高三数学教案:第8讲 导数应用的题型与方法

合集下载

高三数学三轮复习《导数》各类题型方法总结教案新人教版(K12教育文档)

高三数学三轮复习《导数》各类题型方法总结教案新人教版(K12教育文档)

高三数学三轮复习《导数》各类题型方法总结教案新人教版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三数学三轮复习《导数》各类题型方法总结教案新人教版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三数学三轮复习《导数》各类题型方法总结教案新人教版(word版可编辑修改)的全部内容。

导数各种题型方法总结请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题"以及“充分应用数形结合思想",创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值—————用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)---—-(已知谁的范围就把谁作为主元); (请同学们参看2012省统测2)例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=--(1)()y f x =在区间[]0,3上为“凸函数",则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x->=-的最大值(03x <≤)恒成立,而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x xF x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=请同学们参看2012第三次周考:例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围。

高三《导数的应用》说课稿

高三《导数的应用》说课稿

高三《导数的应用》说课稿以下是作者为大家准备的高三《导数的应用》说课稿(共含4篇),希望对大家有帮助。

篇1:高三《导数的应用》说课稿高三《导数的应用专题》说课稿导数是新课程教材中重要内容,是进一步刻画、研究函数的重要工具,为运用函数思想简捷地解决实际问题提供了广阔的前景。

纵观这几年的高考,考察的力度逐年加大,因此在高三复习中必须引起足够的重视。

在中学数学的新课程中,导数单元作为初等数学和高等数学重要的衔接点,显得格外引人瞩目。

导数的思想及其内涵丰富了对函数等问题的研究方法,已经成为近几年高考数学的一大热点。

另外,导数又具有很强的知识交汇功能,以其为载体的问题情景很多,给师生在复习内容和方法上的选择带来困惑。

从这个意义上说,高三师生采取什么样的策略复习,复习的重点落在何处?显得至关重要。

1、教材分析与考点分析在教材中,导数处于一种特殊的地位。

一方面它是沟通初、高等数学知识的重要衔接点,渗透和加强了对学生由有限到无限的辩证思想的教育,突破了许多初等数学在思想和方法上的障碍,拓宽、优化和丰富了许多数学问题解决的思路、方法和技巧;另一方面它具有很强的知识交汇功能,可以联系多个章节内容,如常与函数、数列、三角、向量、不等式、解析几何等内容交叉渗透,并成为解决相关问题的重要工具。

从高考关于导数单元的考查情况来看,以下两个特点非常明显:(1)循序渐进:从总体上看,高考考查导数的有关知识是循序渐进的过程。

导数的内容刚进入高考数学新课程卷时,其考试要求都是很基本的,以后逐渐加深,分析近几年的高考试题,可以看出高考对导数考查的思路已基本成熟。

考查的基本原则是重点考查导数的概念与应用。

这部分内容的考查一般分为三个层次:第一层次:主要考查导数的概念、求导公式、求导法则和与实际背景有关的问题(如瞬时速度,边际成本,加速度、切线的斜率)第二层次:主要考查导数的.简单应用,包括求函数的极值、最值,求函数的单调区间,证明函数的单调性等。

2020年高三一轮复习数学教案第8讲《导数的计算及几何意义》(教师版)

2020年高三一轮复习数学教案第8讲《导数的计算及几何意义》(教师版)

个性化教学辅导教案1、已知函数,则函数的大致图像是( )A .B .C .D .2.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数,所以不等式f x-f -x x <0可化为f xx<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).3、函数f (x )=x -cos x 在[0,+∞)内 ( ).A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点解析 令f (x )=0,得x =cos x ,在同一坐标系内画出两个函数y =x 与y =cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x =cos x 只有一个解. ∪函数f (x )只有一个零点. 答案 B4、设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案 B解析 ∪f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0, ∪f (1)·f (2)<0,∪函数f (x )=ln x +x -2的图象是连续的, ∪f (x )的零点所在的区间是(1,2).1.(教材改编)若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)= .答案 -2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是 . 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.学科分析:从近五年的考查情况来看,本讲一直是高考的热点,主要考查导数的运算、求导法则以及导数的几何意义.导数的运算一般不单独考查,而是在考查导数的应用时与单调性、极值与最值综合考查,导数的几何意义最常见的是求切线方程和已知切线方程求参数值,常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等. 学生分析:1、学习风格(动觉型、视觉型、听觉型)2、知识点分析: (1)导数的概念与运算 (2)导数的几何意义【精准突破一】学习目标:导数的概念与运算 目标分解:∴直线l 的方程为y =x -1,即x -y -1=0.故选B.1、f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( ) A .e 2 B .1 C .ln 2D .E答案 B 解析 f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.2、若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 B f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 3、已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.124、(2016·昆明模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 3、A 4、A解析 3、设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3.4、∵y ′=-1-cos xsin 2x ,π2|1.x y ∴'==-由条件知1a=-1,∴a =-1.5、若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y '===3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.【查漏补缺】1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( )A .1秒B .1秒末和2秒末C .4秒末D .2秒末和4秒末答案 D解析 s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零.3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.(2017·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.5.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|x x y x '==, 切线方程为y -ln x 0=1x 0(x -x 0),即x +1x -a =0有解,∴a =x +1x≥2.【举一反三】1、(2016·泉州模拟)函数y =e x 的切线方程为y =mx ,则m = .2、已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 1、e 2、D解析 1、设切点坐标为P (x 0,y 0),由y ′=e x , 得00|e xx x y ==,从而切线方程为000e e ()x xy x x -=-, 又切线过定点(0,0),从而000e e ()xxx -=-, 解得x 0=1,则m =e. 2、∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D.3、如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )3、答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.【方法技巧】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.1、若函数f (x )=e x •sinx ,则f'(0)= 。

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。

2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。

3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。

(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。

(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。

二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。

2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。

3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。

(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。

(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。

三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。

2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。

3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。

(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。

(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。

四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。

2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。

3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。

(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。

导数及其应用极值与最值教学设计

导数及其应用极值与最值教学设计

专题020:导数的应用(极值与最值)(教学设计)(师)考点要求:1.利用导数求函数的极值.2.利用导数求函数闭区间上的最值.3.利用导数解决某些实际问题.4.复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用.知识结构:1.函数的极值(1)判断f(x0)是极值的方法……列表法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤……列表法①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(一般情况下为单峰函数)(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.4.两个注意(1)注意实际问题中函数定义域的确定.(定义域优先原则)(2)在实际问题中(一般情况下为单峰函数),如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.5.三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.(2)f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件. 如①y =|x |在x =0处取得极小值,但在x =0处不可导; ②f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点.(3)若y =f (x )可导,则f ′(x 0)=0是f (x )在x =x 0处取极值的必要条件. 基础自测:1.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ).A .2B .3C .6D .9解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝ ⎛⎭⎪⎫a +b 22=⎝⎛⎭⎫622=9,当且仅当a =b =3时取到等号. 答案 D2.已知函数f (x )=14x 4-43x 3+2x 2,则f (x )( ).A .有极大值,无极小值B .有极大值,有极小值C .有极小值,无极大值D .无极小值,无极大值 解析 f ′(x )=x 3-4x 2+4x =x (x -2)2 f ′(x ),f (x )随x 变化情况如下x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x ) -0 +0 +f (x )43因此有极小值无极大值. 答案 C3.(2010·山东)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ). A .13万件 B .11万件 C .9万件 D .7万件解析 y ′=-x 2+81,令y ′=0解得x =9(-9舍去).当0<x <9时,y ′>0;当x >9时,y ′<0,则当x =9时,y 取得最大值,故选C. 答案 C4.(2011·广东)函数f (x )=x 3-3x 2+1在x =________处取得极小值. 解析 f ′(x )=3x 2-6x =3x (x -2)当x <0时,f ′(x )>0,当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,故当x =2时取得极小值.答案 2 5.若函数f (x )=x 2+a x +1在x =1处取极值,则a =________.解析 ∵f (x )在x =1处取极值,∴f ′(1)=0,又f ′(x )=2x (x +1)-(x 2+a )(x +1)2,∴f ′(1)=2×1×(1+1)-(1+a )(1+1)2=0,即2×1×(1+1)-(1+a )=0,故a =3. 答案 3例题选讲:例1:(2011·重庆)设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.分析:由条件x =-12为y =f ′(x )图象的对称轴及f ′(1)=0求得a ,b 的值,再由f ′(x )的符号求其极值,列表法.解 (1)因f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b . 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )的图象关于直线x =-a6对称,从而由题设条件知-a 6=-12,解得a =3.又由于f ′(1)=0,即6+2a +b =0,解得b =-12. (2)由(1)知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2). 令f ′(x )=0,即6(x -1)(x +2)=0, 解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0, 故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0, 故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0, 故f (x )在(1,+∞)上为增函数.从而函数f (x )在x 1=-2处取得极大值f (-2)=21, 在x 2=1处取得极小值f (1)=-6.小结: 运用导数求可导函数y =f (x )的极值的步骤……列表法:(1)先求函数的定义域,再求函数y =f (x )的导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值,如果左负右正,那么f (x )在这个根处取得极小值. 例2:已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值. 分析:先化简再求导,求极值、端点值,进行比较得最值. 解 (1)f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4. (2)因为f ′(-1)=0,所以a =12,有f (x )=x 3-12x 2-4x +2,所以f ′(x )=3x 2-x -4.令f ′(x )=0,所以x =43或x =-1.又f ⎝⎛⎭⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0, 所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.小结:一般地,在闭区间[a ,b ]上的连续函数f (x )必有最大值与最小值,在开区间(a ,b )内的连续函数不一定有最大值与最小值,若函数y =f (x )在闭区间[a ,b ]上单调递增,则f (a )是最小值,f (b )是最大值;反之,则f (a )是最大值,f (b )是最小值.例3:(2011·江苏)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值. 分析: 由实际问题抽象出函数模型,利用导数求函数最优解,注意变量的实际意义.解 设包装盒的高为h (cm),底面边长为a (cm).由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.小结:在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点. 巩固作业: A 组: 一、选择题:1.如果函数428y x x c =-+在[1,3]-上的最小值是14-,那么c =( B )()A 1()B 2()C 1-()D 2-2.下列函数中,0x =是极值点的函数是(B )(A )3y x =- (B )2cos y x = (C )tan y x x =- (D )1y x=3.下列说法正确的是(D )(A )函数的极大值就是函数的最大值 (B )函数的极小值就是函数的最小值 (C )函数的最值一定是极值 (D )在闭区间上的连续函数一定存在最值 二、填空题:4.函数223)(a bx ax x x f +--=在1=x 处有极值10,则点),(b a 为 .答案:(-4,11) 5.函数32()f x x px qx =--的图象与x 轴切于点(1,0),则()f x 的极大值为427,极小值为0. 6.函数321()252f x x x x =--+,若对于任意[1,2]x ∈-,都有()f x m <,则实数m 的取值范围是(7,)+∞. 7.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 5,-15 。

【教案】校级公开课--导数的应用(教案)

【教案】校级公开课--导数的应用(教案)

《导数的应用》教学设计开课班级:高二(1)开课教师:教学设计背景本节是高中数学人教A版选修2-2第一章“导数在研究函数中的应用”内容基础上,进一步拓展延伸应用的内容。

导数除了在函数的单调性及函数的极值、最值等方面应用外,还可以应用于探究函数的零点或方程的解问题,以及应用于不等式证明问题,既灵活多变,又具有一定的综合能力要求,基于教材和学生知能背景及前期教学状况,相应作此导数的应用教学设计,以帮助学生进一步树立联系的观点利用导数处理问题的意识.学情分析学生前期已经学习导数在研究函数中的应用等内容,体会了导数的思想,初步感受了导数应用价值,初步具备了利用导数处理问题的意识和能力。

教学目标通过变式教学过程,用联系的观点,进一步探究导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用,培养运用函数与方程、化归与转化、数形结合及分类讨论等数学思想方法解决问题的能力。

培养学生综合思考问题的能力,以及克服困难解决问题的信心与毅力。

教学重点、难点重点应用导数导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用难点利用联系的观点,运用函数与方程、化归与转化、数形结合及分类讨论等数学思想解决问题教法变式教学、学生探究、引导讲授教学用具:多媒体教学过程一、复习回顾知识点一:导数的几何意义函数y=f (x) 在点x0导数的几何意义,就是曲线y=f (x) 在点P(x, f(x))处的切线的斜率,曲线y=f (x) 在P (x0, f (x))处的切线方程为y-y=f′(x) (x-x)知识点二:函数的单调性当函数y=f(x)在某个区间(),a b 内可导如果'()0f x >,则函数y=f(x)在这个区间上为增函数;如果'()0f x <,则函数y=f(x)在这个区间上为减函数.知识点三:函数的极值对于可导函数f(x)判断其极值的方法为如果在0x 附近的左侧'()0f x >,右侧'()0f x <,那么,0()f x 是极大值;如果在0x 附近的左侧'()0f x <,右侧'()0f x >,那么,0()f x 是极小值.知识点四:函数的最值闭区间[a ,b]上连续函数f(x)必有最大值与最小值,其求法为:○1求函数f(x)在(a ,b)内的极值;○2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

高中导数应用总结教案设计

高中导数应用总结教案设计

高中导数应用总结教案设计教案标题:高中导数应用总结教案设计教案目标:1. 理解导数的概念及其在实际问题中的应用。

2. 掌握常见导数应用的计算方法。

3. 运用导数解决实际问题,提高数学建模能力。

教材:高中数学教材教学时长:2课时教学步骤:第一课时:1. 导入(5分钟)通过提问,复习导数的概念和一阶导数的计算方法,引发学生对导数应用的兴趣。

2. 导数应用的分类总结(10分钟)介绍导数应用的主要分类,如极值与最值问题、曲线图的分析、实际问题的数学建模等,并通过实例简要解释每种应用的特点。

3. 极值与最值问题(25分钟)3.1 例题讲解:通过一个具体函数的极值问题,引导学生运用导数求解极值,解释求解过程及方法。

3.2 练习:提供一些极值问题,让学生利用导数计算方法求解,鼓励学生进行思考和讨论。

4. 曲线图的分析(15分钟)4.1 例题讲解:选择一个具体的函数图像,分析其极值、拐点等特性,通过导数的概念与性质解释图像的特点。

4.2 练习:给出几个函数图像,要求学生通过导数的相关知识进行分析,预测其特性,并用导数计算方法求解。

第二课时:1. 实际问题的数学建模(10分钟)1.1 例题讲解:给出一个实际问题,如最优化问题或速度与加速度问题,引导学生提取关键信息,建立数学模型,并利用导数求解。

1.2 练习:提供几个实际问题,要求学生独立思考建立模型,并运用导数求解问题。

2. 教学总结与归纳(10分钟)对本节课所学导数应用的相关知识进行总结,归纳每种应用的特点、求解方法及注意事项,使学生对导数应用有更清晰的认识。

3. 拓展联系(10分钟)为了激发学生的学习兴趣,提供一些更具挑战性的导数应用问题,让有能力的学生尝试解决,引导全班进行讨论和思考。

4. 课堂评价(5分钟)通过课堂练习和讨论,评价学生对导数应用的掌握情况和解题能力。

教学资源和评价方式:资源:- 高中数学教材- 例题和练习题- 实际问题案例评价方式:- 课堂练习的答案和讨论- 学生的课堂参与度- 学生对实际问题建模的能力教学实施注意事项:1. 补充合适的例题和练习题,以提高学生运用导数解决实际问题的能力。

高三数学导数及其应用专题复习教案

高三数学导数及其应用专题复习教案

高三数学二轮复习教案导数及其应用专题一、高考要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.⑵熟记基本导数公式(,n C x (n 为有理数),sin .cos ,log ,,,ln x x a x x x a e x 的导数).掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数.⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.二、复习要点:(1)近几年各地高考题一直保持对导数知识考查力度,体现了在知识网络交汇点出题的命题风格,重点考查导数概念、单调性、极值等传统、常规问题,这三大块内容是本专题复习的主线,在复习中应以此为基础展开,利用问题链展示题目间的内在联系,揭示解题的通法通解,如利用导数处理函数单调性问题时,可设计这样的问题链:已知函数求单调区间→知函数在区间上单调求参数→若函数不单调如何求参数.(2)要认识到新课程中增加了导数内容,增添了更多的变量数学,拓展了学习和研究的领域,在复习中要明确导数作为一种工具在研究函数的单调性、极值等方面的作用,这种作用体现在导数为解决函数问题提供了有效途径。

(3)有意识的与解析几何(特别是切线、最值)、函数的单调性,函数的最值极值,二次函数,方程,不等式,代数不等式的证明等进行交汇,综合运用。

特别是精选一些以导数为工具分析和解决一些函数问题、切线问题的典型问题,以及一些实际问题中的最大(小)值问题三、知识点回顾(多媒体演示)四、典型问题剖析题型一:导数的概念及几何意义导数的几何意义即是曲线在某点的切线的斜率,进而可解决有关切点、切线方程等相关问题。

1①过点(1,1)作曲线y=x 4的切线, 求切线方程。

②过点(1,0 )作曲线y=x 2的切线, 求切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二轮复习教案第8讲导数应用的题型与方法(4课时)一、考试内容导数的概念,导数的几何意义,几种常见函数的导数两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值二、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。

⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log a x的导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。

⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。

三、复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log a x的导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。

能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。

4.了解复合函数的概念。

会将一个函数的复合过程进行分解或将几个函数进行复合。

掌握复合函数的求导法则,并会用法则解决一些简单问题。

四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

4.曲线的切线在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C 是我们熟知的正弦曲线y=sinx .直线1l 与曲线C 有惟一公共点M ,但我们不能说直线1l 与曲线C 相切;而直线2l 尽管与曲线C 有不止一个公共点,我们还是说直线2l 是曲线C 在点N 处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线.5.瞬时速度在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 6.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据.对导数的定义,我们应注意以下三点: (1)△x 是自变量x 在x 处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△x→0时,x y∆∆有极限,那么函数y=f(x)在点x 处可导或可微,才能得到f(x)在点x 处的导数.(3)如果函数y=f(x)在点x 处可导,那么函数y=f(x)在点x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行: (1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率x x f x x f x y ∆-∆+=∆∆)()(00;(3)取极限,得导数x y x f x ∆∆=→∆00lim)('。

7.导数的几何意义 函数y=f(x)在点x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为))(('000x x x f y y -=-特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x =8.和(或差)的导数上一节我们学习了常见函数的导数公式,那么对于函数23)(x x x f +=的导数,又如何求呢?我们不妨先利用导数的定义来求。

x x x x x x x x x f x x f x f x x ∆+-∆++∆+=∆-∆+=→∆→∆)()()(lim)()(lim )('232300xx x x x x x x xx x x x x x x x x x 23))(323(lim )(2)()(33lim 222023220+=∆+∆+∆⋅++=∆∆+∆⋅+∆+∆+∆⋅=→∆→∆我们不难发现)'()'(23)'(23223x x x x x x +=+=+,即两函数和的导数等于这两函数的导数的和。

由此我们猜测在一般情况下结论成立。

事实上教材中证明了我们的猜想,这就是两个函数的和(或差)的求导法则。

9.积的导数两个函数的积的求导法则的证明是本节的一个难点,证明过程中变形的关键是依据导数定义的结构形式。

(具体过程见课本P120) 说明:(1)'')'(v u uv ≠;(2)若c 为常数,则(cu) ′=cu ′。

10.商的导数两个函数的商的求导法则,课本中未加证明,只要求记住并能运用就可以。

现补充证明如下:设)()()(x v x u x f y ==[][])()()()()()()()()()()()()()()()()()u(x y x v x x v x v x x v x u x v x u x x u x v x x v x x v x u x v x x u x v x u x x v x ∆+-∆+--∆+=∆+∆+-∆+=-∆+∆+=∆)()()()()()()()(x v x x v x x v x x v x u x v x x u x x u x y ∆+∆-∆+-∆-∆+=∆∆因为v(x)在点x 处可导,所以它在点x 处连续,于是△x →0时,v(x+△x)→v(x),从而[]20)()(')()()('limx v x v x u x v x u x y x -=∆∆→∆ 即2''''v uv v u v u y -=⎪⎭⎫ ⎝⎛=。

说明:(1)'''v u v u ≠⎪⎭⎫ ⎝⎛; (2)2'''v uv v u v u -=⎪⎭⎫ ⎝⎛学习了函数的和、差、积、商的求导法则后,由常函数、幂函数及正、余弦函数经加、减、乘、除运算得到的简单的函数,均可利用求导法则与导数公式求导,而不需要回到导数的定义去求。

11. 导数与函数的单调性的关系㈠0)(>'x f 与)(x f 为增函数的关系。

0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

㈡0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。

∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

㈢0)(≥'x f 与)(x f 为增函数的关系。

)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。

当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。

∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。

因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。

但在实际应用中还会遇到端点的讨论问题,要谨慎处理。

㈣单调区间的求解过程,已知)(xfy=(1)分析)(xfy=的定义域;(2)求导数)(xfy'='(3)解不等式)(>'xf,解集在定义域内的部分为增区间(4)解不等式)(<'xf,解集在定义域内的部分为减区间我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。

以下以增函数为例作简单的分析,前提条件都是函数)(xfy=在某个区间内可导。

㈤函数单调区间的合并函数单调区间的合并主要依据是函数)(xf在),(ba单调递增,在),(cb单调递增,又知函数在bxf=)(处连续,因此)(xf在),(ca单调递增。

同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为以个区间。

12.)(xfy=],[bax∈(1))(>'xf恒成立∴)(xfy=为),(ba上↑∴对任意),(bax∈不等式)()()(bfxfaf<<恒成立(2))(<'xf恒成立∴)(xfy=在),(ba上↓∴对任意),(bax∈不等式)()()(bfxfaf>>恒成立五、注意事项1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。

相关文档
最新文档