九年级数学(人教版)下学期单元试卷 27章,相似27检测
人教版九年级下册数学第27章 相似 单元综合测试卷(Word版,含答案)
人教版九年级下册数学第27章相似单元综合测试卷一.选择题(共8小题,满分40分)1.若x﹣3y=0且y≠0,则的值为()A.11B.﹣C.D.﹣112.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.3.下列图形一定是相似图形的是()A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形4.如图,已知直线l1∥l2∥l3,直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F,若DE=3,DF=8,则的值为()A.B.C.D.5.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.6.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为()A.1B.2C.D.37.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.138.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2二.填空题(共8小题,满分40分)9.已知:=,则=.10.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是cm.11.在△OAB中,OA=OB,点C在直线AB上,BC=3AC,点E为OA边的中点,连接OC,射线BE交OC于点G,则的值为.12.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为.13.如图,△ABC中,CE⊥AB,BF⊥AC,若∠A=60°,EF=2,则BC=.14.如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为.15.△ABC中,∠ACB=90°,CD是高,点E在AB边上,∠BEC=2∠ABC,若AB=9,DE=1,则AD的长为.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为.三.解答题(共6小题,满分40分)17.阅读理解:已知:a,b,c,d都是不为0的数,且=,求证:=.证明:∵=,∴+1=+1.∴=.根据以上方法,解答下列问题:(1)若=,求的值;(2)若=,且a≠b,c≠d,证明=.18.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,DE=15,求△DEF的面积.19.如图,已知△ABC∽△DEC,∠D=45°,∠ACB=60°,AC=3cm,BC=4cm,CE=6cm.求:(1)∠B的度数;(2)AD的长.20.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则=.下面是这个定理的部分证明过程.证明:如图2,过C作CE∥DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是.21.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?22.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?参考答案一.选择题(共8小题,满分40分)1.解:∵x﹣3y=0且y≠0,∴x=3y,∴==.故选:C.2.解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=×AB=×2=﹣1,故选:B.3.解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.4.解:∵l1∥l2∥l3,∴,∵DE=3,DF=8,∴,即=,故选:B.5.解:根据题意得:AC==,AB==,BC=1,∴BC:AB:AC=1::,A、三边之比为1::,选项A符合题意;B、三边之比::3,选项B不符合题意;C、三边之比为2::,选项C不符合题意;D、三边之比为::4,选项D不符合题意.故选:A.6.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=3,∴DH=EF=×3=,故选:C.7.解:根据射影定理,CD2=AD•BD,∴AD=9,∴AB=AD+BD=13.故选:D.8.解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.二.填空题(共8小题,满分40分)9.解:∵=,∴=,设a=2k,b=3k,∴===﹣,故答案为:﹣.10.解:根据比例尺=图上距离:实际距离.100千米=10000000厘米得:A,B两地的图上距离为10000000÷2000000=5cm,故答案为:5.11.解:如图1,点C在线段AB上,过E作EF∥AB交OC于F,∵点E为OA边的中点,EF∥AB,∴OF=CF,∴EF=AC,∵BC=3AC,∴BC=6EF,∵EF∥AB,∴,∴CG=6FG,∴FC=OF=7FG,∴OG=OF+FG=8FG,∴==;如图2,点C在线段BA的延长线上,过E作ED∥BC交OC于D,∵点E为OA边的中点,ED∥BC,∴OD=CD,∴DE=AC,即AC=2DE,∵BC=3AC,∴BC=6DE,∵ED∥BC,∴,∴CG=6DG,∴CD=OD=5DG,∴OG=OD﹣DG=4DG,∴==;故答案为:或.12.解:设DP=x,则BP=BD﹣x=14﹣x,∵AB⊥BD于B,CD⊥BD于D,∴∠B=∠D=90°,∴当时,△ABP∽△CDP,即;解得x=,BP=14﹣=8.4;当时,△ABP∽△PDC,即;整理得x2﹣14x+24=0,解得x1=2,x2=12,BP=14﹣2=12,BP=14﹣12=2,∴当BP为8.4或2或12时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似.故答案为:8.4或2或12.13.解:∵CE⊥AB,BF⊥AC,∴∠AFB=∠AEC=90°,又∵∠A=∠A,∴△AFB∽△AEC,∴,即,又∵∠A=∠A,∴△AEF∽△ACB,∴,∵BF⊥AC,且∠A=60°,∴∠ABF=30°,∴AF=AB,∴BC=2EF=4.故答案为:4.14.解:在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,∴AC=2BC=8cm,∵D为BC中点,∴CD=2cm,∵0≤t≤12,∴E点的运动路线为从A到C,再从C到AC的中点,按运动时间分为0≤t≤8和8<t≤12两种情况,①当0≤t≤8时,AE=tcm,CE=BC﹣AE=(8﹣t)cm,当∠EDC=90°时,则有AB∥ED,∵D为BC中点,∴E为AC中点,此时AE=4cm,可得t=4;当∠DEC=90°时,∵∠DEC=∠B,∠C=∠C,∴△CED∽△BCA,∴,即,解得t=7;②当8<t≤12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;当t=12时,此时E点在AC的中点,DE∥AB,此时△CDE是直角三角形.综上可知t的值为4或7或9或12,故答案为:4或7或9或1215.解:以C为圆心,CE长为半径画弧,交AB于F,则CE=CF,∴∠CFE=∠BEC=2∠ABC,∵∠CFE=∠ABC+∠BCF,∴∠ABC=∠BCF,∴BF=CF,∵CD⊥AB,∴DF=DE=1,设BF=CF=x,∵AB=9,∴AD=8﹣x,∵∠ACB=∠ADC=∠BDC=90°,∴∠ACD+∠A=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴CD2=AD•BD=x(8﹣x),又∵CD2=CF2﹣DF2=x2﹣12,∴x(8﹣x)=x2﹣12,解得:x1=﹣1(舍去),x2=,∴BF=,∴AD=AB﹣BF﹣DF=9﹣﹣1=.故答案为:.16.解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).三.解答题(共6小题,满分40分)17.解:(1)∵=,∴=+1=+1=.(2)∵=,∴﹣1=﹣1,∴=,∵=,∴÷=÷,∴=.18.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.19.解:(1)∵△ABC∽△DEC,∴∠B=∠E,∠A=∠D=45°,∵∠ACB=60°,∴∠B=180°﹣60°﹣45°=75°;(2)∵△ABC∽△DEC,∴=,∵AC=3cm,BC=4cm,CE=6cm,∴=,∴DC=(cm),故AD=3+=(cm).20.(1)证明:如图2,过C作CE∥DA.交BA的延长线于E,∵CE∥AD,∴=,∠2=∠ACE,∠1=∠E,∵∠1=∠2,∴∠ACE=∠E,∴AE=AC,∴=;(2)解:如图3,∵AB=3,BC=4,∠ABC=90°,∴AC=5,∵AD平分∠BAC,∴=,即=,∴BD=BC=,∴AD===,∴△ABD的周长=+3+=.故答案为.21.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.22.解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时,,即,解得:t=;当△APQ∽△ACB时,,即,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:s或4s.。
人教版九年级下数学第27章相似单元检测卷含答案
第27章相似单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=.综合以上可知,当BP的值为2,12或时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。
人教版九年级下册数学《第27章相似》单元测试题(含答案解析)
春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。
人教版九年级数学下册《第27章相似》单元检测试卷(有答案)
人教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.AD DB =DEBCB.DEBC=ACECC.AD DB =AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①② B.②③ C.③④ D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=23AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.16.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB 相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD= 2,BC=10,若△ABF与△FCD相似,则CF的长为________.19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P 有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB=23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P 在点B 的左侧,如图1, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx+3,解得x =3,此时PD =6; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x+3=x4,解得x 1=−3+√412,x 2=−3−√412(舍去),此时PD =3+√412;若点P 在线段BD 上,如图2,∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=x3−x ,解得x =1,此时PD =2; 当ABPD =PBCD 时,△PBA ∽△CDP ,即23−x =x4,无解; 若点P 在D 点右侧,如图3, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx−3,解得x =−3,舍去; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘.∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上,∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CD CE =BC B′C , 又∵BCB′C =12,∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3,∴CD =32. ∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a 2=b3, ∴ab =23,∴a+bb =53,(2)设a 2=b 3=c4=k , 则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12.25.解:(1)∵DE AB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2).26.解:(1)∵AB =AC ,∠A =36∘,∴∠C =∠ABC =12(180∘−∠A)=72∘,∵BD 平分∠ABC ,∴∠ABD =∠CBD =36∘=∠A , ∴AD =BD ,∵∠C =72∘,∠CBD =36∘,∴由三角形内角和定理得:∠BDC =72∘=∠C , ∴BD =BC =AD ,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BC CD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD ,即12√5−12=√5+14,∴cosA的值是√5+14.。
人教版九年级下册数学《第27章相似》单元检测试卷含答案
第27章相似单元检测一、选择题1. 将下图中的箭头缩小到原来的12,得到的图形是( )A. B.C. D.2. 如图,AB //EF //CD ,BC 、AD 相交于点O ,F 是AD 的中点,则下列结论中错误的是( )A. AO AD =BO BCB. OB CE =OA DFC. EF CD =OE BED. 2BE AD =OE OF3. 下列各组数中,成比例的是( )A. −6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124. 不为0的四个实数a 、b ,c 、d 满足ab =cd ,改写成比例式错误的是( )A. a c =d bB. c a =b dC. d a =b cD. a b =c d5. 如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB ,添加一个条件,不正确的是( )A. AB BP =AC CBB. ∠APB =∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=( )A. (−1):2B. (+1):2C. (3−:2D. (3+:27.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.下列各组图形不一定相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如图所示,△ABC中,DE//BC,AD=5,BD=10,DE=6,则BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么DEDF的值是______ .13.如果线段a、b、c、d满足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E分别在边AB、AC上,如果ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.17. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE //BC ,已知AE =6,AD BD =34,求CE 的长.18. 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD 于点F .(1)AB ,BC ,BF ,DE 这四条线段能否成比例?如不能,请说明理由;如能,请写出比例式;(2)若AB =10,DE =2.5,BF =5,求BC 的长.19.已知a3=b4=c5≠0,求2a−b+ca+3b的值.20.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,在△ABC中,AB>AC,点D位于边AC上.求作:过点D、与边AB相交于E点的直线DE,使以A、E为顶点的三角形与原三角形相似.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 315. 616. 解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱A BCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。
人教版九年级下册数学《第27章相似》单元测试含答案试卷分析解析
第27章相似一、选择题1.如果a=3,b=2,且b是a和c的比例中项,那么c=()A. B. C. D.2.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:23.已知△ABC∽△A′B′C′,sinA=m,sinA′=n,则m和n的大小关系为()A. m<nB. m>nC. m=nD. 无法确定4.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A. 2:3B. 3:2C. 4:9D. 9:45.三角尺在灯泡的照射下在墙上形成的影子如图所示。
若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A. 5:2B. 2:5C. 4:25D. 25:46.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D.9.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3。
若S1+ S3=20,则S2的值为( )A. 8B. 10C. 12D.10.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A. 10B. 11C. 12D. 1311.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC.D.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m二、填空题13.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________ .14.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为________ cm.15. 已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 ________.16.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .17.如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是________ .18.在比例尺为1:6000的地图上,图上尺寸为1cm×2cm的矩形操场,实际尺寸为________.19.已知△ABC中的三边a=2,b=4,c=3,h a,h b,h c分别为a,b,c上的高,则h a:h b:h c=________.20.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm221.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.22. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则AP n的长度是________.三、解答题(共3题;共15分)23.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=4,BG=3,求FG的长.24.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).25.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.6m;乙:我们相距36m.请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)26. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27. 如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A ﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?参考答案一、选择题C D C A B B B D A D D D二、填空题13.1:314.415.(﹣6,0)、(3,3)、(0,﹣3)16.317.6或818.60m×120m19.6:3:420.5421.222.三、解答题23.证明:(1)∵∠DME=∠A=∠B=α,∴∠AMF+∠BMG=180°﹣α,∵∠A+∠AMF+∠AFM=180°,∴∠AMF+∠AFM=180°﹣α,∴∠AFM=∠BMG,∴△AMF∽△BGM;(2)解:当α=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2,∵△AMF∽△BGM,∴,∴AF===,AC=BC=4•cos45°=4,∴CF=AC﹣AF=4﹣=,CG=BC﹣BG=4﹣3=1,∴FG== =.24.解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BEtan30°≈20(米)答:旗杆的高度约为20米.25.解:如图,CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,在Rt△AHF中,∵tan∠AFH=,∴FH=,在Rt△ADH中,∵tan∠ADH=,∴DH=,而DH﹣FH=DF,∴﹣=36,即﹣=36,∴AH=18,∴AB=AH+BH=18+1.6≈33(m).答:纪念塔的高度约为33m.26.(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴=1.27.(1)解:△DOE是等腰三角形.理由如下:过点A作AM⊥BC于M,∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,AC=AB= a,∴S△ABC= BC•AM= a2,∴P在边AB上时,y= •S△ABC= ax,P在边AC上时,y= •S△ABC= a2﹣ax,作DF⊥OE于F,∵AB=AC,点P以1cm/s的速度运动,∴点P在边AB和AC上的运动时间相同,∴点F是OE的中点,∴DF是OE的垂直平分线,∴DO=DE,∴△DOE是等腰三角形(2)解:由题意得:∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,∴AB= a,∴D(a,a2),∵DO=DE,AB=AC,∴当且仅当∠DOE=∠ABC时,△DOE∽△ABC,在Rt△DOF中,tan∠DOF= = = a,由a=tan30°= ,得a= ,∴当a= 时,△DOE∽△ABC.第11页共11页。
人教版九年级数学下册第27章相似单元检测试卷【含答案】
人教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.AD DB =DEBCB.DEBC=ACECC.AD DB =AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①② B.②③ C.③④ D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=23AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.16.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB 相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD= 2,BC=10,若△ABF与△FCD相似,则CF的长为________.19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P 有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB=23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P 在点B 的左侧,如图1, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx+3,解得x =3,此时PD =6; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x+3=x4,解得x 1=−3+√412,x 2=−3−√412(舍去),此时PD =3+√412;若点P 在线段BD 上,如图2,∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=x3−x ,解得x =1,此时PD =2; 当ABPD =PBCD 时,△PBA ∽△CDP ,即23−x =x4,无解; 若点P 在D 点右侧,如图3, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx−3,解得x =−3,舍去; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘.∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上,∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CD CE =BC B′C , 又∵BCB′C =12,∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3,∴CD =32. ∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a 2=b3, ∴ab =23,∴a+bb =53,(2)设a 2=b 3=c4=k , 则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12.25.解:(1)∵DE AB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2).26.解:(1)∵AB =AC ,∠A =36∘,∴∠C =∠ABC =12(180∘−∠A)=72∘,∵BD 平分∠ABC ,∴∠ABD =∠CBD =36∘=∠A , ∴AD =BD ,∵∠C =72∘,∠CBD =36∘,∴由三角形内角和定理得:∠BDC =72∘=∠C , ∴BD =BC =AD ,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BC CD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD ,即12√5−12=√5+14,∴cosA的值是√5+14.。
第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册
人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。
人教版九年级数学下册第27章相似单元达标训练试题(含答案)
人教版九年级数学下册第27章相似单元达标训练一.选择题1.下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( )图K-6-3图K-6-48.如图K-10-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是( )图K-10-6A.(2,7) B.(3,7) C.(3,8) D.(4,8)9.如图K-14-4所示,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( )图K-14-4A.2∶3 B.3∶2C.4∶5 D.4∶910.观察图K-6-1中各组图形,其中相似的图形有( )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-412.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-513.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-816.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-1119.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-1120.如图K-12-8是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15 mm,DO=24 mm,DC=10 mm,我们知道铁夹的侧面是轴对称图形,请求出A,B两点间的距离.图K-12-821. 如图K-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似?(A′B′与AB是对应边)图K-7-422.如图K-12-9 所示,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K-12-9参考答案一、选择题1.下面给出了一些关于相似的命题,其中真命题有( C )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( B )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( A )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( B ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( B )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( A )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( D )图K-6-3图K -6-48.如图K -10-6,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD ∶AB =3∶1,则点C 的坐标是( A )图K -10-6A .(2,7)B .(3,7)C .(3,8)D .(4,8)9.如图K -14-4所示,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4∶9,则OB ′∶OB 为( A )图K -14-4A .2∶3B .3∶2C .4∶5D .4∶910.观察图K -6-1中各组图形,其中相似的图形有( B )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-4[答案] (1,2)12.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-5[答案] 2913.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-2[答案].5+1214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.[答案] (4,6)或(-4,-6)15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-8[答案] 616.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)[答案] 是 不是 三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形. (2)答案不唯一,只要是用相似图形做的,都符合要求.如图:18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-11[解析] (1)由平行四边形的对角相等,对边平行,证得△ABF ∽△CEB ;(2)由△DEF ∽△CEB ,△DEF ∽△ABF ,根据相似三角形的面积比等于相似比的平方可以求出△ABF 和△BCE 的面积,从而▱ABCD 的面积可求.解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD , ∴∠ABF =∠CEB , ∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB 綊CD ,∴△DEF ∽△CEB ,△DEF ∽△ABF.∵DE =12CD ,∴EC =3DE ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB )2=14. ∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △CEB -S △DEF =16,∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.19.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-11解:∵矩形ABCD 的周长为24, ∴AB +AD =12.设AB =x ,则AD =12-x ,AB′=x +4,AD′=14-x. ∵矩形ABCD 与矩形AB′C′D′是位似图形, ∴AB AB′=AD AD′, 即x x +4=12-x 14-x, 解得x =8,∴AB =8,AD =12-8=4.20.如图K -12-8是一个常见铁夹的侧面示意图,OA ,OB 表示铁夹的两个面,C 是轴,CD ⊥OA 于点D ,已知DA =15 mm ,DO =24 mm ,DC =10 mm ,我们知道铁夹的侧面是轴对称图形,请求出A ,B 两点间的距离.图K -12-8解:如图,连接AB ,同时连接OC 并延长交AB 于点E ,∵铁夹的侧面是轴对称图形,故OE 是对称轴,∴OE ⊥AB ,AE =BE. ∵∠COD =∠AOE ,∠CDO =∠AEO =90°,∴Rt △OCD ∽Rt △OAE ,∴OC OA =CDAE ,而OC =OD 2+DC 2=242+102=26,∴2624+15=10AE ,∴AE =39×1026=15,∴AB =2AE =30(mm).答:A ,B 两点间的距离为30 mm.21. 如图K -7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB =20米,AD =30米,试问当小路的宽x 与y 的比值为多少时,能使小路四周所围成的矩形A ′B ′C ′D ′与矩形ABCD 相似?(A ′B ′与AB 是对应边) 图K -7-4[解析] 若矩形A′B′C′D′与矩形ABCD 相似,由相似多边形的性质可知,这两个矩形的对应边成比例,即可求出相似比,再由相似比求出x 与y 的比值.解:由题意可知,矩形A′B′C′D′与矩形ABCD 相似(A′B′与AB 是对应边),则应有AB A′B′=BC B′C′,即2020+2y =3030+2x ,从而有20(30+2x)=30(20+2y),解得x y =32.22.如图K -12-9 所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4米,BC =10米,CD 与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K -12-9解:如图所示,过点D 作DF ⊥BC 交BC 的延长线于点F ,延长AD 交BC 的延长线于点E.∵∠DCF =30°,∴DF =12CD =2米,CF =CD 2-DF 2=2 3 米. 根据已知条件,1米高的标杆的影长为2米,可求得EF =2DF =4米,∴BE =(14+2 3)米.∵DF ⊥BE ,AB ⊥BE ,∴△DFE ∽△ABE ,∴DF AB =EF BE,∴2AB =4BE, ∴AB =12BE =7+3≈8.7(米). 即电线杆的高度约为8.7米.1、只要朝着一个方向奋斗,一切都会变得得心应手。
2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析
2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。
人教版九年级数学下册第27章《相似》单元检测及答案(2021新)
12.【答案】∵BC= AC,∴ ,∵AD∥BE∥CF,∴ ,∵DE=4,∴EF=2.故答案为:2.
13.【答案】因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,
因为S△ABC:S△DEF=2:9=(2:3)2,
所以△ABC与△DEF的相似比为2:3,
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
第27章《相似》单元测试卷解析
一、选择题
1.【答案】∵2x=5y,∴ .故选B.
2.【答案】设 =k,
则a=2k,b=3k,c=4k,
D、∠A=∠E且 不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;
故选:C.
4.【答案】∵四边形ABCD是正方形,∴AB=BC,
∵BE=CE,∴AB=2BE,
又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN
∴DM2+DN2=MN2=1∴DM2+ DM2=1,解得DM= ;
①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;
②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t= 秒.
因此t=3秒或t= 秒时,以点C、P、Q为顶点的三角形与△ABC相似.
②DM与BE是对应边时,DM= DN,∴DM2+DN2=MN2=1,
即DM2+4DM2=1,解得DM= .∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似.
人教版数学九年级下学期第27章《相似》测试卷含答案
人教版数学九年级下学期第27章《相似》测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( ) A.1对B.2对C.3对D.4对7.已知:如图,在中,,则下列等式成立的是( )A .B .C .D .8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是( )A .B .C .D .9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是( )A . 1个B . 2个C . 3个D . 4个 10.点是线段的黄金分割点,且,下列命题:,中正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O , 若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比=___________.15.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.2.244 1.520.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC 边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF ;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(共60分)21.(本题6分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.22.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.25.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•A C;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.答案(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.【答案】A【解析】选项A,两条线段的比,没有长度单位,它与所采用的长度单位无关,选项A错误;选项B,,根据等比性质,a=2k,b=3k(k≠0),选项B正确;选项C,,根据比例的基本性质可得3a=2b,选项C正确;选项D,,根据比例的基本性质可得a=b,选项D正确.故选A.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形【答案】D3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.【答案】C【解析】△ABC∽△DEF,故:A.∠A=∠D正确,故本选项错误;B.∠B=∠E正确,故本选项错误;C.AB=DE不一定成立,故本选项正确;D.正确,故本选项错误.故选C.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m【答案】A解得y=16000(cm)=160(m)∴矩形运动场的实际尺寸是80m×160m.故选A.5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)【答案】D6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( )A.1对B.2对C.3对D.4对【答案】D【解析】因为点D,E,F分别为OA,OB,OC的中点,所以DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,因为DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以,,所以,所以△DEF∽△ABC,因此有四对相似三角形,故选D.7.已知:如图,在中,,则下列等式成立的是()A.B.C.D.【答案】C8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是()A.B.C.D.【答案】D【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BE,∵CG∥AE,∴四边形AGCF是平行四边形,△BCG∽△BEA,△CEF∽△BEA,∴,,CF=AG,∴DF=BG,,∴选项A、B正确;∵AD∥BE,∴,∴,∴选项C正确,D不正确;故选D.9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是()A.1个B.2个C.3个D.4个【答案】B10.点是线段的黄金分割点,且,下列命题:,中正确的有()A.1个B.2个C.3个D.4个【答案】B二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .【答案】25【解析】根据AD:DB=2:3可得:AD:AB=2:5,∵DE ∥BC ,∴△ADE ∽△ABC ,∴25DE AD BC AB . 12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.【答案】3.2 【解析】利用勾股定理列式求出AC=8,设AD=2x ,得到AE=DE=DE 1=A 1E 1=x ,然后求出BE 1=10-3x ,再利用相似三角形对应边成比例列式求出DF=32x ,然后利用勾股定理列式求出E 1F=132x ,然后根据相似三角形对应边成比例列式求解得到x=85,从而可得AD 的长为2×85=165=3.2. 13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD的长为 .【答案】23.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥A C,AE、CD相交于点O,若S△DO E:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2.16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 【答案】152【解析】设原矩形的长为x ,宽为y ,则剩下的矩形的长为y ,宽为(x -y),根据矩形相似可求出比值. 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .【答案】1.18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .【答案】13【解析】根据菱形的性质得出AD=BC ,AD ∥BC ,求出AD=3BE ,根据相似三角形的判定得出△AFD ∽△EFB ,根据相似得出比例式BF BE DF AD =,代入求出即可求得结果为13. 19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.41.52.24【答案】3.08 【解析】根据三角形相似的性质可得:x24.25.144=+,则x=3.08 20.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC.若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论: ①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC;④S 矩形ABCD =4S △BPF ;⑤△AEB 是正三角形.其中正确结论的序号是.【答案】①②③⑤在Rt△BPF 中,BF=2,由勾股定理可求得PF=22BF BP +=22343⎛⎫+ ⎪ ⎪⎝⎭=433,∵DE=1,∴PF=433DE ,故②正确;在Rt△BCE 中,EC=1,BC=3,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC, 故③正确;∵AB=2,AD=3,∴S 矩形ABCD =AB×AD=2×3=23,∵BF=2,BP=433,∴S △BPF =12BF×BP=12×2×433=433, ∴4S △BPF =1633,∴S 矩形ABCD =≠4S △BPF ,故④不正确; 由上可知AB=AE=BE=2,∴△AEB 为正三角形,故⑤正确; 综上可知正确的结论为:①②③⑤.故答案为:①②③⑤. 三、解答题(共60分)21.(本题6分)如图,在△ABC 中,D 是AB 上一点,且∠ACD=∠B,已知AD=8cm ,BD=4cm ,求AC 的长.【答案】4622.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2. (1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.【答案】(1)图形见解析;(2)图形见解析.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BD DEAB AC,∴DE=BD ACAB⋅=8714⨯=4.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案】(1)证明见解析;(2) AD=3525.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.【答案】8米【解析】如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,FG//EH, △AFG∽△AEH,FG AG EH AH=又因为AG=BC=2,AH=BD=2+6=8,FG=FC-GC=3.2 -1.6=1.6,所以1.628EH=,EH=6.4,∴ED=EH+HD=6.4+1.6=8 树ED的高为8米26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.【答案】(1)(0,0);(2)A4(8,0),A5(16,0),B4(16,8),C4(8,8).27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)证明见解析;(2) BC=10.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.【答案】(1)证明见解析;(2)证明见解析;(3) t=1秒或5秒.【解析】(1)、如图1 ∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP =∠BPC ∴△ADP∽△BPC.∴ADBP=APBC.即AD·BC=AP·BP.(2)结论AD·BC=AP·BP 仍成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠ADP,∴∠DPC+∠BPC =∠A+∠ADP,∵∠DPC =∠A=θ,∴∠BPC =∠ADP ,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴ADBP=APBC.,∴AD·BC=AP·BP.(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理得DE=4,∴DC=DE=4,∴BC=5-4=1,又∵AD=BD,∴∠A=∠B,由已知,∠DPC =∠A,∴∠DPC =∠A=∠B,由(1)、(2)可得:AD·BC=AP·BP,又AP=t,BP=6-t,∴t(6-t)=5×1,解得t1=1,t2=5,∴t的值为1秒或5秒.。
人教版九年级数学下册第27章《相似》测试带答案解析
人教版九年级数学下册第27章《相似》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列选项中的两个图形一定相似的是()A.两个等边三角形B.两个矩形C.两个菱形D.两个等腰梯形2.如图,D,E是△ABC边上的两个点,请你再添加一个条件,使得△ABC∽△AED,则下列选项不成立的是()A.ABAE =ACADB.ABAE=BCDEC.∠C=∠ADE D.∠B=∠AED3.如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,DB=2AD,则S△ADE:S△ABC =()A.19B.14C.16D.134.如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB 交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为()5.如图,东汉末年数学家刘徽利用青朱出入图,证明了勾股定理,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”.若CE=4,DE=2,则正方形BFGH的面积为()A.15 B.25 C.100 D.1176.如图,在平面直角坐标系中,以A(0,1)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C,若点B的坐标为(﹣1,3),则点B的对应点B'的坐标为()A.(2,﹣4)B.(1,﹣4)C.(2,﹣3)D.(1,﹣3)7.如图,在△ABC和△AED中,∠CAB=∠DAE=36°,AB=AC、AE=AD,连接CD,连接BE并延长交AC,AD于点F、G.若BE恰好平分∠ABC,则下列结论:①DE=GE;②CD∥AB;③∠ADC=∠AEB;④BF =CF•AC.其中正确的个数为()A.1个B.2个C.3个D.4个(k>0,x>0)的图象上,x过点A 8.如图,在平面直角坐标系中,点A、B在函数y=kx作x轴的垂线,与函数y=−kx(x>0)的图象交于点C,连结BC交x轴于点D.若点A 的横坐标为1,BC=3BD,则点B的横坐标为()A.32B.2C.52D.39.如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于12MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于12AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=32,则CD的长是()A.910B.1 C.94D.410.如图,在菱形ABCD中,对角线AC与BD相交于点O,在BC的延长线上取一点E,连接OE交CD于点F.已知AB=5,CE=1,则CF的长是()A.23B.34C.35D.5711.如图,已知点A(0,4),B(4,1),BC⊥x轴于点C.点P为线段OC上一点,且PA⊥PB.则点P的坐标为()A.(1,0)B.(1.5,0)C.(1.8,0)D.(2,0)12.如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AF⊥x轴,垂足为F.若OE=3,EF=1.以下结论正确的个数是()①OA=3AF;②AE平分∠OAF;③点C的坐标为(−4,−√2);④BD=6√3;⑤矩形ABCD 的面积为24√2.A.2个B.3个C.4个D.5个二、填空题(本大题4个小题,每小题4分,共16分)13.如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件_________,使△ADE∽△ABC.14.如图,数学兴趣小组利用硬纸板自制的Rt△ABC来测量操场旗杆MN的高度,他们通过调整测量位置,并使边AC与旗杆顶点M在同一直线上,且Rt△ABC与△AEM在同一个平面内.已知AC=0.8米,BC=0.5米,目测点A到地面的距离AD=1.5米,到旗杆的水平距离AE=20米,则旗杆MN的高度为_____米.15.如图,将菱形ABCD绕点A逆时针旋转到菱形AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E,若AB=5,BB′=3则CE的长为________.(x<0)16.如图,点A在x轴的负半轴上,点B在y轴的正半轴上,反比例函数y=kx的图象经过线段AB点的中点C,△ABO的面积为1,则k的值是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC.18.已知:如图ΔABC三个顶点的坐标分别为A(−2,−2)、B(−3,−4)、C(−1,−4),正方形网格中,每个小正方形的边长是1个单位长度.(1)以点C为位似中心,在网格中画出△A1B1C,使△A1B1C与ΔABC的位似比为2:1,并直接写出点A1的坐标______;(2)△A1B1C的面积为______.19.如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1).(1)以点O为位似中心,在第三象限画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为1:2;(2)画出将线段AB绕点A顺时针旋转90°所得的线段AB2,并求出点B旋转到点B2所经过的路径长.20.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)画出△ABC向左平移6个单位长度后得到的△A1B1C1(2)在y轴右侧画出以点O为位似中心,将△ABC缩小为原来12后得到的△A2B2C2 21.如图,四边形ABCD内接于圆O,AB是直径,点C是BD̂的中点,延长AD交BC的延长线于点E.(1)求证:CE=CD;(2)若AB=3,BC=√3,求AD的长.22.如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.(1)求证:DC是⊙O的切线;(2)若OAOD =23,BE=3,求DA的长.23.如图,一次函数y=−x−2的图象与y轴交于点A,与反比例函数y=−3x(x<0)的图象交于点B.(1)求点B的坐标;(2)点C是线段AB上一点(不与点A、B重合),若ACBC =12,求点C的坐标.24.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.25.如图,DP是⊙O的切线,D为切点,弦AB//DP,连接BO并延长,与⊙O交于点C,与DP交于点E,连接AC并延长,与DP交于点F,连接OD.(1)求证:AF//OD;(2)若OD=5,AB=8,求线段EF的长.参考答案:1.A【分析】根据相似图形的概念进行判断即可;【详解】解:A、两个等边三角形,三个角都是60°∴它们是相似图形,符合题意;B、两个矩形四个角都是90°,但对应边的比不一定相等∴它们不是相似图形,不符合题意;C、两个菱形角不一定相等∴它们不是相似图形,不符合题意;D、两个等腰梯形对应边的比不一定相等,∴它们不是相似图形;故选:A.【点睛】本题考查的是相似图形的判断,掌握形状相同的图形称为相似图形是解题的关键.2.B【分析】根据题意,已知一个公共角相等,所以再添加一组角相等,或者夹这个角的两边对应成比例即可判断两三角形相似,据此即可求解.【详解】解:已知∠BAC=∠EAD,A. ABAE =ACAD,两边成比例,夹角相等,可证明△ABC∽△AED,不符合题意,B. ABAE =BCDE,不能证明△ABC∽△AED,符合题意,C. ∠C=∠ADE加上条件∠BAC=∠EAD,可证明△ABC∽△AED,不符合题意,D. ∠B=∠AED加上条件∠BAC=∠EAD,可证明△ABC∽△AED,不符合题意,故选:B.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定定理是解题的关键.3.A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC,∵DB=2AD∴AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4.C【分析】根据CD∥OB得出ACAO =CDOB,根据AC:OC=1:2,得出ACAO=13,根据C、D两点纵坐标分别为1、3,得出OB=6,即可得出答案.【详解】解:∵CD∥OB,∴ACAO =CDOB,∵AC:OC=1:2,∴ACAO =13,∵C、D两点纵坐标分别为1、3,∴CD=3−1=2,∴2OB =13,解得:OB=6,∴B点的纵坐标为6,故C正确.故答案为:6.【点睛】本题主要考查了平行线的性质,平面直角坐标系中点的坐标,根据题意得出ACAO=CD OB =13,是解题的关键.5.D【分析】先求出BC=AD=AB=CD=6,证明△DEF∽△CEB,求出DF=3,则AF=AD+DF=9,由勾股定理得到BF2=AF2+AB2=117,则正方形BFGH的面积为117.【详解】解:∵CE=4,DE=2,∴CD=DE+CE=6,∴BC=AD=AB=CD=6,∵AD∥BC,∴△DEF∽△CEB,∴DFBC =DECE,即DF6=24,∴DF=3,∴AF=AD+DF=9,∴BF2=AF2+AB2=117,∴正方形BFGH的面积为117,故选D.【点睛】本题主要考查了相似三角形的性质与判定,正方形性质,勾股定理,熟知相关知识是解题的关键.6.C【分析】过点A作x轴的平行线DD′,作BD⊥DD′于D,作B′D′⊥DD′于D′,设出B点坐标(x,y),分别表示出AD,BD,A′D′,B′D′,根据位似比列出等式,求解即可解决问题.【详解】解:如图所示,过点A作x轴的平行线DD′,作BD⊥DD′于D,作B′D′⊥DD′于D′,设B′(x,y),则BD=3﹣1=2,AD=1,B′D′=﹣y+1,AD′=x,∵△ABC与△A′B′C的位似比为1:2,∴BDB′D′=ADAD′=12,即2−y+1=1x=12解得:x=2,y=﹣3,∴点B′得坐标为(2,﹣3).故选:C.【点睛】本题考查位似图形的性质,懂得利用位似图形的相似比求解是解题的关键.7.C【分析】利用SAS证明△DAC≌△EAB可得∠ADC=∠AEB,可判断③正确;由全等三角形的性质,三角形的内角和定理及等腰三角形的性质可求解∠ACB的度数,利用角平分线的定义求得∠ACD=∠ABE=36°,即可得∠ACD=∠CAB,进而可证明CD∥AB,即可判断②正确;根据已知条件可求出∠BCF=∠BFC=72°,从而可以得出BC=BF,证明△ABC∽△BFC,即可证明BF2=CF⋅AC,可判断④正确,无法证明DE=GE,即可判断①错误,进而可求解.【详解】∵∠CAB=∠DAE=36°,∴∠CAB−∠CAE=∠DAE−∠CAE,即∠DAC=∠EAB,∵在△DAC和△EAB中{AD=AE∠DAC=∠EABAC=AB,∴△DAC≌△EAB(SAS),∴∠ADC=∠AEB,AC=AB,∠ACD=∠ABE,故③正确;∴∠ACB=∠ABC,∵∠CAB=∠DAE=36°,∴∠ACB=∠ABC=(180°−36°)÷2=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠ACD=∠ABE=36°,∵∠DCA=∠CAB=36°,∴CD∥AB,故②正确;∵∠BFC=180°−∠ACB−∠CBE=180°−72°−36°=72°,∴∠BFC=∠BCF=72°,∴BF=BC,∵∠BAC=∠CBF=36°,∠ACB=∠BCF,∴△ACB∽△BCF,∴ACBC =BCCF,∴BC2=CF⋅AC,即BF2=CF⋅AC,故④正确;根据题目中的已知条件无法证明DE=GE,故①错误;综上分析可知,正确的个数为3个,故C正确.故选:C.【点睛】本题主要考查全等三角形的判定与性质,平行线的判定,角平分线的定义,三角形的内角和定理,等腰三角形的判定和性质,证明△DAC≌△EAB是解题的关键.8.B【分析】首先设出A的坐标,根据题意得出C的坐标,表示出CE的长度,过点B作BF垂直x轴,证明△CED∼△BFD,由题目条件BC=3BD得出相似比,代换出点B的纵坐标,即可求出B的横坐标.【详解】设点A的坐标为(1,k),设AC与x轴的交点为E,过点B作BF⊥x轴,垂足为F,如图:∵点C在函数y=−kx(x>0)的图象上,且AC⊥x轴,∴C的坐标为(1,−k),∴EC=k,∵BF⊥x轴,CE⊥x轴,∴△CED∼△BFD,∴BFCE =BDCD,又∵BC=3BD,∴BDCD =12,∴BFCE =12=BFk,即BF=12k,∴点B的纵坐标为12k,代入反比例函数解析式:y=kx当y=12k时,x=k12k=2,∴B点的横坐标是2,故选:B.【点睛】本题考查反比例函数及相似三角形,解题关键是将线段比转化为两个相似三角形的相似比,由相似三角形的对应边得出点的坐标.9.C【分析】首先根据题意可知AD平分∠BAC,EF垂直平分AD,再证明四边形AEDF为菱形,可知AE,然后根据平行线分线段成比例得CDDB =CEEA,再代入数值求出答案.【详解】由作法得AD平分∠BAC,EF垂直平分AD,∴∠EAD=∠F AD,EA=ED,F A=FD.∵EA=ED,∴∠EAD=∠EDA,∴∠F AD=∠EDA,∴DE∥AF,同理可得AE∥DF,∴四边形AEDF为平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=AF=2.∵DE∥AB,∴CDDB =CEEA,即CD32=32,∴CD=94.故选:C.【点睛】本题主要考查了尺规作角平分线,作线段垂直平分线,特殊平行四边形的判定,平行线分线段成比例等,根据两直线平行列出比例式是解题的关键.10.D【分析】作OG∥CD交BC于点G,根据平行线分线段成比例定理证明BG=CG,根据菱形的性质可得OB=OD,则GO是△BCD的中位线,可求出BG、CG和OG的长,再求出GE 的长,由CF∥GO可得△ECF∽△EGO,根据相似三角形的对应边成比例即可求出CF的长.【详解】解:如图,作OG∥CD交BC于点G,∵四边形ABCD 是菱形,且AB =5,∴BC =CD =AB =5,OB =OD ,∴BG CG =BO DO =1 ,∴BG =CG =12BC =52 ,∴GO 是△BCD 的中位线∴GO =12CD =52,GO ∥CD ∵CE =1,∴GE =CG +CE =52+1=72,∵CF ∥GO ,∴∠ECF =∠EGO∵∠E =∠E∴△ECF ∽△EGO ,∴CF GO =CE GE ,∴CF =GO•CE GE =52×172=57, ∴CF 的长为57,故选:D .【点睛】此题考查菱形的性质、平行线分线段成比例定理、三角形的中位线定理、相似三角形的判定与性质等知识,正确地作出所需要的辅助线是解题的关键.11.D【分析】先证△AOP ∽△PCB ,设OP =x ,CP =4-x ,得出44-x =x 1,解方程即可.【详解】解:∵BC ⊥OC ,∴∠BCP =90°,∠PBC +∠BPC =90°,∵PA⊥PB∴∠APB=90°,∠APO+∠BPC=90°,∴∠APO=∠PBC∵∠AOP=90°,∴∠AOP=PCB=90°,∴△AOP∽△PCB,∴OACP =OPCB,设OP=x,CP=4-x,4 4-x =x1,整理得x2−4x+4=0,解得x=2,经检验4-x=4-2=2≠0,∴x=2是原方程的解∴点P(2,0).故选择D.【点睛】本题考查图形与坐标,三角形相似判定与性质,可化为一元二次方程的分式方程,掌握图形与坐标,三角形相似判定与性质,可化为一元二次方程的分式方程是关键.12.C【分析】根据相似三角形的判定得出△EOB∽△EFA,利用相似三角形的性质及已知OE,EF 的值即可判断结论①;由①分析得出的条件,结合相似三角形、矩形的性质(对角线)即可判断结论②;根据直角坐标系上点的表示及结论①OA=3AF,利用勾股定理建立等式求解可得点A坐标,再根据关于原点对称的点的坐标得出点D坐标,即可判断结论③;由③可知AF=√2,进而得出OA的值,根据矩形的性质即可判断结论④;根据矩形的性质及④可知BD=6√2,利用三角形的面积公式求解即可判断结论⑤.【详解】解:∵矩形ABCD的顶点A在第一象限,AF⊥x轴,垂足为F,∴∠EOB=∠EFA=90°,AC=BD,OD=OA=OB=OC.∵∠AEF=∠BEO,∴△EOB∽△EFA.∵OE=3,EF=1,∴EFEO =AFOB=AFOA=13,即OA=3AF.(①符合题意)∵OA=OB,△EOB∽△EFA,∴∠OAB=∠OBA,∠EAF=EBO.∴∠OAB=∠EAF.∴AE平分∠OAF.(②符合题意)∵OF=OE+EF=3+1=4,∴点A的横坐标为4.∵OA=3AF,∴9AF2−AF2=OF2,即8AF2=16.∴AF=√2,点A的纵坐标为√2.∴A(4,√2).∵点A与点C关于原点对称,∴C(−4,−√2).(③符合题意)∵OA=3AF=3√2,∴BD=OD+OB=2OA=6√2.(④不符合题意)∵S矩形ABCD=S△BCD+S△BAD=2S△BAD,∴S矩形ABCD =2×12×6√2×4=24√2.(⑤符合题意)∴结论正确的共有4个符合题意.故选:C.【点睛】本题考查矩形与坐标的综合应用.涉及矩形的性质,相似三角形的判定与性质,勾股定理,直角坐标系上点的表示,关于原点对称的点的坐标,三角形的面积公式等知识点.矩形的对角线相等且互相平分;两角分别相等的两个三角形相似;相似三角形对应角相等,对应边成比例;两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点位P′(−x,−y).灵活运用相关知识点,通过已知条件建立等式关系是解本题的关键.13.∠ADE=∠B(答案不唯一).【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A=∠A,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证△ADE∽△ABC相似;根据两边对应成比例且夹角相等,可添加条件ADAB =AEAC证△ADE∽△ABC相似.故答案为∶∠ADE=∠B(答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.14.14【分析】利用相似三角形的性质求出EM,利用矩形的性质求出EN,可得结论.【详解】解:∵∠CAB=∠EAM,∠ACB=∠AEM=90°,∴△ACB∽△AEM,∴ACAE =BCEM,∴0.820=0.5EM,∴EM=12.5,∵四边形ADNE是矩形,∴AD=EN=1.5米,∴MN=ME+EN=12.5+1.5=14(米).故旗杆MN的高度为14米,故答案为:14.【点睛】本题考查相似三角形的应用,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题.15.158【分析】过C作CF∥C′D′交B′C′于F,根据菱形和旋转的性质求得△ABB′∽△B′FC,△ABB′≌△ADD′,可得CF和C′D的长,再由△CFE∽△DC′E求得CE和DE的比即可解答;【详解】解:如图,过C作CF∥C′D′交B′C′于F,AB ′C ′D ′是菱形,则AB ′∥C ′D ′,∴CF ∥AB ′,∴∠B ′FC =∠AB ′F ,∠B ′CF =∠AB ′B ,∵∠AB ′C ′=∠B ,∴∠B ′FC =∠B ,∴△ABB ′∽△B ′FC ,∴AB ′∶B ′C =BB ′∶FC ,AB ′=5,BB ′=3,则B ′C =2,∴FC =65,由旋转性质可得∠BAB ′=∠DAD ′,∵AB =AB ′=AD =AD ′,∴△ABB ′≌△ADD ′,∴BB ′=DD ′=3,∴DC ′=2,∵CF ∥C ′D ′,∴△CFE ∽△DC ′E ,∴CF ∶DC ′=CE ∶DE =65∶2=3∶5,∴CE =DC ×38=158; 故答案为:158; 【点睛】本题考查了菱形的性质,旋转的性质,相似三角形的判定和性质等知识;掌握相似三角形的判定和性质是解题关键.16.−12 【分析】取AO 的中点为M ,取BO 的中点为N ,连接CM ,CN .根据三角形中位线定理,平行线的的性质,矩形的判定定理确定四边形CMON 是矩形,根据相似三角形的判定定理和性质求出△ACM 和△CBN 的面积,进而求出矩形CMON 的面积,再根据反比例函数比例系数k 的几何意义求解即可.【详解】解:如下图所示,取AO 的中点为M ,取BO 的中点为N ,连接CM ,CN .∵C是AB中点,M是AO中点,N是BO中点,∴CM是△ABO中位线,CN是△ABO中位线,AMAO =12,BNBO=12,∴CM∥BO,CN∥AO,∴△ACM∽△ABO,△CBN∽△ABO,∠AMC=∠AOB=90°,∠CNB=∠AOB=90°,∴S△ACMS△ABO =(AMAO)2=14,S△CBNS△ABO=(BNBO)2=14,∠CNO=90°,∠CMO=90°,∴四边形CMON是矩形,∵△ABO的面积是1,∴S△ACM=14S△ABO=14,S△CBN=14S△ABO=14,∴S矩形CMON=S△ABO−S△ACM−S△CBN=12,∵反比例函数y=kx(x<0)的图象经过线段AB点的中点C,∴k=−12,故答案为:−12.【点睛】本题考查反比例函数比例系数k的几何意义,三角形中位线定理,平行线的性质,矩形的判定定理,相似三角形的判定定理和性质,综合应用这些知识点是解题关键.17.见解析【分析】根据两个角相等的两个三角形相似进行证明即可.【详解】证明:如图,∵在Rt△ABC中,CD是斜边AB上的高∴∠ADC=∠ACB=90°∵∠A是公共角∴△ACD∽△ABC.【点睛】本题考查了相似三角形的判定,解题关键是熟练掌握相似三角形的判定定理,准确运用进行推理证明.18.(1)作图见解析;(−3,0)(2)8【分析】(1)延长CA到A1使AA1=CA,延长CB到B1使BB1=CB,从而得到△A1B1C;然后写出点A1的坐标;(2)利用面积公式直接进行求解即可.【详解】(1)解:如图,△A1B1C为所作;点A1的坐标为(−3,0);(2)解:由图可知:S△A1B1C =12B1C⋅A1B=12×4×4=8.【点睛】本题考查位似三角形的作图,解题的关键是:熟练掌握位似三角形的定义:如果两个三角形不仅是相似三角形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个三角形叫做位似三角形.19.(1)见解析(2)√2π【分析】(1)把A、B、C点的横纵坐标都乘以−12得到A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点B的对应点B2,从而得到AB2,然后利用弧长公式计算点B旋转到点B2所经过的路径长.(1)解:∵△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)△A1B1C1与△ABC位似,且位似比为1:2;∴A1(0,−2),B1(−1,−1),C1(−2,−3),如图所示,△A1B1C1即为所求,(2)如图,AB2即为所求,∵AB=√22+22=2√2,=√2π∴点B旋转到点B2所经过的路径长为=90×π×2√2180【点睛】本题考查了求弧长,旋转的性质,位似变换作图,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,掌握以上知识是解题的关键20.(1)见解析(2)见解析【分析】(1)根据平移的性质作图即可;(2)根据位似的性质作图,由图可得出答案.【详解】(1)解:如图,△A1B1C1为所作;(2)解:如图,△A2B2C2为所作;.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了平移变换.21.(1)见解析(2)1【分析】(1)连接AC,根据圆周角推论得∠ACB=∠ACE=90°,根据点C是BD̂的中点得∠CAE=∠CAB,CD=CB,用ASA证明△ACE≌△ACB,即可得;(2)根据题意和全等三角形的性质得AE=AB=3,根据四边形ABCD内接于圆O和角之间的关系得∠CDE=∠ABE,即可得ΔEDC∽ΔEBA,根据相似三角形的性质得DEBE =CDAB,即可得(1)证明:如图所示,连接AC,∵AB为直径,∴∠ACB=∠ACE=90°,又∵点C是BD̂的中点∴∠CAE =∠CAB ,CD =CB ,在△ACE 和△ACB 中,{∠ACE =∠ACB AB =AC ∠CAE =∠CAB∴ΔACE ≅ΔACB(ASA),∴CE =CB ,∴CE =CD ;(2)解:∵ΔACE ≅ΔACB ,AB =3,∴AE =AB =3,又∵四边形ABCD 内接于圆O ,∴∠ADC +∠ABC =180°,又∵∠ADC +∠CDE =180°,∴∠CDE =∠ABE ,又∵∠E =∠E ,∴ΔEDC ∽ΔEBA ,∴DE BE =CD AB , 即:2√3=√33, 解得:DE =2,∴AD =AE −DE =1.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.22.(1)见解析(2)910【分析】(1)连接OC ,先根据等腰三角形的性质可得∠1=∠2,再根据圆周角定理可得∠ACB =∠1+∠3=90°,从而可得∠OCD =90°,然后根据圆的切线的判定定理即可得证;(2)设OA =OB =OC =2x ,则OD =3x ,AD =x,BD =5x ,再根据相似三角形的判定证出△DCO ∼△DEB ,然后根据相似三角形的性质求出x 的值,由此即可得出答案.(1)证明:如图,连接OC,∵OC=OB,∴∠1=∠2,∵AB是⊙O的直径,∴∠ACB=∠1+∠3=90°,∴∠2+∠3=90°,∵∠ACD=∠2,∴∠ACD+∠3=90°,即∠OCD=90°,∴DC⊥OC,又∵OC是⊙O的半径,∴DC是⊙O的切线.(2)解:∵OAOD =23,∴设OA=OB=OC=2x,则OD=3x,∴AD=OD−OA=3x−2x=x,BD=OB+OD=5x,∵CO⊥DC,BE⊥DC,∴BE∥CO,∴△DCO∼△DEB,∴ODBD =OCBE,即3x5x=2x3,解得x=910,∴DA=x=910.【点睛】本题考查了圆的切线的判定定理、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定定理和相似三角形的判定定理是解题关键.23.(1)(−3,1)(2)(−1,−1)【分析】(1)由两函数交点的求解方法可得:联立一次函数与反比例函数解析式,求解交点坐标即可.(2)过点C 、B 分别作CD 、BE 垂直于y 轴于D 、E ,易证△ACD ∽△ABE ,根据对应线段成比例以及点C 在直线AB 上,即可求解.【详解】(1)解:∵一次函数和反比例函数交于点B ,∴{y =−x −2y =−3x ,解得:{x 1=−3y 1=1 ,{x 2=1y 2=−3, ∵x <0∴B(−3,1) ;(2)解:如图,过点C 、B 分别作CD 、BE 垂直于y 轴于D 、E ,∴CD ∥BE ,∴∠ACD =∠ABE,∠ADC =∠AEB ,∴△ACD ∽△ABE ,∴AC AB =CD BE , ∵AC BC =12, ∴AC AB=13 , ∴CD BE =AC AB =13,由(1)得:BE =3,∴CD =1 ,∵C 不与点A 、B 重合,点C 是线段AB 上一点,∴C 的横坐标为-1,将其代入直线y =−x −2,可得:y =−1 ,∴C(−1,−1) .【点睛】本题考查了一次函数和反比例函数图象与性质,交点问题,一次函数和坐标轴交点以及一次函数图象上的点的坐标特点,三角形相似的判定与性质,牢固掌握一次函数和二次函数图象与性质是解题的关键.24.(1)证明见解析;(2)EF=83【分析】(1)直接利用“AAS”判定两三角形全等即可;(2)先分别求出BE和DC的长,再利用相似三角形的判定与性质进行计算即可.【详解】解:(1)∵OA=OD,∠ABO=∠DCO,又∵∠AOB=∠DOC,∴△AOB≌△DOC(AAS);(2)∵△AOB≌△DOC(AAS),AB=2,BC=3,CE=1∴AB=DC=2,BE=BC+CE=3+1=4,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC,∴EF2=43,∴EF=83,∴EF的长为83.【点睛】本题考查了全等三角形的判定与性质、平行线分线段成比例的推论、相似三角形的判定与性质等,解决本题的关键是牢记相关概念与公式,能结合图形建立线段之间的关联等,本题较基础,考查了学生的几何语言表达和对基础知识的掌握与应用等.25.(1)见解析(2)83【分析】(1)延长DO交AB于点H,根据切线的性质得到OD⊥DP,根据圆周角定理得到∠BAC=90°,根据平行线的判定定理证明结论;(2)根据垂径定理求出AH、BH,根据勾股定理求出OH,根据相似三角形的性质计算即可.(1)证明:延长DO交AB于点H,∵DP是⊙O的切线,∴OD⊥DP,∵AB//DP,∴HD⊥AB,∵BC为⊙O的直径,∴∠BAC=90°,∴AF//OD;(2)∵OH⊥AB,AB=8,∴BH=AH=4,∴OH=√OB2−BH2=√52−42=3,∵BH//ED,∴△BOH∽△EOD,∴BHED =OHOD,即4ED=35,解得:ED=203,∵∠BAC =90°,DH ⊥AB ,DH ⊥DP ,∴四边形AFDH 为矩形,∴DF =AH =4,∴EF =ED ﹣DF =203﹣4=83.【点睛】本题考查的是切线性质、相似三角形的判定和性质、矩形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.。
人教版九年级数学下册第27章(精选)相似测试卷及答案【推荐】
第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32B .41C .31 D .212.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DEB .21=∆∆的周长的周长ABC ADE C .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC中,DE∥BC,AE∶EB=2∶3,若△AED的面积是4m2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.三、解答题13.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S . (1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?第二十七章 相似全章测试答案与提示1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ;(2)△ABC ∽△CDE ,DE =1.5. 14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x当∠ADE 为底角时:⋅=21AE19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y (2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。
人教版九年级下册数学 第27章 相似 单元检测卷(含答案)
第27章相似单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。
人教版九年级下册数学第 第27章 相似 单元测试卷(含答案)
人教版九年级下册数学第 第二十七章 相似 单元测试卷一、选择题(每小题3分,共30分)1、下列各组图形中,必定相似的是(D)A.两个等腰三角形B.各有一个角是40°的两个等腰三角形C.两条边之比都是2∶3的两个直角三角形D.有一个角是100°的两个等腰三角形2、如图,DE ∥BC ,则下面比例式不成立的是(B)A.AD AB =AE ACB.DE BC =EC ACC.AD DB =AE ECD.BC DE =AC AE3、在△ABC 和△A′B′C′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A′B′=4.5 cm ,B′C′=2.5 cm ,C′A′=4 cm ,则下列说法错误的是(D)A.△ABC 与△A′B′C′相似B.AB 与B′A′是对应边C.两个三角形的相似比是2∶1D.BC 与B′C′是对应边4、如图,在▱ABCD 中,点E 在边DC 上,DE ∶EC =3∶1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶15、如图,以点O 为位似中心,将△ABC 放大后得到△DEF ,已知△ABC 与△DEF 的面积比为1∶9,则AB ∶DE 的值为(A)A.1∶3B.1∶2C.1∶ 3D.1∶96、.如果△ABC ∽△DEF ,A ,B 分别对应D ,E ,且AB ∶DE =1∶2,那么下列等式一定成立的是(D)A.BC ∶DE =1∶2B.△ABC 的面积∶△DEF 的面积=1∶2C.∠A 的度数∶∠D 的度数=1∶2D.△ABC 的周长∶△DEF 的周长=1∶27、如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为( A ).A.2.4B.2.6C.3.2D.4.88、某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比(C) A.完全没有变化 B.扩大成原来的2倍C.面积缩小为原来的14D.关于纵轴成轴对称 9、如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为( C )。
人教版九年级数学下册_第27章_相似_单元检测试卷【有答案】
人教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在比例尺为的地图上,量得甲,乙两地的距离,则甲,乙两地的实际距离是()A. B. C. D.2.如图,已知,、相交于点,,,则与的周长之比是()A. B. C. D.3.已知点是线段的黄金分割点,,那么的长是()A. B.C. D.4.在同一时刻,身高米的小壮在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米B.米C. D.米5.美术专家认为:如果人的下身长与自己的身高之比是黄金分割数,那么就非常美丽,已知一个女孩身高为,下半身为,请你们替她选一个高度最理想的高跟鞋,则高度应为()A. B. C. D.6.如图:已知,,,则A. B. C. D.7.两个相似多边形的一组对应边为和,如果它们的周长差为,那么较大多边形的周长为()A. B. C. D.8.下列命题中,正确的是()A.两个任意的正方形相似B.两个任意的直角三角形相似C.两个任意的矩形相似D.两个任意的菱形相似9.如图,中,点、分别在两边、上,,则下列比例式中,不正确的是()A. B.C. D.10.如图,在中,,,为上两点,过点,分别作,的垂线,两垂线交于点,垂足分别为,,若,,则下列说法中不正确的是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.两个相似多边形的面积之比为,若他们的周长之差为,则较大的多边形的周长为________.12.如图,为的边上的点,请补充一个条件________,使.13.已知两个相似三角形的相似比为,其中一个小三角形的面积为,那么另一个大三角形的面积为________.14.点在的边上,,,,那么的长是________.15.如图:在中,为上一点,下列条件中:① ;②;③ ;④ ;⑤ .可以判断的是________;(填序号)16.如图,小明和他的父亲晚饭后到广场去散步,休息时小明站在广场中电灯的左侧,影长为米,小明的父亲站在电灯的右侧,他距离电灯支杆的距离比小明距电灯支杆的距离远米,此时他的影长恰好等于他的身高,已知小明的身高为米,小明父亲身高为米,则电灯的高度为________米.17.如图,中,,直线,交于点,交于点,交于点.若,则________.四边形18.一直角三角形的两直角边之比为,若斜边上的高分斜边为两线段,则较小的一段与较大的一段之比是________.19.如图,,是的角平分线,,,则的周长是________.20.如图,点在正方形内,是正三角形,与相交于点.有以下结论:① ;② 是等腰三角形;③ ;④ 的面积为,正方形的面积为,则.其中正确的是________(把正确的序号填在横线上).三、解答题(共 9 小题,共 60 分)21.(6分)如图,已知和点,以点为位似中心,求作的位似图形,使它与的相似比为.。
人教版九年级数学下册《第27章相似》单元测试题含答案
人教版九年级数学下册第27 章《相像》单元测试题学校:___________姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)评卷人得分一.选择题(每题3分,共10小题)1.已知a=2b,则以下选项错误的选项是(A.a+c=c+2b B.a﹣m=2b﹣m C.)D.2.如图,在△ABC中,点D、E分别在边AB、AC上,联络DE,假如AD:BD=2:3,那么以下条件中能判断DE∥BC的是()A.= B.= C.= D.=3.若△ABC∽△DEF,相像比为3:2,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:94.如图,DE是△ABC的中位线,M是DE的中点,CM的延伸线交AB于点N,则NM:MC等于()A.1:2 B.1:3 C.1:4 D.1:55.如图,BE,CF为△ABC的两条高,若AB=6,BC=5,EF=3,则AE的长为()A.B.4C.D.6.以下说法中不正确的选项是()A.相像多边形对应边的比等于相像比B.相像多边形对应角平线的比等于相像比C.相像多边形周长的比等于相像比D.相像多边形面积的比等于相像比7.如图,在菱形ABCD中,E为CD上一点,连结AE、BD,交于点O,若S△AOB:S△DOE=25:9,则CE:BC等于()A.2:5B.3:5C.16:25D.9:258.如图,l 1∥l2∥l3,BC=1,=,则AB长为()A.4 B.2 C.D.9.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,则S△ABE:S△ECF等于()A.1:2B.4:1C.2:1D.1:410.如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D 的切线交EC的延伸线于点G,连结AD,分别交CF、BC于点P、Q,连结AC.给出以下结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP?AD=CQ?CB.此中正确的选项是()A.①②③B.②③④C.①③④D.①②③④第Ⅱ卷(非选择题)评卷人得分二.填空题(每题3分,共8小题)11.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.12.如图△ABC中,BE均分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.13.如图,已知正方形D EFG的极点D、E在△ABC的边BC上,极点G、F分别在边AB、AC上,假如BC=5,△ABC的面积是10,那么这个正方形的边长是.14.如图,△ABC中,D在BC上,F是AD的中点,连CF并延伸交AB于E,已知=,则等于.15.从美学角度来说,人的上身长与下身长之比为黄金比时,能够给人一种协调的美感.某女老师上身长约,下身长约94cm,她要穿约cm的高跟鞋才能达到黄金比的美感成效(精准到1cm).16.如图,矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,延伸AE与BC延伸线交于点F,则FC:FB=.17.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE订交于点F,则点D到线段AB的距离等于(结果保存根号).18.如图,正方形ABCD中,BC=2,点M是AB边的中点,连结DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.评卷人得分三.解答题(共7小题)19.已知如下图,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:1)△BAF∽△BCE.(2)△BEF∽△BCA.20.已知:△ABC在直角坐标平面内,三个极点的坐标分别为中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度获得的△A1B1C1,点A(0,3)、B(3,4)、C(2,2)(正方形网格C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;的面积是平方单位.(3)四边形AA2C2C21.如图,实验中学某班学生在学习完《利用相像三角形测高》后,利用标杆B E丈量学校体育馆的高度.若标杆BE的高为米,测得AB=2米,BC=14米,修业校体育馆CD的高度.22.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,极点E、F分别在AB、AC上,此中BC=24cm,高AD=12cm.1)求证:△AEF∽△ABC:2)求正方形EFMN的边长.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连结EF并延伸交BC的延伸线于点G1)求证:△ABE∽△DEF;2)若正方形的边长为4,求△BEG的面积.24.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.1)若AB=12,BE=3,求EF的长;2)求∠EOF的度数;3)若OE=OF,求的值.25.已知:正方形ABCD中,AB=4,E为CD边中点,F为AD边中点,AE交BD于G,交BF于H,连结DH.1)求证:BG=2DG;2)求AH:HG:GE的值;(3)求的值.参照答案与试题分析一.选择题(共10小题)1.【解答】解:A、由于a=2b,因此a+c=c+2b,正确;B、由于a=2b,因此a﹣m=2b﹣m,正确;C、由于a=2b,因此,正确;D、由于a=2b,当b≠0,因此,错误;应选:D.2.【解答】解:只有选项B正确,原因是:∵AD:BD=2:3,=,∵=,=,==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,DE∥BC,依据选项A、C、D的条件都不可以推出DE∥BC,应选:B.3.【解答】解:∵△ABC∽△DEF,相像比为3:2,∴对应面积的比为()2=9:4,应选:C.4.【解答】解:∵DE是△ABC的中位线,M是DE的中点,DM∥BC,DM=ME=BC.∴△NDM∽△NBC,==.=.应选:B.5.【解答】解:∵BE,CF为△ABC的两条高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,=,∵∠A=∠A,∴△AEF∽△ABC,=,AB=6,BC=5,EF=3,∴=,∴AE=,应选:A.6.【解答】解:若两个多边形相像可知:①相像多边形对应边的比等于相像比;②相像多边形对应角平线的比等于相像比③相像多边形周长的比等于相像比,④对应面积的比等于相像比的平方,应选:D.7.【解答】解:∵四边形ABCD是菱形∴AB=BC=CD,CD∥AB∴△AOB∽△EOD∴S△AOB:S△DOE=(AB)2:(DE)2=25:9∴AB:DE=5:3∴设AB=5a,则DE=3a∴BC=CD=5a,EC=2a∴EC:BC=2:5应选:A.8.【解答】解:∵l1∥l2∥l3,BC=1,=,∴= =,∴AB=,应选:C.9.【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,2 2S△ABE:S△ECF=AB:CE,∵E是BC的中点,BC=2CE=AB==,即S△ABE:S△ECF=4:1应选:B.10.【解答】解:①错误,假定∠BAD=∠ABC,则=,=,==,明显不行能,故①错误.②正确.连结OD.∵GD是切线,DG⊥OD,∴∠GDP+∠ADO=90°,OA=OD,∴∠ADO=∠OAD,∵∠APF+∠OAD=90°,∠GPD=∠APF,∴∠GPD=∠GDP,GD=GP,故②正确.③正确.∵AB⊥CE,=,=,∴=,∴∠CAD=∠ACE,PC=PA,∵AB是直径,∴∠ACQ=90°,∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,∴∠PCQ=∠PQC,PC=PQ=PA,∵∠ACQ=90°,∴点P是△ACQ的外心.故③正确.④正确.连结BD.∵∠AFP=∠ADB=90°,∠PAF=∠BAD,∴△APF∽△ABD,=,∴AP?AD=AF?AB,∵∠CAF=∠BAC,∠AFC=∠ACB=90°,∴△ACF∽△ABC,2可得AC=AF?AB,∵∠ACQ=∠ACB,∠CAQ=∠ABC,2∴△CAQ∽△CBA,可得AC=CQ?CB,∴AP?AD=CQ?CB.故④正确,应选:B.二.填空题(共8小题)11.【解答】解:∵DE∥BC,∴AE:AC=AD:AB=2:3,=,∴AE:EC=2:1.∵AE=4,∴CE=2,故答案为:2.12.【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE均分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.13.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是10,BC?AH=10,AH=4,设正方形DEFG的边长为x,则GF=x,MH=x,AM=4﹣x,GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.14.【解答】解:作DG∥CE,如图,DG∥CE,∴==,设BG=2x,则GE=3x,EF∥DG,==1,AE=EG=3x,∴==.故答案为:.15.【解答】解:设她要穿xcm的高跟鞋,由题意得,,解得x=6,故答案为:6.16.【解答】解:作EH⊥AB于H.∵四边形ABCD是矩形,∴∠D=∠DAH=∠EHA=90°,∴四边形AHED是矩形,AD=BC=EH,DE=AH,AB=2BC,设AD=BC=a,则AB=CD=2a,在Rt△AEH中,AE=AB=2a,EH=AD=a,∴AH==a,EC=BH=2a﹣a,∵EC∥AB,∴△FEC∽△FAB,∴= ==,故答案为17.【解答】解:∵△ABC∽△ADE,AB=2AD,=()2=4,S△ABC=,S△ADE=,∵△ABC是等边三角形,△ABC∽△ADE,∴△ADE是等边三角形,2∴AD=,∴AD=1.如图,过点D作DH⊥AB于H.在△ADH中,∵∠HAD=45°,∴DH=AD?sin∠HAD=1×=.故答案为.18.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∵点M是AB边的中点,AM=BM=1,AM∥CD,∴=,DP=,∵PF=,DF=DP﹣PF=﹣=,∵∠EDF=∠PDC,∠DFE=∠DCP=45°,∴△DEF∽△DPC,∴,∴,DE=,CE=CD﹣DE=2﹣=.故答案为:,.三.解答题(共7小题)19.【解答】解:(1)∵AF⊥BC,CE⊥AB,∴∠AFB=∠CEB=90°,∵∠B=∠B,∴△BAF∽△BCE.2)∵△BAF∽△BCE,∴=,∴=,∵∠B=∠B,∴△BEF∽△BCA.20.【解答】解:(1)如下图,画出△ABC向下平移4个单位长度获得的△A1B1C1,点C1的坐标是(2,﹣2);(2)如下图,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,(3)四边形AA2C2C的面积是=;故答案为:(1)(2,﹣2);(2)21.【解答】解:依题意得BE∥CD,∴△AEB∽△ADC,∴,即,CD=12.22.【解答】(1)证明:∵四边形EFMN是正方形,EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.2)解:设正方形EFMN的边长为x.∵△AEF∽△ABC,AD⊥BC,∴=,∴=,∴x=8,∴正方形的边长为8cm.23.【解答】(1)证明:设正方形的边长为4a,E为AD的中点,∴AE=ED=2a,FC=3DF,DF=a,FC=3a,=,=,=,又∠A=∠D=90°,∴△ABE∽△DEF;(2)∵AD=4,DE=2,AD∥BC,∴△EDF∽△GCF,∴==3,CG=6,BG=BC+CG=10,∴△BEG的面积=×BG×AB=20.24.【解答】解:(1)设BF=x,则FC=BC﹣BF=12﹣x,BE=3,且BE+BF+EF=BC,EF=9﹣x,22222 2 在Rt△BEF中,由BE+BF=EF可得3+x=(9﹣x),解得:x=4,则EF=9﹣x=5;(2)如图,在FC上截取FM=FE,连结OM,C△EBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,BE=MC,∵O为正方形中心,OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,∵,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,∵,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.3)证明:由(2)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.===,AE=OC,AO=CF,∵AO=CO,AE=×CF=CF,=.25.【解答】(1)证明:∵四边形ABCD是正方形,AB∥CD,AB=CD,DE=CE,==,BG=2DG.2)解:∵∵AB∥CD,AB=CD,DE=CE,===,Rt△ADE中,∵AD=4,DE=2,∴AE=2,∴EG=,同法可得BF=2,∵AB=AD,∠BAF=∠ADE,AF=DE,∴△BAF≌△ADE,∴∠ABF=∠DAE,∵∠DAE+∠BAH=90°,∴∠ABF+∠BAH=90°,∴∠AHB=90°,∴AE⊥BF,∴AH== = ,∴HG=2﹣﹣=,∴AH:HG:GE= ::=6:4:5.3)作DM⊥AE于M.由(2)可知:DM=AH=,∴EM==,HM=EH﹣EM=,DH=,∵BH==,∴==.。
人教版九年级下数学《第27章相似》单元检测卷含答案
人教版九年级下数学《第27章相似》单元检测卷含答案姓名:__________ 班级:__________一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形单元检测题
班级姓名得分
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列图形不一定相似的是()
A.所有的矩形 B.所有的等腰直角三角形
C.所有的等边三角形 D.所有边数相等的正多边形
2. D 、E分别是△ABC边 AB、AC上的一点,且△ADE∽△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()
A.1∶2 B.1∶3 C.2∶3 D.3∶2
3.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()
A.ΔPAB∽ΔPCA
B.ΔPAB∽ΔPDA
C.ΔABC∽ΔDBA
D.ΔABC∽ΔDCA
4.如图所示,点E 是ABCD的边BC延长线上的一点,AE与CD相交于点F,则图中相似三角形共有()
A.2对 B.3对 C.4对 D.5对
(第3题) (第4题)
5.△ABC∽△A1B1C1,相似比为2︰3,△A1B1C1∽△A2B2C2,相似比为5︰4,则△ABC∽△A2B2C2 的相似比为()
A .
B .
C .
D .
6.如图,在大小为4×4的正方形网格中,是相似三角形的是()
① ② ③ ④
A.①和② B.①和③ C.②和③ D.②和④
7.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有()
A.1条 B.2条 C.3条 D.4条
8.如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△PQR∽△ABC,则点R应是甲、乙、丙、丁四点中的()
A .甲
B .乙
C .丙
D .丁
9.如图,点M 在BC 上,点N 在AM 上,CM=CN ,CM BM AN AM =,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB
C .∆ANC ∽∆ACM
D .∆CMN ∽∆BCA
(第7题) (第8题) (第9题)
10.将一个矩形纸片ABCD 沿AD 和BC 的中点的连线对折,要使矩形AEFB 与原矩形相似,则
原矩形的长和宽的比应为( )
A .2:1
B .1:3
C .1:2
D .1:1
二、填空题(本大题共4小题,每小题3分,共12分)
11.ΔABC 的三边长为2,10,2,ΔDEF 的两边为1和5,如果ΔABC ∽ΔDEF,则ΔDEF
的笫三边长为 。
12.在△ABC 中,AB=6,AC=8,在△DEF 中,DE=4,DF=3,要使△ABC 与△DEF 相似,需添加
的一个条件是 。
(写出一种情况即可)。
13.如图,DE ∥BC ,AD ∶DB= 2 ∶3 ,则DE ∶ BC= 。
14.如图,在直角梯形 ABCD 中,AB =7,AD =2,BC=3,若在 AB 上取一点P ,使以P 、A 、D
为顶点的三角形和以P 、B 、C 为顶点的三角形相似,这样的P 点有 个。
(第13题) (第14题)
三、(本题共2小题,每小题5分,满分10分)
15.如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:
ABF EAD △∽△。
A
B C
N
M A
C D
B E
A
D
图3
E
B C
F
G
16.将两块完全相同的等腰直角三角板摆成如图3的样子,假设图形中的所有点、线都在同一平面内,那么图形中有相似(不包括全等)三角形吗?如果有,把它们都写出来。
、
四、(本题共2小题,每小题5分,满分10分)
17.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形。
请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由)
18.马戏团让狮子和公鸡表演跷跷板节目.跷跷板支柱AB的高度为1.2米。
(1)若吊环高度为2米,支点A为跷跷板PQ的中点,狮子能否将公鸡送到吊环上?为什么?
(2)若吊环高度为3.6米,在不改变其他条件的前提下移动支柱,当支点A移到跷跷板PQ的什么位置时,狮子刚好能将公鸡送到吊环上?
五、(本题共2小题,每小题6分,满分12分)
19.如图,在ABC中,AD=DB,∠1=∠2,试说明△ABC∽△EAD。
A
Q
C
20.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,求证:ΔAEF ∽ΔACB 。
六、(本大题满分8分)
21.如图,∠ACB =∠ADC =900
,AC
=6,
AD =2。
问当AB 的长为多少时,这两个直角三角形相似?
七、(本大题满分8分)
22. 如图,点D 是△ABC 内一点,点E 是△ABC 外的一点,且∠1=∠2,∠3=∠4,图中有与
∠ACB 相等的角吗?如果有,请找出来,并说明理由。
八、(本大题满分10分)
23.如图,先把一矩形ABCD 纸片对折,设折痕为MN ,再把B 点叠在折痕线上,得到△ABE.过
B 点折纸片使D 点叠在直线AD 上,得折痕PQ 。
(1)求证:△PBE∽△QAB;(2)你认为 △PBE 和△BAE 相似吗?如果相似给出证明,若不相似请说明理由。
A D C
B N M D
C B Q E P N A D
C B A。