概率论与数理统计第二章 习题
概率论与数理统计第二章习题参考答案]
(1)设
X
服从二项分布,其分布律为 P{X
=
k}=
C
k n
pk (1−
)p n−k
K=0,1,2,……n,问 K 取何值时 P{X = k}最大?
(2)设 X 服从泊松分布,其分布率为 p{X = k} = λke−λ ,k=0,1,2……
k!
问 K 取何值时 P{X = k}最大?
(1)
解: M
=
N 试确定常数 a
(2)设随机变量 X 的分布律为 P{X = k} = b ⋅ ⎜⎛ 2 ⎟⎞k , k = 1,2.....
⎝3⎠
试确定常数 b
(3)设随机变量 X 的分布律为 P{X = k} = c ⋅ λk , k = 0,1,2......λ > 0 为常数,
k!
试确定常数 c
N
解:(1) ∑ P{X
6、设随机变量 X 的分布律为 P{X = k} = k , k = 1,2,3,4,5
15
其分布函数为 F (x) ,试求:
(1)
P⎨⎧ ⎩
1 2
<
X
<
5 2
⎫ ⎬ ⎭
,
(2) P{1 ≤ X ≤ 2},
(3) F ⎜⎛ 1 ⎟⎞ ⎝5⎠
解:(1)
P⎨⎧ ⎩
1 2
<
X
<
5⎫
2
⎬ ⎭
=
P{X
= 1}+
0
2
1
x
xdx+
0
1
(2−
x)dx=
2x
−
x2
/
2−1
0< x ≤1 1< x≤2
《概率论与数理统计》习题随机变量及其分布
第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X xdy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ.8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.2. ),4,2,0(!/)( ===-k k e c k X P k λλ是随机变量X 的概率分布, 则λ, c 一定满足 (A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0解. 因为),4,2,0(!/)( ===-k k e c k X P k λλ, 所以c > 0. 而k 为偶数, 所以λ可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π 解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m i n (1))2,(m i n ()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m i n (1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m i n (1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m i n(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====P P A P A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p13101311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|a r c s i n 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dxX P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时⎰⎰∞--=-==xdt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x t d t dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x xϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145-=⎰ππxdt x当 x > 9π时1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤= 当 z ≤ 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。
概率论与数理统计2.第二章练习题(答案)
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
概率论与数理统计第二章测习题
第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
浙江大学概率论与数理统计第二章习题
3 k 3 k P{ X k } 0 . 6 0 . 4 , k 3 k 3 k P{Y k } 0 . 7 0 . 3 , k k 0,1,2,3
10x只能取值345x3时一只球编号为3另外两只球编号为12只有一种取法x4时一只球编号为4另外两只球只能从编号为123的三只球110310610设在15只同类型的零件中有2只是次品在其中取3次每次任取1只作不放回抽样
第二章习题
2. 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取 出的 3只球中的最大号码,写出随机变量X的分布律.
5 3 5 5 2 5 4 3 0.1 0.9 4 0.1 0.9 5 0.1 =0.00856
(3)P{X3} =P{X=0}+P{X=1}+P{X=2}+P{X=3} 5 5 4 5 2 3 5 3 2 0.9 0 . 1 0 . 9 0 . 1 0 . 9 0 . 1 0 . 9 0.99954. 1 2 3
X
3
4
5
Pk 1/10 3/10 6/10
3. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1 只,作不放回抽样.以X表示取出次品的只数.(1)求X的分布律;(2)画出 分布律的图形. 解 法一:X可能取值为0,1,2. 设事件Ai表示“第i次取到正 13 12 11 22 品”,i=1,2,3. P{X=0}=P(A A A )=P(A )P(A |A )P(A |A A ) 1 2 3 1 2 1 3 1 2
概率论与数理统计-第二章习题附答案
概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01()0,其它.x x f x <<⎧=⎨⎩ (2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。
概率论与数理统计习题及答案-第二章
k0 k !
(2) P(保险公司获利不少于 10000)
P(30000 2000X 10000) P(X 10)
10 e5 5k
0.986305
k0 k !
即保险公司获利不少于 10000 元的概率在 98%以上
5
分别为随机变量 X,Y 的概率分布,如果已知 P{X≥1}= ,试求 P{Y≥1}.
9
5
4
【解】因为 P( X 1) ,故 P( X 1) .
9
9
而
P( X 1) P(X 0) (1 p)2
故得
(1 p)2 4 ,
9
1
即
p .
3
从而
P(Y 1) 1 P(Y 0) 1 (1 p)4 65 0.80247
3 0.512
4.(1) 设随机变量 X 的分布律为
2
k P{X=k}= a ,
k!
其中 k=0,1,2,…,λ>0 为常数,试确定常数 a. (2) 设随机变量 X 的分布律为
P{X=k}=a/N, k=1,2,…,N, 试确定常数 a. 【解】(1) 由分布律的性质知
1
P( X
习题二
1.一袋中有 5 只乒乓球,编号为 1,2,3,4,5,在其中同时取 3 只,以 X 表示取出的 3 只
球中的最大号码,写出随机变量 X 的分布律.
【解】
X 3, 4, 5
故所求分布律为
1 P( X 3) 0.1
C35 3 P( X 4) 0.3 C35 P( X 5) C24 0.6 C35
概率论与数理统计第二章课后习题及参考答案
于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2
《概率论与数理统计》第2章作业题
1 2 0 0 3 C (0.6) (0.4) C (0.7) (0.3) C1 (0.6) (0.4) C (0.7) (0.3) 3 3
第二章
解 设同一时刻被使用的设备的个数为X,由于各
个设备使用与否是相互独立的,则X~b(5,0.1). (1) P{X=2} =
C (0.1) (0.9)
2 5
2
3
=20 (2)P{X≥3}
0.02 0.729
=0.0729
3 2 4 4 1 5 5 0 C3 (0.1) (0.9) C (0.1) (0.9) C (0.1) (0.9) 5 5 5
I h( w)
1 w , h( w) 2 2w 2
第二章
即当162<w<242时,
1 1 1 f W ( w) f I (h( w))h( w) 2 2 2w 4 2w
1 , 162 w 242 f W ( w) 4 2w 其它. 0,
0 1 - C5 (0.1) 0 (0.9)5 0.40951
第二章
2-8 甲,乙两人投篮,投中的概率分别为0.6, 0.7。今各投3次,求 (2)两人投中次数相等的概率; (2)甲比乙投中次数多的概率。
解 设X,Y分别表示甲,乙投中的次数,则 所求的概率为 X ~ b(3,0.6) , Y ~ b(3,0.7) , (2) P( X Y ) P{( X 0)(Y 0) ( X 1)(Y 1)
概率论与数理统计习题及答案第二章.doc
习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计(经管类)课后习题_第二章
解:
1
C=
3. 将一枚骰子连掷两次,以 X 表示两次所得的点数之和,以 Y 表示两次出现的最小点数,分别求 X,Y 的分 布律.
注: 可知 X 为从 2 到 12 的所有整数值. 可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故 P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是 1) P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1)) P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2)) P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2)) P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3)) P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧) P(X=8)=5*(1/36)=5/36 P(X=9)=4*(1/36)=1/9 P(X=10)=3*(1/36)=1/12 P(X=11)=2*(1/36)=1/18 P(X=12)=1*(1/36)=1/36 以上是 X 的分布律
C53 0.3 3 0.7 2 C54 0.3 4 0.7 1 C55 0.3 5 0.7 0 0.1323 0.02835 0.00243 0.163
2 OF 18
2 PX 3 1 PX 0 PX 1 PX 2
1 C70 0.3 0 0.7 7 C71 0.3 1 0.7 6 C72 0.3 2 0.7 5 1 0.0824 0.2471 0.3177 0.353
4. 如下 4 个函数,哪个是随机变量的分布函数:
0,
2
(1) F x
,2x0
2, x 0
陈国华等主编概率论与数理统计第二章习题解答
∫ π 2 cos dx =
−
1
2
sin x + 1 2
当x≥
π
2
时, F ( x) = P ( X ≤ x) =
∫
2 −∞
−
π x 1 1 1 cos xdx + ∫ 2π cos xdx + ∫π cos xdx = 1 − 2 2 2 2 2
⎧ Ax 2 e − λx 6.设连续型随机变量 X 的概率密度为 f ( x) = ⎨ ⎩ 0
∫
k
0
λ × e −λ × x dx =
1 2
解之得 k=
ln 2
λ
1. 已知离散随机变量 X 的分布列为 X -2 -1 0 1 1/5 1/6 1/5 P 2 试求Y=X 与Z=|X|的分布列.
答案:解:由题意得:
3
1/15
11/30
x P
2
0 1/5 0 1
1 7/30 2 1/5
4 17/30 3 11/30
1
P=0.02,
39
λ = n × P = 0 .8 .
=1- C 40 × (0.02) × (0.98) (2) P(X>=2)=1-P(X=1)-P(X=0) =1-
0 − C 40 × (0.98) 40 =
0.8 −1 (0.8) 0 ×e − × e 0 = 0.192 1! 0!
已知某商场一天来的顾客数 X 服从参数为λ的泊松分布,而每个来到商场的顾客购物的概 2、 率为 p,证明:此商场一天内购物的顾客数服从参数为λp 的泊松分布. 答案:证明:已知 X~P( λ ),设购物的顾客数为 Y,由题设知
(3)
1 P (0 < X < )
概率论和数理统计第二章课后习题答案解析
概率论与数理统计课后习题答案第二章1•一袋中有5只乒乓球,编号为1, 2, 3. 4. 5.在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变Sx 的分布律. 【解】X =3,4,5P(X=3)= - =0,1 C ; 3P (X=4) = & = 0.3Cjc-p(X=5) =二= 0.6C :2•设在15只同 类型零件中有2只为次品,在英中取3次,每次任取1只,作不放回抽样, 的次品个数,求:布律;布函数并作图; P{X<-!-},P{1<X<-),P{1<X<-},P{1<X<2).2 2【解】X =0,1,2. 卩住-0)-&-22C :5 35 C ; 35 P(X-2)-C” - * .C ; 35 故X 的分布律为X0 12以X 表示取出 CD (2) (3)X 的分 X 的分当OWxvl时当1W«2时当x>2时,F(X)F(X)22=P (XWx) =P(X=O)=——3534=P (XWx) =P(X=O)+P{X=1)= —F故X的分布函数(X)=P (XWx) =1F(X)n0, x<022 C —,0<%<1 3534—,I<x<2 35x>23•射手向目标独立地进行了 3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数•则XP, i, 2, 3.p(X=O) = (0.2)3 =0・008P(X =1) = C;O.8(O.2)2 = 0.096P(X =2) = C^(0.8)'0.2 = 0.384p(x= 3) = (0.8)3 =0.512P _____________分布函数F(X)= <0,0.00&0.104,0.48&%<00<x<ll<x<22 < X <3 x>3P(X >2) = P(X = 2) + P(X = 3) = 0.896 4. (1)设随机变量X的分布律为P(X=.}=Z.(2)当 xvO 时,F(X)=P (XWx) =0苴中kR, r 2.…,人>0为常数,试确企常数G(2)设随机变量X的分布律为p{X=k)=a/N, k=l.2,…,N,试确企常数G【解】(1)由分布律的性质知00 W 1l= EP(X=k) =吃■{2)由分布律的性质知'电PZ氓舒即rt = L5.甲、乙两人投篮,投中的概率分别为“今^$投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、y表示甲、乙投中次数,则XF (3,),旷b(3, ⑴P(X=3# = 3)=(0・4)3(0・3)3 + C;O・6(O・4)2C;O・7(O・3)2 +C;(O・6)2O・4C;(O・7)2O・3 + (O・6)3(O・7)3= 0320766•设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于(毎条跑逍只能允许一架飞机降落)【解】设X为某一时刻需立即降落的飞机数,则X~b(200,,设机场需配备W条跑逍,则有P(X >N)<0・012<)0工 C 爲(0.02)气0.98)2叫 <0.01A = np = 200 X 0.02 = 4.* pl 4*P(X >N)= Z ——<0.01jt-.v+i k!査表得WM9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为在某天的该时段内有1000辆汽车通过,问岀事故的次数不小于2的概率是多少(利用泊松泄理) 【解】设X 表示出事故的次数,则X~b (1000> 001)8•已知在五重贝努里试验中成功的次数X 满足P{X= 1)=P{X=2).求概率P{X=4}・ 【解】设在每次试验中成功的概率为p ,则P (x=4)=e (i/-=22_.‘3 3 2439.设事件A 在每一次试验中发生的概率为,当人发生不少于3次时,指示灯发出信号, (1) 进行了 5次独立试验,试求指示灯发出涪号的概率: (2) 进行了 7次独立试验,试求指示灯发出信号的概率. 【解】(1)设X 表示5次独立试验中A 发生的次数,则X-6 (535P(X >3)=工C ;(0・3)气0・7)1 =0.163084-5(2)令y 表示7次独立试验中人发生的次数,则Y-b (7r )P(r > 3) = ^C ;(0.3/ (0・7)M = 0.35293k~3W •某公安局在长度为f 的时间间隔内收到的紧急呼救的次数X 服从参数为(坨)f 的泊松分布,而与时间间隔超点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率:利用泊松近似所以(2)求某一天中午12时至下午5时至少收到1次呼救的概率.3【解】(1 ) P(X=0) = e"^_5 {2) P(X >1) = 1-P(X =0) = 1-门©”(1 一 P)j, 砖012,3,4分别为随机变量X, y 的概率分布,如果已知试求P{Y^1}. 5 4【解】因为P(X>1) =彳,故P(X<1) = 2.P(X<l) = P(X=0) = (l-p)2故得P (r>l ) = l-P (r = 0) = l-(I-/7/= —^0.802478112•某教科书出版了 2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有 5册错误的概率.【解】令X 为2000册书中错误的册数,则XF (2000,・利用泊松近似计算,A = np = 2000 X 0,001 = 2efP(X=5). —= 0.00183 I13•进行某种试验,成功的概率为2,失败的概率为丄•以X 表示试验首次成功所需试验的次4 4数.试写出X 的分布律,井计算X 取偶数的概率. 【解】x=12…人…P(X=2) + P(X=4) +…+ P(X=2k) +… =丄・3 + (丄)3色+…+(丄)心3+…4 4 4 4 4 4 34114.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险•在一年中每个人死亡的概率为,毎个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险 P{Y=m}=从而(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500X12=30000元・设1年中死亡人数为X,则X~b(250a,则所求概率为P(2000X >30000) = P(X >15) = 1-P(X<14)由于G很大,p很小• A=np=S,故用泊松近似,有M e"^5*P(X >15)3-工 ---------- 0.000069*■0 k!(2) P(保险公司获利不少于10000)=7(30000-2000X > 10000) = P(X < 10)10 e」屮a a 0.986305厶 &丨*•0 K •即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于 20000) =P (30000- 2000X > 20000) = P{X < 5)即保险公司获利不少于20000元的概率约为62%15•已知随机变量X的密度函数为f(X)=AQ8*+8.求:(1)人值:(2) P{O<X<1}; (3) F(x).【解】⑴由匸/Wdx = l得Ae-cLv = 2j;Ae-cLv = 2Ap(0 < X < 1) = g £「cU = i (1 一 e j) 当 x<0 时,F(x) = J £ e*dv 当心0时,F(x) =『—e\ x<0216•设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为啤,x>100, X 0,求:(1) (2)(3) 【解】M=\-¥<100,在开始150小时内没有电子管损坏的概率; 在这段时间内有一只电子管损坏的概率; F (X)•2100 1 P(XMI50) =鳥丁 E 亍 2 8p,=ip(x>i5o)r=(-)^=—(2) =63—(—)"=— 2 ^3 3 9 ⑶当 xclOO 时 F(X)=0 (1) 当 x>100 时 F(x) = J^/(Z)d/ flUO “ =L/㈣+L/(N ft 100 100=^"dr = l --------- J K X)尸 F(x) = ・100 1---- , x>I00 X 0, %<017•在区间[0, o ]上任意投掷一个质点•以X 表示这质点的坐标,设这质点落在[0. g ] 中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X~U [oa ,密度函数为 /W = ' —,0 < X < «a 0, 其他 故当x<0时f(X)=0当 QWxWa 时 F(x)=匸/(Z)dZ =『『厶/ =- 当 x>a 时,F (X)=1%<0F(x) = < Q<x<ax>a5]上服从均匀分布•现对X 进行三次独立观测,求至少有两次的观测P(X>3) = J ;lch- = |,2,1 , 2 , 20 厂C 咛亍%1方19•设顾客在某银行的窗口等待服务的时间X (以分钟讣)服从指数分布£(-).某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以y 表示一个月内他未等 到服务而离开窗口的次数,试写出y 的分布律,并求 【解】依题意知X即英密度函数为-e5a该顾客未等到服务而离开的概率为y 即英分布律为P (r = Zc )=C^(e"/(I-e-')'-\A: =0,12,3,4,5P (r>l ) = l-P (y = 0) = l-(l-e--)5=0.5l6720.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服 从W (40. 102);第二条路程较长,但阻塞少,所需时间X 服从W (50. 42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些(2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些 【解】(1)若迫第一条路,X-N (40. 10》则即分布函数故所求概率为0,18•设随机变量X 在[2. 值大于3的概率.2<%<5/w=p'0, 其他x>0 x<0P(X>10) = J :亍= e""若走第二条路,X-N (50. 42),则(X-5060-50------ < I 4P(X<60) = P(X-40 60 —40) ----- < I 1010 = 0(2) = 0.97727故走第二条路乘上火车的把握大些. (2)若 X~N (40, lOJ,则P{X < 45) =45:4O )=①⑴习=】5若 X~N (50, 42〉,则P(X < 45) = P (X-50 45-50) K “= <="25) = 1-0(1.25) = 0.1056 故走第一条路乘上火车的把握大些.21•设X~N (3, 22), Cl) 求 P{2<X<5}» P{ 4<X<10}. P{|X| >2}, P{X>3}; (2)确崔 c 便 P{X>c}=P{X^c}. 【解】(1) P(2<X<5) = P2-3 X-3 5-3)< - < ------ ・2 ) =0(1)-0 ——=0(1)-1 + 0 - V 2丿 V 2= 0.8413-1 + 0.6915 = 0.5328P (-4<X <10) = P =e (1\ .一 —(pI2丿P(l X lA 2)= p(x > 2)+ p(x < -2)p(X<60) = P= 0(2.5) = 0.9938++5=0.6915 + 1- 0.9938 = 0.6977X-3 3-3P(X>3) = P( ------- >——)=1一0(0) = 0・52 2⑵c=322•由某机器生产的螺栓长度(cm ) X-N C 儿规定长度在±内为合格品,求一螺栓为不合格品 的概率.【解】P(IX-10・05l>0」2) = P\=1-0(2) + 0(-2) = 2(1- 0(2)]=0.045623•—工厂生产的电子管寿命X (小时〉服从正态分布N (160,若要求P{120VXW200}允许。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案
2× 2 4 1× 2 2 = , P{Y = 5} = 2 = , 2 6 36 6 36 故 Y 的分布列为 P{Y = 4} =
Y P
0 6 36
1 10 36
2 8 36
3 6 36
4 4 36
5 2 . 36
3. 口袋中有 7 个白球、3 个黑球. (1)每次从中任取一个不放回,求首次取出白球的取球次数 X 的概率分布列; (2)如果取出的是黑球则不放回,而另外放入一个白球,此时 X 的概率分布列如何. 解: (1)X 的全部可能取值为 1, 2, 3, 4,
且 P{ X = 1} =
X P
1 2 3 4 . 0.7 0.24 0.054 0.006
4. 有 3 个盒子,第一个盒子装有 1 个白球、4 个黑球;第二个盒子装有 2 个白球、3 个黑球;第三个盒 子装有 3 个白球、2 个黑球.现任取一个盒子,从中任取 3 个球.以 X 表示所取到的白球数. (1)试求 X 的概率分布列; (2)取到的白球数不少于 2 个的概率是多少? 解:设 A1 , A2 , A3 分别表示“取到第一个、第二个、第三个盒子” , (1)X 的全部可能取值为 0, 1, 2, 3, 且 P{X = 0} = P (A1) P{X = 0 | A1} + P (A2) P{X = 0 | A2} + P (A3) P{X = 0 | A3}且 P{ X = 1}Fra bibliotek=X P
1 11 36
2 9 36
3 7 36
4 5 36
5 3 36
6 1 ; 36
(2)Y 的全部可能取值为 0, 1, 2, 3, 4, 5, 且 P{Y = 0} =
6 6 5 × 2 10 = , P{Y = 1} = 2 = , 6 2 36 6 36 4× 2 8 3× 2 6 P{Y = 2} = 2 = , P{Y = 3} = 2 = , 6 36 6 36
概率论与数理统计 第二章习题附答案
习题4-11. 设随机变量求()E X ;E (2-3 X ); 2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=;8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E .2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解 0()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3X x x E Z E e e e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X -=.(A) 9. (B) 6. (C) 30. (D) 36.应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A) 10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C) ()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.选(B).2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ). 解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+ })]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯= 13)45(4)45(9=-⨯+-⨯=. 5. 设随机变量]2,1[~-U X , 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1X X X Y求期望()E Y 和方差)(Y D .解 因为X 的概率密度为1,12,()30,.X x f x -=⎧⎪⎨⎪⎩≤≤其它于是Y 的分布率为--11{1}{0}31()d d 3X P Y P X f x x x ∞=-=<===⎰⎰, {0}{0}0P Y P X ====,+22{1}{0}31()d d 3X P Y P X f x x x ∞==>===⎰⎰. 因此121()1001333E Y =-⨯+⨯+⨯=,222212()(1)001133E Y =-⨯+⨯+⨯=.故有 2218()()[()]199D Y E Y E Y =-=-=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解 (32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ 727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==, 求2[()]E X Y +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.XY ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+得=b于是 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X 与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的. 事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±. 因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XY ρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XY ρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.。
概率论与数理统计(经管类)第二章课后习题答案
2.设离散型随机变量X的分布律为:
X
-1
2
3
P
0.25
0.5
0.25
求X的分布函数,以及概率 , .
解:
则X的分布函数F(x)为:
3.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=a F1(x)-bF2(x)也是某一随机变量的分布函数,证明a-b=1.
证:
4.如下4个函数,哪个是随机变量的分布函数:
注:可知X为从2到12的所有整数值.
可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故
P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)
P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))
P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))
求: (1) ; (2)
解:
(1)
(2)(2)
5.设K在(0,5)上服从均匀分布,求方程 (利用二次式的判别式)
解: K~U(0,5)
方程式有实数根,则
故方程有实根的概率为:
6.设X ~ U(2,5),现在对X进行
解:
至少有两次观测值大于3的概率为:
7.设修理某机器所用的时间X服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,
X的概率密度为:
即
(2)
即
(3)
,
即
6.X~N(0,1),求以下Y的概率密度:
(1)
解: (1)
概率论及数理统计习题及答案第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计-期末测试(新)第二章练习题
概率论与数理统计-期末测试(新)第二章练习题一、选择题1、离散型随机变量X 的分布律为(),1,2,kP X k b k λ===,则λ为( )。
(A)0λ>的任意实数 (B)1b λ=+ (C)11bλ=+(D)11b λ=-2、设随机变量X 的分布律为()!kP X k ak λ==(λ>0,k=1,2,3,…),则a = ( )。
(A)e λ- (B) e λ (C) 1e λ-- (D) 1eλ-3、离散型随机变量X 的分布律为{},0,1,2,3!kAP X k k k ===则常数A 应为( )。
(A) 31e (B) 31-e (C) 3-e (D) 3e4、离散型随机变量X 20251357Pr.248Xa aaa-,则{||2|0}P X X ≤≥为( )。
(A)2129 (B)2229 (C)23 (D)135、随机变量X 服从0-1分布,又知X 取1的概14、如果( ),则X 一定服从普哇松分布。
(A)()()E X Var X = (B)2()()E X E X =(C)X 取一切非负整数值(D) X 是有限个相互独立且都服从参数为λ的普哇松分布的随机变量的和。
15、设随机变量X 服从参数为λ的普哇松分布,又1()1x f x x ⎧=⎨-⎩为偶数为奇数,()Y f X =,则(1)P Y ==( )。
(A)212e λ-+ (B) 212e λ-- (C)22e λ- (D)以上都不对16、设随机变量X 只取正整数N ,且2()CP X N N ==,则C =( )。
(A)1 (B)26π (C)16 (D)1317、设随机变量X 的期望()0E X ≥,且21(1)22E X-=,11(1)22Var X -=,则()E X 等于( )。
(A)2218、设随机变量X 的二阶矩存在,则( )。
(A)2()()E X E X < (B) 2()()E XE X ≥ (C) 22()(())E XE X < (D)22()(())E X E X ≥19、设220()00xcx e x p x cx -⎧⎪>=⎨⎪≤⎩是随机变量X 的概率密度,则常数c 为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其分布 习题课
一、填空
1、设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,
若{}519
P X ≥=
,则{}1P X ≥= 。
2、已知随机变量X 的概率密度函数()1(),2x f x e x -=-∞<<+∞,则X 的概率分布函数()F x = 。
3、若随机变量X 在区间()1,6上服从均匀分布,则方程2
10x X x +⋅+=有实根的概率是 。
4、若随机变量X 服从均值为2,方差为2σ的正态分布,且{}240.3P X <<=,则
{}0P X <= 。
5、设随机变量X 服从正态分布()
20,N σ,则当σ= 时,X 落入区间()1,3的概率最大。
6、设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他
,以Y 表示对X 的三次独立重复观察中事件12X ⎧
⎫≤⎨⎬⎩⎭
出现的次数,则{}2P Y == 。
7、设随机变量X 服从正态分布()2(,) 0N μσσ>,且二次方程240y y X ++=无实根的 概率为
12
,则μ= 。
二、选择
1、设随机变量X 服从正态分布()2,N μσ,则随σ的增大,概率{}
P X μσ-<( )。
A 单调增大 B 单调减少 C 保持不变 D 增减不定
2、设随机变量X 的分布函数为0, 11, 1()8, 111, 1
x x F x ax b x x <-⎧⎪⎪=-⎪=⎨⎪+-<<⎪≥⎪⎩,又已知{}114P X ==, 则( )。
A 57,1616a b ==
B 79,1616a b ==
C 11,22a b ==
D 33,88
a b == 3、设随机变量X 的密度函数为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任
意实数a ,有( )。
A 0()1()a
F a f x dx -=-⎰ B 0
1()()2a F a f x dx -=-⎰ C ()()F a F a -= D ()2()1F a F a -=-
4、假设随机变量X 的分布函数为()F x ,密度函数为()f x 。
若X 与X -有相同的分布函
数,则( )。
A ()()F x F x =-
B ()()F x F x =--
C ()()f x f x =-
D ()()f x f x =--
5、设连续型随机变量X 的密度函数和分布函数分别是()f x 与()F x ,则( )。
A ()f x 可以是奇函数
B ()f x 可以是偶函数
C ()F x 可以是奇函数
D ()F x 可以是偶函数。