨=⎩+=y x x y ab ,整理得()22222228160+-+-=a b x a x a a b , 212228∴+=+a x x a b ,()212122288+=-++=+b y y x x a b, 代入1232+=x x 得223,=a b则椭圆的离心率3=====c e a .故选C .调研3 已知椭圆C:x 2a 2+y 2b2=1(a >b >0)的离心率为√22,短轴长为4. (1)求椭圆C 的方程;(2)过点N(0,2)作两条直线,分别交椭圆C 于A ,B 两点(异于N 点).当直线NA ,NB 的斜率之和为定值t(t ≠0)时,直线AB 是否恒过定点?若是,求出定点坐标;若不是,请说明理由. 【解析】(1)由题意知ca =√22,2b =4,a 2−c 2=b 2,解得a =2√2,b =2,c =2, 所以椭圆方程为x 28+y 24=1.(2)当直线AB 的斜率存在时,设直线AB 方程为y =kx +m(k ≠0),A(x 1,y 1),B(x 2,y 2), 由k NA +k KB =t ,得kx 1+m−2x 1+kx 2+m−2x 2=t ,整理得2kx 1x 2+(m −2)(x 1+x 2)=tx 1x 2 (∗),联立{y =kx +m x 2+2y 2=8,消去y 得(1+2k 2)x 2+4kmx +2m 2−8=0, 由题意知二次方程有两个不等实根,∴x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−81+2k 2,代入(∗)得2k(2m 2−8)1+2k 2−4km(m−2)1+2k 2=t(2m 2−8)1+2k 2,整理得(m −2)(4k −tm −2t)=0. ∵m ≠2,∴m =4k t−2,∴y =kx +4k t−2,即y +2=k(x +4t ).所以直线AB 过定点(−4t ,−2).当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,A(x 0,y 1),B(x 0,y 2),其中y 2=−y 1. ∴y 1+y 2=0, 由k NA +k NB =t ,得y 1−2x 0+y 2−2x 0=y 1+y 2−4x 0=−4x 0=t ,∴x 0=−4t.∴当直线AB 的斜率不存在时,直线AB 也过定点(−4t ,−2). 综上所述,直线AB 恒过定点(−4t ,−2).调研4 已知椭圆C : 2222x y +=的左、右顶点分别为1A ,2A . (1)求椭圆C 的长轴长与离心率;(2)若不垂直于x 轴的直线l 与椭圆C 相交于P ,Q 两点,直线1A P 与2A Q 交于点M ,直线1A Q 与2A P 交于点N .求证:直线MN 垂直于x 轴.【思路分析】(1)由椭圆C 的方程可化为2212x y +=,可得1,1a b c ===,则长轴长为2a =,离心率2c e a ==;(2)设直线1A P 的方程为1(y k x =,2A Q 的方程为2(y k x =, 联立可得2121)M k k x k k +=-,同理可得4343)N k k x k k +=-,可证明1412k k =-且2312k k =-,从而可得N M x x =,进而可得结果.【解析】(1)椭圆C 的方程可化为2212x y +=,所以1,1a b c ===.所以长轴长为2a =,离心率c e a == (2)显然直线1A P 、2A Q 、1A Q 、2A P 都存在斜率,且互不相等,分别设为1234,,,.k k k k 设直线1A P的方程为1(y k x =,2A Q的方程为2(y k x =,联立可得)2121M k k x k k +=-.同理可得)4343N k k x k k +=-.下面证明141.2k k =-设()00,P x y ,则220022x y +=.所以22001422001222y y k k x y ====---.同理231.2k k =-所以1221211211(22)112)2N M k k k k x x k k k k --++===----,所以直线MN 垂直于x 轴. 【名师点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.☆技巧点拨☆1.直线与圆锥曲线的位置关系是高考必考题,难度为中高档,常作为压轴题出现,大致在第20题的位置. 2.直线与椭圆综合问题的常见题型及解题策略(1)求椭圆方程或有关几何性质.可依据条件,寻找满足条件的关于a ,b ,c 的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(2)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.特别对于中点弦或弦的中点问题,一般利用点差法求解. 3.具体解题步骤:对于直线与圆锥曲线的位置关系问题,一般要把圆锥曲线的方程与直线方程联立来处理.(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在两种情况进行讨论,或者将直线方程设成x =my +b 的形式.(2)联立直线方程与曲线方程并将其转化成一元二次方程,利用方程根的判别式或根与系数的关系得到交点的横坐标或纵坐标的关系.(3)一般涉及弦的问题,要用到弦长公式|AB |=1+k 2|x 1-x 2|或|AB |=1+1k 2·|y 1-y 2|.1.(湖北省2019届高三1月联考)已知椭圆C :y 2a 2+x 216=1(a >4)的离心率是√33,则椭圆C 的焦距为 A .2√2 B .2√6 C .4√2 D .4√6【答案】C【解析】由题可得e =c a =√33,则a =√3c ,所以c 2=a 2−b 2=3c 2−16,所以c 2=8,因此椭圆C 的焦距为2c =4√2.故选C .2.(湖南省长沙市雅礼中学2019-2020学年高三上学期第一次月考数学)“26m <<”是“方程22126x y m m+=--为椭圆”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】若方程22126x ym m +=--表示椭圆,则206026->->-⎨⎩≠⎪-⎧⎪m m m m,解得26m <<且4m ≠, 所以26m <<是方程22126x y m m+=--表示椭圆的必要不充分条件,故选B .3.(云南省玉溪市玉溪第一中学2019-2020学年高三上学期期中数学)已知1F ,2F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ⊥,且1PF PQ =,则椭圆的离心率为A B .2-CD 1【答案】A【解析】设()10PF m m =>,则22PF a m =-,222QF m a =-,142QF a m =-,因为11QF =,故(4m a =-.因为222212124PF PF F F c +==,所以()()2224244a a a c ⎡⎤-+--=⎣⎦,整理得到2436c a ⎛⎫⨯=- ⎪⎝⎭c a ==故选A .4.(黑龙江省双鸭山市第一中学2019-2020学年高三上学期12月月考数学)已知椭圆2222:+=x y C a b()10>>a b 的左、右焦点分别为12,,F F O 为坐标原点,A 为椭圆上一点,12π2∠=F AF ,连接2AF y 交轴于M 点,若23OM OF =,则该椭圆的离心率为A .13B .3C .58D 【答案】D【解析】设|AF 1|=m ,|AF 2|=n . 如图所示,由题意可得:Rt △AF 1F 2∽Rt △OMF 2,∴122|||1|||||3==AF OM AF OF .则m +n =2a ,m 2+n 2=4c 2,n =3m .化为:m 2223b =,n 2=9m 2=6b 2.∴223b +6b 2=4c 2,∴()2253a c -=c 2,化为:c a =. 故选D .5.(黑龙江省鹤岗市第一中学2019-2020学年高三上学期12月月考数学)已知椭圆()222210x y a b a b+=>>,直线l 过左焦点且倾斜角为π3,以椭圆的长轴为直径的圆截l 所得的弦长等于椭圆的焦距,则椭圆的离心率为 AB.5CD【答案】D【解析】由题意知,椭圆的左焦点为(),0c -,长轴长为2a ,焦距为2c , 设直线l的方程为:)y x c =+0y -=, 则以椭圆长轴为直径的圆的圆心为()0,0,半径为a ,∴圆心到直线l的距离d ==,2c ∴==,整理得:2247c a =,∴椭圆的离心率为c a ==故选D.6.(安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,短轴的一个端点为P ,直线:430l x y -=与椭圆相交于A 、B 两点.若||||6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围为A .9(0,]5B .C .(0,3D .1(,]32【答案】C【解析】设椭圆的左焦点为F ',P 为短轴的上端点,连接,AF BF '',如下图所示:由椭圆的对称性可知,,A B 关于原点对称,则||||=OA OB , 又||||'=OF OF ,∴四边形AFBF '为平行四边形,||||'∴=AF BF ,又26AF BF BF BF a '+=+==,解得:3a =, 点P 到直线l 距离:3655b d -=≥,解得:2b ≥2=≥,0c ∴<≤,3c e a ⎛∴=∈ ⎝⎦. 故选C .7.(山东省淄博市实验中学2019-2020学年高三上学期第一次学习检测数学试题)已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122+e e 的最小值为 AB .3C .6D【答案】C 【解析】如图,设椭圆的长轴长为12a ,双曲线的实轴长为22a , 由题意可知:1222F F F P c ==, 又1211222,2F P F P a F P F P a +=-=Q ,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c c e c a ca ++=+=Q , ()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++,22222a cc a +≥=Q ,当且仅当2222a c c a =时等号等立,2122∴+e e 的最小值为6, 故选C .8.(甘肃省兰州市第一中学2019-2020学年高三上学期9月月考数学)已知椭圆221112211:1(0)x y C a b a b +=>>与双曲线222222222:1(0,0)x y C a b a b -=>>有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF =,设1C 与2C 的离心率分别为12,e e ,则21e e -的取值范围是 A .13⎡⎫+∞⎪⎢⎣⎭,B .13⎛⎫+∞ ⎪⎝⎭,C .12⎡⎫+∞⎪⎢⎣⎭,D .12⎛⎫+∞ ⎪⎝⎭,【答案】D【解析】如图所示:设椭圆与双曲线的焦距为122F F c =,1PF t =, 由题意可得122,2+=-=t c a t c a ,122,2t a c t a c ∴=-=+,1222a c a c ∴-=+,即12a a c -=,12111e e ∴-=,即2121e e e =+,2222122222211111e e e e e e e e e ∴-=-==++⎛⎫+ ⎪⎝⎭,由21e >可知2101e <<, 令21(0,1)x e =∈,2(0,2)y x x ∴=+∈, 所以2112e e ->,故选D . 9.(福建省南安市侨光中学2020届高三上学期第一次阶段考数学)已知点M,0),椭圆22+14x y =与直线y =k (x交于点A ,B ,则△ABM 的周长为________. 【答案】8【解析】直线(=+y k x 过定点N (), 由题设知M 、N 是椭圆的焦点,由椭圆定义知:AN +AM =2a =4,BM +BN =2a =4.则△ABM 的周长为AB +BM +AM =(AN +BN )+BM +AM =(AN +AM )+(BN +BM )=8, 故答案为8.10.(广东省雷州市2019届高三上学期期末考试)已知A 、B 分别为椭圆x 29+y 2b =1(0<b <3)的左、右顶点,P 、Q 是椭圆上的不同两点且关于x 轴对称,设直线AP 、BQ 的斜率分别为m 、n ,若点A 到直线y =√1−mnx 的距离为1,则该椭圆的离心率为________________.【答案】√24【解析】设P(x 0,y 0),则Q(x 0,−y 0),m =y 0x 0+3,n =−y 0x 0−3,∴mn =−y 02x2−9,又P(x 0,y 0)在椭圆x 29+y 2b 2=1上,∴y 02=−b 29(x 02−9),∴mn =b 29,点A 到y =√1−mnx的距离为1===d ,解得b 2=638,c =2√2e =c3=√24.11.(河南省洛阳市2019届高三上学期尖子生第二次联考)某同学同时掷两颗均匀正方形骰子,得到的点数分别为a ,b ,则椭圆x 2a2+y 2b 2=1的离心率e >√32的概率是________________. 【答案】13 【解析】由椭圆x 2a 2+y 2b 2=1的离心率e >√32,可得当a >b 时,e =c a=√a2−b 2a>√32,即得a 2>4b 2;当a <b时,e =c b =√b 2−a 2b >√32,即得b 2>4a 2.同时掷两颗均匀正方形骰子得到的点数分别为a ,b ,共有6×6=36种情况,满足上述关系的有:(3,1),(1,3),(4,1),(1,4),(5,1),(1,5),(5,2),(2,5),(6,1),(1,6),(6,2),(2,6),共12种情况, 所以所求概率为1236=13.12.(四川省绵阳市2019届高三第二次诊断性考试)已知点P 是椭圆C :x 29+y 2=1上的一个动点,点Q是圆E :x 2+(y −4)2=3上的一个动点,则|PQ |的最大值是________________. 【答案】4√3【解析】由圆E :x 2+(y ﹣4)2=3可得圆心为E (0,4),又点Q 在圆E 上,∴|PQ |≤|EP |+|EQ |=|EP |+√3(当且仅当直线PQ 过点E 时取等号). 设P (x 1,y 1)是椭圆C 上的任意一点,则x 129+y 12=1,即x 12=9−9y 12,∴|EP |2=x 12+(y 1−4)2=9−9y 12+(y 1−4)2=−8(y 1+12)2+27.∵y 1∈[−1,1],∴当y 1=﹣12时,|EP |2取得最大值27,即|PQ |≤3√3+√3=4√3, ∴|PQ |的最大值为4√3.13.(四川省眉山市2019-2020学年高三第二次诊断性考试数学)已知椭圆()2222:10x y C a b a b+=>>的右焦点为)F,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C 的方程;(2)过椭圆内一点()0,P t ,斜率为k 的直线l 交椭圆于,M N 两点,设直线,OM PN (O 为坐标原点)的斜率分别为12,k k ,若对任意k ,存在实数λ,使得12k k k λ+=,求实数λ的取值范围.【解析】(1)由题意得222222c ba abc ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2a b =⎧⎪⎨=⎪⎩ 所以椭圆C 的方程为:22142+=x y .(2)设直线l 的方程为,y kx t =+由221,42,x y y kx t ⎧+=⎪⎨⎪=+⎩消元可得()222214240.k x ktx t +++-= 设()()1122,,,M x y N x y ,则2121222424,.2121kt t x x x x k k --+==++ 而()12121212221211242,2t x x y y kx t kx tk k k k x x x x x x t +++-+=+=+=+=- 由12,k k k λ+=得24.2kk t λ-=- 因为此等式对任意的k 都成立,所以242t λ-=-,即242.t λ=- 由题意,点()0,P t 在椭圆内,故24022t λ≤=-<,解得 2.λ≥所以λ的取值范围是[)2,.+∞ 14.(河北省衡水中学2019-2020学年度高三年级上学期四调考试数学)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B.已知椭圆的离心率为3,AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB ==, 从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由△BPM 的面积是△BPQ 面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+, 两边平方,整理得2182580k k ++=, 解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去; 当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.15.(湖南省衡阳市第八中学2019-2020学年高三上学期第六次月考数学)如图,已知椭圆P:x 2a 2+y 2b 2=1(a >b >0)的长轴A 1A 2,长为4,过椭圆的右焦点F 作斜率为k (k ≠0)的直线交椭圆于B 、C 两点,直线BA 1,BA 2的斜率之积为−34.(1)求椭圆P 的方程;(2)已知直线l:x =4,直线A 1B ,A 1C 分别与l 相交于M 、N 两点,设E 为线段MN 的中点,求证:BC ⊥EF . 【解析】(1)设B (x 1,y 1),C (x 2,y 2), 因点B 在椭圆上,所以x 12a 2+y 12b 2=1,故y 12=b 2a 2(a 2−x 12). 又A 1(−a,0),A 2(a,0), 所以k BA 1⋅k BA 2=y 1x1+a⋅y 1x 1−a =−b 2a2,即b 2a 2=34, 又a =2,所以b =√3, 故椭圆P 的方程为x 24+y 23=1.(2)设直线BC 的方程为:y =k (x −1),B (x 1,y 1),C (x 2,y 2), 联立方程组{x 24+y 23=1y =k (x −1),消去y 并整理得(4k 2+3)x 2−8k 2x +4k 2−12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2−124k 2+3.直线A 1B 的方程为y =y 1x 1+2(x +2),令x =4得y M =6y 1x1+2,同理,y N =6y 2x2+2;所以y E =12(y M +y N )=3(y 1x1+2+y 2x2+2)=6kx 1x 2+3k (x 1+x 2)−12kx 1x 2+2(x 1+x 2)+4, 代入化简得y E =−3k ,即点E (4,−3k ), 又F (1,0), 所以k EF k BC =−3k3⋅k =−1,所以BC ⊥EF .16.(江西省红色七校2019-2020学年高三第一次联考数学)已知点()2,1M 在椭圆2222:+=x y C a b()10>>a b 上,A ,B 是长轴的两个端点,且3MA MB ⋅=-u u u r u u u r.(1)求椭圆C 的标准方程;(2)已知点()1,0E ,过点()2,1M 的直线l 与椭圆的另一个交点为N ,若点E 总在以MN 为直径的圆内,求直线l 的斜率的取值范围.【解析】(1)由已知可得()()2,12,13a a -----=-g ,解得28a =,又点()2,1M 在椭圆C 上,即2222118b+=,解得22b =,所以椭圆C 的标准方程为22182x y +=.(2)设()11N x y ,,当直线l 垂直于x 轴时,点E 在以MN 为直径的圆上,不合题意, 因此设直线l 的方程为()21y k x =-+, 代入椭圆方程,消去y 得()()()2222418244410k x k kx kk ++-+--=,则有()2124441241k k x k --=+,即()212244141k k x k --=+,21244141k k y k --+=+, 且判别式()216210=+>k ∆,即12k ≠-, 又点E 总在以MN 为直径的圆内,所以必有0EM EN u u u u v u u u v⋅<,即有()()11111,1,110x y x y -=+-<g ,将1x ,1y 代入得222248344104141k k k k k k ----++<++,解得16k >-,所以满足条件的直线l 的斜率的取值范围是1,6⎛⎫-+∞ ⎪⎝⎭. 17.(四川省成都市第七中学2019-2020学年高三上学期一诊模拟数学)已知椭圆C:x 2a +y 2b =1(a >b >0)的两个焦点分别为F 1(−√2,0),F 2(√2,0),以椭圆短轴为直径的圆经过点M(1,0). (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A,B 两点,设点N(3,2),直线AN,BN 的斜率分别为k 1,k 2,问k 1+k 2是否为定值?并证明你的结论.【解析】(1)依题意,c =√2,a 2−b 2=2. ∵点M (1,0)与椭圆短轴的两个端点的连线相互垂直, ∴b =|OM |=1,∴a =√3. ∴椭圆C 的方程为x 23+y 2=1. (2)①当直线l 的斜率不存在时,由{x =1x 23+y 2=1解得x =1,y =±√63.设1,3⎛⎝⎭A,1,3⎛- ⎝⎭B,则122233222++=+=k k 为定值. ②当直线l 的斜率存在时,设直线l 的方程为:()1=-y k x .将()1=-y k x 代入2213+=x y 整理化简,得()2222316330+-+-=k x k x k . 依题意,直线l 与椭圆C 必相交于两点,设()11,A x y ,()22,B x y ,则2122631+=+k x x k ,21223331-=+k x x k .又()111=-y k x ,()221=-y k x , 所以1212122233--+=+--y y k k x x ()()()()()()122112232333--+--=--y x y x x x ()()()()()1221121221321393⎡⎤⎡⎤---+---⎣⎦⎣⎦=-++k x x k x x x x x x ()()()121212121212224693⎡⎤-++-++⎣⎦=-++x x k x x x x x x x x22222222226336122246313131633933131⎡⎤--⨯+⨯-⨯+⎢⎥+++⎣⎦=--⨯+++k k k k k k k k k k k ()()2212212621+==+k k . 综上得k 1+k 2为常数2.1.(2019年高考全国Ⅱ卷理数)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D . 2.(2019年高考全国Ⅰ卷理数)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.3.(2018新课标全国Ⅱ理科)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP的斜率为6可得2tan PAF ∠=所以2sin PAF ∠=,2cos PAF ∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ==+-∠,所以4a c =,14e =,故选D . 4.(2017新课标全国Ⅱ理科)已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=, 直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223(),a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率3c e a ===,故选A .【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =ca;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2019年高考全国Ⅲ卷理数)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.6.(2017新课标全国Ⅱ理科)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1) 222x y +=;(2)证明见解析.【思路分析】(1)设出点P 的坐标,利用=NP u u u r u u u r得到点P 与点M 坐标之间的关系即可求得轨迹方程为222x y +=;(2)利用1OP PQ ⋅=u u u r u u u r 可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得OQ PF ⋅=u u u r u u u r 0,即⊥OQ PF u u u r u u u r,据此即可得出结论.【解析】(1)设()()00,,,P x y M x y ,设()0,0N x ,()()00,,0,NP x x y NM y =-=u u u r u u u u r.由=NP u u u r u u u r得00,2x x y y ==,因为()00,M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知()1,0F -.设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-u u u r u u u r u u u r u u u r ,()(),,3,OP m n PQ m t n ==---u u u r u u u r.由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n+=,故330m tn +-=,所以OQ PF ⋅=u u u r u u u r 0,即⊥OQ PF u u u r u u u r.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程. (4)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P (x ,y )的轨迹方程.7.(2018新课标全国Ⅰ理科)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)2y x =-或2y x =;(2)证明见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-,所以AM 的方程为2y x =-2y x =-. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.8.(2017新课标全国Ⅱ理科)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)证明见解析. 【思路分析】(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=. (2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2, 如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,2),(t,2-).则121k k +=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++,解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.9.(2018新课标全国Ⅲ理科)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.【答案】(1)证明见解析;(2)证明见解析,公差为28或28-. 【解析】(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=.两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=.由题设知12121,22x y x y m ++==,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r ,同理2||22x FB =-u u u r ,所以121||||4()32FA FB x x +=-+=u u u r u u u r ,故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r ①. 将34m =代入34k m =-得1k =-,所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=,故121212,28x x x x +==,代入①解得||28d =,所以该数列的公差为28或28-.。

一道解析几何高考题的解析与探究——以 2020年全国卷Ⅰ理科第 20题为例

一道解析几何高考题的解析与探究——以 2020年全国卷Ⅰ理科第 20题为例
列出关于 t,n 的方程,求出 n 的值。
解析:设点 P、C、D 的坐标为 P(6,t),C(x1,y1),D(x2,y2),则
t
t
直线 PA 的方程是 y = ( x + 3 ),直线 PB 的方程是 y = ( x 9
3
t
ì
ïy = 9 ( x + 3 ),
ï
消 元 得 ( t 2 + 9 ) x 2 + 6t 2 x + 9t 2 3 );联 立 í 2
ï + y = 1,
î9
技法点拨
106
2mny + n2 - 9 = 0,设 C(x1,y1),D(x2,y2),则 y 1 + y 2 = y1 y2 =
n2 - 9
m2 + 9
(1)。又直线 AC 的方程为 y =
直线 BD 的方程为 y =
共点 P,所以
9y 1
x1 + 3
=
y2
x2 - 3
后对 C、D 横坐标分两种情况考虑,考查了分类与整合的数学
思想,强调思维的严谨性。
思路 3:先求直线带参数的方程(即共点的直线系方程)。
先引进直线 CD 的方程,当斜率不为零时,设其为 x=my+
n,联立直线 CD 与椭圆 E 的方程,利用韦达定理找到 C、D 坐标
的关系(用参数 m,n 表示),然后写出直线 AC、BD 的方程,利用
功能,以下着重讨论第二问的解法。
二、试题解析
思路 1:从命题者的角度寻找答案。
此题的命题背景是极点和极线的位置关系,即寻找极线
x=6 对应的极点。
解析:由于椭圆及直线 x=6 都是关于 x 轴对称的图形,若

利用仿射变换解决与椭圆有关的高考试题

利用仿射变换解决与椭圆有关的高考试题

利用仿射变换解决与椭圆有关的高考试题汤敬鹏(兰州市第五十七中学 730070)文⑴谈及利用仿射变换可以解决一些初等几何的问题,可以使问题变得更加简洁、透彻,对笔者启发很大,笔者通过自己的教学实践感觉到利用仿射变换,可以将椭圆的有关问题转化为圆的问题,从而可以借助圆当中的一些性质解决问题,使问题的解决过程大大简化,在利用仿射变换解决相关问题时,主要利用以下几个性质:性质1 变换后共线三点单比不变(即变换后三点的两个线段的比值和变换前的比值一样);性质2 变换后保持同素性和接合性(即变换前直线与曲线若相切,变换后仍相切); 性质3 变换前后对应图形的面积比不变;现以一些高考试题为例加以说明。

例1(2008年全国卷Ⅱ第22题)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D ,与椭圆相交于E 、F 两点 ⑴若DF 6ED =,求k 的值;⑵求四边形AEBF 面积的最大值。

分析:此例按照常规解法较为繁杂,但利用仿射变换将椭圆变换为单位圆,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’, 线段E ’F ’恰为圆的直径,根据性质1,D ’分线段E ’F ’的比与D 分线段EF 的比相同,利用圆当中的相交弦定理.....求得D ’点的坐标,再反求出D 点坐标,从而很容易求出k 值;利用性质3,可以求得四边形AEBF 与四边形A ’E ’B ’F ’的面积关系,由于四边形A ’E ’B ’F ’面积的最大值较易求出,这样也就很容易求得四边形AEBF 面积的最大值。

解:依题设得椭圆的方程为1y 4x 22=+ 作仿射变换,令x ’=2x ,y ’=y ,则得仿射坐标系x ’O ’y ’,在此坐标系中,上述椭圆变换为圆x ’2+y ’2=1,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’,且E ’F ’为圆的直径,E ’F ’=2,A ’(1,0),B ’(0,1)⑴根据性质1 ∵DF 6ED = ∴''''F D 6D E = ∴E ’D ’=712 D ’F ’=72 ∵E ’D ’·D ’F ’=A ’D ’ ·D ’B ’ A ’D ’+D ’B ’=A ’B ’=2∴A ’D ’=724 D ’B ’=723或A ’D ’=723 D ’B ’=724 ∴''''B D 34D A =或''''B D 43D A = 由定比分点公式可得:D ’(7374,)或D ’(7473,) ∴D 点坐标为(7378,)或(7476,) ∴k=83或k=32 ⑵设四边形AEBF 的面积为S ,四边形A ’E ’B ’F ’的面积为S ’,E ’F ’与A ’B ’的夹角为θ,则S ’=θ⋅⋅sin ''''B A F E 21=θsin 2≤2(当θ=2π时取“=”号,此时F ’ (2222,))由于椭圆的面积为πab=2π,圆的面积为πr 2=π根据性质3有π=π'S 2S ,故S=2S ’ ∴S ≤22 当且仅当F 坐标为(22222,),即k=21时取“=”号 说明:由上述证明过程可知,当D ’为A ’B ’中点是时四边形A ’E ’B ’F ’的面积取到最大值,根据性质1,当D 为AB 中点时四边形AEBF 的面积取到最大值。

高考总复习数学(理科)第八章 第五节第1课时椭圆的概念及其性质(基础课)

高考总复习数学(理科)第八章 第五节第1课时椭圆的概念及其性质(基础课)
第八章 平面解析几何
第五节 椭圆
最新考纲
1.了解椭圆的实际背景, 了解椭圆在刻画现实世界 和解决实际问题中的作 用. 2.掌握椭圆的定义、几何 图形、标准方程及简单几 何性质. 3.理解数形结合思想. 4.了解椭圆的简单应用.
考情索引
2018·全国卷Ⅰ,
T19 2018·全国卷Ⅱ,
T12 2018·全国卷Ⅲ,
4.已知F1,F2是椭圆C:
x2 a2

y2 b2
=1(a>b>0)的两个
焦点,P为椭圆C上的一点,且
P→F1⊥
→ PF2
.若△PF1F2的面
积为解9,析则:b=由定__义__,___|P_F.1|+|PF2|=2a,且P→F1⊥P→F2, 所以|PF1|2+|PF2|2=|F1F2|2=4c2, 所以(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以2|PF1||PF2|=4a2-4c2=4b2, 所以|PF1||PF2|=2b2. 所以S△PF1F2=12|PF1||PF2|=12×2b2=9,因此b=3
A.x32+y2=1
B.x32+y22=1
C.x92+y42=1
D.x92+y52=1
(3)(2018·全国卷Ⅰ)已知椭圆C:
x2 a2

y2 4
=1的一个焦
点为(2,0),则C的离心率为( )
1
1
2
22
A.3
B.2
C. 2
D. 3
解析:(1)F1(- 3,0),因为PF1⊥x轴,
所以P-

3,±12,所以|PF1|=12,
P到x轴的距离为1,所以y=±1,把y=±1代入
x2 5

【精品含答案】高考一轮复习8.1椭圆基础训练题(理科)

【精品含答案】高考一轮复习8.1椭圆基础训练题(理科)

2009届高考一轮复习8.1 椭圆基础训练题(理科)注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

满分100分,考试时间45分钟。

第I 卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 椭圆5ky x 522=-的一个焦点是(0,2),那么k=( )(A )–1(B )1(C )5(D )5-2. 设1F ,2F 是椭圆16y 49x 422=+的两个焦点,P 是椭圆上的点,且3:4|PF |:|PF |21=,则△21F PF 的面积为( )(A )4(B )6(C )22(D )243. P 是椭圆15y 9x 22=+上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 的中心的轨迹方程为( )(A )15y 9x 422=+ (B )15y 49x 22=+(C )120y 9x 22=+ (D )15y 36x 22=+4. 如图,P 是椭圆19y 25x 22=+上的一点,F 是椭圆的左焦点,且()21+=,4|OQ |=,则点P 到该椭圆左准线的距离为( )(A )6(B )4(C )3(D )25 5. (思考探究题)已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点。

今有一个水平放置的椭圆形台球盘,点A ,B 是它的两个焦点,长轴长为2a ,焦距为2c ,当静放在点A 的小球(小球的半径不计),从点A 沿直线击出,经椭圆壁反弹后再回到点A 时,小球经过的路程是( ) (A )a 4 (B )()c a 2- (C )()c a 2+ (D )以上三种情况都有可能6. 设1F 、2F 分别是椭圆1by a x 2222=+(0b a >>)的左、右焦点,若在其右准线上存在点P ,使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )(A )]22,0( (B )]33,0( (C ))1,22[(D ))1,33[第II 卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。

近三年高考文理科数学试卷考点及其分值分析

近三年高考文理科数学试卷考点及其分值分析

近三年高考文科数学试卷考点及其分值分析一.选择题1.复数代数形式的混合运算分值:52.交、并、补集的混合运算分值:53.命题的否定分值:54.函数奇偶性的判断分值:55.等比数列的通项公式及其性质分值:56.古典概型及其概率计算公式分值:57.分段函数的应用分值:58.余弦定理;正弦定理分值:59.命题的真假判断与应用分值:510.三角函数中的恒等变换应用分值:511.独立性检验的应用,概率与统计,程序框图分值:512.程序框图,计算题;算法和程序框图分值:513.双曲线的简单性质,计算题,圆锥曲线的定义、性质与方程分值:514.函数的图象及其变换,函数的性质及应用分值:515.由三视图求面积,体积分值:5二.填空题1.利用导数研究曲线上某点切线方程分值:52.向量的模分值:53.线性回归方程分值:54.平面向量数量积的运算分值:55.简单线性规划,有理数指数幂的化简求值分值:56.等差数列的性质,点列、递归数列与数学归纳法分值:57.椭圆的简单性质,圆锥曲线的定义、性质与方程分值:58.绝对值不等式分值:5三.解答题1.三角函数中的恒等变换应用,正弦函数图像,函数奇偶性的性质分值:122.类比推理,双曲线的简单性质分值:123.等比关系的确定,数列递推式,等差数列与等比数列分值:124.空间几何综合问题分值:125.二次不等式与实际问题分值:126.利用导数求闭区间上函数的最值,利用导数研究函数的单调性分值:127.空间中直线与直线之间的位置关系,棱柱、棱锥、棱台的体积分值:128.直线与圆锥曲线的综合问题分值:139.排列、组合的实际应用分值:14近三年江西省理科高考数学试卷考点及其分值分析一.选择题1.集合运算、解一元二次不等式分值:52.复数模的概念、四则运算分值:53.诱导公式与和差角分值:54.抽象函数奇偶性分值:55.全称与特称命题分值:56.相互独立事件的概率分值:57.三视图与直观图分值:58.含参数不等式与零点分值:59.古典概型分值:510.双曲线几何性质与数量积分值:511.三角函数图像性质分值:512.圆锥体积分值:513.程序框图分值:514.平面向量基本定理分值:515.二倍角公式和同角三角函数基本关系式分值:516.线性约束条件、全称与特称命题分值:517.直线与抛物线、向量运算分值:518.二项式通项分值:519.导数、函数零点与参数范围分值:520.组合体三视图与表面积分值:5二.填空题1.函数奇偶性分值:52.椭圆与圆的方程分值:53.推理与证明分值:54.线性规划与斜率分值:55.向量的和与数量积分值:56.正弦定理、和差角公式、三角形面积分值:5三.解答题1.正弦定理、和差角公式、三角形面积分值:122.递推公式与等差数列、裂项相消法求和分值:123.等差数列通项与求和分值:124.频率分布直方图中的平均数与方差、正态分布分值:125.线面垂直与线线垂直分值:126.三棱柱中的线线关系、二面角分值:127.散点图、函数模拟与线性回归分值:128.求轨迹方程、直线与椭圆相交弦长与面积最值分值:129.导数几何意义、直线与抛物线,导数与单调性与最值,参数与零点问题分值:10.平面几何直线与圆分值:1211.解含绝对值不等式与三角形面积分值:1212.均值不等式、解不定方程分值:1213.方程互化与函数(三角形面积,线段长)最值分值:12。

【最新】十年高考理科数学真题 专题九 解析几何 二十六 椭圆及答案

【最新】十年高考理科数学真题 专题九  解析几何 二十六  椭圆及答案

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )22.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .B C .23 D .594.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离心率为3,点A 的坐标为(,0)b ,且FB AB ⋅=. (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(P =-,4P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y a ba b +=>>(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a ba b+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b +=>>F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率.38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率为3,直线y x =被椭圆C 截得的线段长为410. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.42.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x.(Ⅰ) 求椭圆的方程;第20题图(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点. 若··8AC DB AD CB +=, 求k 的值.44.(2013山东)椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别是12,F F ,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C: ()222210x y a b a b+=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =. (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.专题九 解析几何第二十六讲 椭圆答案部分1. 解析 2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=. 解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x yC +=的6a =,b =2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠F F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos60,2sin60)c c c +,即点(2)P c .∵点P 在过点A=14c a =.∴14e =,故选D . 2.C 【解析】由题意25=a,=a P 到该椭圆的两个焦点的距离之和为2=a C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mcM c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ =当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤Q P ,两点间的最大距离是8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 9.C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤, 所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b +=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e =椭,∴椭圆M1,∵双曲线的渐近线过点(2cA,渐近线方程为y =,故双曲线的离心率2e ==双.12(),0F c,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,2b BF c ⎛⎫=- ⎪⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得223142ca =,则ce a==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)三个点,设圆心为(,0)a,其中0a ,由4-=a ,解得32a ,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.162(,)b A c a ,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-22ac =,解得e = 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5.20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =,2()F B c d =,∵125F A F B =,∴5nc d ==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A 的坐标为(1,)2或(1,2-. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x . 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB=+,即||FA ,||FP ,||FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2d FB FA x x =-=-= 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||28d =.所以该数列的公差为28或28-. 23.【解析】设椭圆的焦距为2c ,由已知知2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB ,由FB AB ⋅=,可得6ab =,从而3a =,2b =. 所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y . 由已知有120y y >>,故12sin PQ AOQ y y ∠=-. 又因为2sin y AQ OAB =∠,而4OAB π∠=,故2AQ .由AQ AOQ PQ∠,可得1259y y =. 由方程组22194y kx x y=⎧⎪⎨+=⎪⎩,,消去x,可得1y = 易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,, 消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上.因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,.则121k k +=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841km x x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00,77x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(77. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m -.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △22162232||m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x -=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b =,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +=-+,所以121=-AB x .由题意可知圆M 的半径r为123r AB ==由题设知12k k =所以21k 因此直线OC的方程为1y =.联立方程2211,2,x y y ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2 令2112t k =+, 则()11,0,1t t>∈,因此1OC r===≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为1k =.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y .令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=. 当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=, 故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =因为0,3i i k k >≠,1i =,2,所以当l的斜率为44四边形OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,2.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N m x n =+,2212m n +=, 所以22221Q MN m y x x n===-. 所以Q yQ y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1yb+=,点N的坐标为1,)2b-,设点N关于直线AB的对称点S的坐标为17(,)2x,则线段NS的中点T的坐标为117,)244xb+-+.又点T在直线AB上,且1NS ABk k⋅=-,从而有11744171xbbb+-++=⎨+⎪=⎪⎪⎪⎩,解得3b=,所以b=故椭圆E的方程为221459x y+=.33.【解析】(Ⅰ)由题意知42=a,则2=a,又2ca=,222a c b-=,可得1=b,所以椭圆C的方程为1422=+yx.(Ⅱ)由(I)知椭圆E的方程为141622=+yx.(i)设λ=||||),,(0OPOQyxP,由题意知),(yxQλλ--,因为14220=+yx,又14)(16)(220=-+-yxλλ,即1)4(4220=+yxλ,所以2=λ,即2||||=OPOQ.(ii)设),(),,(2211yxByxA,将mkxy+=代入椭圆E的方程,可得01648)41(222=-+++mkmxxk,由0>∆,可得22164km+<,则有222122141164,418k m x x k km x x +-=+-=+,所以22221414164||k m k x x +-+=-.因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162km m k +-+= 222241)416(2k m m k +-+=222241)414(2k m k m ++-= 令t k m =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤,当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)F c c (I )设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为(Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12241PQ xk=-=+从而O PQ d OPQ=∆又点到直线的距离所以的面积1=2OPQS d PQ∆⋅=244,0,.44OPQtt t St tt∆=>==++则44,20.2t t kt+≥==±∆>因为当且仅当,即OPQι∆所以,当的面积最大时,的方程为2222y x y x=-=--或.35.【解析】(Ⅰ)设直线l的方程为()0y kx m k=+<,由22221y kx mx ya b=+⎧⎪⎨+=⎪⎩,消去y得,()22222222220b a k x a kmx a m a b+++-=,由于直线l与椭圆C只有一个公共点P,故0∆=,即22220b m a k-+=,解得点P的坐标为22222222,a kmb mb a k b a k⎛⎫- ⎪++⎝⎭,由点P在第一象限,故点P的坐标为22⎛⎫⎝;(Ⅱ)由于直线1l过原点O,且与l垂直,故直线1l的方程为0x ky+=,所以点P到直线1l的距离d=,整理得22d=,因为22222ba k abk+≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

椭圆历年高考题

椭圆历年高考题

椭圆历年高考题(选填题)(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--椭圆历年高考真题(选填题)1.(2018·全国卷I高考文科·T4)已知椭圆C :+=1的一个焦点为,则C的离心率为()A .B .C .D .2.(2018·全国卷II高考理科·T12)已知F1,F2是椭圆C :+=1(a>b>0)的左,右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A .B .C .D .3.(2018·全国卷II高考文科·T11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()C .4.(2017·全国乙卷文科·T12)设A,B是椭圆C:23x+2ym=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0, 3]∪[4,+∞)5.(2017·全国丙卷·理科·T10)已知椭圆C:22xa+22yb=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A. 6B.3C.2D.136.(2017·全国丙卷·文科·T11)同(2017·全国丙卷·理科·T10)已知椭圆C:22xa+22yb=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.6B.3C.23D.137.(2016·全国卷Ⅰ高考文科·T5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.13B.12C.23D.348.(2016·全国卷3·理科·T11)已知O为坐标原点,F是椭圆C:2222x ya b=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.349.(2016·江苏高考T10)如图,在平面直角坐标系xOy中,F是椭圆2222x y+=1a b(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.10.(2015·全国1卷理科·T14)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为 .椭圆历年高考真题(选填题)参考答案1.(2018·全国卷I高考文科·T4)已知椭圆C:+=1的一个焦点为,则C的离心率为()A.B.C.D.【解析】选C.因为椭圆的一个焦点为(2,0),则c=2,所以a2=b2+c2=8,a=2,所以离心率e=.2.(2018·全国卷II高考理科·T12)已知F1,F2是椭圆C:+=1(a>b>0)的左,右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【命题意图】本题考查了椭圆的标准方程和椭圆的性质的应用以及数学运算能力.【解析】选D.由题意直线AP的方程为y=(x+a),△PF1F2为等腰三角形,∠F1F2P=120°,所以PF2=2c,∠PF2x=60°,故P(2c,c),代入y=(x+a)得,(2c+a)=c,解得e==.3.(2018·全国卷II高考文科·T11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()C.【命题意图】本题考查椭圆的定义和性质的应用,考查了学生的运算和转化能力.【解析】选D.在直角三角形PF1F2中,F1F2=2c,∠PF2F1=60°,所以PF1=c,PF2=c,又PF 1+PF 2=2a ,所以c +c =2a ,解得e ===-1.4.(2017·全国乙卷文科·T12)设A,B 是椭圆C:23x +2y m=1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( ) A.(0,1]∪[9,+∞)3∪[9,+∞) C.(0,1]∪[4,+∞)3∪[4,+∞)【命题意图】本题主要考查椭圆的性质,利用椭圆的性质解决相关问题.【解析】选A.当0<m<3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB=120°,则ab≥t an60°3即3m3,得0<m≤1;当m>3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b 3即3m3,得m≥9,故m 的取值范围为(0,1]∪[9,+∞),故选A. 5.(2017·全国丙卷·理科·T10)已知椭圆C: 22x a +22y b=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为 ( ) A.63 B. 33 C.23 D.13【命题意图】本题考查椭圆的性质及直线和圆的位置关系,考查学生的运算求解能力. 【解析】选A.直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离22a b =a,整理得a 2=3b 2,即a 2=3(a 2-c 2)⇒2a 2=3c 2,即22c a =23,e=ca 66.(2017·全国丙卷·文科·T11)同(2017·全国丙卷·理科·T10)已知椭圆C:22x a +22yb=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为 ( ) A.63 B.33 C.23 D.13【命题意图】本题考查椭圆的性质及直线和圆的位置关系,考查学生的运算求解能力.【解析】选A.直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离d=22ab+=a,整理为a 2=3b 2,即a 2=3(a 2-c 2)⇒2a 2=3c 2,即22c a=23,e=c a =63.7.(2016·全国卷Ⅰ高考文科·T5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的,则该椭圆的离心率为 ( ) A.13B.12C.23D.34【解析】选B.设椭圆的标准方程为22x a+22y b =1(a>b>0),右焦点F(c,0),则直线l 的方程为x c +yb =1,即bx+cy-bc=0,22bcb c -+=12b,又a 2=b 2+c 2,得b 2c 2=14b 2a 2,所以e=c a =12.8.(2016·全国卷Ⅲ·文科·T12)与(2016·全国卷3·理科·T11)相同已知O 为坐标原点,F 是椭圆C:2222x y a b+ =1(a>b>0)的左焦点,A,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为 ( ) A.13B.12C.23D.34【解题指南】点M 是直线AE 和直线BM 的交点,点M 的横坐标和左焦点相同,进而找到a,b,c 的联系. 【解析】选A.由题意可知直线AE 的斜率存在,设为k,直线AE 的方程为y=k ()x a +,令x=0可得点E 坐标为()0,ka ,所以OE 的中点H 坐标为ka 0,2⎛⎫⎪⎝⎭,又右顶点B(a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y=-k 2x+k 2a,联立()y k x a ,k k y x a,22⎧=+⎪⎨=-+⎪⎩可得点M 横坐标为-a 3,又点M 的横坐标和左焦点相同,所以-a 3=-c,所以e=13.9.(2016·江苏高考T10)如图,在平面直角坐标系xOy 中,F 是椭圆2222x y +=1a b (a>b>0)的右焦点,直线y=b 2与椭圆交于B,C 两点,且∠BFC=90°,则该椭圆的离心率是 .【解题指南】利用k BF ·k CF =-1计算得出离心率的值.【解析】将直线y=2b与椭圆的方程联立得B 3b a,2⎛⎫- ⎪ ⎪⎝⎭,C 3b a,2⎛⎫ ⎪ ⎪⎝⎭,F(c,0), 则k BF =b 23a c --,k CF =b23a c -, 因为∠BFC=90°,所以k BF ·k CF =b 23a c --×b23a c -=-1, 整理得b 2=3a 2-4c 2,所以a 2-c 2=3a 2-4c 2,即3c 2=2a 2⇒e=ca =6. 答案:6310.(2015·全国1卷理科·T14)(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2016新课标全国卷Ⅰ 文科)(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 ( ) (A )13(B )12(C )23(D )34(2016新课标全国卷Ⅱ 文科)(5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =(k >0)与C 交于点P ,PF ⊥x 轴,则k = ( ) (A )(B )1 (C )(D )2(2016新课标卷Ⅰ 文科)(20)在直角坐标系中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(I)求; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.(Ⅰ)由已知得,. 又为关于点的对称点,故,的方程为,代入kx1232xOy 22(0)y px p =>OHON),0(t M ),2(2t pt P N M P ),(2t p t N ON x tp y =pxy 22=整理得,解得,,因此. 所以为的中点,即. (Ⅱ)直线与除以外没有其它公共点.理由如下: 直线的方程为,即.代入得,解得,即直线与只有一个公共点,所以除以外直线与没有其它公共点.(2016全国卷Ⅰ 理科)20. (本小题满分12分) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;20.(本小题满分12分) 解:(Ⅰ)因为,,故,所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为:().(2016新课标全国卷Ⅱ 理)20. (本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 0222=-x t px 01=x p t x 222=)2,2(2t pt H N OH 2||||=ON OH MH C H MH x tp t y 2=-)(2t y p tx -=px y 22=04422=+-t ty y t y y 221==MH C HMH C两点,点N 在E 上,MA ⊥NA.(I )当t =4,AM AN =时,求△AMN 的面积; 20.(本小题满分12分) 【答案】(Ⅰ)14449; 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;试题解析:(I )设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749=⨯⨯⨯=.(2016新课标全国卷Ⅱ 文科)(21)(本小题满分12分)已知A 是椭圆E :的左顶点,斜率为的直线交E 于A ,M 两点,点N 在E 上,.(I )当时,求AMN ∆的面积 (II)当2.(21)(本小题满分12分) 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)22143x y +=()0k k >MA NA ⊥AM AN =AM AN =2k <<设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k . 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k-=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k =-+,故同理可得212||43AN k =+.由2||||AM AN =得2223443k k k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<. 考点:椭圆的性质,直线与椭圆的位置关系.(2015新课标卷Ⅰ 文科)20. (本小题满分12分)已知过点A(0,1),且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN .20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++.故圆心C 在l上,所以2MN =. ……12分(2015广东卷 文科)20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.20. 【答案】(1);(2);(3)存在,或.(1) 圆()()222211:65034,3,0C x y x x y +-+=-+=化为所以圆C 的圆心坐标为(2) 设线段AB 的中点M(),,o o x y 由圆的性质可得1C M 垂直于直线l设直线l 的方程为00(l k 1,,cm y mx m y mx ==-=已知直线的斜率存在),所以所以00001,3y y x x =--所以222200000393024x x y x y ⎧⎫-+=-+=⎨⎬⎩⎭即因为动直线l 与圆1C <2,所以2m <45;所以22200y m x =<220004,5x x -所以3x <2004,x 5x 解得>53或0x <0,又因为0<03,x ≤所以53<03x ≤.所以()00,M x y 满足22003953.243x y x ⎧⎫⎧⎫-+=<≤⎨⎬⎨⎬⎩⎭⎩⎭即223953.243x y x ⎧⎫⎧⎫-+=<≤⎨⎬⎨⎬⎩⎭⎩⎭(3) 由题意知直线l 表示过定点T()4,0,斜率为k 的直线结合图形,22000395532433x y x x ⎧⎪⎧⎫⎧⎫-+=<≤-⎨⎬⎨⎬⎨⎩⎭⎩⎭⎪⎩表示的是一段关于轴对称,起点为,按逆时针方向运动到53⎧⎪⎨⎪⎩的圆弧,根据对称性,只需讨论在x 轴对称下方的圆弧。

设P 53⎧⎪⎨⎪⎩,,则PT k ==而当直线L 与轨迹C32,解得34k =±,在这里暂取34k =34,所以PT k <k结合图形,可得对于X 轴对称下方的圆弧,当或时,直线L 与X 轴对称下方的圆弧有且只有一个交点,根据对称性可知或.(2015广东卷理科)20.(本小题满分14分)已知过原点的动直线与圆相交于不同的两点,.(1)求圆的圆心坐标;(2)求线段的中点的轨迹的方程;(3)是否存在实数,使得直线与曲线只有一个交点:若存在,求出的取值范围;若不存在,说明理由.【答案】(1);(2);(3).【解析】(1)由得,∴圆的圆心坐标为;(2)设,则∵点为弦中点即,∴即,∴线段的中点的轨迹的方程为;(3)由(2)知点的轨迹是以为圆心为半径的部分圆弧(如下图所示,不包括两端点),且,,又直线:过定点,当直线与圆相切时,由得,又,结合上图可知当时,直线:与曲线只有一个交点.【考点定位】本题考查圆的标准方程、轨迹方程、直线斜率等知识与数形结合思想等应用,属于中高档题.(2015海南卷 文科)20、(本小题满分12分) 已知椭圆C :(>>0)的离心率为,点(2,)在C 上。

(I ) 求C 的方程.(II )直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值. (20)解:LDxyOC EF22421a b =+=, 解得 228,4a b ==。

所以C 的方程为221.84x y +=(Ⅱ)设直线1122:(0,0),(,),(,),(,).M M l y kx b k b A x y B x y M x y =+≠≠将y kx b =+代入22184x y +=得222(21)4280k x kbx b +++-= 故12222,22121m m m x x kb bx y k x b k k +-===+=++ 于是直线OM 的斜率11,.22m om om m y k k k x k ==-=-即 所以直线OM 的斜率与直线l 的斜率的乘积为定值。

(2014广东卷 文科B卷)2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为(2013广东卷 文科A )9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x(2013广东卷 文科A )20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【解析】(1)依题意d 1c =(负根舍去) ∴抛物线C 的方程为24x y =;(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ∴抛物线C 在点A 处的切线PA 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ∵21141x y =, ∴112y x x y -= . ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ①同理, 20202y x x y -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x x y -=002. ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线AB 的方程为y x x y -=002,即00220x x y y --=; (3)由抛物线的定义可知121,1AF y BF y =+=+, 所以()()121212111AF BF y y y y y y ⋅=++=+++ 联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=, 2212001202,y y x y y y y ∴+=-= 0020x y --=()222200000021=221AF BF y y x y y y ∴⋅=-++-+++ 2200019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭ ∴当012y =-时,AF BF ⋅取得最小值为92。

相关文档
最新文档