[高一数学必修1知识点归纳视频]高一数学必修1知识点归纳总结范文

合集下载

高一数学必修一知识点总结笔记

高一数学必修一知识点总结笔记

高一数学必修一知识点总结笔记摘要:一、前言二、高一数学必修一知识点总结1.集合与基本初等函数2.函数的基本概念与性质3.函数的图像与解析式4.指数函数与对数函数5.三角函数6.三角恒等式与解三角形7.平面向量8.矩阵与行列式9.线性方程组与二次函数正文:【前言】高一数学必修一是高中数学学习的基础阶段,涉及的知识点广泛,为后续学习打下坚实基础。

本篇文章将对高一数学必修一的知识点进行总结和梳理,帮助大家更好地掌握和运用这些知识点。

【高一数学必修一知识点总结】1.集合与基本初等函数集合是数学的基本概念,研究对象是具有某种特定性质的元素的总和。

基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数等。

2.函数的基本概念与性质函数是一种特殊的关系,将一个或多个变量映射到另一个变量。

函数的基本概念包括:函数的定义域、值域、取值范围、单调性、奇偶性、周期性等。

3.函数的图像与解析式函数的图像反映了函数的性质,通过作图可以直观地了解函数的取值情况。

解析式是用代数式表示函数的方法,可以用于计算和分析函数的具体取值。

4.指数函数与对数函数指数函数和对数函数是常见的特殊函数,具有重要的应用价值。

指数函数有a^x 的形式,对数函数有log_a(x) 的形式。

它们分别满足各自的运算性质和恒等式。

5.三角函数三角函数是研究直角三角形中的角度和边长关系的函数,包括正弦函数、余弦函数、正切函数等。

它们具有周期性、奇偶性、单调性等性质,是解析几何和三角方程的重要组成部分。

6.三角恒等式与解三角形三角恒等式是关于三角函数的恒等式,可以通过代数运算得到。

解三角形是研究三角形边长和角度关系的数学方法,可以求解三角形的未知边长和角度。

7.平面向量平面向量是具有大小和方向的量,可以用箭头表示。

向量具有加法、减法、数乘等运算,以及模长、夹角等性质。

向量在几何、物理等领域具有广泛的应用。

8.矩阵与行列式矩阵是一种特殊的向量,可以用于表示线性方程组。

高一数学必修一知识点总结全

高一数学必修一知识点总结全

高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。

1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。

1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。

2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。

2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。

2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。

3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。

3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。

3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。

4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。

4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。

4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。

5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。

5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。

5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。

以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。

希望这份总结对你有所帮助!。

高一数学必修一知识点总结归纳

高一数学必修一知识点总结归纳

高一数学必修一知识点总结归纳高一数学必修一知识点总结归纳「篇一」1、作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

3、k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

高一数学必修一知识点总结归纳「篇二」一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的.定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R。

②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

高中高一数学必修1各章知识点总结

高中高一数学必修1各章知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。

高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)
(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)、求函数的解析式的主要方法有:
1)代入法:
2)待定系数法:
3)换元法:
4)拼凑法:
2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
课时九:函数的奇偶性(整体性质)
(1)、偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)、奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
2、函数的奇偶性与单调性
奇函数在关于原点对称的区间上有相同的单调性;
偶函数在关于原点对称的区间上有相反的单调性。
3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。
4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。
5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。
(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
2.函数的三要素:定义域、值域、对应法则
3.函数的表示方法:(1)解析法:明确函数的定义域
(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。

元素具有确定性、互异性和无序性。

例如,{a,b,c}和{a,c,b}表示同一集合。

集合可以用列举法和描述法表示。

例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。

常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。

二、集合间的基本关系集合间有包含关系和相等关系。

如果集合A包含于集合B,则称A为B的子集,记作A B。

如果A与B是同一集合,则记作A=B。

空集是不含任何元素的集合,记为Φ。

空集是任何集合的子集,也是任何非空集合的真子集。

三、集合的运算集合的运算有交集、并集和补集。

交集是由所有属于A且属于B的元素所组成的集合,记作A B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。

补集是由S中所有不属于A的元素组成的集合,记作A的补集。

1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。

如图1所示。

2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。

如图2所示。

3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。

A与空集的交集等于空集,即A∩Φ=Φ。

A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。

A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。

A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。

A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。

4.选择题答案:A。

5.集合{a,b,c}的真子集共有7个。

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结
一、平面解析几何
1. 平面直角坐标系
- 坐标轴及坐标点的表示方法
- 点的坐标与距离公式的应用
2. 直线的方程
- 斜率的概念和计算方法
- 截距的概念和计算方法
- 一般式和标准式的相互转换
- 平行、垂直直线的关系及判定方法
3. 圆的方程
- 圆的定义及相关概念
- 圆的标准方程及一般方程
- 圆与直线的位置关系
- 相交弦和切线的性质
4. 配对法
- 二次曲线的配对法及示意图
- 配对法解题步骤与技巧
二、函数及立体几何
1. 函数的概念与性质
- 定义域和值域的计算方法- 函数的奇偶性判断
- 函数的单调性判断
- 函数图象与函数值的关系2. 一次函数和二次函数
- 一次函数的表示和性质
- 一次函数的图象和变换
- 二次函数的表示和性质
- 二次函数的图象和变换
3. 立体几何基础知识
- 空间几何体的定义及性质- 线段的长度和空间角的计算- 平行线与平面的关系
三、概率与统计
1. 随机事件与概率
- 随机事件的概念和表示方法- 概率的定义和性质
- 事件的联合、互斥与对立关系
2. 组合与样本空间
- 组合的概念和计算方法
- 样本空间的定义和计算方法
- 事件的排列组合与计数方法
3. 统计与抽样
- 总体、样本和样本均值的概念
- 随机抽样的方法和步骤
- 样本统计量的计算及应用
以上为高一数学必修一的知识点归纳总结,对于复复数学知识有一定的帮助。

需要注意理解概念和掌握计算方法,搞清楚基本原理,灵活运用到实际问题的解题中。

高一数学必修1 数学。第一章。完整知识点梳理大全(最全)

高一数学必修1 数学。第一章。完整知识点梳理大全(最全)

高一数学必修1 数学。

第一章。

完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。

常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。

集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。

集合的表示方法有自然语言法、列举法、描述法和图示法等。

其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。

集合还可以分为有限集、无限集和空集。

空集是不含有任何元素的集合,记为∅。

集合间的基本关系有子集、真子集和集合相等等。

子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。

如果两个集合中的元素完全相同,则它们是相等的。

集合的基本运算有交集、并集和补集等。

交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。

补集是指一个集合中不属于另一个集合的所有元素所组成的集合。

最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。

对于含有绝对值的不等式,可以通过分情况讨论来求解。

而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。

x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。

高一数学必修一知识点归纳

高一数学必修一知识点归纳

高一数学必修一知识点归纳1.高一数学必修一知识点归纳1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.2.高一数学必修一知识点归纳方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

高一数学必修一知识点总结人教(3篇)

高一数学必修一知识点总结人教(3篇)

高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。

比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。

美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。

数学地思考,是数学学习的更高目标。

数学学习过程中所倡导的思考方式是具有学科特点的。

看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。

这种量化、精确化的思考方式是数学教学最根本的目标价值所在。

高一数学(必修一)知识点总结

高一数学(必修一)知识点总结

高一数学(必修一)知识点总结
以下是高一数学(必修一)的知识点总结:
1. 平面直角坐标系:原点、坐标轴、象限、直线方程的一般式和斜率
2. 直线与圆的交点问题:直线方程和圆方程的联立求解,以及交点的判别式
3. 二次函数:二次函数的定义、图像、性质和求解相关问题
4. 不等式:一元一次不等式、一元二次不等式的求解
5. 数列与数列的通项:数列的概念、公式、前n项和、等差数列、等比数列
6. 概率:随机事件的概念、频率与概率的关系、基本事件与复合事件、用排列组合计算概率
7. 几何:平面几何的基本概念、线段、角、三角形的性质和判定、相似三角形、勾股定理
8. 三角函数:弧度、三角函数的正弦、余弦、正切、余切等概念和性质
9. 函数与导数:函数的定义、性质、定义域、值域、反函数、导数的概念和计算
10. 三角函数的图像和变换:正弦函数、余弦函数、正切函数的图像、函数的平移、伸缩和反转
11. 平面向量:向量的概念、向量的表示、向量的线性运算、向量的模、单位向量、平行四边形法则
12. 数量关系:方程的解、实数的性质、线性方程组的解法、二元一次方程的解、图象与方程的关系
这些是基本的知识点,希望对你有所帮助。

高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳高中数学必修一知识点总结归纳数学是现代科学的基础和重要组成部分,高中数学是学生进入高中后必修学科之一。

本文将会整理和归纳高中数学必修一中的知识点,帮助学生更好地掌握和理解数学知识,提高数学素养和成绩。

第一章数与式1. 数的概念与分类数是现实世界事物的抽象概念,可以分为有理数和无理数两种。

2. 整式与分式整式由常数项、未知数及其指数、系数组成,可以进行加减乘除运算,分式由分子和分母组成,分母不能为零。

3. 代数式的加减运算代数式可以分为单项式和多项式,单项式由常数和未知数的乘积组成,多项式由单项式的和组成。

代数式的加减运算按照同类项合并,可配方法和因式分解。

4. 代数式的乘法运算代数式的乘法有分配律、结合律和交换律,若a、b、c 三个数互不相等,那么a+b和a-b就是一对互补因数。

5. 代数式的除法运算类比于数的除法,代数式的除法需要约分、因式分解、分离有理因式和合并同类项等具体步骤。

第二章一元二次方程1. 一元二次方程的定义一元二次方程是指只含一个未知数的平方次项和一次项,以及常数项的方程式,一般形式为ax²+bx+c=0。

2. 二次函数的基本特征二次函数是指只含一个未知数的平方次项和一次项,以及常数项的函数,可以通过函数的图像来了解函数的基本特征,如图像下凸或上凸等。

3. 一元二次方程的根与求根公式一元二次方程的根有实数根和虚数根两种情况,可以通过求根公式计算得出。

4. 一元二次方程的应用一元二次方程的应用包括了跳高、射击、建筑等多个方面,需要学生根据实际情况转化为方程式然后求解。

第三章勾股定理与三角函数1. 直角三角形及其特征直角三角形是指其中一个角是90度的三角形,根据勾股定理可以求得直角三角形的斜边长和两条直角边之间的关系。

2. 勾股定理及其应用勾股定理是通过三角形三边之间的关系而发现的,可用于计算三角形的各种长度和角度。

3. 三角比的概念及其应用三角比一般包括正弦、余弦和正切三种,分别表示角的对边、邻边和斜边之间的比值,可用于解决直角三角形及其应用相关的问题。

高一数学必修一复习知识点总结(最新6篇)

高一数学必修一复习知识点总结(最新6篇)

高一数学必修一复习知识点总结(最新6篇)高一必修一数学复习知识点梳理篇一直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。

直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高一必修一数学复习知识点梳理篇二定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q 是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结高一数学必修1共有7个单元:
1. 函数与方程
- 函数和反函数
- 幂函数和指数函数
- 对数函数和指数方程
- 一次函数和一元一次方程
- 二次函数和一元二次方程
- 二次函数的图像和性质
- 一元二次方程的解
2. 三角函数
- 角度和弧度制
- 常用角的三角函数值
- 三角函数的定义和性质
- 三角函数图像
- 三角函数的和差化积公式
- 三角函数的倍角公式
3. 二次函数
- 二次函数的定义
- 二次函数的图像和性质
- 二次函数的解析式和一般式- 二次函数的最值和变化趋势- 二次函数和一次函数的关系- 二次函数与零点问题
4. 应用题
- 几何与量的关系
- 数据的收集和描述
- 数据的表达和分析
- 等腰三角形
- 三角形的性质和判定
- 直角三角形及其应用
5. 平面向量
- 平面向量的概念和表示
- 平面向量的运算
- 平面向量的共线和垂直
- 平面向量的模和单位向量- 平面向量的线性运算
- 平面向量的数量积和方向角
6. 数数原理和概率
- 数数原理的基本概念
- 排列和组合
- 加法原理和乘法原理
- 概率的基本概念和计算
- 事件的独立性和相关性
- 概率模型和统计调查
7. 数列
- 数列的概念和表示
- 等差数列的通项公式
- 等比数列的通项公式
- 数列的性质和运算
- 数列的极限与无穷
- 应用题
这些知识点涵盖了高一数学必修1的全部内容,希望对你有帮助!。

高一年级数学必修一知识点归纳笔记

高一年级数学必修一知识点归纳笔记

高一年级数学必修一知识点归纳笔记1.高一年级数学必修一知识点归纳笔记篇一对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

(1)对数函数的定义域是一组大于0的实数。

(2)对数函数的值域是所有实数的集合。

(3)函数总是传递(1,0)。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数。

2.高一年级数学必修一知识点归纳笔记篇二函数最值及性质的应用1、函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶数函数在关于原点对称的区间上具有相反的单调性。

3.在判断歧义单调性时,也可以作为商法。

过程和差法类似,不同的是差法是和0比,商法是和1比。

4、绝对值函数求最大值,先分段,然后通过每段的单调性,或者图像求最大值。

5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。

3.高一年级数学必修一知识点归纳笔记篇三空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.4.高一年级数学必修一知识点归纳笔记篇四二面角(1)半平面:平面中的一条直线把这个平面分成两部分,每一部分称为半平面。

高一数学必修1知识点归纳

高一数学必修1知识点归纳

高一数学必修1知识点归纳高一数学必修1是学生们进入高中后的第一门数学课程。

该课程主要涵盖了一些基本的数学知识,为学生们打下了坚实的数学基础。

下面我将对这门课程中的一些主要知识点进行归纳总结。

一、函数与方程函数与方程是数学中最基础的概念之一。

在高一数学必修1中,我们首先学习了一次函数、一次方程和一次函数方程的概念。

一次函数是指函数表达式中的最高次幂为1的函数,它的图像是一条直线。

一次方程则是指方程的最高次幂为1的方程,我们可以通过求解方程的解来求得未知数的值。

二、二次函数在高一数学必修1中,我们还学习了二次函数的概念及其性质。

二次函数是指函数表达式中的最高次幂为2的函数,它的图像是一个抛物线。

我们学习了二次函数的顶点坐标、对称轴、零点等特征,并通过解二次方程来求解二次函数的相关问题。

三、平面解析几何平面解析几何是数学中的一门重要分支,它研究了平面上的点、直线和圆的性质及其相互关系。

在高一数学必修1中,我们学习了平面解析几何的基本知识,包括坐标、距离、中点等概念,并学习了如何根据已知条件确定直线和圆的方程。

四、三角函数三角函数是数学中极其重要的一个概念,它与三角学、物理学等学科密切相关。

在高一数学必修1中,我们主要学习了正弦函数、余弦函数和正切函数。

我们学习了它们的定义、性质以及它们在不同象限的取值范围。

三角函数在解决三角方程和求解实际问题中具有广泛的应用。

五、统计与概率统计与概率是数学中非常实用的知识点,应用领域广泛。

在高一数学必修1中,我们学习了如何进行数据统计和概率计算。

我们学习了频数、频率、相对频数等统计概念,并通过柱状图、折线图等图形来展示统计数据。

概率则是研究随机事件发生的可能性,我们学习了如何计算事件的概率以及如何利用概率解决实际问题。

六、立体几何立体几何是数学中研究三维空间中的几何关系的学科。

在高一数学必修1中,我们学习了立体几何的基本知识,包括立体的名称、表面积和体积等。

我们通过学习正方体、长方体、棱锥等立体的性质,掌握了计算立体的表面积和体积的方法。

高一数学必修一知识点汇总

高一数学必修一知识点汇总

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。

(人教版)高一数学必修一知识点总结

(人教版)高一数学必修一知识点总结

(人教版)高一数学必修一知识点总结
一、函数与方程
1. 函数的概念:函数是一种特殊的关系,它将一个元素与另一个唯一确定的元素相对应。

2. 函数的表示方式:函数可以通过图像、表格、公式等方式来表示。

3. 方程的概念:方程是含有未知数的等式,通过求解方程可以确定未知数的值。

4. 一次函数:一次函数的形式为y = kx + b,其中k和b为常数。

二、三角函数
1. 弧度制与角度制:弧度制是一种角度的度量单位,角度制是另一种度量单位。

2. 正弦、余弦和正切:正弦函数表示一个角的对边与斜边之间的比值,余弦函数表示一个角的邻边与斜边之间的比值,正切函数表示一个角的对边与邻边之间的比值。

三、平面向量
1. 平面向量的表示:平面向量可以用坐标表示,如向量AB可以表示为AB = (x₁, y₁)。

2. 向量的运算:向量可以进行加法和数乘运算,如两个向量的和可以表示为R = A + B。

3. 向量的模长:向量的模长表示向量的长度,可以通过坐标计算得到。

四、三角形与三角比
1. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和普通三角形。

2. 三角比的定义:三角比是指在特定角度下,三角函数值的比例关系,如正弦比、余弦比和正切比。

以上是(人教版)高一数学必修一的知识点总结,希望对你的学习有所帮助。

高一数学必修1知识点归纳总结

高一数学必修1知识点归纳总结

高一数学必修1知识点归纳总结高一数学必修1知识点归纳(一)一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是的,不可重复的。

(3)元素的无序性:集合中元素的位置是能够改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:aA(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R高一数学必修1知识点归纳(二)1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高一数学必修1知识点归纳(三)(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.所以,倾斜角的取值范围是0°≤α。

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结高一数学必修一知识点归纳总结第1篇函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;方程k=f(x)有解k∈D(D为f(x)的值域);≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;(1) (a>0,a≠1,b>0,n∈R+);(2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆;(4) a log a N= N ( a>0,a≠1,N>0 );判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学可以说是高中阶段最难的一门课程,要高中数学必修1知识是非常重要的一个知识点。

下面就让给大家分享一些高一数学必修1知识点归纳吧,希望能对你有帮助!
高一数学必修1知识点归纳(一)
一集合的含义与表示
1、集合的含义集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性
(1)元素的确定性集合确定,则一元素是否属于这个集合是确定的属于或不属于。

(2)元素的互异性一个给定集合中的元素是的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示{…}
(1)用大写字母表示集合A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法列举法与描述法。

a、列举法将集合中的元素一一列举出来{a,b,c……}
b、描述法
①区间法将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2}
②语言描述法例{不是直角三角形的三角形}
③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合
5、元素与集合的关系
(1)元素在集合里,则元素属于集合,即aA
(2)元素不在集合里,则元素不属于集合,即a¢A
注意常用数集及其记法
非负整数集(即自然数集)记作N
正整数集N*或N+
整数集Z
有理数集Q
实数集R
高一数学必修1知识点归纳(二)
1、柱、锥、台、球的结构特征
(1)棱柱
几何特征两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台
几何特征①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱定义以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.
(5)圆锥定义以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.
(6)圆台定义以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.
(7)球体定义以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征①球的截面是圆;②球面上任意一点到球心的距离等于半径.
3、空间几何体的直观图——斜二测画法
斜二测画法特点①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
高一数学必修1知识点归纳(三)
(1)直线的倾斜角
定义x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式
注意下面四点(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式直线斜率k,且过点
注意当直线的斜率为0°时,k=0,直线的方程是y=y
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x
②斜截式,直线斜率为k,直线在y轴上的截距为b
③两点式()直线两点,
④截矩式
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式(A,B不全为0)
注意各式的适用范围特殊的方程如
平行于x轴的直线(b为常数);平行于y轴的直线(a为常数);
(5)直线系方程即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式设是平面直角坐标系中的两个点
(9)点到直线距离公式一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.。

相关文档
最新文档