概率论与数理统计复习题--带答案

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。

2.已知A,B互相对立,则A与B的关系是互相对立。

,B为随机事件,则P(AB)?。

P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。

,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。

36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。

8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。

339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。

15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。

??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。

217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。

概率论与数理统计复习题 带答案

概率论与数理统计复习题  带答案

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则AB =( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 )17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计复习题及答案

概率论与数理统计复习题及答案

概率练习题1. 设一箱产品共30件,其中次品5件,现有一人从中随机买走5件,则下一个人买一件产品是次品的概率为_________. 答案:1/6。

2. 袋中有5个黑球,3个白球,一次随机取4个球,则其中恰好有3个白球的概率为______. 答案:1/14。

3.()()1/3,(|)1/6,|.()P A P B P A B A B P ===计算 答案:7/12.4. 设A 、B 是两个相互独立的事件,且()0.6,()0.5,()______.P A P B P A B ==+=则 答案:0.7.5. 设A 、B 是两个互斥事件,且()0.6,()0.5,()______.P A P B P A B ==+=则 答案:1.6. 设0()1,0()1,(|)(|)1,P A P B P A B P A B <<<<+=且则必有[ ] (A) A,B 互斥 (B) A, B 对立 (C)A, B 相容 (D) A,B 独立 答案:D.7. 若()0P AB =, 则AB 未必是不可能事件. 若()1P A B +=, 则A+B 未必是必然事件.8. 已知()()()1/4,()0,()()1/6,P A P B P C P AB P AC P BC ======则A, B 全不发生的概率为_____.答案:3/8. 【提示】()()0,()0.ABC AB P ABC P AB P ABC ⊂≤≤==因为,所以0即 9. 某种商品成箱出售,每箱24件,各箱有0,1,2件次品的概率分别为0.98, 0.015,0.005. 一顾客随意挑一箱,从中任意查两件,结果未发现次品,于是买下此箱. 求此箱中确实无次品的概率. 答案:0.982.10. 一袋中有a 个红球,b 个白球. 现从中有放回的每次任取一个球,共取求n 次,X 表示所去的n 个球中红球的个数,求X 的分布律. 答案:(1),{},0,1,...,.kkn kn p p aP X k C k bp n a --====+ 【提示】因为是“有放回地”抓球,所以各次抓球的结果是相互独立的,则这n 次抓球就是n 重伯努利试验.11. 书56页,习题二,第八题. 12. 设(2,5)XU ,现对X 进行独立观测,求至少两次观测值大于3的概率.答案:20/27.13. 设X 在(0, 1)上服从均匀分布,求22ln Y X Y X =-=和的概率密度.答案:211();,0(1)().0(2)200,,y Y Y y e f y y y y f -⎧<<⎪>==⎨⎪⎩≤⎩其它 14. 已知随机变量X 的密度函数为20,1,0().k f x x x ≤≤+⎧=⎨⎩其它求(1) k; (2) F (x ); (3) {13}P X <<; (4){}4.P X π=答案:2,010,011,()2,{13}1/4,{}0.2442,k x x x F x x x P X P X π<⎧⎪⎪=-≤≤<<===⎨⎪>⎪⎩=-+15. 设,00,(),(0)x x otherwiseA Be XF x λλ-⎧+⎨⎩>=>. 则A=_____, B=_____,答案: 1,-1,1eλ--, 密度函数略.16. 已知(X, Y )的分布密度为1(),0180,(,).x y y x otherwisef x y +≤≤≤⎧⎪=⎨⎪⎩ 1{}.P X Y ≤+求答案:1/48.17. 设(X, Y)的密度函数为220,,).,1(cx x y otherwisey f x y ≤≤⎧=⎨⎩ (1)试确定常数c ;(2) 求X ,Y 的边缘密度.答案:c=21/4;22(1)(),21,1180,X x x otherwise x f x -≤≤⎧-⎪=⎨⎪⎩52,0107(,).2Y y y otherwis y e f ⎧<<⎪=⎨⎪⎩18. 设二维随机变量(X, Y)的概率密度为22,0,0(,)0,.x y e x y otherwis f x y e--=>⎧⎨⎩> 问X, Y 是否独立?答案:独立. 2(),,02(),00,0,.Y x y X e x e y otherwise otherw ey i f x f s --⎧⎧=>=⎨>⎨⎩⎩求(1) a =? ; (2) 边缘分布律;(3) X, Y 是否独立? 答案:(1)a =1/6; (2)略;(3) 不独立.答案:略. 21. 设(0,1),(1,1)XN Y N 且X 与Y 独立,则{}___.1___P X Y +=≤答案:0.5. 22. 设(0,4)XN , 则1{0}P X <<=[ ].(A) 281xd x -⎰ (B)14014xe dx -⎰答案:A. 【提示】要记住一般正态分布的密度函数表达式. 23. 设2(3,2)XN , 且{}{},P x c P X c ≤>=则c=_______.答案:3. 24. 设2(2,)XN σ, 且{24}0.3,P X <<=求{0}.P X <答案:0.2.25. 设21211,,...,0,,Cov(,)_____.nn i i X X X Y X X n Y σ=>==∑独立同分布,且则答案:2nσ.26. X 的密度函数为2,0)10,(ax f x bx c x +⎨+<=<⎧⎩其它,已知EX=0.5,DX=0.15,求a , b , c .答案:12,12, 3.a b c ==-=27. 若X 的密度为2,1(0,)1a f x bx x ⎧-≤≤-=⎨⎩其它且27{0.5}32P X ≤=, 求a , b .答案:0.75.a b ==28. 已知2,33__{_}_,_.E P X DX X μσμσμσ==-<<+≥则 答案:8/9. 29. 设(,), 2.4, 1.44,____,_____.Xb n p EX DX n p ====则答案:6, 0.4.30. 设X, Y 相互独立,EX=EY=0,DX=DY=1,则2(2)_____.E X Y ⎡⎤=⎣⎦+答案:5. 31. 设(0,1)XN ,则2____.EX =答案:2.32. 设X 的密度函数为2,01()0,x x f x <<⎧=⎨⎩其它. 则(21)_____.E X -=答案:1/3.33. 书117页,习题四,32题.。

概率论复习题及答案

概率论复习题及答案

概率论与数理统计复习题一.事件及其概率1. 设A, B, C 为三个事件,试写出下列事件的表达式:(1) A, B, C 都不发生;(2) A, B, C 不都发生;(3) A, B, C 至少有一个发生;(4) A, B, C 至多有一个发生。

解:(1) ABC A B C(2) ABC A B C(3) A B C(4) BC AC AB2. 设A , B 为两相互独立的随机事件, P( A)0.4 , P(B) 0.6 ,求P( A B), P( A B ), P( A | B) 。

解:P( A B) P( A) P(B) P( AB ) P( A) P(B) P( A)P( B) 0.76 ;P( A B) P( AB ) P( A)P( B) 0.16, P( A | B) P(A) 0.4 。

3. 设A, B 互斥,P(A) 0.5 ,P(A B) 0.9 ,求P( B ), P( A B) 。

解:P(B) P(A B) P( A) 0.4, P( A B) P( A) 0.5 。

4. 设P( A) 0.5, P(B) 0.6, P( A | B) 0.5,求P( A B), P( AB) 。

解:P( AB ) P( B)P( A | B) 0.3, P( A B) P( A) P( B) P( AB) 0.8,P( AB ) P( A B) P(A) P( AB ) 0.2 。

5. 设A, B, C 独立且P( A) 0.9, P( B) 0.8, P(C ) 0.7, 求P( A B C) 。

解:P( A B C) 1 P( A B C ) 1 P( ABC ) 1 P( A)P(B) P(C) 0.994 。

6. 袋中有4 个黄球,6 个白球,在袋中任取两球,求(1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。

解:(1) P2 1 14 ;(2) P 4 6C 8。

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,P(X≤0)=______。

A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.5,则E(X)=______。

A. 2B. 5C. 10D. 15答案:B3. 设随机变量X服从泊松分布,其概率质量函数为P(X=k)=λ^k/e^λ*k!,其中λ>0,则E(X)=______。

A. λB. e^λC. kD. 1答案:A4. 若随机变量X与Y相互独立,则P(X>a, Y>b)=______。

A. P(X>a) + P(Y>b)B. P(X>a) * P(Y>b)C. P(X>a) - P(Y>b)D. P(X>a) / P(Y>b)答案:B5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(X>3)=______。

A. 0.5B. 0.25C. 0.75D. 0.3答案:A6. 若随机变量X服从均匀分布U(a, b),则E(X)=______。

A. (a+b)/2B. a+bC. a-bD. b-a答案:A7. 设随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0,λ>0,则D(X)=______。

A. 1/λ^2B. 1/λC. λD. λ^2答案:A8. 若随机变量X与Y相互独立,且X~N(μ1, σ1^2),Y~N(μ2, σ2^2),则X+Y~______。

A. N(μ1+μ2, σ1^2+σ2^2)B. N(μ1-μ2, σ1^2-σ2^2)C. N(μ1+μ2, σ1^2-σ2^2)D. N(μ1-μ2, σ1^2+σ2^2)答案:A9. 设随机变量X服从二项分布B(n, p),则D(X)=np(1-p)。

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 );13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则AB =( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 )17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。

(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。

(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。

5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。

(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。

(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

2021年大学必修课概率论与数理统计复习题及答案(完整版)

2021年大学必修课概率论与数理统计复习题及答案(完整版)

2021年大学必修课概率论与数理统计复习题及答案(完整版)一、单选题1、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B2、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C3、设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为__________。

(A) 0.1 (B) 0.15 (C) 0.2 (D) 0.25【答案】B4、设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是( ) )(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计【答案】D5、设为来自正态总体的一个样本,若进行假设检验,当__ __时,一般采用统计量(A)(B) (C) (D)【答案】C6、下列函数中,可作为某一随机变量的分布函数是n X X X ,,,21 2(,)N μσX t =220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B7、设为来自正态总体的一个样本,若进行假设检验,当__ __时,一般采用统计量(A)(B) (C) (D)【答案】C8、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A )()()()D XY D X D Y =⋅B )()()()D X Y D X D Y +=+C )X 和Y 独立D )X 和Y 不独立【答案】B9、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B10、在一次假设检验中,下列说法正确的是___ ____(A)第一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误【答案】Cn X X X ,,,21 2(,)N μσX t =220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=二、填空题1、设总体X 服从正态分布N (μ,σ²),其中μ未知,X1,X2,…,Xn 为其样本。

《概率论与数理统计》复习题(附答案)

《概率论与数理统计》复习题(附答案)

概率练习题附答案06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2. 设事件A 、B 、C 构成一完备事件组,且()0.5,()0.7,P A P B ==则()P C =3. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.4. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___5. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】 (A) 2; (B)12; (C) 3; (D) 13. 3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】 ()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ; ()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx e e Ax f -+=)(,求:(1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y 的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P >.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x 求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

概率统计复习题(含解答)

概率统计复习题(含解答)

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案
这篇文档将提供一系列概率论与数理统计的复题和答案。

以下是一些例题,供您练和巩固知识。

1. 一个骰子投掷三次,计算以下事件的概率:
- A:至少有一次出现6点
- B:三次投掷的和为18点
答案:
- A的概率 = 1 - (5/6) * (5/6) * (5/6) = 91/216
- B的概率 = 1/6 * 1/6 * 1/6 = 1/216
2. 一批商品的质量服从正态分布,均值为80,标准差为5。

从中随机取一件,计算以下事件的概率:
- A:质量在75到85之间
- B:质量小于70
答案:
- A的概率 = P(75 < X < 85),其中X服从均值为80,标准差为5的正态分布,可通过查表或计算得到概率值。

- B的概率 = P(X < 70),同样需要查表或计算。

3. 在某次调查中,有50%的受访者表示会购买某个产品。

从100位受访者中随机选择10人,计算以下事件的概率:- A:恰好有5人表示会购买该产品
- B:至少有8人表示会购买该产品
答案:
- A的概率 = C(10, 5) * (0.5)^5 * (0.5)^5 = 0.2461,其中C为组合数。

- B的概率 = P(X >= 8),其中X服从二项分布,可通过计算得到概率值。

这些复习题可以帮助您巩固概率论与数理统计的知识。

建议您自行尝试计算答案,并对比参考答案进行学习。

祝您学习顺利!。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。

答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。

答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。

答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。

答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。

答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。

答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习题--带答案;第一章一、填空题1.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(A-B)=(0.3 )。

2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为(0.94 )。

3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC++)。

4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为(0.496 )。

5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为(ABC)。

7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为(AB AC BCI I);8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 );10.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(BA-)=(0.5 )11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。

12.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.3 );13.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(B A)=(0.5 )14.A、B为两互斥事件,则A B=U(S )15.A、B、C表示三个事件,则A、B、C恰有一个发生可表示为(ABC ABC ABC++)16.若()0.4P AB A B=UP AB=0.1则(|)P B=,()P A=,()0.2( 0.2 )17.A、B为两互斥事件,则AB=(S )18.保险箱的号码锁定若由四位数字组成,则一次)。

就能打开保险箱的概率为(110000二、选择填空题1. 对掷一骰子的试验,在概率中将“出现偶数点”称为( D )A、样本空间 B、必然事件 C、不可能事件 D 、随机事件2. 某工厂每天分3个班生产,iA 表示第i 班超额完成任务(1,2,3)i =,那么至少有两个班超额完成任务可表示为( B )A 、123123123A A A A A A A A A ++B 、123123123123A A A A A A A A A A A A +++ C 、123A A A U U D 、123A A A 3.设当事件A 与B 同时发生时C 也发生, 则 (C ).(A)B A Y 是C 的子事件; (B);ABC 或;C B A Y Y (C) AB 是C 的子事件; (D) C 是AB 的子事件4. 如果A 、B 互不相容,则( C )A 、A与B是对立事件B 、A B U 是必然事件C 、A B U 是必然事件D 、A 与B 互不相容5.若AB =Φ,则称A 与B ( B )A 、相互独立B 、互不相容C 、对立D 、构成完备事件组6.若AB =Φ,则( C )A 、A 与B 是对立事件 B 、A B U 是必然事件C 、A B U 是必然事件D 、A 与B 互不相容7.A、B为两事件满足B A B -=,则一定有( B )A 、A =ΦB 、AB =ΦC 、AB =ΦD 、B A =8.甲、乙两人射击,A、B分别表示甲、乙射中目标,则A B +表示( D )A、两人都没射中 B、两人都射中 C、至少一人没射中 D 、至少一人射中三、计算题1.用3台机床加工同一种零件,零件由各机床加工的概率分别为0.4,0.4,0.2;各机床加工的零件的合格品的概率分别为0.92,0.93,0.95,求全部产品的合格率.解:设B 表示产品合格,iA 表示生产自第i 个机床(1,2,3i =)31()()(|)0.40.920.40.930.20.95i i i P B P A P B A ===⨯+⨯+⨯=∑2.设工厂A 、B 和C 的产品的次品率分别为1%、2%和3%, A 、B 和C 厂的产品分别占50%、40%和10%混合在一起,从中随机地抽取一件,发现是次品,则该次品属于A 厂生产的概率是多少?解:设D 表示产品是次品,123,,A A A 表示生产自工厂A 、B 和C11131()(|)0.010.5(|)0.010.50.020.40.030.1()(|)i ii P A P D A P A D P A P D A =⨯===⨯+⨯+⨯∑3.设某批产品中, 甲, 乙, 丙三厂生产的产品分别占45%, 35%, 20%, 各厂的产品的次品率分别为4%, 2%, 5%, 现从中任取一件,(1) 求取到的是次品的概率;(2) 经检验发现取到的产品为次品, 求该产品是甲厂生产的概率.解:设D 表示产品是次品,123,,A A A 表示生产自工厂甲, 乙, 丙31()()(|)0.450.040.350.020.20.05i i i P D P A P D A ===⨯+⨯+⨯=∑0.026111()(|)0.450.04(|)()P A P D A P A D P D ⨯===9134.某工厂有三个车间,生产同一产品,第一车间生产全部产品的60%,第二车间生产全部产品的30%,第三车间生产全部产品的10%。

各车间的不合格品率分别为0.01,0.05,0.04,任取一件产品,试求抽到不合格品的概率?解:设D 表示产品是不合格品,123,,A A A 表示生产自第一、二、三车间31()()(|)0.60.010.30.050.10.04i i i P D P A P D A ===⨯+⨯+⨯=∑0.0255.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机地抽取一件,发现是次品,则该次品属于A 厂生产的概率是多少?解:设D 表示产品是次品,12,A A 表示生产自工厂A 和工厂B11121()(|)0.010.6(|)0.010.60.020.4()(|)i ii P A P D A P A D P A P D A =⨯===⨯+⨯∑376.在人群中,患关节炎的概率为10%, 由于检测水平原因,真的有关节炎能够检测出有关节炎的概率为85%. 真的没有而检测出有的概率为4%,假设检验出其有关节炎,问他真有关节炎的概率是多少?解:设A 表示检验出其有关节炎,B 表示真有关节炎 ()(|)0.10.85(|)()(|)()(|)0.10.850.90.04P B P A B P B A P B P A B P B P A B ⨯===+⨯+⨯0.7025第二章一、填空题1.已知随机变量X 的分布律为:5.04.01.0101P X - ,则2{0}P X==( 0.4 )。

2.设球的直径的测量值X 服从[1,4]上的均匀分布,则X的概率密度函数为(114()30,x f x ⎧≤≤⎪=⎨⎪⎩,其他 )。

3.设随机变量~(5,0.3)X B ,则E (X )为( 1.5 ).4.设随机变量)2.0,6(~B X ,则X 的分布律为(6-6P{X=k}=C 0.20.8,=0,1,6k k k k L )。

5.已知随机变量X 的分布律为:5.04.01.0101PX - ,则==}1{2X P ( 0.6 )。

6.设随机变量X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(3x x e x F x 当当则X 的概率密度函数(=)(x f 33,0,0,0.x e x x -⎧>⎨≤⎩当当 ); 7.设随机变量),(~2σμN X ,则随机变量σμ-=XY 服从的分布为(~(0,1)X N ); 8.已知离散型随机变量X 的分布律为30/1136/1331012a a a P X-- ,则常数=a ( 1/15 );9.设随机变量X 的分布律为:.10,,2,1,10}{Λ===k A k X P 则常数=A ( 1 )。

10.设离散型随机变量X 的分布律为3.05.02.0423P X - ,)(x F 为X 的分布函数,则)2(F =( 0.7 );11.已知随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,5)(5x x e x f x ,则X 的分布函数为( 51-,0()0,0x e x F x x -⎧>=⎨≤⎩ )12.已知随机变量X 只能取-1,0,1,2 四个值,相应概率依次为c c c c 167,85,43,21,则常数=c ( 16/37 ).13.已知 X 是连续型随机变量,密度函数为()x p ,且()x p 在x 处连续,()x F 为其分布函数,则()x F '=( ()p x )。

14.X 是随机变量,其分布函数为()x F ,则X 为落在(]b a ,内的概率{}P a X b <≤=( F(b)-F (a ) )。

15.已知 X 是连续型随机变量,a 为任意实数,则{}P X a ==( 0 )。

16.已知X 是连续型随机变量,且X ~()1,0N ,则密度函()x ϕ=(222x e π )。

17.已知 X 是连续型随机变量,密度函数为()x p ,{}P a X b <≤=( ()bap x dx ⎰ )。

18.已知X 是连续型随机变量,且X ~()1,0N ,()的分布函数是X x Φ,若(),3.0=Φa 则()=-Φa ( 0.7 )。

19.设随机变量)4,6(~N X ,且已知8413.0)1(=Φ,则=≤≤}84{X P ( 0.6826 )。

20.已知X 是连续型随机变量,且X ~()b a U ,,则密度函数为(1()-0,a x b f x b a ⎧≤≤⎪=⎨⎪⎩,其他 )。

二、选择填空题 1. 三重贝努力试验中,至少有一次成功的概率为6437,则每次试验成功的概率为(A) 。

A. 41 B. 31 C. 43 D. 32 2. 设随机变量X 的密度函数()()⎪⎩⎪⎨⎧∈+=其他,01,0,12x x C x f ,则常数C 为( C )。

A. 2πB. π2C. π4 D. 4π3. X ~()2,σμN ,则概率}{σμk X P <-( D )A. 与μ和σ有关B. 与μ有关,与σ无关C. 与σ有关,与μ无关D. 仅与k有关4.已知随机变量的分布率为X -1 0 1 2P 0.1 0.2 0.3 0.4)F为其分布函数,则)23(F=(C)。

相关文档
最新文档