光学期末复习2014
光学教程大学期末考试复习题
光学教程大学期末考试复习题一、选择题1. 光的波长为λ,频率为ν,光速为c,它们之间的关系是:A. λ = c / νB. ν = c / λC. λν = cD. c = λ * ν2. 干涉现象发生的条件是:A. 两束光的频率相同B. 两束光的相位相同C. 两束光的强度相同D. 两束光的波长相同3. 在单缝衍射实验中,中央亮纹的宽度与下列哪个因素无关?A. 单缝宽度B. 观察屏距离单缝的距离C. 光的波长D. 单缝到观察屏的距离二、简答题1. 解释什么是光的偏振现象,并简述偏振光的应用。
2. 描述光的衍射现象,并举例说明其在日常生活中的应用。
三、计算题1. 假设一束红光的波长为700nm,求其频率。
已知光速c = 3×10^8 m/s。
2. 给定一个单缝衍射实验,单缝宽度为0.1mm,光的波长为600nm,求第一级次亮纹与中央亮纹之间的距离,假设观察屏距离单缝1m。
四、论述题1. 论述光的干涉现象在光学仪器中的应用,并举例说明。
2. 讨论光的全反射现象及其在光纤通信中的应用。
五、实验题1. 设计一个实验来验证光的干涉现象,并说明实验步骤和预期结果。
2. 描述如何使用迈克尔逊干涉仪测量光波的波长,并解释其原理。
参考答案:一、选择题1. 答案:C2. 答案:A3. 答案:C二、简答题1. 偏振现象是指光波振动方向的特定取向。
在自然界中,光通常是非偏振的,但在某些情况下,如反射和折射,光可以变为偏振光。
偏振光的应用包括偏振太阳镜减少眩光,液晶显示器的工作原理,以及在摄影中减少反射等。
2. 衍射现象是指光波在遇到障碍物或通过狭缝时,波前发生弯曲,形成新的波前。
日常生活中的应用包括CD播放器读取数据,光学显微镜成像等。
三、计算题1. 答案:ν = c / λ = (3×10^8 m/s) / (700×10^-9 m) =4.29×10^14 Hz2. 答案:由于是单缝衍射,第一级次亮纹与中央亮纹之间的距离可以通过公式计算:Δy = λL / a,其中L是观察屏距离单缝的距离,a是单缝宽度。
2014级光学技术基础复习
2014级光学技术基础复习一、填空题1.光的直线传播定律指出光在同种均匀介质中沿直线传播。
2.全反射的条件是入射角等于或大于临界角,光从光光密介质射向光光疏介质产生全反射。
3.虚物点是发散光线的反向延长线的交点。
4.光学系统的物方焦点的共轭象点在像方的无穷远处,象方焦点的共轭点在物方的无穷远处。
5.某种透明物质对于空气的临界角为45°,该透明物质的折射率等于 1.41 。
6.在符号法则中,反射定律的数学式为。
7.通过物方主点的光线,必通过象方,其横向放大率为。
8.几何光学的三个基本定律是,和。
9.曲率半径为R的球面镜的焦距为,若将球面镜浸入折射率为n的液体内,该系统的焦距为。
10.在符号法则中(光线从左向右入射)规定:主光轴上的点的距离从量起,左负右正;轴外物点的距离上正下负;角度以为始边,顺时针旋转为正,反之为负,且取小于π/2的角度;在图上标明距离或角度时,必须用。
11.当物处于主光轴上无穷远处,入射光线平行于主光轴,得到的象点称为,薄透镜成象的高斯公式是。
12.主平面是理想光具组的一对共轭平面;节点是理想光具组的一对共轭点。
13.实象点是的光束的交点。
14.实物位于凹球面镜的焦点和曲率中心之间,象的位置在与之间。
二、计算题1.利用公式证明位于正薄透镜物方焦点前一倍焦距的物经透镜所成像为等高倒立实像,并作图验证之。
2置于空气中的玻璃球,折射率为n=1.5,半径为R。
(1)物在无穷远时经过玻璃球成像在何处?(2)物在玻璃球前2R处,经玻璃球成像在何处?大小如何?3一物体位于半径为R的凹面镜前何处可分别得到放大4倍的实像、放大4倍的虚像、缩小4倍的实像、缩小4倍的虚像,计算并作图验证解:(1)放大4倍的实像(2)放大四倍虚像(3)缩小四倍实像(4)缩小四倍虚像4.一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
光学复习题集及答案
光学复习题集及答案光学是物理学中的一个重要分支,研究光的传播、折射、反射、干涉和衍射等现象。
光学作为一门基础学科,是许多科学和技术领域的基础。
为了帮助大家更好地复习光学知识,本文将提供一套光学复习题集及答案,希望能对大家的学习有所帮助。
一、选择题1. 光是一种怎样的物质?A. 波动物质B. 电磁波C. 粒子物质D. 固体物质答案:B. 电磁波2. 在以下哪种介质中光速最快?A. 真空B. 空气C. 水D. 玻璃答案:A. 真空3. 光的折射定律是由谁提出的?A. 牛顿B. 惠更斯C. 费马D. 斯内尔答案:C. 费马4. 光的干涉现象中,两束光发生干涉的条件是什么?A. 光程差不为零B. 光程差为整数倍波长C. 光程差为半整数倍波长D. 光程差为奇数倍波长答案:B. 光程差为整数倍波长5. 光的波动性最早是由谁提出的?A. 亚里士多德B. 盖洛乌C. 光栅D. 亨利答案:A. 亚里士多德二、判断题1. 光在真空中传播速度恒定。
答案:对2. 在光的折射定律中,光线从光密介质入射到光疏介质时,折射角大于入射角。
答案:错3. 光的波长越长,频率越高。
答案:错4. 紫光的频率比红光的频率高。
答案:对5. 光的干涉现象是光的波动性质的直接证据。
答案:对三、解答题1. 请解释光的干涉现象。
答案:光的干涉是指两束或多束光波相互叠加产生的明暗交替条纹的现象。
当两束光波的光程差为整数倍波长时,波峰与波峰相重合,或波谷与波谷相重合,此时出现明条纹。
而当两束光波的光程差为半整数倍波长时,波峰与波谷相重合,或波谷与波峰相重合,此时出现暗条纹。
这种干涉现象可以用来测量波长、厚度、折射率等物理量。
2. 请解释光的衍射现象。
答案:光的衍射是指光通过一个小孔或经过物体边缘后的传播现象。
当光通过一个小孔时,它会朝着各个方向弯曲,形成一个扩散的光斑。
而当光通过物体边缘时,它会绕过物体边缘并向后投射出一片阴影区,边缘附近会出现衍射光条纹。
光学教程期末试题及答案
光学教程期末试题及答案第一部分:选择题1. 光的传播速度快慢与下列哪个因素无关?A. 介质B. 光源的频率C. 入射角度D. 温度答案:D2. 在双缝干涉实验中,两个缝的间距增大,观察到的干涉条纹将会发生什么变化?A. 干涉条纹变暗B. 干涉条纹变宽C. 干涉条纹变窄D. 干涉条纹消失答案:B3. 色散是什么现象?A. 光的传播方向改变B. 光的波长范围扩大C. 光的波长因介质不同而改变D. 光的频率偏移答案:C4. 将一块凸透镜放置在物体前方,观察到物体变大且正立。
这是什么类型的透镜?A. 凸透镜B. 凹透镜C. 凸透镜和凹透镜皆可D. 无法确定答案:A5. 下列哪个物理量与光强有关?A. 入射角B. 波长C. 电场振幅D. 频率答案:C第二部分:简答题1. 解释什么是光的全反射,并且列出产生全反射的条件。
答案:当光由光密介质射向光疏介质时,入射角大于临界角时,光将完全发生反射,不会透射入光疏介质。
产生全反射的条件是入射角大于临界角且光从光密介质射向光疏介质。
2. 解释什么是光的干涉,并举例说明。
答案:光的干涉是指两个或多个光波相遇时产生的叠加效应。
其中,干涉分为构成和破坏干涉两种。
构成干涉是指光波相位差恒定或者只随空间变化而变化产生干涉,例如双缝干涉和杨氏双缝干涉。
破坏干涉是指光波相位差随时间变化产生干涉,例如薄膜干涉和牛顿环干涉。
3. 简述什么是光的偏振,并给出一个光的偏振实例。
答案:光的偏振是指光波在特定方向上振动的现象。
光波中的电场矢量可以在垂直于光传播方向的平面内振动,以及沿着光传播方向振动。
垂直于光传播方向的方向称为偏振方向。
光的偏振可以通过偏振片实现。
当线偏振光通过垂直于振动方向的偏振片时,只有与偏振方向一致的光能透过,其他方向上的光将被吸收。
第三部分:计算题1. 一束波长为500nm的光正入射到折射率为1.5的介质中,求入射角和折射角。
答案:根据折射定律 n1 * sin(入射角) = n2 * sin(折射角),代入已知数据,可得:sin(入射角) = (1.5/1) * sin(折射角)sin(入射角) = 1.5 * sin(折射角)使用三角函数表,可得 sin(折射角) = sin^-1(500nm / 1.5 * 500nm) ≈ 0.342因此,入射角≈ sin^-1(1.5 * 0.342) ≈ 34.36°,折射角≈ sin^-1(0.342) ≈ 20.72°2. 一束光线从空气中射入折射率为1.6的玻璃,入射角为30°。
物理光学期末复习重点
物理光学复习要点第一章光的电磁理论一、电磁理论1.光是电磁波,具有波动和粒子的两重性质,称为波粒二象性。
2.物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。
3.Maxwell 方程组:积分形式、微分形式4.物质方程:5.波动方程6.介质的折射率:r rrcn7.边值关系:21212121()0()0()0()n E E n H H n D D n B B 8.波(阵)面:将某一时刻振动相位相同的点连接起来,组成的曲面叫波阵面9.波长:简谐波具有空间周期性,波形变化一个周期时波在空间传播的距离称为波的空间周期,一维简谐波的空间周期为波的波长;即为λ,具有长度的量纲L 。
10.空间频率:空间周期即波长的倒数称为空间频率;f=1/λ11.空间角频率:k=±2πf,在数值上等于空间频率的2π倍,所以也称为传播数,k 的符号表示一维波的传播方向,当k>0时,表示波沿着+z 的方向传播;当k<0时,表示波沿着-z 的方向传播。
12.时间参量与空间参量的关系为:k 13. 坡印廷矢量S 称为能流密度矢量或者称为坡印廷矢量,它的大小表示电磁波所传递的能流密度,它的方向代表能量流动的方向或电磁波传播的方向。
14.电磁波强度(光强)的定义是:能流密度S 在接收器可分辨的时间间隔(即响应时间)τ内的时间平均值。
二、菲涅尔公式15. 折射和反射定律的内容是:时间频率ω是不变的;反射波和折射波均在入射面内;反射角等于入射角。
16.折射定律:折射介质折射率与折射角正弦之积等于入射介质折射率与入射角正弦之积。
(1122sin sinn n )17.菲涅耳公式18.布儒斯特定律:2121190tann n , 121EEBuvSBE S 119. 能流比:通过界面上某一面积的入射光、反射光和折射光通量之比20. 将菲涅尔公式代入反射比和透射比的公式,得21. 全反射临界角sin θc= n 2/n122.隐矢波:全反射时全部光能都反回第一介质,光波将透入第二介质很短的一层表面(深度约为光波波长,并沿界面流动约半个波长再返回第一介质。
2014高考物理经典复习资料之光学知识点总结
光学这一章内容比较多,重要的是光的几种特性,包括:折射、干涉、衍射、偏振和光的全反射。
但是通过比较天津近几年的高考题咱们可以发现,天津的高考对这一章的要求还是比较低的,只是一个选择题,考察的也只是对基本知识的应用和理解。
所以咱们的复习也从这些方面展开。
以下为基本的知识网络:一 光的反射:1.光沿直线传播的条件是:光在同一种均匀介质中传播2.平面镜成像的特点是:正立、等大的虚像二 光的折射:折射定律:折射光线和入射光线以及法线在同一平面内,折射光线和入射光线分居法线两侧,入射角的正弦与折射角的正弦成正比。
(在光的折射中光路是可逆的)折射率:光从真空射入某介质时,入射角的正弦和折射角的正弦之比,称为折射率,用字母n 表示。
实验证明:vc n (c 表示光在真空中的速度,v 表示光在介质中的速度) 注意:(任何介质的折射路均>1。
到这里又引出两个概念来:光密介质和光疏介质 n 大的是光密介质,n 小的是光疏介质,两者是相对的。
当光从光疏介质进入光密介质时,折射角小于入射角。
当光从光密介质进入光疏介质时,折射角大于入射角。
)对折射率的理解:介质折射率的大小取决于介质本身及入射光的频率,不同介质的折射率不同,与入射角、折射角的大小无关。
当光从真空射入介质中时,入射角、折射角以及它们的正弦值是可以改变的,但是正弦值之比是一个常数。
不同的介质,入射角的正弦跟折射角的正弦之比也是一个常数,但不同的介质具有不同的常数,说明常数反映着介质的光学特性。
介质的折射率跟光的传播速度有关,由于光在真空中的传播速度大于光在其他任何介质中的传播速度,所以任何介质的折射率都大于光从真空射入任何介质。
测定玻璃的折射率:如图所示为两面平行的玻璃砖对光路的侧移,用插针法找出与入射光线AO 对应的出射光线B,确定出点,画出,量出入射角和折射角的度数。
根据公式:计算出玻璃的折射率。
光从一种介质当中进入另一种介质中,频率、波长、光速是否变化1.光从一种介质进入另一种介质中,由于其频率是由光源决定的,与介质无关,所以光的频率不发生变化,但光速。
大学光学复习题及答案
大学光学复习题及答案一、选择题1. 光学中,光的波动性是由下列哪位科学家首次提出的?A. 牛顿B. 胡克C. 惠更斯D. 爱因斯坦答案:C2. 以下哪个现象不是光的干涉现象?A. 薄膜干涉B. 单缝衍射C. 双缝干涉D. 多光束干涉答案:B3. 光的偏振现象说明光是:A. 横波B. 纵波C. 非偏振光D. 无偏振性答案:A二、填空题4. 光的折射定律是______定律,由斯涅尔提出。
答案:斯涅尔定律5. 单色光在真空中的波长是λ,频率是ν,则光速c可以表示为c=______。
答案:λν6. 光的全反射现象发生在光从______介质射向______介质时。
答案:光密;光疏三、简答题7. 请简述光的衍射现象及其条件。
答案:光的衍射现象是指光波在遇到障碍物或通过狭缝时,光线会偏离直线传播路径,向障碍物的后方或狭缝的两侧传播。
衍射现象的条件是光波的波长与障碍物或狭缝的尺寸相近或更大。
8. 什么是光的偏振,偏振光有哪些应用?答案:光的偏振是指光波振动方向的有序排列。
在自然光中,光波的振动方向是随机的,而在偏振光中,振动方向是一致的。
偏振光的应用包括偏振太阳镜减少眩光、液晶显示器的工作原理、以及在摄影中减少反射等。
四、计算题9. 已知单色光在真空中的波长为500nm,求该光的频率。
答案:根据公式c=λν,其中光速c=3×10^8 m/s,波长λ=500nm=500×10^-9 m,解得频率ν=c/λ=(3×10^8)/(500×10^-9) Hz=6×10^14 Hz。
10. 一束光从玻璃射入水中,折射率为1.5,求光在水中的波长。
答案:根据折射定律n1sinθ1=n2sinθ2,其中n1为玻璃的折射率(约为1),n2为水的折射率(1.5),θ1为光在真空中的角度(通常为0),θ2为光在水中的角度。
由于光从光密介质进入光疏介质,sinθ2=1,解得sinθ1=n2/n1=1.5,因此光在水中的波长λ2=λ1/n2=500nm/1.5=333.33nm。
光学复习题及答案
光学复习题及答案1. 光的干涉现象是如何产生的?答:光的干涉现象是由于两个或多个相干光波相遇时,由于光波的相位差导致光强的增强或减弱。
当两波的相位差为0或2π的整数倍时,光波相互加强,形成亮条纹;当相位差为π或奇数倍π时,光波相互抵消,形成暗条纹。
2. 描述光的衍射现象及其应用。
答:光的衍射现象是指光波遇到障碍物或通过狭缝时,光波会偏离直线传播路径,向障碍物的阴影区域或狭缝的两侧弯曲。
衍射现象的应用包括光栅光谱分析、光学成像系统的设计等。
3. 什么是偏振光?偏振光有哪些应用?答:偏振光是指光波的电场矢量在特定方向上振动的光。
偏振光的应用包括偏振太阳镜减少眩光、液晶显示技术以及光学显微镜中的偏振滤光片等。
4. 简述全反射现象及其条件。
答:全反射现象是指光从光密介质射向光疏介质时,当入射角大于临界角时,光波完全反射回光密介质中,不会发生折射。
全反射的条件是光必须从光密介质射向光疏介质,且入射角大于临界角。
5. 什么是色散现象?色散现象如何影响光学系统?答:色散现象是指不同波长的光在介质中传播速度不同,导致光的分散。
在光学系统中,色散现象会导致成像模糊、色差等问题,需要通过设计合适的光学系统来校正色差。
6. 光的波动性和粒子性是如何体现的?答:光的波动性体现在光的干涉、衍射和偏振等现象中,而粒子性则体现在光电效应和康普顿散射等现象中。
光的波动性和粒子性是光的波粒二象性的表现。
7. 描述光的多普勒效应及其应用。
答:光的多普勒效应是指当光源和观察者之间存在相对运动时,观察者接收到的光波频率会发生变化。
多普勒效应的应用包括雷达测速、天文学中测量恒星的相对速度等。
8. 什么是光的相干性?如何提高光的相干性?答:光的相干性是指光波之间的相位关系。
提高光的相干性可以通过使用激光光源、使用干涉滤光片等方法来实现。
9. 简述光的波粒二象性。
答:光的波粒二象性是指光既表现出波动性也表现出粒子性。
在某些实验中,光表现为波动,如干涉和衍射现象;而在其他实验中,光表现为粒子,如光电效应。
光学期末复习
四、反射及折射
1、正入射:
由光疏→光密 有半波损; 由光密→光疏 无半波损。
2、掠入射:由光疏→光密 有半波损。
3、全反射临界角:
ic
sin1 n21
sin1( n2 ) n1
4、
ii
ib
tg
n 1 21
tg 1
n2 n1
rp 0, Rp 0, Rp 0
自然光入射,反射光为S态。
n2 n2
增反 增透
物理名词
• 光的衍射 • 惠更斯-菲涅耳原理 • 巴俾涅原理 • 夫琅禾费衍射 菲涅耳衍射 • 菲涅耳波带片 • 成像系统分辨本领 • 瑞利判据
一、光的衍射现象: 二、惠更斯-菲涅耳原理: 三、分类:
菲涅耳衍射(近场衍射)
夫琅和费衍射(远场衍射)
四 菲涅耳衍射
矢量图解法 半波带法
示
会聚球面波
E(r, t )
E0 r
cos(kr t
0 )
学 描
发散柱面波
E
E0 r
cos(kr t 0 )
述
会聚柱面波
E
E0 r
cos(kr t 0 )
复数表示
复波函数 E~(r ,t) E0(r)exp[i(k r 0)]exp(it)
复振幅 E~( r ) E0 (r) exp[i(k r 0)]
群速度 g 等振幅面的传播速度
v dw dk g
动态变化 (h变化)
五.分振幅干涉 ——等厚干涉 明纹 暗纹 e 干涉条纹——等Δ线——等h线
1.楔形板(膜)的等厚干涉
光程差公式
2nh cos 2 2
期末复习------光学
期末复习-----光学一、折射率的理解1.某种介质的折射率是指光从真空(或空气)进入该介质时入射角的正弦值与折射角的正弦值之比,如果是从该介质进入空气(或真空),则入射角的正弦值与折射角的正弦值之比等于折射率的倒数.2.折射率的大小反映了介质的光学性质和入射光的频率:(1)折射率越大,说明介质对光的偏折作用越大,光线偏离原来传播方向的程度越厉害. (2)介质对光的折射率越大,说明该光在介质中的传播速度越小. (3)相对于同一介质,折射率越大的光,其频率越大.1.为测量一块等腰直角三棱镜ABD 的折射率,用一束激光沿平行于BD边的方向射向直角边AB 边,如图所示,激光束进入棱镜后射到另一直角边AD 边时,刚好能发生全反射,该棱镜的折射率为多少?26n2.如图所示是一透明的圆柱体的横截面,其半径R =20cm ,折射率为3,AB 是一条直径,今有一束平行光沿AB 方向射向圆柱体,试求: (1)光在圆柱体中的传播速度;(2)距离直线AB 多远的入射光线,折射后经过B 点.(1)3³108m/s (2)103cm有一灯A,水下池壁上有一彩灯B(B灯在图中未画出),如图所示,他调整自己到岸边的距离,直到发现A灯经水面反射所成的像与B灯经水面折射后所成的像重合,此时人到对岸的距离L=10m,A灯距水面高为0.5m,人眼E距水面高为2m,水的折射率为4/3.(1)画出小明看到A、B灯的像重合时的光路图;(2)求B灯在水面下的深度.解析(1)光路图如下图所示二、全反射现象的理解与应用1.光密介质和光疏介质是相对而言的,同一种介质,相对于其他不同的介质,可能是光密介质,也可能是光疏介质.2.光从光疏介质射入光密介质时,入射角大于折射角;光从光密介质射入光疏介质时,入射角小于折射角.3.如果光线从光疏介质进入光密介质,则无论入射角多大,都不会发生全反射现象.4.光导纤维(1)结构:光导纤维(简称光纤),是一种透明的玻璃纤维丝,由内芯和外套两层组成,内芯的折射率大于外套的折射率,即内芯是光密介质,外套是光疏介质.(2)原理:光在光纤的内芯中传播,每次射到内、外层的界面上时,都要求入射角大于或等于临界角,从而发生全反射.4.香港中文大学第三任校长高锟荣获了09年诺贝尔物理学奖,诺贝尔奖委员会高度评价了高锟的贡献,评委会指出:高锟1966年发现如何通过光学玻璃纤维远距离传输光信号的工作,成为今日电话和高速互联网等现代通信网络运行的基石,下列说法中,正确的是( AD ) A.光纤通信具有传输容量大、衰减小、抗干扰性强等优点B.光纤通信、全息照相、数码相机及医用纤维式内窥镜都是利用了光的全反射原理C.实用光导纤维是由内芯和外套两层组成,内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生全反射D.当今在信号的传输领域中,光纤电缆(“光缆”)已经几乎完全取代了传统的铜质“电缆”,成为传播信息的主要工具,是互联网的骨架,并已联接到普通社区5.很多公园的水池底都装有彩灯,当一细束由红、蓝两色组成的灯光从水中斜射向空气时,关于光在水面可能发生的反射和折射现象,下列光路图中正确的是( C )示,O为半圆的圆心,甲、乙两同学为了估测该透明体的折射率,进行了如下实验.他们分别站在A、O处时,相互看着对方,然后两人贴着柱体慢慢向一侧运动,到达B、C处时,甲刚好看不到乙.已知半圆柱体的半径为R,OC=0.6R,BC⊥OC,则半圆柱形透明物体的折射率为5/37.如图所示,一束截面为圆形(半径为R)的平行白光垂直射向一玻璃半的半径为R,屏幕S至球心的距离为d(d>3R),不考虑光的干涉和衍射,试问:(1)在屏幕S上形成的圆形亮区的最外侧是什么颜色(2)若玻璃半球对(1)中色光的折射率为n,请你求出圆形亮区最大半径(1)紫色(2)d n2-1-nR三、光的折射对光路的控制1.玻璃砖对光路的控制两平面平行的玻璃砖,出射光线和入射光线平行,且光线发生了侧移,如图所示.8.(2010²全国Ⅱ²20)频率不同的两束单色光1和2以相同的入射角从同45º,下列说法正确的是( AD )A.单色光1的波长小于单色光2的波长B.在玻璃中单色光1的传播速度大于单色光2的传播速度C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板所需的时间D.单色光1从玻璃到空气的全反射临界角小于单色光2从玻璃到空气的全反射临界角9.如图示,两块同样的玻璃直角三棱镜ABC,两者的 AC面是平行放置的,在它们之间是均匀的未知透明介质,一单色细光束O垂直于AB面入射,在如图示的出射光线中( B )A. 1、2、3(彼此平行)中的任一条都有可能B. 4、5、6(彼此平行)中的任一条都有可能C. 7、8、9(彼此平行)中的任一条都有可能D. 只能是4、6 中的某一条2.三棱镜对光路的控制(1)光密三棱镜:光线两次折射均向底面偏折,偏折角为δ,如图所示.(2)光疏三棱镜:光线两次折射均向顶角偏折.(3)全反射棱镜(等腰直角棱镜),如图所示.①当光线从一直角边垂直射入时,在斜边发生全反射,从另一直角边垂直射出(如图甲).②当光线垂直于斜边射入时,在两直角边发生全反射后又垂直于斜边射出(如图乙),入射光线和出射光线互相平行.特别提醒:不同颜色的光的频率不同,在同一种介质中的折射率、光速也不同,发生全反射现象的临界角也不同.10.空气中两条光线a和b从方框左侧入射,分别从方框下方和上方射出,其框外光线如图所示,方框内有两个折射率n=1.5,的玻璃全反射棱镜,下列选项中给出了两棱镜四种放置方式的示意图,其中能产生上述效果的是 ( B )11.一束白光从顶角为θ的一边以较大的入射角i射入并通过三棱镜后,在屏P上可得到彩色光带,如图所示,在入射角i逐渐减小到零的过程中,假如屏上的彩色光带先后全部消失,则( B )A.红光最先消失,紫光最后消失 B.紫光最先消失,红光最后消失C.紫光最先消失,黄光最后消失 D.红光最先消失,黄光最后消失12.如图所示,一细束红光和一细束蓝光平行射到同一个三棱镜上,经折射后交于光屏上的同一个点M,若用n1和n2分别表示三棱镜对红光和蓝光的折射率,下列说法中正确的是( B )A.n1<n2,a为红光,b为蓝光B.n1<n2,a为蓝光,b为红光C.n1>n2,a为红光,b为蓝光D.n1>n2,a为蓝光,b为红光13.如图所示,A、B、C为等腰棱镜,a、b两束不同频率的单色光垂直AB边射入棱镜,两束光在AB面上的入射点到OC的距离相等,两束光折射后相交于图中的P点,以下判断正确的是( C )A.在真空中,a光光速大于b光光速B.在真空中,a光波长大于b光波长C.a光通过棱镜的时间大于b光通过棱镜的时间D.a、b两束光从同一介质射入真空的过程中,a光发生全反射的临界角大于b光发生全反射的临界角四、测玻璃的折射率14.关于“测定玻璃的折射率”的实验中,下列说法中不正确的是( B ) A .有几组入射角(θ1≠0)和折射角,便可以测出玻璃的折射率的平均值 B .在本实验中采用玻璃砖,这是因为只有玻璃砖才能测出玻璃的折射率 C .本实验的各项步骤,都是为了找到给定的入射角的折射角而设计的 D .棱镜、半圆形玻璃砖等都可以用来测定玻璃的折射率15.如图所示,某同学用插针法测定一半圆形玻璃砖的折射率,在平铺的白纸上垂直纸面插上大头针P 1、P 2确定入射光线,并让入射光线过圆心O ,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针P 3,使P 3挡住P 1、P 2的像,连接OP 3,图中MN 为分界面,虚线半圆与玻璃砖对称,B 、C 分别是入射光线、折射光线与圆的交点,AB 、CD 均垂直于法线并分别交法线于A 、D 点.(1)设AB 的长度为L 1,AO 的长度为L 2,CD 的长度为L 3,DO 的长度为L 4,为较方便地表示出玻璃砖的折射率,需用刻度尺测量______,则玻璃砖的折射率可表示为_____.(2)该同学在插大头针P 3前不小心将玻璃砖以O 为圆心顺时针转过一小角度,由此测得玻璃砖的折射率将________(填“偏大”或“偏小”或“不变”).(1)l 1和l 3 l 1l 3(2)偏大16.用三棱镜做测定玻璃折射率的实验,先在白纸上放好三棱镜,在棱镜的一侧插入两枚大头针P 1和P 2,然后在棱镜的另一侧观察,眼睛所在的一侧插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 3和P 1、P 2的像,在纸上标出的大头针的位置和三棱镜轮廓如图所示。
光学期末考试试题及答案
光学期末考试试题及答案一、选择题(每题2分,共20分)1. 光的波动性是由哪位科学家首次提出的?A. 牛顿B. 惠更斯C. 爱因斯坦D. 麦克斯韦2. 下列哪项不是光的干涉现象?A. 薄膜干涉B. 单缝衍射C. 双缝干涉D. 光栅衍射3. 光的偏振现象说明了光的什么性质?A. 粒子性B. 波动性C. 量子性D. 非线性4. 光的折射定律是由哪位科学家提出的?A. 牛顿B. 惠更斯C. 斯涅尔D. 麦克斯韦5. 以下哪个不是光的偏振器?A. 偏振片B. 光栅C. 偏振镜D. 偏振棱镜二、填空题(每空2分,共20分)6. 光的三原色是________、________和________。
7. 光的全反射现象发生在________中,当光从________介质进入________介质时。
8. 光的衍射现象说明了光具有________性。
9. 光的色散现象是由于不同颜色的光在介质中的________不同。
10. 光的偏振现象可以通过________来实现。
三、简答题(每题10分,共20分)11. 简述光的干涉条件。
12. 解释光的偏振现象及其应用。
四、计算题(每题15分,共30分)13. 假设有一个单缝衍射实验,单缝宽度为0.5mm,光波长为600nm,求第一级衍射极大值的角位置。
14. 一个光栅,其光栅常数为0.2mm,入射光波长为500nm,求第一级衍射极大值的角位置。
五、论述题(10分)15. 论述光的量子性及其在现代光学技术中的应用。
答案一、选择题1. B2. B3. B4. C5. B二、填空题6. 红、绿、蓝7. 光密,光密,光疏8. 波动9. 折射率10. 偏振片三、简答题11. 光的干涉条件是:两束光的频率相同,相位差恒定,光程差小于或等于相干长度。
12. 光的偏振现象是指光波的振动方向受到限制,只在一个平面内振动。
偏振现象的应用包括偏振太阳镜减少眩光,偏振片用于摄影中减少反射,以及在液晶显示技术中的应用。
(完整版)物理光学期末考试题及答案精选全文完整版
I 入射光 P 振动方向eλn 1 n 2 n 3可编辑修改精选全文完整版一、填空题(每小题4分,总共24分)1.玻璃的折射率为n =1.5,光从空气射向玻璃时的布儒斯特角为________;光从玻璃射向空气时的布儒斯特角为________。
2.如图所示,左图是干涉法检查平面示意图,右图是得到的干涉图样,则干涉图中条纹弯曲处的凹凸情况是_________。
(填“上凸”或“下凹”)3. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1>n 2>n 3,λ1 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为。
4. 在单缝夫琅和费衍射的观测中:①令单缝在纸面内垂直透镜的光轴上、下移动,屏上的衍射图样改变(填“是”或“否”);②令光源垂直透镜的光轴上、下移动时,屏上的衍射图样改变(填“是”或“否”)。
5. 在双折射晶体内部,频率相同而光矢量的振动方向不同的线偏振光。
①沿光轴传播时,它们的传播速度是_______的(填“相同”或“不同”);②沿垂直光轴传播时,它们的传播速度是_______的(填“相同”或“不同”)。
6.如图所示,当偏振片P 旋转一周时,①若I 不变,则入射光是_______;②若I 变,并且有消光现象,则入射光是_______;③若I 变,但是无消光现象,则入射光是_______。
二、简答题(每小题6分,总共36分)1.汽车两前灯相距1.2m ,设灯光波长为λ=600nm ,人眼瞳孔直径为D =5mm 。
试问:对迎面而来的汽车,离多远能分辨出两盏亮灯?2. 一束波长为λ=500nm 的平行光束在空气中传播,若在与光束垂直的方向上插入一个透明薄片,薄片厚度d =0.01mm ,折射率n =1.5。
试问:插入薄片后引起的光程和相位变化分别为多少?3. 某线偏振光在真空中的波长为λ=589nm ,垂直入射到方解石上,晶体的光轴与表面平行,已知方解石晶体的主折射率为n o =1.658,n e =1.486。
光学大学期末考试复习题
光学大学期末考试复习题光学是物理学中的一个重要分支,它研究光的性质、行为以及与物质的相互作用。
以下是光学大学期末考试的复习题,供同学们复习参考:一、选择题1. 光的波动理论是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 麦克斯韦D. 惠更斯2. 光的干涉现象说明了光具有什么性质?A. 粒子性B. 波动性C. 反射性D. 折射性3. 以下哪种光学仪器是利用光的折射原理工作的?A. 望远镜B. 显微镜C. 激光器D. 偏振器4. 光的衍射现象说明光具有什么特性?A. 直线传播B. 波动性C. 粒子性D. 反射性5. 光的偏振是指什么?A. 光的传播方向B. 光的振动方向C. 光的频率D. 光的强度二、填空题1. 光的三原色是红、绿、____。
2. 光的波长越长,其频率越____。
3. 激光的全称是____。
4. 光的折射定律是斯涅尔定律,其表达式为n1 * sinθ1 = n2 * sinθ2,其中n代表____,θ代表____。
5. 光的衍射现象中,单缝衍射的中央亮纹宽度与缝宽的关系是____。
三、简答题1. 解释什么是光的干涉,并给出两个干涉现象的例子。
2. 描述光的偏振现象,并解释偏振光在日常生活中的应用。
3. 阐述光的衍射现象,并解释衍射现象如何影响我们对光的理解。
四、计算题1. 假设一个光源发出波长为600纳米的光,通过一个双缝干涉装置,双缝间距为1微米,求在距离光源1米处的屏幕上,相邻亮纹之间的距离。
2. 一个光栅的每毫米有1000条线,如果使用波长为500纳米的光照射这个光栅,求第一级衍射角的大小。
五、论述题1. 论述光的量子理论及其对现代物理学的影响。
2. 讨论光学在现代科技中的应用,并举例说明。
请同学们认真复习,准备期末考试。
祝考试顺利!。
《光学教程》期末总复习
P2
A 2o
A 2e
A sin o
A cos e
A sin 1
A cos 1
sin cos
I.
I A2 A2 A2 2 A A cos
2o
2e
2o 2e
: 其所中以A:12coIs//I2(A12A[12)sinssi2nin22222sisnsii(n2nn2o2 2sn.ine])2d220
k
k
夫琅和费单缝衍射
观测屏
衍射屏透镜
x2 x1
x
0 x0
I
0
f
包络线为单缝衍射 的光强分布图
次极大
夫琅和费多缝衍射
主极大中( 亮纹 )来自央亮极小值
纹
k=-6 k=-4 k=-2 k=0 k=2 k=-5 k=-3 k=-1 k=1 k=3
k=4 k=5
k=6
三. 几种衍射的情况表格(一)
光强分布 决定光强 分布因素
② 片: (2k 1) , (2k 1) , 能把2 左旋圆偏振光→右2旋圆偏振光,线偏光
⊥入射→线偏振光,但θ→2θ.
③ 片: (2k 1), 2k , 入射线偏振光→线偏振光
五:偏振光的检验:
偏 振 片
I没变圆自偏然振光光
1 4
片
—
偏振片I变I(两没次变消光自) 然圆光 偏振光
)
最大 最小
▲ 2. 对 P 点若 S 中含有不完整的半波带:
1 2
(a1
ak )
Ak
1 2
(a1
ak )
光强介于最大/最小间
▲ 3. 若 不用光阑(Rhk→∞):
ak
ak 0
Ap
2014级光学技术基础复习
2014级光学技术基础复习一、填空题1.光的直线传播定律指出光在同种均匀介质中沿直线传播。
2.全反射的条件是入射角等于或大于临界角,光从光光密介质射向光光疏介质产生全反射。
3.虚物点是发散光线的反向延长线的交点。
4.光学系统的物方焦点的共轭象点在像方的无穷远处,象方焦点的共轭点在物方的无穷远处。
5.某种透明物质对于空气的临界角为45°,该透明物质的折射率等于 1.41 。
6.在符号法则中,反射定律的数学式为。
7.通过物方主点的光线,必通过象方,其横向放大率为。
8.几何光学的三个基本定律是,和。
9.曲率半径为R的球面镜的焦距为,若将球面镜浸入折射率为n的液体内,该系统的焦距为。
10.在符号法则中(光线从左向右入射)规定:主光轴上的点的距离从量起,左负右正;轴外物点的距离上正下负;角度以为始边,顺时针旋转为正,反之为负,且取小于π/2的角度;在图上标明距离或角度时,必须用。
11.当物处于主光轴上无穷远处,入射光线平行于主光轴,得到的象点称为,薄透镜成象的高斯公式是。
12.主平面是理想光具组的一对共轭平面;节点是理想光具组的一对共轭点。
13.实象点是的光束的交点。
14.实物位于凹球面镜的焦点和曲率中心之间,象的位置在与之间。
二、计算题1.利用公式证明位于正薄透镜物方焦点前一倍焦距的物经透镜所成像为等高倒立实像,并作图验证之。
2置于空气中的玻璃球,折射率为n=1.5,半径为R。
(1)物在无穷远时经过玻璃球成像在何处?(2)物在玻璃球前2R处,经玻璃球成像在何处?大小如何?3一物体位于半径为R的凹面镜前何处可分别得到放大4倍的实像、放大4倍的虚像、缩小4倍的实像、缩小4倍的虚像,计算并作图验证解:(1)放大4倍的实像(2)放大四倍虚像(3)缩小四倍实像(4)缩小四倍虚像4.一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
2014光学期末总复习
x
D
d
几个特征: 1、若用白光入射,中央零极仍为白色亮纹,两侧对称地排列 着彩色条纹。
2、干涉条纹的移动
• 条纹移动的原因 – 光源移动 – 装置结构变动 – 光路中的介质变化 • 观察条纹移动的方法 – 两种方法:定点观察,跟踪观察
三、分振幅干涉 (薄膜干涉实验)
等 厚 干 涉
等 倾 干 涉
特点 光路
投影仪的光路图
2、照相机 原理 相当于单凸透镜成缩小的实像 s >>f ; s′≈ f ′; V=–s′/ s ≈ –f′/ s 特点
光路
照相物镜的景深 ★景深的含义:物镜能够成清晰像的物距范围 ★影响景深的因素:光阑大小、焦距和物距
x f2 2 x x
X(物距)越大,景深越大。光阑直径缩小,光束变窄,景 深加大
定义:入射在被照物单位面积上的光通量 单位:勒克斯(Lx),旧称 辐透(ph); 1lx
2
lm/m
被点光源照射物的照度
第二章 几何光学 一、实像与虚像、实物与虚物:物像分类 ※ 由实际光线成的像,称为实像。 ※ 由反射或折射光线的反向延长线相交所得的 像称为虚像。
A A’
A’
A
实物、实像
虚物、虚像
lim s f
s
nr n n
三、逐次成像
n n n n s1 s1 r
或
f1 f1 1 s1 s1
n n n n s2 s2 r
f 2 f 2 1 s2 s2
和
ns1 V1 ns1
ns2 V2 …… ns2
ei
e ei 1
条纹间距 x 微小物体的厚度
光学期末考试提纲
光学期末复习提纲1.1几个基本概念E = Aexp[ -i(ωt+φ0)]振动E = Aexp[ —i(ω(t-Δt) +φ0)] 波函数更常用的表达式E = Aexp[ -i(wt—k•r +φ0)]时间:T ,f=1/T , ω=2π/T 周期,频率,圆频率空间:λ, 1/λ, k=2π/λ波长,波数,角波数(波矢)1。
2三个光学基本原理(直线传播、反射折射、全反射)光程(L=nl)与费马原理:由费马原理推导光的反射定律和折射定律费马原理:光总沿着光程最短的路径传播ⅆLⅆx=0证明:反射: 光程L=n√(x1−x)2+y12+n√(x2−x)2+y22由费马原理ⅆLⅆx =0得:12√(x1−x)2+y1−22√(x2−x)2+y2=0又sini1=1√(x1−x)+y12, sini1′=2√(x2−x)2+y2代入得: sini1=sini1′, 即i=i′,证毕。
折射:L′=n1√(x1−x)2+y12+n2√(x2−x)2+y22由费马原理:ⅆL′ⅆx =0得:112√(x1−x)2+y1−222√(x2−x)2+y2=0又sin i1=1√(x1−x)2+y12,sini2=2√(x2−x)2+y22代入得:n1sini1−n2sini2=0,即sini1sini2=n2n1,证毕.1。
3什么是偏振?偏振光的分类(哪几类,怎么分)错误!完全偏振光:错误!平面偏振光(线偏振光):偏振面方位恒定的光,可看成振动方向正交、相位相同(或相反)的两个平面偏振光的合成错误!圆偏振光:偏振面相对于传播方向随时间以圆频率ω旋转,其光矢量末端轨迹位于一个圆。
可看成振幅相等、振动方向正交、相位差为±π/2的两个同频率的平面偏振光合成(正号右旋,负号左旋)错误!椭圆偏振光:偏振面相对于传播方向随时间以圆频率ω旋转,其光矢量末端轨迹位于一个椭圆螺旋线上,在垂直于传播方向的平面上的投影构成一个椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1 R2
Y
r1
d
O
r2
O’
Y
S2
r0
1
o
r
P f
a1
a2
等倾干涉
S
i1
i1 i1
·
i1
2
L
n1
n2 > n1
n1
D · A·· C i · B
h
等厚干涉
迈克尔孙干涉仪
M1 M 2′ p S p b1 a1
L1
a b G1 G2 L2 F
a2
b2 M2
4
F
A
多光束的干涉
P0
r0
求菲涅耳圆孔衍射中心场点Po 处的光强度。
采用半波带法
R
在实际应用中,通常不易直接计算衍射积分,需要概念清晰,计算简单的方法。 采用近似处理的方法
由:
U ( P)
()
dU ( P) U
i
( P )求解
9
露出前k个半波带的圆孔衍射中 1 心场点Po处的合振幅 用如下上下交替的矢量来 表示 P0 点处振幅的叠加
不管圆屏的位置和大小怎样,圆屏几何影子的中心 永远有光(泊松点)。
若不用光阑(或自由传播)
A(P0)=1/2a1 自由传播时整个波前在场点产生的振幅是第一个半波带的效果的一半。此时 功率为I0.
11
夫琅和费单缝衍射
衍射屏 透镜L 2 透镜L1
光源
接收屏
A
p · P0
*
B
BD BD : BB以前以及BD以后光程相等 令BM x, 则MN=x sin E A cos(kr t ) A dx 2 dE cos( x sin t ) b b sin( sin ) sin u A A A A sin cu b u sin I I sin c u
1 sin N 2 A2 A02 2 1 sin 2
2
惠更斯原理的表述: 1)光波波面上每一点可看成一 个新的次级波源,发出次波; 2)下一个时刻的波面为所有次 波的共同包络面; 3)波的传播方向在次波源与次波前和包络面的切点的连线 方向上。
6
菲涅耳在惠更斯原理的基础上,增加了“次波相干叠加” 的原理,从而发展成为惠更斯—菲涅耳原理。
0 p 0 0 0 2 P 0
1.单缝夫琅和费衍射实验装置如图所示,L为透镜, EF为屏幕;当把单缝S稍微上移时,衍射的图样将 [ C ] (A)向上平移 L (B)向下平移 (C)不动 (D)消失
E
f
F
2.在如图所示的单缝夫琅和费衍射实验中,将单 缝K沿与光的入射方向(图中的方向)稍 X 微平移,则 [ C ] (A)衍射条纹移动,条纹宽度不变 S (B)衍射条纹移动,条纹宽度变动 (C)衍射条纹不动,条纹宽度不变 L1 L2 K (D)衍射条纹中心不动,条纹变窄
-u’
图示:Kepler望远镜的光路 物镜Lo
f1 ' ' M f2 '
u’
u
目镜Le Fo’ F
e
图示:Galilei望远镜的光路
18
a3
1 a 2 k
1 Rh k ( ) r0 R
2
K个完整菲
S a1
·R
a3
R
o
rk r0
涅耳半波 带数
P0
·
菲涅耳圆孔衍射
ak A A
1 a 2 1
a2
a4
a3 –a 4 a1 –a 2
a2
a4
ak
k 为奇数
时
时 P0 点的振幅为第一个波带和 1 A [ a1 ( 1) k 1 ak ] 最后一个波带所发出次波的 合成一式 2 振幅相加(减)。 10
1 A (a1 ak ) 2
k 为偶数
1 A ( a1 ak ) 2
圆屏的菲涅耳衍射
求遮住前n个半波带的圆屏衍射中心场点Po 处的合振幅
A( P0 ) an 1 an 2 a 1 1 [an 1 (1) a ] an 1 2 2
U ( P) C
eikr A(Q)K ( 0 , ) d r
衍射的分类
菲涅耳衍射
E A
S
光源—障碍物—接收屏 距离为有限远。(两者之一) 光源
近场衍射
夫琅和费衍射
B 障碍物
接收屏
E A
S
光源—障碍物—接收屏 距离为无限远。
远场衍射
光源
B 障碍物
接收屏
8
要解决的问题
S
Rh
14
E
平面衍射光栅
L1
L2
P
S
d
P0
sin u sin Nv I A0 . 2 2 u sin v
2
2
2
b u sin
d v sin
显微镜
S0 显微镜的放大率:M VO M e f1 ' f 2 '
物镜 Lo u
目镜 Le Fo’ F
e
眼睛