2008年普通高等学校招生全国统一考试数学卷(安徽.文)含详解

合集下载

2008高考安徽数学理科试卷和答案(全word版)080613

2008高考安徽数学理科试卷和答案(全word版)080613

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =g g球的体积公式 34π3V R =如果随机变量(,),B n p ξ:那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =--I B . ()(,0)R C A B =-∞U C .(0,)A B =+∞UD . }{()2,1R C A B =--I(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( ) A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[3,3] B .(3,3) C .33[,33-D .33(33-(9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年高考理科数学试题及参考答案(安徽卷)

2008年高考理科数学试题及参考答案(安徽卷)

摘要〕毛泽东用历史唯物主义的原理和方法研究了命运问题,取得了有重大理论价值和实践价值的成果。

他揭示了命运范畴的内涵,论述了中国的命运的主体矛盾,阐明了中国共产党掌握命运的方法,指示了各社会主体处理国家命运和本主体命运的关系的原则,实际上形成了马克思主义的“命运掌握论”。

〔关键词〕毛泽东;命运范畴;主体矛盾;命运掌握论毛泽东在他的著作中,多次提出并论述了“命运”范畴;而非显性地说来,他还广泛涉及“命运”范畴的内涵和真谛,命运掌握的原理和方法。

毫不夸张地说,毛泽东的“命运掌握论”是对于历史唯物主义原理的新开拓和新创造。

一、对“命运”范畴内涵的揭示中国和西方自古以来的哲学家中,有不少人直接地研究了“命运”范畴,给出了这样那样的定义。

但是,马克思和他在欧洲的后继者们却未面对“命运”、论述“命运”,只有生活在国情极为复杂的现代中国、研究着中国社会向何处去的问题、探索着中国革命实践的发展轨迹的毛泽东才能提出“命运”范畴,一步一步地揭示着“命运”范畴链条上的各个逻辑环节,接近于下出了马克思主义的“命运”定义。

回读毛泽东的一系列著作,“命运”范畴中所包含的以下逻辑环节就展现在我们面前:(一)“命运”范畴内容链的前提性环节是“实践的客观条件系统”,毛泽东称之为“国情”中国的命运如何,首先取决于中国的国情。

毛泽东指出:只有认清中国社会的性质,才能认清中国革命的对象、中国革命的任务、中国革命的动力、中国革命的性质、中国革命的前途和转变,而前途问题、转变问题,正是命运问题。

解决命运问题的“基本的根据”正在于以“社会的性质”为内容的“国情”。

按照这个观点,今天我们可以说,未来的中国是现实的中国的一种发展,我们对现实中国的国情有全面的认识,我们才能掌握未来中国的命运。

(二)“命运”范畴的第二个逻辑环节是现实中包含的多种可能性,毛泽东实际上形成了一个新概念:“客观可能性空间”命运之所以存在,较为直观地看,那是因为现实事物的未来发展具有不确定性,深入一步分析,便知这种不确定性来源于现实中的多种可能性的并存。

2008年高考安徽理科数学试卷及答案解析

2008年高考安徽理科数学试卷及答案解析

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =--(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[3,3]B .(3,3)C .33[ D .33( (9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年安徽省数学(文科)高考试卷及答案

2008年安徽省数学(文科)高考试卷及答案

数学一试题解析(1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直的22l i m 11x x x x →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:C【解析】:'222()(2)()(1)(22)()(1)(2)()xxnxx xnxx xnxf x e e en e een e enen =--+---+---所以'(0)f =1(1)!n n --(3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( ) (A )若极限0(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(B )若极限2200(,)lim x y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(C )若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y→→+存在(D )若(,)f x y 在(0,0)处可微,则极限22(,)lim x y f x y x y→→+存在【答案】:【解析】:由于(,)f x y 在()0,0处连续,可知如果22(,)limx y f x y x y→→+存在,则必有00(0,0)lim (,)0x y f f x y →→==这样,2200(,)limx y f x y x y→→+就可以写成2200(,)(0,0)limx y f x y f x y∆→∆→∆∆-∆+∆,也即极限2200(,)(0,0)limx y f x y f x y∆→∆→∆∆-∆+∆存在,可知00lim0x y ∆→∆→=,也即(,)(0,0)00f x y f x y o ∆∆-=∆+∆+。

2008高考安徽数学理科试卷含详细解答(全word版)080629

2008高考安徽数学理科试卷含详细解答(全word版)080629

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -解:=+23)1(i i 2)2)((=-i i ,选A 。

(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)R A B =-∞ðC .(0,)AB =+∞D . }{()2,1R A B =--ð解: }{0A y R y =∈>,R (){|0}A y y =≤ð,又{2,1,1,2}B =--∴ }{()2,1R A B =--ð,选D 。

2008年普通高等学校招生全国统一考试(安徽卷)数学理

2008年普通高等学校招生全国统一考试(安徽卷)数学理

2008年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。

参考公式:如果事件互斥,那么如果事件相互独立,那么如果随机变量,那么球的表面积公式其中表示球的半径球的体积公式其中表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数()A.2 B.-2 C. D.2.集合,则下列结论正确的是()A. B.C. D.3.在平行四边形ABCD中,AC为一条对角线,若,,则()A.(-2,-4) B.(-3,-5) C.(3,5) D.(2,4)4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A. B.C. D.5.将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为()A. B. C. D.6.设则中奇数的个数为()A.2 B.3 C.4 D.57.是方程至少有一个负数根的()A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件8.若过点的直线与曲线有公共点,则直线的斜率的取值范围为()A. B. C. D.9.在同一平面直角坐标系中,函数的图象与的图象关于直线对称。

而函数的图象与的图象关于轴对称,若,则的值是()A. B. C. D.10.设两个正态分布和的密度函数图像如图所示。

则有()A. B.C. D.11.若函数分别是上的奇函数、偶函数,且满足,则有()A. B.C. D.12.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

把答案填在答题卡的相应位置。

13.函数的定义域为。

14.在数列在中,,,,其中为常数,则的值是。

2008年高考试题——数学理(安徽卷)

2008年高考试题——数学理(安徽卷)

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至 第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮控干净后,再选涂其他答案标号。

3.答第Ⅰ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上书写,要求字体工事、笔迹清晰。

作图题可先铅笔在答题卡规定的位臵绘出,确认后再用0.5毫米的黑色笔迹字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、早稿纸上答题无效。

4.考试结束,务必将试题和答题卡一并上交。

参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B = 如果随机变量~(,)B n p ξ,那么(1-)D np p ξ= 球的表面积公式2S =4R π ;球的体积公式34V =3R π,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数()231i i += 【 】 (A)2 (B)-2 (C)2i (D )-2i (2)集合{}{}|lg ,1,2,1,1,2A y R y x x B =∈=>=--,则下列结论中正确的是 【 】 (A){}2,1A B =-- (B)()(),0R A B =-∞ ð (C)()0,A B =+∞ (D)(){}2,1R A B =-- ð(3)在平行四边形ABCD 中,AC 为一条对角线,若A B =(2,4),A C =(1,3) ,B D= 【 】(A)(-2,-4) (B)(-3,-5) (C)(3,5) (D)(2,4)(4)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 【 】 (A)若,m n αα∥∥,则m n ∥ (B)若,αγβγ⊥⊥,则αβ∥ (C)若,m n ββ∥∥,则αβ∥ (B)若,m n αα⊥⊥,则m n ∥(5)将函数y=sin 23x π⎛⎫+⎪⎝⎭的图象按向量a 平移后所得的图象关于点,012π⎛⎫-⎪⎝⎭中心对称,则向量a 的坐标可能为 【 】 (A),012π⎛⎫-⎪⎝⎭ (B),06π⎛⎫- ⎪⎝⎭ (C),012π⎛⎫⎪⎝⎭(D),06π⎛⎫ ⎪⎝⎭ (6)设()880181...x a a x a x +=+++,则018,,...,a a a 中奇数的个数为 【 】 (A)2 (B)3 (C)4 (D)5(7)0a <是方程2210ax x ++=至少有一个负数根的 【 】 (A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件(8)若过点()4,0A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 【 】(A)⎡⎣(B)((C),33⎡-⎢⎣⎦ (D)33⎛⎫- ⎪ ⎪⎝⎭ (9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称,而函数()y fx =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值为 【 】 (A)-e (B )-1e(C)e (D)1e(10)设两个正态分布N(μ1, σ21)(σ 1 >0)和N(μ2, σ22)(σ2>0)的密度函数图象如图所示,则有 【 】(A) 1212,μμσσ<< (B) 1212,μμσσ<> (C) 1212,μμσσ>< (D) 1212,μμσσ>> (11)若函数()(),f x g x 分别为R上的奇函数、偶函数,且满足()()xfx g x e -=,则有【 】 (A)()()()230f f g << (B)()()()032g f f << (C)()()()203f g f << (B)()()()023g f f <<(12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 【 】 (A)2283C A (B)2686C A (C)2286C A (D)2285C A2008年普通高等学校招生全国统一考试(安徽卷)数 学(理 科)第Ⅱ卷 (非选择题 共90分)考生注意事项:请用0.5毫米黑色签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .B .C .D .A .13BCD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任CDE AB取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题...卷上作答无效......) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.1216.2三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+.18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CG AD ==,3DG =,EG ==CE =则222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭.19.解:(1)122nn n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。

2008年普通高等学校招生全国统一考试(安徽卷)数学理

2008年普通高等学校招生全国统一考试(安徽卷)数学理

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。

参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+如果事件A B ,相互独立,那么 ()()()P A B P A P B =如果随机变量(,)B n p ξ ,那么 (1)D n pp ξ=-球的表面积公式 24πS R = 其中R 表示球的半径 球的体积公式 34π3V R =其中R 表示球的半径 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数32(1)i i +=( )A .2B .-2C .2iD .2i -2.集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B .()(,0)R C A B =-∞ C .(0,)A B =+∞ D .}{()2,1R C A B =--3.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC =,则AB = ( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m mαβαβ若则‖‖‖ D .,,m n m n αα⊥⊥若则‖ 5.将函数sin(23y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12π D .(,0)6π6.设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .57.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件8.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A.[ B.( C.[ D.( 9.在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。

2008年普通高等学校招生全国统一考试(全国 I卷)理数数学试题及详解

2008年普通高等学校招生全国统一考试(全国 I卷)理数数学试题及详解

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;CDE AB(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案1、C 由x(x-1)≥0,x ≥0得x ≥1或x=0;2、A 根据汽车加速行驶S=221at ,匀速行驶s=vt ,减速行驶s=221at -结合函数图象可知。

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3 B.23 C.4D.13(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD 底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为A.3B.0C.-1D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ (6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23C.4D.13解:连11AC ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA= 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6πB.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos = B 6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008年高考安徽理科数学试卷及答案

2008年高考安徽理科数学试卷及答案

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =--(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[3,3]B .(3,3)C .33[ D .33( (9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年高考安徽理科数学试卷及答案

2008年高考安徽理科数学试卷及答案

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =--(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[3,3]B .(3,3)C .33[ D .33( (9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年高考数学试卷(安徽.文)含详解

2008年高考数学试卷(安徽.文)含详解

绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂具他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色笔迹签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草....................稿纸上答题无效.......。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A、B互斥,那么球的表面积公式S=4πR2P(A+B)=P(A)+P(B)其中R表示球的半径如果事件A、B相互独立,那么球的体积公式V=43πR2P(A·B)=P(A)·P(B)球的体积公式V=43πR2其中R表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若A为全体正实数的集合,B=(-2,-1,1,2),则下列结论中正确的是(A)A∩B={-2,-1} (B)(C R A)∪B=(-∞,0)(C)A∪B={0,+∞} (D)(C R A)∩B={-2,-1}(2)若AB=(2,4),AC=(1,3),则BC=(A)(1,1)(B)(-1,-1)(C)(3,7)(D)(-3,-7)(3)已知m,n是两条不同直线,α,β,Υ是三个不同平面.下列命题中正确的是(A)若α⊥Υ,β∥Υ,则α∥β(B)若m⊥α,n⊥α,则m∥n(C)若m∥α,n∥α,则m∥n (D)若m∥α,m∥β,则a∥β(4)a<0是方程ax2+1=0有一个负数根的(A)必要不充分条件(B)充分必要条件(C)充分不必要条件(D)既不充分也不必要条件(5)在三角形ABC中,AB=5,AC=3,BC=7,则∠BAC大小为(A)23π(B)56π(C)34π(D)3π(6) 函数f(x)=(-1)2+1(x≤0)的反函数为(A)f--1(x)=1-(x≥1) (B) f--2(x)=1+(x≥1)(C )f --1(x(x ≥2) (B) f --1(x)=1+(x ≥2)(7)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1, …a 8中奇数的个数为 (A)2 (B)3 (C)4 (D)5(8)函数y=sin (2x +3π)图象的对称轴方程可能是 (A )x =-6π (B )x =-12π (C )x =6π(D )x=12π(9)设函数数f (x )=2x +1x-1(x <0),则f (x )(A)有最大值 (B )有最小值 (C )是增函数(D )是减函数(10)若过A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为(A )((B )[] (C )((D )[] (11)若A 为不等式组 0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34 (B)1 (C)74(D)212.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数为(A )C 38A 66 (B )C 23A 23 (C )C 28A 26 (D )C 28A 25(在此卷上答题无效) 绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷) 数 学(文科)第Ⅱ卷(非选择题 共90分) 考生注意事项:请用0.5毫米黑色笔迹签字在答题卡上作答,在试题卷上答题无效.................. 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)函数的定义域为 .(14)已知双曲线2212x y n n--=1的离心率为3,则n = (15)在数列{a n }中,a n =4n -52,a 1+ a 2+…+ a a =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab = .(16)已知点A ,B ,C ,D 在同一球面上,AB ⊥平面BCD ,BC ⊥CD .若AB =6,AC =213,AD =8,则B ,C 两点间的球面距离是 .三、解答题本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 已知函数f (x )=cos(2x -3π)+2sin(x -4π)sin(x -4π). (Ⅰ)求函数f (x )的最小正周期; (Ⅱ)求函数f (x )在区间[-12π,2π]上的值域. (18)(本小题满分12分)在某次普通话测试中,为测试字发音水平,设置了10张卡片,每张卡片上印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行,求这二位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率;(Ⅱ)若某位被测试者从这10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率.(19)(本小题满分12分)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =4π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点. (Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.(20)(本小题满分12分) 已知函数f (x )=323(1)132a x x a x -+++,其中a 为实数. (Ⅰ)已知函数f (x )在x =1处取得极值,求a 的值;(Ⅱ)已知不等式2()1f x x x a '--+>对任意(0,)a ∈+∞都成立,求实数x 的取值范围.(21)(本小题满分12分)设数列{a n }满足a 1=a , a n+1=ca n +1-c , n ∈N*,其中a ,c 为实数,且c ≠0. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11,,(1),22n n a e b n a n ===-∈N*,求数列{b n }的前n 项和S n ; (Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.(22)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ; (Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求AB DE +的最小值.详解如下:一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =-- 解:R C A 是全体非正数的集合即负数和0,所以}{()2,1R C A B =--(2).若(2,4)AB =,(1,3)AC =, 则BC =( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。

2008年高考安徽理科数学试卷及答案

2008年高考安徽理科数学试卷及答案

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =--(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[3,3]B .(3,3)C .33[ D .33( (9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年普通高等学校招生全国统一考试文科数学试卷及答案-全国卷1

2008年普通高等学校招生全国统一考试文科数学试卷及答案-全国卷1

我是一个经历高考的人,尤记当年的艰苦时光。

三点一线,但我挺过来了。

现在把历年的高考试卷,传于网上,有答案。

希望对各位有所帮助,最后祝各位同仁高考考出好的成绩。

考上理想的大学,不辜负家长的期望,你的理想,努力吧,奋斗吧,拼搏吧,永远支持你!2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y =A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为A .30°B .45°C .60°D .120°5.在ABC △中,=c ,AC =b .若点D 满足2BD DC =,则AD =A .32b +31c B .35c-32b C .32b-31c D .31b+32c 6.2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =A .64B .81C .128D .2438.若函数()y f x =的图象与函数ln1y =的图象关于直线y x =对称,则()f x =A .e 2x-2B .e 2xC .e 2x+1D . e 2x+29.为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数y=sinx 的图像 A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位A .B .C .D .10.若直线1x ya b+=与圆x 2+y 2=1有公共点,则 A .a 2+b 2≤1 B .a 2+b 2≥1 C .22111a b+≤D .2211a b+≥1 11.已知三棱柱ABC - A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于A .13B.3CD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线y=ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(注意:在试题卷上作答无效)设ABC △的内角A 、B 、C 所对的边长分别为a 、b 、c ,且a cos B =3,b sin A =4.(Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l . 18.(本小题满分12分)(注意:在试题卷上作答无效)四棱锥A - BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =AB AC =.(Ⅰ)证明:AD ⊥CE ;(Ⅱ)设侧面ABC 为等边三角形,求二面角C - AD - E 的大小.19.(本小题满分12分)(注意:在试题卷上作答无效)在数列{a n }中,a 1=1, a n+1=2a n +2n . (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.CDE AB求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题卷上作答无效)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试文科数学参考答案(I )依题设得 43sin cos =A b B a 由正弦定理得 B A b a sin sin = 所以43s i n c o s =B B )cos 1(169sin 169cos 222B B B -==即 259cos 2=B 依题设知 a 2cos 2B=9 所以 a 2=25,得a=5 (II )因为S=,2sin 21c A bc = 所以,由S=10得c=5 应用余弦定理得b=52cos 222=-+B ac c a故△ABC 的周长l=a+b+c=2(5+5)18.解法一:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )作CG ⊥AD ,垂足为G ,连接GE 。

2008年高考试题——数学文(全国卷2)含答案和详解

2008年高考试题——数学文(全国卷2)含答案和详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅰ卷参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-= ,,,, 一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.2008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:······················1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.······················2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一、选择题1.C 2.B 3.D 4.C 5.C 6.DAB CD EA 1B 1C 1D 17.A 8.B 9.A 10.B 11.B 12.C 提示: 1、αα,0sin < 在第三或四象限,0tan >α,α在第一或三象限α∴为第三象限角2、}1,0,1{},21|{-=∈<≤-=⋂Z x x x N M3、555==d4、)(x f 为奇函数5、c a b x x e <<∴<<-∴<<-0ln 1116、当⎩⎨⎧=-=22y x 时,83min -=-=y x Z7、ax y 2'=,当1=x 时,122,2'=∴==a a a y8、如图,,60,32oSAO SA =∠=则6,3,360sin =∴==⋅=AB AO SA SO o636312=⨯=∴V9、444)1()1()1(x x x -=+- ,x ∴的系数为414-=-C 10、)4sin(2cos sin )(π-=-=x x x x f )(x f ∴最大值为211、设1||=AB ,则3=AC ,13||||2-=-=CB AC a ,1||2==AB C ,21322+==∴a ce 12、1O 与2O 的公共弦为AB ,球心为O,AB 中点 为C ,则四边形C OO O 21为矩形,所以OC AC AC OA OC O O ⊥===,1||,2|||,|||213||||||22=-=∴AC OA OC二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 13、20)2(7)32(4)32,2(=∴=+-+∴++=+λλλλλλb a ;14、42036310316=--C C C ;15、设),(),(2211y x B y x A ,),(444122122121222x x y y x y x y -=-∴⎪⎩⎪⎨⎧==14121212=+=--y y x x y y AB ∴所在直线方程为22-=-x y 即x y =,又4,04212==⇒⎩⎨⎧==x x xy xy ,CDBAS22||||211||24||2||12==∴==-=∆OF AB S OF x x AB ABF ;注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ······················································································································ 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ··························································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ········································································· 8分所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ······································ 10分18.解: 设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ··························································································································· 3分由3610a a a ,,成等比数列得23106a a a =, 即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ········································································································································ 7分当0d =时,20420200S a ==. ··············································································································· 9分 当1d=时,14310317a a d =-=-⨯=,于是2012019202S a d ⨯=+207190330=⨯+=. ········································································· 12分 19.解: 记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++ , ········································································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ······························································································· 6分(Ⅱ)12B C C =+, ······································································································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ············································· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥.······················································································································ 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直,所以1AC ⊥平面BED . ································································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H,连结1A H.由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ···························································································· 8分EFAB CD EA 1B 1C 1D 1 FH GCE CF CG EF ⨯==EG =. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC =11AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ···················································································· 12分解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--= ,,,,,.················································ 3分 (Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ·································································································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ······················································································ 9分1AC <> ,n 等于二面角1A DE B --的平面角,111cos 42AC AC AC <>==,n n n . 所以二面角1A DE B --的大小为. ··················································································· 12分21.解: (Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x=是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =.经验证,当1a=时,2x =是函数()y f x =的极值点. ········································································· 4分(Ⅱ)由题设,3222()336(3)3(2)g x axx ax x ax x x x =-+-=+-+.当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ····················································································································································· 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··············································································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ································································· 2分如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k=或38k =. ······································································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ····················································································· 9分又AB ==AEBF 的面积为121()2S AB h h =+12===≤ 当21k=,即当12k =时,上式取等号.所以S的最大值为 ···················································· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ·························································································································································· 9分===当222x y =时,上式取等号.所以S的最大值为 ········································································ 12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂具他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色笔迹签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草....................稿纸上答题无效.......。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 S =4πR 2 P (A+B )=P (A )+P (B ) 其中R 表示球的半径如果事件A 、B 相互独立,那么 球的体积公式V =43πR 2 P (A ·B )=P (A )·P (B ) 球的体积公式V =43πR 2其中R 表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若A 为全体正实数的集合,B =(-2,-1,1,2),则下列结论中正确的是 (A )A ∩B ={-2,-1} (B )(C R A )∪B =(-∞,0) (C )A ∪B={0,+∞} (D )(C R A )∩B ={-2,-1}(2)若AB=(2,4),AC =(1,3),则BC =(A )(1,1) (B )(-1,-1) (C )(3,7) (D )(-3,-7) (3)已知m,n 是两条不同直线,α,β,Υ是三个不同平面.下列命题中正确的是 (A )若α⊥Υ,β∥Υ,则α∥β (B)若m ⊥α,n ⊥α,则m ∥n (C )若m ∥α,n ∥α,则m ∥n (D )若m ∥α,m ∥β,则a ∥β (4)a <0是方程ax 2+1=0有一个负数根的(A )必要不充分条件 (B )充分必要条件(C )充分不必要条件 (D )既不充分也不必要条件 (5)在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 大小为 (A )23π (B) 56π (C)34π (D)3π (6) 函数f (x )=(-1)2+1(x ≤0)的反函数为(A )f --1(x )=1- (x ≥1) (B) f --2(x )=1+(x ≥1)(C )f --1(x(x ≥2) (B) f --1(x)=1+ (x ≥2)(7)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1, …a 8中奇数的个数为 (A)2 (B)3 (C)4 (D)5(8)函数y=sin (2x +3π)图象的对称轴方程可能是 (A )x =-6π (B )x =-12π (C )x =6π (D )x=12π(9)设函数数f (x )=2x +1x-1(x <0),则f (x )(A)有最大值 (B )有最小值 (C )是增函数(D )是减函数(10)若过A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为(A )((B )[(C )((D )[] (11)若A 为不等式组 0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34 (B)1 (C)74(D)212.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数为(A )C 38A 66 (B )C 23A 23 (C )C 28A 26 (D )C 28A 25(在此卷上答题无效) 绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷) 数 学(文科)第Ⅱ卷(非选择题 共90分) 考生注意事项:请用0.5毫米黑色笔迹签字在答题卡上作答,在试题卷上答题无效.................. 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)函数的定义域为 .(14)已知双曲线2212x y n n--=1n = (15)在数列{a n }中,a n =4n -52,a 1+ a 2+…+ a a =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab = .(16)已知点A ,B ,C ,D 在同一球面上,AB ⊥平面BCD ,BC ⊥CD .若AB =6,AC AD =8,则B ,C 两点间的球面距离是 .三、解答题本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 已知函数f (x )=cos(2x -3π)+2sin(x -4π)sin(x -4π). (Ⅰ)求函数f (x )的最小正周期; (Ⅱ)求函数f (x )在区间[-12π,2π]上的值域. (18)(本小题满分12分)在某次普通话测试中,为测试字发音水平,设置了10张卡片,每张卡片上印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行,求这二位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率;(Ⅱ)若某位被测试者从这10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率.(19)(本小题满分12分)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =4π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点. (Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.(20)(本小题满分12分) 已知函数f (x )=323(1)132a x x a x -+++,其中a 为实数. (Ⅰ)已知函数f (x )在x =1处取得极值,求a 的值;(Ⅱ)已知不等式2()1f x x x a '--+>对任意(0,)a ∈+∞都成立,求实数x 的取值范围.(21)(本小题满分12分)设数列{a n }满足a 1=a , a n+1=ca n +1-c , n ∈N*,其中a ,c 为实数,且c ≠0. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设11,,(1),22n n a e b n a n ===-∈N*,求数列{b n }的前n 项和S n ; (Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.(22)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ; (Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.详解如下:一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解:R C A 是全体非正数的集合即负数和0,所以}{()2,1R C A B =--(2).若(2,4)AB = ,(1,3)AC = , 则BC = ( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。

(4).0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解:当0422>-=∆a ,得a<1时方程有根。

a<0时,0121<=ax x ,方程有负根,又a=1时,方程根为1-=x ,所以选B(5).在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( )A .23πB .56π C .34π D .3π 解:由余弦定理2225371cos 2532BAC +-∠==-⨯⨯,23BAC π∠=(6).函数2()(1)1(0)f x x x =-+≤的反函数为A .1()11)f x x -=≥B . 1()11)f x x -=≥C .1()12)f x x -=≥D . 1()12)f x x -=≥解:由原函数定义域是反函数的值域,1()0f x -≤,排除B,D 两个;又原函数x 不能取1,()f x 不能取1,故反函数定义域不包括1,选C .(直接求解也容易)(7).设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5解:由题知)8,2,1,0(8 ==i C a i i ,逐个验证知18808==C C ,其它为偶数,选A 。

(8).函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π== (9).设函数1()21(0),f x x x x=+-< 则()f x ( ) A .有最大值B .有最小值C .是增函数D .是减函数解:1020,0x x x <->->∵∴,11()21[(2)()]1f x x x x x=+-=--+--,由基本不等式1()[(2)()]111f x x x =--+--≤-=-有最大值,选A(10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[ B .( C .[D .(33解:解:设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确。

相关文档
最新文档