math level 2 satistics

合集下载

mathematica软件简介

mathematica软件简介

数据清洗
02
03
数据统计和分析
Mathematica可以方便地导入和 导出各种数据格式,如CSV、 Excel、数据库等。
Mathematica可以进行数据清洗 ,包括缺失值处理、异常值处理 等。
Mathematica可以进行各种数据 统计和分析,如描述性统计、回 归分析、聚类分析等。
图形和可视化
丰富的可视化功能
Mathematica软件具有丰富的可视化功能,可以生成各 种类型的图表和图形,包括二维和三维图形、动画、图像 处理等。
灵活的编程环境
Mathematica软件提供了一个灵活的编程环境,用户可 以使用Mathematica的编程语言(Wolfram Language )编写自定义函数和程序,扩展软件的功能。
THANK YOU
01
Mathematica可以进行各种代数运算,包括多项式
运算、矩阵运算、微积分运算等。
符号求解方程
02 Mathematica可以求解各种符号方程,如线性方程
、非线性方程、微分方程等。
符号化简
03
Mathematica可以将复杂的数学表达式进行符号化
简,得到最简形式。
数据处理和分析
01
数据导入导出
02
mathematica的基本操作
mathematica的基本操作
• Mathematica是一款由Wolfram Research公司开发的数学软 件,它以符号计算为核心,广泛用于科学计算、数值计算、数 学建模、数据分析和可视化等领域。
03
mathematica的功能介绍
符号计算
代数运算
mathematica的主要特点和优势
符号计算

陕西师范大学第二学士学位数学专业课程计划(1)

陕西师范大学第二学士学位数学专业课程计划(1)

数学与应用数学辅修专业培养方案一、培养目标为了充分发挥学校各学科的教育资源优势,让学有余力的学生,在完成主修专业的同时,自愿进行跨院系、跨学科学习。

旨在培养数学功底扎实,具有在工科专业或数学学科和其它学科进一步深造和发展潜力的复合型人才;接受系统的数学训练、数学功底扎实,具有双学位的复合型人才;接受系统的数学训练、数学功底扎实的高素质教师。

二、专业主干课程数学分析、高等代数、几何学、概率论与数理统计、常微分方程三、学制学制2年四、学分要求本专业辅修学生最低需修满54个学分五、授予学位理学学士(不进行学历电子注册)六、各类课程结构及学分、学时比例七、数学与应用数学辅修专业教学计划表八、专业主干课程简介(一)课程名称:数学分析课程英文名称:Mathematical Analysis课程简介:《数学分析》是数学专业学生必修的最重要的基础课程之一,对学生良好的数学素质的形成及后续课程的学习起着至关重要的作用。

学习内容包括实数集与完备性,一元函数的极限、连续性,导数与微分,不定积分,反常积分等。

教材:《数学分析》,华东师范大学数学系主编(著),高等教育出版社,2007年5月参考书目:1.《数学分析》,陈纪修主编(著),高等教育出版社,2001年7月2.《数学分析讲义》,刘玉琏、傅沛仁主编(著),高等教育出版社,2005年9月主讲教师简介:1、曹小红,女,博士,教授,主要从事算子理论与算子代数的研究。

先后为本科生主讲过《数学分析》、《高等数学》、《文科高数》等课程。

在“Proc. Amer. Math. Soc.”、“J. Math. Anal. Appl.”、“L. Alg. Appl.”、“Studia Math.”等国内外刊物上发表学术论文30余篇,入选“2006年教育部新世纪优秀人才支持计划”资助项目。

2、任亲谋,男,副教授。

任教期间曾三次获校级教学质量优秀奖。

曾讲授过《数学分析》、《复变函数》、《线性代数》、《高等代数》、《高等数学》、《亚纯函数值分布论》、《亚纯函数奇导方向》等,后两门为函数论硕士生开设,其余均为本科生课程。

mathematica简明使用教程

mathematica简明使用教程

mathematica简明使用教程Mathematica是一种强大的数学软件,广泛应用于科学研究、工程计算和数据分析等领域。

本文将简要介绍Mathematica的使用方法,帮助读者快速上手。

一、安装和启动Mathematica我们需要下载并安装Mathematica软件。

在安装完成后,可以通过桌面图标或开始菜单中的快捷方式来启动Mathematica。

二、界面介绍Mathematica的界面分为菜单栏、工具栏、输入区域和输出区域四部分。

菜单栏提供了各种功能选项,工具栏包含了常用的工具按钮,输入区域用于输入代码或表达式,而输出区域则显示执行结果。

三、基本操作1. 输入和输出在输入区域输入代码或表达式后,按下Shift+Enter键即可执行,并在输出区域显示结果。

Mathematica会自动对输入进行求解或计算,并返回相应的输出结果。

2. 变量定义可以使用等号“=”来定义变量。

例如,输入“a = 3”,然后执行,就会将3赋值给变量a。

定义的变量可以在后续的计算中使用。

3. 函数调用Mathematica内置了许多常用的数学函数,可以直接调用使用。

例如,输入“Sin[π/2]”,然后执行,就会返回正弦函数在π/2处的值。

4. 注释和注解在代码中添加注释可以提高代码的可读性。

在Mathematica中,可以使用“(*注释内容*)”的格式来添加注释。

四、数学运算Mathematica支持各种数学运算,包括基本的加减乘除,以及更复杂的求导、积分、矩阵运算等。

下面简要介绍几个常用的数学运算:1. 求导可以使用D函数来求导。

例如,输入“D[Sin[x], x]”,然后执行,就会返回正弦函数的导数。

2. 积分可以使用Integrate函数来进行积分运算。

例如,输入“Integrate[x^2, x]”,然后执行,就会返回x的平方的不定积分。

3. 矩阵运算Mathematica提供了丰富的矩阵运算函数,可以进行矩阵的加减乘除、转置、求逆等操作。

mathematica命令大全

mathematica命令大全

mathematica命令大全mathematica命令大全Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x] 以e为底数对数函数Log[x] 自然对数,即以e为底数的对数Log[a,x] 以a为底数的x的对数开方函数Sqrt[x] 表示x的算术平方根绝对值函数Abs[x] 表示x的绝对值三角函数(自变量的单位为弧度)Sin[x] 正弦函数Cos[x] 余弦函数Tan[x] 正切函数Cot[x] 余切函数Sec[x] 正割函数Csc[x] 余割函数反三角函数ArcSin[x] 反正弦函数ArcCos[x] 反余弦函数ArcT an[x] 反正切函数ArcCot[x] 反余切函数ArcSec[x] 反正割函数ArcCsc[x] 反余割函数双曲函数Sinh[x] 双曲正弦函数Cosh[x] 双曲余弦函数Tanh[x] 双曲正切函数Coth[x] 双曲余切函数Sech[x] 双曲正割函数Csch[x] 双曲余割函数反双曲函数ArcSinh[x] 反双曲正弦函数ArcCosh[x] 反双曲余弦函数ArcTanh[x] 反双曲正切函数ArcCoth[x] 反双曲余切函数ArcSech[x] 反双曲正割函数ArcCsch[x] 反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...] 最大公约数函数LCM[a,b,c,...] 最小公倍数函数Mod[m,n] 求余函数(表示m 除以n的余数)Quotient[m,n] 求商函数(表示m除以n的商)Divisors[n] 求所有可以整除n的整数FactorInteger[n] 因数分解,即把整数分解成质数的乘积Prime[n] 求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}] 随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z] 实部函数Im[z] 虚部函数Arg(z) 辐角函数Abs[z] 求复数的模Conjugate[z] 求复数的共轭复数Exp[z] 复数指数函数求整函数与截尾函数Ceiling[x] 表示大于或等于实数x的最小整数Floor[x] 表示小于或等于实数x的最大整数Round[x] 表示最接近x的整数IntegerPart[x] 表示实数x的整数部分FractionalPart[x] 表示实数x的小数部分分数与浮点数运算函数N[num]或num//N 把精确数num化成浮点数(默认16位有效数字)N[num,n] 把精确数num化成具有n个有效数字的浮点数NumberForm[num,n] 以n个有效数字表示num Rationalize[float] 将浮点数float转换成与其相等的分数Rationalize[float,dx] 将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...] 求最大数Min[a,b,c,...] 求最小数符号函数Sign[x]Mathematica中的数学运算符a+b加法a-b 减法a*b (可用空格键代替*) 乘法a/b (输入方法为:“ Ctrl ” + “ / ” )除法a^b (输入方法为:“ Ctrl ” + “ ^” )乘方-a 负号Mathematica的关系运算符==等于< 小于> 大于<= 小于或等于>= 大于或等于!= 不等于注:上面的关系运算符也可从基本输入工具栏输入。

【原创】开源Math.NET基础数学类库使用(10)C#进行基本数据统计

【原创】开源Math.NET基础数学类库使用(10)C#进行基本数据统计

【原创】开源基础数学类库使⽤(10)C#进⾏基本数据统计本博客所有⽂章分类的总⽬录:开源基础数学类库使⽤总⽬录:前⾔ 数据集的基本统计计算是应⽤数学,以及统计应⽤中最常⽤的功能。

如计算数据集的均值,⽅差,标准差,最⼤值,最⼩值,熵等等。

中的MathNet.Numerics.Statistics命名空间就包括了⼤量的这些统计计算的函数。

今天就为⼤家介绍这⽅⾯的内容。

这样就可以使⽤C#进⾏数据集合的相关统计计算,以前在matlab中⼀个函数可以解决的问题,在C#⾥⾯也可以⼀个函数解决。

所以很⼤程度上替代了Matlab的基础数据计算功能,当然是不能和Matlab媲美的。

的统计函数类 在MathNet.Numerics.Statistics命名空间中的基本数据统计类及作⽤介绍如下,静态类中的⽅法基本上都可以直接作为扩展⽅法使⽤:1.Statistics类,基础的数据集统计,如最⼩值,最⼤值,平均值,总体⽅差,标准差等等。

为静态类,注意Statistics是⼀个总体的统计类,其很多函数的调⽤都是根据数据集的类型分开调⽤StreamingStatistics和ArrayStatistics;2.StreamingStatistics,静态类,是流数据集的统计,适合于⼀些⼤数据集,不能⼀次性读⼊内存的情况;3.ArrayStatistics,静态类,是普通的未排序数组数据集的统计,⼀次性都加载在内存,因此计算⽐较⽅便;4.SortedArrayStatistics,静态类,是排序数组数据集的统计;5.DescriptiveStatistics,⾮静态类,与Statistics类的功能类似,但不⼀样的是Statistics是静态⽅法,⼀⼀计算,⽽该类是初始化的时候,可以⼀次性计算所有的指标,直接通过属性进⾏获取。

6.RunningStatistics,⾮静态类,和Statistics类功能差不多,但允许动态更新数据,进⾏再次计算;2.统计函数类的实现 上述有多个统计类,但核⼼的代码不多。

Statistics

Statistics

11. green –fall; 12. gray-spring;12. pink- next fall; 12. Light blue-summer 13. dark yellow- next spring;StatisticsSupporting Courses, 12 creditsMATH 209 Multivariate Calculus, 4 creditsMATH 260 Introductory Statistics, 4 creditsElectives choose one of these:MATH 430 Design of Experiments, 4 credits (202 &260)MATH 431 Multivariate Statistical Analysis, 4 credits (202 320 & 260)BUS AMDSupporting Courses, 9 creditsECON 203 Micro Economic Analysis, 3 creditsOne of these:ACCTG 305 Legal Environment of Business, 3 credits (Jame A doering)Upper-Level Courses, four courses for a minimum of 12 creditsACCTG 300 Introductory Accounting, 4 credits (Ann E Selk) do not attend her class forever! BUS ADM 322 Introductory Marketing, 3 credits (larry L. mcGrgar) do not attend his class forever! BUS ADM 343 Corporation Finance, 3 credits (Robert A Nagy)BUS ADM 382 Introductory Management, 3 credits (Michael B Knight)FAHS2HS3- history 205 or 206SS21 WRITING EMPHASISHigh level after take the business classBUS ADM 327 - Selling and Sales ManagementBUS ADM 421 - International MarketingBUS ADM 428 - Consumer BehaviorBUS ADM 442 - Principles of InvestmentBUS ADM 460 - Human Resource DevelopmentBUS ADM 472 - Seminar in Leadership12 CREDIT for free4 classesFall 2011MATH 209 Multivariate Calculus, 4 creditsMATH 260 Introductory Statistics, 4 creditsMATH 320 Linear Algebra I, 3 credits (203)Spring 2012MATH 314 Proofs in Number Theory and Topology, 3 credits (202) MATH 321 Linear Algebra II, 3 credits (320)MATH 430 Design of Experiments, 4 credits (202 &260)Fall 2013MATH 323 Analysis I, 4 credits (209 & 314)MATH 360 Theory of Probability, 3 credits (209)MATH 467 Applied Regression Analysis, 3 credits (260 202 & 320) SpringMATH 324 Analysis II, 4 credits (323)MATH 361 Mathematical Statistics, 3 credits (320 & 360)。

Mathematica 教程 2

Mathematica 教程 2

Mathematica 教程 2第二章列表在上节课中我们已经用过Mathematica中的列表。

在这一章中我们将学习列表的许多不同方式。

用户将发现列表是Mathematica 中最灵活和最强有力的对象之一,将看到Mathematica 列表是数学和计算机科学中一些标准概念的一般化。

Mathematica列表通常是提供一种将一些相互关联的元素放在一起的方法,使他们成为一个整体。

这样一来,既可以对整体操作,也可以对整体中的一个元素进行单独的操作。

在Mathematica 中这样的数据结构被称为表(List)。

在Mathematica中表主要有三个用法,在后续的课程中会分别学习。

注:在Mathematica中,表是用{}来表示,表中元素用“,”隔开。

多维列表中每一维用{}分隔。

如表{a,b,c}可以表示一个一维列表, 表{{a,b},{c,d}}可以表示二维列表。

2.1 表的生成在表中的元素较少时,可以采取直接列表的方式列出表中的元素,如{1,2,3}如果列表元素较多时,可以通过建表函数进行建表,见下表:生成列表的函数*:f表示一个表达式或者函数如:上面的例子都是通过变化单个参数而得到的,用户也可以使用多个参数产生列表。

这些例子表示的都是一个列表的列表,其中外层列表的元素对应于i的值,内层列表的元素相应于j的值。

2.2获取列表的部分元素对于列表,我们可以象普通数值给予变量名。

当ABC表示一个列表时,我们可以对列表也可以对列表中的元素进行操作。

在Mathematica 中提取部分元素的方法如下。

提取列表中的部分元素的方法产生三维列表t提取t的i=2的部分提取t的i=2,i=1部分提取t的i=2,j=1的部分提取t的i=2,j=1,k=1的部分注:用户可以将Mathematica列表看作“数组”,那么列表的列表可以看作二维数组,当把列表显示为表格形式时,每个元素的两个下标如x和y坐标一样。

2.3 检测和搜索列表元素上一节讨论的是根据元素的位置或标号提取列表的元素。

IBM SPSS Statistics V27 简明指南说明书

IBM SPSS Statistics V27 简明指南说明书
第 3 章使用数据编辑器...........................................................................................17
输入数值数据.............................................................................................................................................. 17 输入字符串数据.......................................................................................................................................... 18 定义数据..................................................................................................................................................... 19
第 2 章读取数据...................................................................................................... 7
IBM SPSS Statistics 数据文件的基本结构....................................................................................................7 读取 IBM SPSS Statistics 数据文件..............................................................................................................7 读取 Excel 数据.............................................................................................................................................8 从数据库中读取数据...................................................................................................................................11 从文本文件读取数据...................................................................................................................................13

Mathematica数学软件操作技巧及界面详解

Mathematica数学软件操作技巧及界面详解

Mathematica数学软件操作技巧及界面详解Mathematica是一款十分强大的数学计算软件,它可以广泛应用于科学、工程和教育等领域。

本文将介绍一些Mathematica的操作技巧,并详细解析其界面设计。

一、Mathematica的基本操作技巧1. 输入和计算Mathematica的主界面提供了一个输入框,我们可以在其中输入各种数学表达式和计算公式。

输入时需要遵循一定的语法规则,比如使用^表示乘方,使用*表示乘法,使用/表示除法等。

在输入完毕后,按下Enter键即可进行计算。

2. 变量定义和赋值在Mathematica中,我们可以使用等号(=)来定义和赋值变量。

比如,我们可以输入"radius = 5"来定义一个名为radius的变量,并将其赋值为5。

之后,我们可以直接使用radius来进行计算。

3. 函数调用Mathematica内置了许多数学函数,比如sin、cos、log等。

我们可以使用这些函数来进行各种数学运算。

调用函数时需要在函数名后加上待计算的参数,比如"sin(0.5)"可以计算出0.5的正弦值。

二、Mathematica的界面详解1. 顶部菜单栏Mathematica的顶部菜单栏包含了许多功能按钮,我们可以通过点击这些按钮来执行相应的操作,比如打开文件、保存文件、进行图像绘制等。

2. 工具栏在Mathematica的工具栏上,我们可以找到常用的绘图工具、格式调整工具和计算选项卡等。

这些工具可以帮助我们更加方便地进行数学计算和图形绘制。

3. 文档窗口Mathematica的文档窗口是我们进行数学计算和编写代码的主要区域。

我们可以在文档窗口中输入数学表达式、编写代码,并且可以将计算结果直接显示在文档窗口中。

4. 侧边栏在Mathematica的侧边栏上,我们可以找到各种各样的面板和选项卡。

这些面板和选项卡提供了对Mathematica的进一步设置和功能扩展,比如图形面板、数据面板和设置面板等。

mathematica 12 用法

mathematica 12 用法

mathematica 12 用法
Mathematica 12有很多新的功能和改进,以下是一些用法:
1. **函数和变量**:Mathematica 12中的函数和变量可以用来进行各种数学计算和操作。

例如,函数f[x_]可以用来定义一个函数f(x),变量a可以用来表示一个变量。

2. **表达式和公式**:在Mathematica 12中,可以使用各种符号和操作符来构建表达式和公式。

例如,x^2+3x+2可以表示一个二次多项式。

3. **绘图和可视化**:Mathematica 12具有强大的绘图和可视化功能,可以用来创建各种图表和图像。

例如,Plot[x^2,{x,-5,5}]可以用来创建一个x^2的函数图像。

4. **符号计算和代数**:Mathematica 12具有强大的符号计算和代数功能,可以用来解决各种数学问题。

例如,
Simplify[((x+1)^2)^3]可以用来化简一个复杂的数学表达式。

5. **动态交互**:Mathematica 12具有动态交互功能,可以在运行时与用户进行交互。

例如,点击一个按钮可以执行特定的操作,或者在用户输入数据时进行实时计算和更新。

6. **模板和包**:Mathematica 12具有许多模板和包,可以用来快速创建各种类型的工作簿、报告和应用程序。

例如,通过使用模板和包,可以轻松地创建出专业的文档、报告、演示文稿等。

总的来说,Mathematica 12是一个功能强大的数学软件,可以用来进行各种数学计算、绘图、符号计算、动态交互等操作。

2021年SAT II Subject Test Math (Level 2)考试题库

2021年SAT II Subject Test Math (Level 2)考试题库

2021年SAT II Subject Test Math (Level 2)考试题库【历年真题+章节题库+模拟试题】目录•第一部分历年真题o数及其运算真题精选及详解o代数和函数真题精选及详解o几何和测量真题精选及详解o数据分析、统计和概率真题精选及详解•第二部分章节题库o第1章数及其运算(Number and Operations)o第2章代数和函数(Algebra and Function)o第3章几何和测量(Geometry and Measurement)o第4章数据分析、统计和概率(Data Analysis, Statistics, and Probability)•第三部分模拟试题o SAT II Subject Test Math (Level 2)模拟试题及详解(一)o SAT II Subject Test Math (Level 2)模拟试题及详解(二)内容简介SAT II Subject Test Math (Level 2)考试题库包括历年真题、章节练习和模拟试题三部分。

具体如下:第一部分为历年真题。

精选SAT II Subject Test Math (Level 2)真题,考生既可以体验真实考试,也可以测试自己的水平。

每道真题均提供名师详细解析。

第二部分为章节练习。

遵循SAT官方网站有关SAT考试的要求,按照最新真题题型的章目编排,共分为四章:数及其运算(Number and Operations)、代数和函数(Algebra and Function)、几何和测量(Geometry and Measurement)、数据分析、统计和概率(DataAnalysis, Statistics, and Probability)。

第三部分为模拟试题。

由SAT II Subject Test Math考试辅导名师根据SAT IISubject Test Math考试的命题规律进行考前预测,其试题数量、试题难度完全仿真最新真题。

math库中的数学函数

math库中的数学函数

math库中的数学函数Math库是Python中内置的数学函数库,提供了一系列用于执行数学运算的函数和常量。

以下是Math库中的一些常用的数学函数:1.数值函数:- ceil(x): 返回大于或等于x的最小整数。

- floor(x): 返回小于或等于x的最大整数。

- round(x, n): 返回x的四舍五入值,n是可选的小数位数,如果省略则默认为0。

- trunc(x): 返回x的整数部分。

- fabs(x): 返回x的绝对值。

- sqrt(x): 返回x的平方根。

- pow(x, y): 返回x的y次方。

- exp(x): 返回e的x次方。

- log(x): 返回x的自然对数。

- log10(x): 返回x的以10为底的对数。

2.三角函数:- sin(x): 返回x的正弦值,x的单位是弧度。

- cos(x): 返回x的余弦值,x的单位是弧度。

- tan(x): 返回x的正切值,x的单位是弧度。

- asin(x): 返回x的反正弦值,返回值在 -pi/2 到 pi/2 之间。

- acos(x): 返回x的反余弦值,返回值在 0 到 pi 之间。

- atan(x): 返回x的反正切值,返回值在 -pi/2 到 pi/2 之间。

- atan2(y, x): 返回y / x的反正切值,返回值在 -pi 到 pi 之间。

3.超越函数:- sinh(x): 返回x的双曲正弦值。

- cosh(x): 返回x的双曲余弦值。

- tanh(x): 返回x的双曲正切值。

- asinh(x): 返回x的反双曲正弦值。

- acosh(x): 返回x的反双曲余弦值。

- atanh(x): 返回x的反双曲正切值。

4.统计函数:- sum(iterable): 返回可迭代对象中的所有元素之和。

- max(iterable): 返回可迭代对象中的最大值。

- min(iterable): 返回可迭代对象中的最小值。

- mean(iterable): 返回可迭代对象中所有元素的算术平均值。

Mathematica函数大全--运算符及特殊符号

Mathematica函数大全--运算符及特殊符号

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果name 关于系统变量name的信息name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个列表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}] '或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii 为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...} FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排? Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了<在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}] NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲? Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel} 边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)>选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度十四、绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒的提示Pause[n] 运行暂停n秒十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了*) (*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*) (*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达达式?Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[exprr]]..} FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*)(*可以在Mathematica中用“?*Q”查询到*)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[]StringPosition["string", "sub"] 返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snew把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。

mathmaticas提取数据制成列表

mathmaticas提取数据制成列表

数学建模作为一门交叉学科,涉及到数学、计算机科学、物理学等多个领域的知识,在实际应用中具有广泛的需求。

而数学建模工具中的Mathematica,作为一款功能强大的软件,能够快速高效地对数据进行提取、分析和可视化,为数学建模的研究和应用提供了重要的支持。

本文将介绍如何使用Mathematica提取数据制成列表,并探讨其在数学建模中的应用。

一、Mathematica介绍Mathematica是由美国Wolfram Research公司开发的一款通用的计算机代数系统。

它能够进行符号计算、数值计算、图形绘制和数据分析等多种功能,并具有高效的算法和丰富的数据处理能力。

用户可以通过Mathematica进行数值模拟、实验数据的分析、统计图表的绘制等工作,从而加快数据分析的速度,提高分析的准确性。

二、使用Mathematica提取数据1. 导入数据我们需要在Mathematica中导入需要进行处理的数据。

Mathematica支持各种数据格式的导入,如文本文件、Excel文件、数据库数据等。

用户只需使用相应的函数,即可将数据导入到Mathematica的工作环境中。

2. 数据处理一旦数据导入到Mathematica中,我们就可以通过各种内置函数对数据进行处理。

可以使用Map函数对数据集中的每个元素进行相同的操作,使用Select函数对数据进行筛选,使用Sort函数对数据进行排序等。

这些函数能够帮助用户快速进行复杂的数据处理操作,提高工作效率。

3. 制作列表在Mathematica中,用户可以通过Table函数或Array函数等快速生成各种列表数据。

这些函数能够根据用户指定的规则和条件,生成符合要求的列表数据,并且能够对列表数据进行进一步的操作和分析。

用户可以根据实际需求,灵活运用这些函数,制作出满足自己要求的列表数据。

三、Mathematica在数学建模中的应用1. 数据分析在数学建模中,数据分析是一个非常重要的环节。

在math类中,可以计算指数的方法(一)

在math类中,可以计算指数的方法(一)

在math类中,可以计算指数的方法(一)在math类中,可以计算指数介绍在数学中,指数是表示一个数的幂的方式。

在计算机编程领域中,我们经常需要对数字进行指数计算。

在Java中,我们可以使用math类来计算指数,本文将介绍几种常用的方法。

math类math类是Java中的一个数学工具类,提供了许多用于数学计算的静态方法。

其中就包含了计算指数的方法。

方法是math类中用于计算指数的静态方法。

它接受两个参数,第一个参数是底数,第二个参数是指数。

方法返回的是底数的指数次幂。

例如,我们可以使用方法计算2的3次幂:double result = (2, 3);上述代码将返回8,即2的3次幂。

自定义方法除了使用math类提供的方法,我们也可以自定义方法来计算指数。

public static double calculateExponent(double base,double exponent) {double result = ;for (int i = 0; i < exponent; i++) {result *= base;}return result;}上述代码是一个自定义的方法calculateExponent,它接受两个参数,分别是底数和指数。

方法使用一个循环来计算底数的指数次幂,并返回结果。

示例下面是一个使用自定义方法进行指数计算的示例:double result = calculateExponent(3, 4);上述代码将返回81,即3的4次幂。

总结在Java中,我们可以使用math类的方法或自定义方法来计算指数。

通过这些方法,我们可以轻松地对数字进行指数计算,以满足不同的需求。

无论是使用内置方法还是自定义方法,都能够帮助我们更好地进行数学计算。

优化方法除了上述介绍的两种方法外,还有一种更高效的计算指数的方法,即使用快速幂算法。

快速幂算法是一种通过迭代相乘来计算指数的方法。

它通过将指数进行二进制拆分,并利用指数的二进制表示来进行幂运算。

math函数用法

math函数用法

math函数用法math函数是python中一个内置的模块,它提供了对复杂的数学运算的支持。

由于它内部拥有众多高级函数和常量,能够极大地方便我们的开发工作。

math模块中的函数如下:1、ceil函数:该函数用于计算浮点数的上限,即取不小于参数的值且最接近的整数。

2、floor函数:该函数用于计算浮点数的下限,即取不大于参数的值且最接近的整数。

3、fabs函数:该函数用于计算绝对值,即取参数的绝对值。

4、trunc函数:该函数用于计算小数点后截断,即取整数部分,舍弃小数部分。

5、log函数:该函数用于计算以e(自然常数)为底的对数。

6、factorial函数:该函数用于计算阶乘,即将非负整数的所有正因子相乘,得到的结果。

7、sqrt函数:该函数用于计算平方根,即参数的平方根。

8、pow函数:该函数用于计算a的b次幂,即a的b次方。

9、exp函数:该函数用于计算e的指数,即以e为底的数的指数。

10、cos函数:该函数用于计算余弦,即求出x的余弦值。

11、sin函数:该函数用于计算正弦,即求出x的正弦值。

12、tan函数:该函数用于计算正切,即求出x的正切值。

13、atan函数:该函数用于计算反正切,即求出tanx-1的值。

使用math模块时,需要先import math,然后在使用的时候通过math.函数名来调用,例如计算fabs(3.4),可以写成:import mathfabs_res = math.fabs(3.4)print(fabs_res)运行结果为:3.4从上述内容可以看出,math模块提供了众多实用的函数,能够帮助开发者更加有效地完成相应的数学运算。

在具体开发中,我们始终要注意使用必要的函数,并保持函数的调用参数合理,这样才能有效地保证代码的可操作性。

数学a计划八下册子内容展示

数学a计划八下册子内容展示

数学a计划八下册子内容展示The eighth grade math curriculum in China covers a wide range of topics, from algebra and geometry to statistics and probability. The goal of the curriculum is to provide students with a strong foundation in mathematical concepts and skills to prepare them for more advanced study in high school and beyond.中国的八年级数学课程涵盖了广泛的主题,从代数和几何到统计学和概率。

课程的目标是为学生提供数学概念和技能的坚实基础,以便为他们在高中以及更高层次的学习做好准备。

Algebra is an important part of the curriculum, as it introduces students to the concept of variables and equations. Students learn how to solve linear equations, graph linear functions, and work with quadratic equations. Algebra lays the groundwork for more advanced mathematical concepts and is essential for understanding higher-level math.代数是课程的一个重要部分,因为它向学生介绍了变量和方程的概念。

学生学习如何解线性方程,如何绘制线性函数图表,以及如何处理二次方程。

代数为更高级的数学概念奠定了基础,并且对于理解更高级的数学至关重要。

Mathematica使用教程

Mathematica使用教程

Mathematica 使用教程一、要点●Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头; ●圆括号<>,花括号{ },方括号[]都有特殊用途, 应特别注意; ●句号".",分号";",逗号","感叹号"!"等都有特殊用途, 应特别注意; ● 用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、介绍案例1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ;Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用"+"、"-"、"*"、"/" 和"^"分别表示算术运算中的加、减、乘、除和乘方.例2计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅--213121494891100. 输入 100^<1/4>*<1/9>^<-1/2>+8^<-1/3>*<4/9>^<1/2>*Pi 则输出 3103π+ 这是准确值. 如果要求近似值,再输入N[%]则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3分解因式 232++x x输入 Factor[x^2+3x+2]输出 )x 2)(x 1(++例4展开因式 )2)(1(x x ++输入 Expand[<1+x><2+x>]输出 2x x 32++例5通分 3122+++x x 输入 Together[1/<x+3>+2/<x+2>]输出)x 3)(x 2(x 38+++ 例6将表达式 )3)(2(38x x x +++ 展开成部分分式 输入 Apart[<8+3x>/<<2+x><3+x>>]输出 3x 12x 2+++ 例7化简表达式 )3)(1()2)(1(x x x x +++++输入 Simplify[<1+x><2+x>+<1+x><3+x>]输出 2x 2x 75++三、部分函数1. 部函数Mathematica 系统部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都 必须大写,其余的字母必须小写. Mathematica 函数<命令>的基本格式为函数名[表达式,选项]下面列举了一些常用函数: 算术平方根x Sqrt[x]指数函数x e Exp[x]对数函数x a log Log[a,x]对数函数x ln Log[x]三角函数 Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x]反三角函数ArcSin[x], ArcCos[x], ArcTan[x],ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x],反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x]四舍五入函数 Round[x] <*取最接近x 的整数*>取整函数 Floor[x] <*取不超过x 的最大整数*>取模 Mod[m,n] <*求m/n 的模*>取绝对值函数 Abs[x]n 的阶乘 n!符号函数 Sign[x]取近似值 N[x,n] <*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值为6*>例8求π的有6位和20位有效数字的近似值.输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.85注:第一个输入语句也常用另一种形式:输入 Pi//N 输出 3.14159例9计算函数值 <1> 输入 Sin[Pi/3] 输出23 <2> 输入 ArcSin[.45] 输出 0.466765<3> 输入 Round[-1.52] 输出 -2例10计算表达式 )6.0arctan(226sin 2ln 1132+-+-e π 的值 输入 1/<1+Log[2]>*Sin[Pi/6]-Exp[-2]/<2+2^<2/3>>*ArcTan[.6]输出 0.2749212. 自定义函数在Mathematica 系统,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种方式. 立即赋值运算符是"=",延迟赋值运算符是": =". 定义函数使用的符号是延迟赋值运算符": =".例11定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f .输入Clear[f,x]; <*清除对变量f 原先的赋值*>f[x_]:=x^3+2*x^2+1; <*定义函数的表达式*>f[2] <*求)2(f 的值*>f[x]/.{x->4} <*求)4(f 的值,另一种方法*>x=6; <*给变量x 立即赋值6*>f[x] <*求)6(f 的值,又一种方法*>输出1797289注:本例1、2、5行的结尾有";",它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统,方程中的等号用符号"=="表示. 最基本的求解方程的命令为Solve[eqns, vars]它表示对系数按常规约定求出方程<组>的全部解,其中eqns 表示方程<组>,vars 表示所求未知变量.例12解方程0232=++x x输入 Solve[x^2+3x+2==0, x]输出 }}1x {},2x {{-→-→例13解方程组 ⎩⎨⎧=+=+10dy cx by ax 输入 Solve[{ax + b y == 0,cx + dy ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x 例14解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x 很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种,一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于求方程<组>数值解的命令:NSolve[eqns, vars] <*求代数方程<组>的全部数值解*>FindRoot[eqns, {x, x0}, {y, y0} ,]后一个命令表示从点),,(00 y x 出发找方程<组>的一个近似解,这时常常需要利用图像法先大致确定所求根的围,是大致在什么点的附近.例15求方程013=-x 的近似解输入 NSolve[x^3-1== 0, x]输出 {{→x i},{→x -0.5+0.866025ii},{→x 1.}}输入 FindRoot[x^3-1==0,{x, .5}]输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] <*从一组等式中消去变量<组>elims*>例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输入Eliminate[{x^2+y^2+z^2==1,x^2+<y-1>^2+<z-1>^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明 确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号"\", 来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook 中显示的容,打开位于窗口第一行的File 菜单,点击Save后得到保存文件时的对话框,按要求操作后即可把所要的容存为 *.nb 文件. 如果只想保存全部输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后 再执行保存命令. 而退出Mathematica 与退出Word 的操作是一样的.六、查询与帮助查询某个函数<命令>的基本功能,键入"?函数名",想要了解更多一些,键入"??函数名",例如,输入?Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi它告诉了我们关于绘图命令"Plot"的基本使用方法.例17 在区间]1,1[-上作出抛物线2x y =的图形.输入 Plot[x^2,{x,-1,1}]则输出例18 在区间]2,0[π上作出x y sin =与x y cos =的图形.输入 Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出如果输入??Plot则Mathematica会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica的Help菜单中提供了大量的帮助信息,其中Help菜单中的第一项Help Browser<帮助游览器>是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help菜单去学习.编辑本段Mathematica 基本运算a+mathematica数学实验<第2版>b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%<n个%> 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数<Modulus>Arg[z] 复数z的幅角<Argument>Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果编辑本段常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数〔最新版本已经不用这个函数,改为使用RandomReal[]Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值编辑本段数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序编辑本段四个常用处理代数的指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子编辑本段多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去编辑本段分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子编辑本段多项式的另二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2<2x+1>FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出编辑本段三角函数、双曲函数和指数的运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号<term> 圆括号,括号的term先计算f[x] 方括号,放函数的引数{x,y,z} 大括号或串列括号,放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至<x-x0>n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。

mathematica阶乘

mathematica阶乘

mathematica阶乘
Mathematica是一种功能强大的计算机语言,它提供了许多数学函数,包括计算阶乘的函数。

阶乘是指从1到给定的整数的连续乘积。

例如,5的阶乘是1 * 2 * 3 * 4 * 5 = 120。

在Mathematica中,可以使用Factorial函数来计算阶乘。

例如,要计算5的阶乘,可以输入Factorial [5],结果为120。

如果要计算更高的数字的阶乘,可以使用Factorial函数的参数。

例如,Factorial [10]将计算10的阶乘,结果为3628800。

除了Factorial函数外,Mathematica还提供了其他相关的函数,如Factorial2和FactorialPower。

Factorial2函数计算偶数的阶乘,而FactorialPower函数计算阶乘幂,即n的k次幂。

在使用Mathematica计算阶乘时,需要注意阶乘的值可能很大,可能超出计算机的可表示范围。

在这种情况下,可以使用Mathematica 的精度控制函数来确保计算结果的准确性。

- 1 -。

mathematica在概率论、数据统计与区间估计中的应用

mathematica在概率论、数据统计与区间估计中的应用

项目七 概率论、数据统计与区间估计实验3 区间估计实验目的 掌握利用Mathematica 软件求一个正态总体的均值、方差的置信区间的方法;求两个正态总体的均值差和方差比的置信区间的方法. 通过实验加深对统计推断的基本概念的和基本思想的理解.基本命令1.调用区间估计软件包的命令<<Statistics\ConfidenceIntervals.m用Mathematica 作区间估计, 必须先调用相应的软件包. 要输入并执行命令<<Statistics`或<<Statistics\ConfidenceIntervals.m2.求单正态总体求均值的置信区间的命令MeanCi命令的基本格式为MeanCI[样本观察值, 选项1, 选项2,…]其中选项1用于选定置信度, 形式为ConfidenceLevel->α-1,缺省默认值为ConfidenceLeve1->0.95. 选项2用于说明方差是已知还是未知, 其形式为knownVariance->None 或20σ, 缺省默认值为knownVariance->None. 也可以用说明标准差的选项knownStandardDeviation->None 或0σ来代替这个选项.3. 求双正态总体求均值差的置信区间的命令MeanDifferenceCI命令的基本格式为MeanDifferenceCI[样本1的观察值, 样本2的观察值,选项1,选项2,选项3,…]其中选项1用于选定置信度, 规定同2中的说明. 选项2用于说明两个总体的方差是已知还是未知, 其形式为knownVariance->20σ或},{2221σσ或None, 缺省默认值为knownVariance-> None. 选项3用于说明两个总体的方差是否相等, 形式为EqualVariance->False 或True. 缺省默认值为EqualVariance->False, 即默认方差不相等.4. 求单正态总体方差的置信区间的命令VarianceCI命令的基本格式为VarianceCI[样本观察值, 选项]其中选项1用于选定置信度, 规定同2中的说明.5. 求双正态总体方差比的置信区间的命令VarianceRatioCI命令的基本格式为VarianceRatioCI[样本1的观察值,样本2的观察值,选项]其中选项1用于选定置信度, 规定同2中的说明.6. 当数据为概括数据时求置信区间的命令(1) 求正态总体方差已知时总体均值的置信区间的命令NormalCI[样本均值, 样本均值的标准差, 置信度选项](2) 求正态总体方差未知时总体均值的置信区间的命令StudentTCI[样本均值, 样本均值的标准差的估计, 自由度, 置信度选项](3) 求总体方差的置信区间的命令ChiSquareCI[样本方差, 自由度, 置信度选项](4) 求方差比的置信区间的命令FRatioCI[方差比的值, 分子自由度, 分母自由度,置信度选项] 实验举例单正态总体的均值的置信区间(方差已知情形)例3.1(教材例3.1) 某车间生产滚珠, 从长期实践中知道, 滚珠直径可以认为服从正态分布. 从某天产品中任取6个测得直径如下(单位:mm):15.6 16.3 15.9 15.8 16.2 16.1若已知直径的方差是0.06, 试求总体均值μ的置信度为0.95的置信区间与置信度为0.90的置信区间.输入<<Statistics\ConfidenceIntervals.mdata1={15.6,16.3,15.9,15.8,16.2,16.1};MeanCI[data1,KnownVariance->0.06] (*置信度采取缺省值*)则输出{15.7873,16.1793}即均值μ的置信度为0.95的置信区间是(15.7063,16.2603).为求出置信度为0.90的置信区间, 输入MeanCI[data1,ConfidenceLevel->0.90,KnownVariance->0.06]则输出{15.8188,16.1478}即均值μ的置信度为0.90的置信区间是(15.7873,16.1793). 比较两个不同置信度所对应的置信区间可以看出置信度越大所作出的置信区间也越大.例3.2 (教材例3.2) 某旅行社为调查当地旅游者的平均消费额, 随机访问了100名旅游σ者, 得知平均消费额80=x元, 根据经验, 已知旅游者消费服从正态分布, 且标准差12=元, 求该地旅游者平均消费额μ的置信度为%95的置信区间.输入NormalCI[80,12/25]输出为{77.648,82.352}单正态总体的均值的置信区间(方差未知情形)例3.3 (教材 例3.3) 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(以克计)如下:506508 499 503 504 510 497 512 514505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体均值μ的置信区间.输入data2={506,508,499,503,504,510,497,512,514,505,493,496,506,502,509,496};MeanCI[data2](*因为置信度是0.95, 省略选项ConfidenceLeve1->0.95;又方差未知, 选项knownVariance->None 也可以省略*)则输出{500.445,507.055}即μ的置信度为0.95的置信区间是(500.445,507.055).再输入MeanCI[data2,ConfidenceLevel->0.90]则输出{501.032,506.468}即μ的置信度为0.90的置信区间是(501.032,506.468).例3.4 (教材 例3.4) 从一批袋装食品中抽取16袋, 重量的平均值为,75.503g x =样本标准差为.2022.6=s 假设袋装重量近似服从正态分布, 求总体均值μ的置信区间(05.0=α).这里, 样本均值为503.75, 样本均值的标准差的估计为,4/2002.6/=n s 自由度为15,05.0=α, 因此关于置信度的选项可省略.输入StudentTCI[503.75,6.2002/Sqrt[16],15]则输出置信区间为{500.446,507.054}两个正态总体均值差的置信区间例3.5 (教材 例3.5) A , B 两个地区种植同一型号的小麦, 现抽取了19块面积相同的麦田, 其中9块属于地区A , 另外10块属于地区B , 测得它们的小麦产量(以kg 计) 分别如下:地区A : 100 105 110 125 110 98 105 116 112地区B : 101 100 105 115 111 107 106 121 102 92设地区A 的小麦产量),(~211σμN X ,地区B 的小麦产量),(~222σμN Y ,221,,σμμ均未知,试求这两个地区小麦的平均产量之差21μμ-的95%和90%的置信区间.输入list1={100,105,110,125,110,98,105,116,112};list2={101,100,105,115,111,107,106,121,102,92};MeanDifferenceCI[list1,list2] (*默认定方差相等*)则输出{-5.00755,11.0075}即21μμ-的置信度为95%的置信区间是(-5.00755, 11.0075).输入MeanDifferenceCI[list1,list2,EqualVariances->True] (*假定方差相等*)则输出{-4.99382,10.9938}这时21μμ-的置信度为0.95的置信区间是(-4.99382, 10.9938). 两种情况得到的结果基本一致.输入MeanDifferenceCI[list1,list2,ConfidenceLevel->0.90,EqualVariances->True]则输出{-3.59115, 9.59115}即21μμ-的置信度为90%的置信区间是(-3.59115, 9.59115). 这与教材结果是一致的.例3.6 (教材 例3.6) 比较A 、B 两种灯泡的寿命, 从A 种取80只作为样本,计算出样本均值,2000=x 样本标准差.801=s 从B 种取100只作为样本, 计算出样本均值,1900=y 样本标准差.1002=s 假设灯泡寿命服从正态分布, 方差相同且相互独立, 求均值差21μμ-的置信区间(05.0=α).根据命令StudentTCI 的使用格式, 第一项为两个正态总体的均值差; 第二项为两个正态总体的均值差的标准差的估计, 由方差相等的假定, 通常取为2111n n S w +,其中 2)1()1(21222211-+-+-=n n S n S n S w ; 第三项为自由度;221-+=n n df 第四项为关于置信度的选项. 正确输入第二个和第三个对象是计算的关键.输入sp=Sqrt[(79*80^2+99*100^2)/(80+100-2)];StudentTCI[2000-1900,sp*Sqrt[1/80+1/100],80+100-2]则输出{72.8669,127.133}即所求均值差的置信区间为(72.8669,127.133).单正态总体的方差的置信区间例3.7 (教材 例3.7) 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(单位:g)如下:506508 499 503 504 510 497 512 514505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体方差2σ的置信区间.输入data7={506.0,508,499,503,504,510,497,512,514,505,493,496,506, 502,509,496};VarianceCI[data7]则输出{20.9907,92.1411}即总体方差2σ的置信度为0.95的置信区间是(20.9907,92.1411).又输入VarianceCI[data7,ConfidenceLevel->0.90]则可以得到2σ的置信度为0.90的置信区间(23.0839,79.4663).例 3.8 (教材 例 3.8) 假设导线电阻近似服从正态分布, 取9根, 得样本标准差,007.0=s 求电阻标准差的置信区间(05.0=α).输入ChiSquareCI[0.007^2,8]输出置信区间{0.0000223559,0.000179839}双正态总体方差比的置信区间例 3.9 (教材 例 3.9) 设两个工厂生产的灯泡寿命近似服从正态分布),(211σμN 和),(222σμN . 样本分别为工厂甲: 1600 1610 1650 1680 1700 1720 1800工厂乙: 1460 1550 1600 1620 1640 1660 1740 1820设两样本相互独立, 且222121,,,σσμμ均未知, 求置信度分别为0.95与0.90的方差比2221/σσ的置信区间.输入Clear[list1,list2];list1={1600,1610,1650,1680,1700,1720,1800};list2={1460,1550,1600,1620,1640,1660,1740,1820};VarianceRatioCI[list1,list2]则输出{0.076522,2.23083}这是置信度为0.95时方差比的置信区间.为了求置信度为0.90时的置信区间, 输入VarianceRatioCI[list1,list2,ConfidenceLevel->0.90]则输出结果为{0.101316,1.64769}.例3.10 (教材 例3.10) 某钢铁公司的管理人员为比较新旧两个电炉的温度状况, 他们抽取了新电炉的31个温度数据及旧电炉的25个温度数据, 并计算得样本方差分别为7521=s 及10022=s . 设新电炉的温度),(~211σμN X , 旧电炉的温度),(~222σμN Y .试求2221/σσ的95%的置信区间.输入FRatioCI[75/100,30,24]则输出所求结果{0.339524, 1.60191}实验习题1.对某种型号飞机的飞行速度进行15次试验, 测得最大飞行速度如下:422.2 417.2 425.6 420.3 425.8 423.1 418.7 428.2438.3 434.0 312.3 431.5 413.5 441.3 423.0假设最大飞行速度服从正态分布, 试求总体均值μ(最大飞行速度的期望)的置信区间(05.0=α与10.0=α).2.从自动机床加工的同类零件中抽取16件, 测得长度值(单位:mm)为12.15 12.12 12.01 12.08 12.09 12.16 12.03 12.0612.06 12.13 12.07 12.11 12.08 12.01 12.03 12.01求方差的置信区间(05.0=α).3.有一大批袋装化肥, 现从中随机地取出16袋, 称得重量(单位:kg)如下:50.6 50.8 49.9 50.3 50.4 51.0 49.7 51.251.4 50.5 49.3 49.6 50.6 50.2 50.9 49.6设袋装化肥的重量近似地服从正态分布, 试求总体均值μ的置信区间与总体方差2σ的置信区间(分别在置信度为0.95与0.90两种情况下计算).4.某种磁铁矿的磁化率近似服从正态分布. 从中取出容量为42的样本测试, 计算样本均值为0.132, 样本标准差为0.0728, 求磁化率的均值的区间估计(05.0=α).5.两台机床加工同一产品, 从甲机床加工的产品中抽取100件,测得样本均值为19.8, 标准差0.37. 从乙机床加工的产品中抽取80件, 测得样本均值20.0, 标准差0.40. 求均值差21μμ-的置信区间(05.0=α).6.设某种电子管的寿命近似服从正态分布, 取15只进行试验, 得平均寿命为1950h, 标准差为300h, 以90%的可靠性对使用寿命的方差进行区间估计.7.随机地从A 批导线中抽取4根, 从B 批导线中抽取5根, 测得电阻(单位:Ω)为A 批导线: 0.143 0.1420.143 0.137 B 批导线: 0.140 0.142 0.136 0.138 0.140设测定数据分别来自分布),(211σμN 和),(222σμN ,且两样本相互独立. 又222121,,,σσμμ均未知, 求21μμ-的置信度为0.95的置信区间.8.研究由机器A 和机器B 生产的钢管的内径, 随机地抽取机器A 生产的管子18只, 测得样本方差;34.0221mm s =抽取机器B 生产的管子13只, 测得样本方差.29.0222mm s =设两样本相互独立, 且设两机器生产的管子的内径分别服从正态分布),(211σμN 和),(222σμN , 这里222121,,,σσμμ均未知, 求方差比2221/σσ的置信度为0.90的置信区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GAC010 Assessment Event 2: Project-Statistics
Statistics
Student Name: Lucy
Teacher Name:
Due Date: 14/10/2013
Word Count:407
1.Create a dot plot to see the distribution of the data.
2.List data in order
157,160,162,165,166,167,167,167,168,169,170,171,172,173,174,174,176,178,180,182 3.What’s the Range of data:
Range=Highest-Lowest=182-157=25(cm)
4.Plot the data in a Histogram and describe the distribution
Symmetrical distribution
5.Create a Cumulative frequency curve and describe its shape
S-shaped curve
e the ogive to estimate the median and quartiles.
1st quartile:
Q1=164.5cm
Median:
X̃=167.5cm
3rd quartile:
Q3=171.5cm
7.What is the inter-quartile range?
Inter-quartile range:
IQR=Q3-Q1=171.5-164.5=7cm
8.Box plot
9.Find the mean and standard deviation (sd).
μ=157+160+162+165+166+167+167+167+168+169+170+171+172+173+174+174+176+178+180+182
=169.9cm
20
σ=√∑(X−μ)2
=6.31
20
10.Calculate the Pearson measure of Skewness (modal version), and the Quartile measure of skewness.
Are they good indicators of skew in the data? Give reasons for your answer.
Mode=167cm
Pearson Skeweness=μ−Mo
σ=169.9−167
6.31
=0.460
Quartile Skewness=(Q1−X̃)+(Q3−X̃)
IQR =(164.5−167.5)+(171.5−167.5)
7
=1
Reason: Not a good indicator, from the box plot, it is symmetrical distribution. The result should near to 0
11.Which of the three measures of central tendency (mean, median, mode) is the best choice for this data?
Give a reason for your answer.
I think mean can be the best choice. Because from mean I can see the average heights of the data and
in the normal curve mean is in the middle.
12.What are (mean – 1 sd) and (mean + 1 sd)? What percentage of the data is between them?
μ−σ=169.9−6.31=163.59cm
μ+σ=169.9+6.31=176.21cm
There are 14 data between 163.6 and 176.21
The percentage of the data: 14/20=70%
13.What are (mean – 2 sd) and (mean +2 sd)? What percentage of the data is between them?
μ−2σ=169.9-12.62=157.28cm
μ+2σ=169.9+12.62=182.52cm
There are 19 data between 157.28 and 182.52
The percentage of the data: 19/20=95%
14.What are (mean – 2 sd) and (mean +2 sd)? What percentage of the data is between them?
μ−3σ=169.9−18.93=150.47cm
μ−3σ=169.9+18.93=188.83cm
There are 20 data
The percentage of the data: 20/20=100%
15.Find the value in the data that is closest to z = 0.5.
Z=X−μ
σ
X=0.5*6.31+169.9=173.1cm
16.There is one data between z= -0.5 and 0.5
Z=X−μ
σ
X=Zσ+μ=-0.5*6.31+169.9=166.7cm
X=Zσ+μ=0.5*6.31+169.9=173.0cm The percentage of the data:
9/20=0.45
17.The middle 50% of the data
So 164.5≤X≤171.5
Z=X−μ
σ=164.5−169.9
6.31
=−0.86
Z=X−μ
σ=171.5−169.9
6.31
=0.25
P (−0.86≤Z≤0.25)
30.51%≤P≤9.87%
18.If you chose a person from this sample randomly, what is the probability that they would be taller than 1 sd above the mean?
μ=169.9
σ=6.31
So, μ+σ=169.9+6.31=176.21
x ≥176.21 cm→ 178,180,182.
P (x ≥176.21) = 3 / 20 × 100% = 15%。

相关文档
最新文档