2012年湘教版八年级下学期数学期中考试试题
湘教版八年级数学下册期中考试卷(含解析及参考答案)
湘教版八年级数学下册期中考试卷学校 班级 考号 姓名温馨提示:本卷共三个大题,27个小题,总分满分120分,考试时量100分钟 一、精心选一选(30分)1、如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有 ( )A.2对B.3对C.4对D.5对2.在下列选项中,以线段a ,b ,c 的长为边,能构成直角三角形的是 ( ) A.a=3,b=4,c=6 B.a=5,b=6, c=7 C.a=6,b=8,c=10 D.a=7,b=24,c=253.直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于 ( ) A.13 B.12 C.10 D.54.在下列条件中,不能判断两个直角三角形全等的是 ( ) A.两条直角边对应相等 B.两个锐角对应相等C.一个锐角和它所对的直角边对应相等D.一条斜边和一条直角边对应相等5.等腰三角形的底角等于15°,腰长为12,则腰上的高等于 ( ) A.2 B.3 C.6 D.126.如图,已知点P 到AE ,AD ,BC 的距离相等,下列说法:①点P 在∠BAC 的平分线上;②点P 在∠CBE 的平分线上;③点P 在∠BCD 的平分线上;④点P 在∠BAC 、∠CBE 、∠BCD 的平分线的交点上.其中正确的是 ( ) A.①②③④ B.①②③C.④D.②③C7.已知一个多边形的内角和是540°,则这个多边形是 ( ) A.四边形 B.五边形 C.六边形 D.七边形8.如图,□ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为 ( )A.6cmB.12 cmC.4cmD.8cm9.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架。
观察所得四边形的变化,下列判断错误的是 ( )A. 四边形ABCD 由矩形变为平行四边形B. BD 的长度增大C. 四边形ABCD 的面积不变D.四边形ABCD 的周长不变10.下列命题错误的是 ( ) A. 平行四边形的对角线互相平分 B.菱形的对角线互相垂直平分C. 矩形的对角线相等且互相垂直平分D. 角平分线上的点到角两边的距离相等。
湘教版八年级数学下册期中试卷及答案【完整版】
湘教版八年级数学下册期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .67.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若m+1m =3,则m 2+21m=________. 4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
湘教版数学八年级下册期中考试试卷含答案
湘教版数学八年级下册期中考试试题一、单选题1.下列标志是中心对称图形的是()A.B.C.D.2.若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形B.八边形C.九边形D.十边形3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是A.S1>S2B.S1=S2C.S1<S2D.3S1=2S24.在□ABCD中,∠A:∠B:∠C:∠D的值可能是( )A.3:4:3:4 B.5:2:2:5 C.2:3:4:5 D.3:3:4:45.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误6.如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为()A.258cm B.254cm C.252cm D.8cm7.将一张五边形的纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.540°B.720°C.900°D.1080°8.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米9.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到边AB 的距离为()A.2cm B.3cm C.4cm D.5cm10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题11.若一个多边形的每一个外角都等于45°,则这个多边形共有______条对角线.12.如图,ΔABC中,AB=12,AC=5,AD是∠BAC角平分线,AE是BC边上的中线,过点C做CF⊥AD于F,连接EF,则线段EF的长为____________.13.如图,△ABC中,∠A=90°,AB=3,AC=6,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于_________________.14.如图,两个全等菱形的边长为1米,一个微型机器人由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_______点.15.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.16.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是_____.17.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=185,其中正确的结论有__________.三、解答题19.如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).20.一个多边形,它的内角和比外角和的3倍多180°,求这个多边形的边数及内角和度数.21.如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?22.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.23.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F 在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?25.如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.参考答案1.C【解析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【解析】试题分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数:360÷40=9,即这个多边形的边数是9.故选C.考点:多边形内角与外角.3.B【解析】【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【详解】∵矩形ABCD的面积S=2S△ABC,S△ABC=12S矩形AEFC,∴S1=S2故选B 4.A【解析】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴在▱ABCD中,∠A:∠B:∠C:∠D的值可能是:3:4:3:4.故选A.点睛:本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.5.C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠6=∠4.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6.∴∠1=∠3,∠5=∠4.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.6.B【解析】试题解析:设AF=xcm,则DF=(8-x)cm,∵矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,∴DF=D′F,在Rt△AD′F中,∵AF2=AD′2+D′F2,∴x2=62+(8-x)2,解得:x=254(cm).考点:翻折变换(折叠问题).7.D【解析】【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.【详解】解:①将五边形沿对角线剪开,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;②将五边形从一顶点剪向对边,得到两个四边形,两个多边形的内角和为:360°+360°=720°,也可能得到一个三角形和一个五边形,两个多边形的和为180°+540°=720°③将五边形沿一组对边剪开,得到一个四边形和一个五边形,两个多边形的内角和为:360°+540°=900°,④将五边形沿一组邻边剪开,得到一个三角形和一个六边形,其内角和为:180°+720°=900°;故选D.【点睛】本题考查了多边形的内角与外角,能够得出一个五边形截一刀后得到的图形有多种情形,是解决本题的关键.8.A【解析】【分析】根据多边形的外角和即可求出答案.【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.9.A【解析】根据角平分线的性质得到OE=OF=OD,设OE=x,然后利用三角形面积公式得到S△ABC =S△OAB+S△OAC+S△OCB,于是可得到关于x的方程,从而可得到OF的长度.【详解】解:∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴1111681068 2222OF OE OD⨯⨯=⨯+⨯+⨯,∴5x+3x+4x=24,∴x=2,∴点O到AB的距离等于2.故选:A.【点睛】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键.10.B【解析】【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABC,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确;③无法证明得到.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②符合题意;在△ABC 和△EAD 中60o AB AE ABE EAD BC AD =⎧⎪∠=∠=⎨⎪=⎩∴△ABC ≌△EAD (SAS );①符合题意;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;④符合题意.若AD 与AF 相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD ,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选B .【点睛】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.20【解析】【分析】首先根据多边形的外角和为360°,求出多边形的边数,再利用多边形对角线的总条数=(3)2n n -即可求解. 【详解】∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=8.∴对角线的总条数=8(83)2⨯-=20, 故答案为20.【点睛】本题考查了多边形的外角和及多边形对角线的条数,解题的关键是掌握:多边形的内角和为360°,多边形对角线的总条数=(3)2n n -. 12.3.5【解析】延长CF 交AB 于点G ,如图所示:∵AD 是∠BAC 角平分线,∴∠GAF =CAF ,∵CF ⊥AD ,∴∠AFG =∠AFC =90°,在△AFC 和△AFG 中{GAF CAFAF AF AFG AFC∠=∠∠==∴△AFC ≌△AFG (ASA ),∴AG=AC,GF =CF ,又∵BG =AB -AG ,AB =12,AC =5,∴BG=12-5=7,∵AE是BC边上的中线,∴点E是BC的中点,又∵GF=CF,∴EF是△BCG的中位线,∴EF=117 3.522BG=⨯=;故答案是:3.5。
湘教版八年级数学下册期中考试题及答案【完整版】
湘教版八年级数学下册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。
湘教版八年级下册数学期中考试题(附答案)
∵AD=AE=AG ∴AC+AD=OC
18.如图,连接BE,
∵在△BCD中,DB=BC,E是CD的中点,
∴BE⊥CD,
∵F是AB的中点,
∴在Rt△ABE中,EF是斜边AB上的中线,
∴EF= AB.
A.6B.8C.9D.10
11.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=( )
A.45° B.30° C.60° D.55°
评卷人
得分
二、填空题
12.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.
13.点P(3,﹣4)关于原点对称的点的坐标是.
14.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.
试题解析:(1)如图1,∵OE⊥OF,∴∠EOF=90°,
在四边形OBAD中,∠A=∠BOD=90°,∠ABO=50°,
∴∠ADO=360°﹣90°﹣90°﹣50°=130°;
故答案为:130°43;∠ODA=180°,而∠OBA+∠ABF=180°,∴∠ODA=∠ABF,
(2)、AE=DF,AE∥DF.
∵点F与点A关于OP所在的直线对称,∴AD=FD,AE=EF,
∵AD=AE,∴AD=FD=AE=EF,∵DE=DE, ∴△ADE≌△FED,∴∠AED=∠FDE,AE=DF,∴AE∥DF.
(3)、OC=AC+AD
延长EA到G点,使AG=AE
∵∠OAE=90°∴OA⊥GE,∴OG=OE,∴∠AOG=∠EOA ∵∠AOC=45°,OP平分∠AOC∴∠AOE=22.5°
【湘教版】八年级数学下期中试题含答案(1)
一、选择题1.下列命题中真命题的是( )A .42=±B .点A(2,1)与B(-2,-1)关于原点对称C .64的立方根是±4D .若a<b ,则ac<bc2.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( ) A . B .C .D .4.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 5.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.如果关于x 的不等式组2243(2)x m x x -⎧≥⎪⎨⎪-≤-⎩的解集为x≥1,且关于x 的方程(1)23m x x --=-有非负整数解,则所有符合条件的整数m 的值有( )个. A .2个 B .3个 C .4个 D .5个7.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 8.已知a 、b 为有理数,且a<0,b>0,a >b ,则( ).A .a<-b<b<-aB .-b<a<b<-aC .-a<b<-b<aD .-b<b<-a<a 9.等腰三角形的一个角为40︒,则其底角的度数为( ). A .40︒ B .70︒ C .40︒或70︒ D .50︒或70︒ 10.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .111.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247 12.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .12二、填空题13.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为_________.14.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm15.关于x 的不等式组3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m 的取值范围是_____.16.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 17.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______. 18.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.19.已知C ,D 两点在线段AB 的垂直平分线上,且∠ACB =50°,∠ADB =86°,则∠CAD 的度数是_____.20.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.三、解答题21.如图,是由边长为1的小正方形组成的76⨯的网格,ABC ∆的顶点都在格点上,请仅用无刻度的直尺作图.(1)作ABC ∆的角平分线BD ;(2)在网格中确定一个格点P ,作45ABP ∠=︒.22.在如图所示的平面直角坐标系中,有ABC(1)将ABC 向x 轴负半轴方向平移4个单位得到111A B C △,画出图形并写出点1A 的坐标.(2)以原点O 为旋转中心,将ABC 顺时针旋转90︒后得到222A B C △,画出图形并写出点2A 的坐标.(3)222A B C △可以看作是由111A B C △先向右平移4个单位,然后以原点O 为旋转中心,顺时针旋转90︒得到的.除此之外,222A B C △还可以由111A B C △,经过旋转变换得到,请在图中找出旋转中心.23.在近期“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售80只A 型和45只B 型的利润为21元,销售40只A 型和60只B 型的利润为18元.(1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B 型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,则该药店购进A 型、B 型口罩各多少只,才能使销售总利润最大?24.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.25.如图,在四边形ABCD 中,90B ∠=︒,AC 平分BAD ∠,DE AC ⊥,AB AE =.(1)求证:AC AD =.(2)若BC CD ⊥,试判断ACD △的形状,并说明理由.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AB ,垂足为D ,与AC 交于点E ,连接BE . (1)若∠A =42°,求∠EBC 的度数;(2)若AB =10,△BEC 的周长为16,求△ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据算术平方根、点关于原点对称、立方根以及不等式的性质进行判断即可.【详解】解:A42,故原选项是假命题,不符合题意;B. 点A(2,1)与B(-2,-1)关于原点对称,是真命题,故此选项是真命题,符合题意;C.64的立方根是4,故原选项是假命题,不符合题意;D.当c≤0时ac≥bc,故原选项是假命题,不符合题意;故选B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.C解析:C【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4.B解析:B【分析】观察四个选项中的图形,根据轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合;找出既是轴对称图形又是中心对称图形的那个即可得出结论.【详解】A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D不是轴对称图形,是中心对称图形.故选:B.【点睛】此题考查中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.5.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m <11+4,解得1<m <3.故选:A .【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6.A解析:A【分析】表示出不等式组的解集,由已知解集确定出m 的范围,表示出方程的解,由方程的解为非负整数,确定出整数m 的值即可.【详解】解:不等式组整理得:41≥+⎧⎨≥⎩x m x , ∵不等式组的解集为x ≥1,∴m +4≤1,即m ≤-3,方程去分母得:m -1+x =3x -6, 解得:5+2=m x , ∵方程有非负整数解,∴50m +≥,且5+m 能被2整除,∴-53m ≤≤-,∴当m=-5时,符合题意,当m=-3时,符合题意,则符合条件的整数m 的值有2个,故选:A .【点睛】本题考查一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键. 7.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a >b ,∴a +1>b +1,∴选项A 不符合题意;∵a >b ,∴a ﹣1>b ﹣1,∴选项B 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项C 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项D 符合题意.故选:D .【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.A解析:A【分析】根据绝对值和不等式的性质,经计算,即可得到答案.【详解】∵a<0,b>0∴0a ->,0b -< ∴a a =-,b b =,a a <-,b b >- ∵a b >∴a b ->∴a b <-∴a b b a <-<<-故选:A .【点睛】本题考查了绝对值和不等式的知识;解题的关键是熟练掌握不等式和绝对值的性质,从而完成求解.9.C解析:C【分析】结合题意,根据等腰三角形、三角形内角和的性质计算,即可得到答案.【详解】当40︒角为等腰三角形顶角时,其底角的度数为18040702;当40︒角为等腰三角形底角时,其底角的度数为40︒;故选:C .【点睛】 本题考查了等腰三角形、三角形内角和的性质;解题的关键是熟练掌握等腰三角形的性质,从而完成求解.10.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.11.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=-∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.12.B解析:B【分析】由作法知EF 是AC 的垂直平分线,可得AP=CP ,线段PC PD +的最小就是PA+PD ,当A 、P 、D 三点共线时最短,由点D 是底边BC 的中点,可BD=CD =6,由AB=AC ,可得AD BC ⊥,在Rt △ABD 中,由勾股定理得:22AB BD 8-即可.【详解】解:连结PA ,由作法知EF 是AC 的垂直平分线,∴AP=CP ,∴PC+PD=PA+PD ,线段PC PD +的最小就是PA+PD ,当A 、P 、D 三点共线时最短,∵点D 是底边BC 的中点,∴BD=CD=11BC=12=622⨯, ∵AB=AC ,∴AD BC ⊥,在Rt △ABD 中,由勾股定理得:22221068AB BD --=,(PC+PD )最小=(PA+PD )最小=AD=8.故选择:B .【点睛】本题考查垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,掌握垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,关键是利用垂直平分线将PC转化为PA,找到P、A、D三点共线时最短.二、填空题13.(60581)【分析】首先求出P1~P5的坐标探究规律后利用规律解决问题【详解】解:第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(132)第五次P5(172)…发现点P的位置4解析:(6058,1)【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【详解】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2019÷4=504…3,P2019的纵坐标与P3相同为1,横坐标为12×504+10=6058,∴P2019(6058,1),故答案为(6058,1).【点睛】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.14.【分析】根据已知条件由勾股定理可得AB=5当时OD最小由等积法可得代入数据可得即可求出线段最大值【详解】在中∴AB=∵∴OD最小时最大当时OD最小即OD为的高∴即解得:∴线段最大值为:=cm故答案为解析:85【分析】根据已知条件由勾股定理可得AB=5,当1B O AB ⊥时,OD 最小,由等积法可得AO OB AB OD =,代入数据可得125OD =,即可求出线段1B D 最大值. 【详解】 在Rt AOB 中,34AO cm BO cm ==,,∴5=,∵11B D B O OD =-,14B O BO cm ==,∴OD 最小时,1B D 最大,当1B O AB ⊥时,OD 最小,即OD 为AOB 的高,∴AO OB AB OD =,即345OD ⨯=, 解得:125OD =, ∴线段1B D 最大值为:1245-=85cm , 故答案为:85. 【点睛】 本题主要考查了勾股定理,线段的最值问题,根据图形分析线段取得最值的情况是解题的关键.15.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.16.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.9【分析】过点O 作OE ⊥AB 于EOF ⊥AC 与F 连接OA 根据角平分线的性质求出OEOF 根据三角形面积公式计算得到答案【详解】解:过点O 作OE ⊥AB 于EOF ⊥AC 于F 连接OA ∵OB 平分∠ABCOD ⊥BC解析:9【分析】过点O 作OE ⊥AB 于E ,OF ⊥AC 与F ,连接OA ,根据角平分线的性质求出OE 、OF ,根据三角形面积公式计算,得到答案.【详解】解:过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB 平分∠ABC ,OD ⊥BC ,OE ⊥AB ,∴OE =OD =1,同理可知,OF =OD =1,∴△ABC 的面积=△OAB 的面积+△OAC 的面积+△OBC 的面积, =12×AB ×OE +12×AC ×OF +12×BC ×OD , =12×18×1, =9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.19.18°或112°【分析】分点C与点D在线段AB两侧点C与点D在线段AB同侧两种情况根据线段垂直平分线的性质等腰三角形的性质解答【详解】解:如图∵CD两点在线段AB的中垂线上∴CA=CBDA=DB∵C解析:18°或112°【分析】分点C与点D在线段AB两侧、点C与点D在线段AB同侧两种情况,根据线段垂直平分线的性质、等腰三角形的性质解答.【详解】解:如图,∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=12∠ACB=12×50°=25°,∠ADC=12∠ADB=12×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.65°或25°【分析】在等腰△ABC中AB=ACBD为腰AC上的高∠ABD=40°讨论:当BD在△ABC内部时如图1先计算出∠BAD=50°再根据等腰三角形的性质和三角形内角和计算;当BD在△ABC解析:65°或25°【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∠BAD=25°,∴∠ACB=12综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)由勾股定理得AB=224+3=5,可得AB=BC=5,取AC中点D,连结BD,根据等腰三角形三线合一性质,BD平分∠ABC;(2)构造三角形ABP是等腰直角三角形,根据网格先确定AP=AB=5,由AB是横3竖4的网格,绕点A逆时针旋转90°即为AP,连结BP,可得∠ABP=45°.【详解】解:(1)由勾股定理得AB=224+3=5,BC=5,∴AB=BC=5,∴取AC中点D,连结BD,∴根据等腰三角形三线合一性质,BD平分∠ABC,如图1,BD即为所作.(2)构造三角形ABP是等腰直角三角形,根据网格先确定AP=AB=5,由AB是横3竖4的网格,绕点A逆时针旋转90°即为AP,连结BP,∴△ABP为等腰直角三角形,∴∠ABP=45°,即为所作.如图2,ABP【点睛】本题考查角平分线,45°角的作图问题,掌握勾股定理,等腰三角形的判定与性质,等腰直角三角形的判定与性质,图形旋转的性质是解题关键.22.(1)见解析,(-1,3);(2)见解析,(3,-3);(3)点P (-2,-2)【分析】(1)找出点A、B、C向左平移4个单位的对应的点A1、B1、C1的位置,然后顺次连接即可得到△A1B1C1;(2)利用网格特点,找出点A、B、C以原点O为旋转中心,顺时针旋转90°后的对应的点A2、B2、C2的位置,然后顺次连接即可得到△A2B2C2;(3)根据垂径定理,垂直平分弦的直线经过圆心,任意连接两个对应点,再作出对应点连线的垂直平分线,交点就是旋转中心.【详解】解:(1)图形如图,点A1的坐标是(-1,3);(2)图形如图,点A2的坐标是(3,-3);(3)连接A1A2,B1B2,并分别作A1A2,B1B2的垂直平分线,相交于点P,所以,点P(-2,-2)就是所求的旋转中心.【点睛】本题考查了旋转变换与平移变换作图,找出对应点的位置是作图的关键,对应点的连线的垂直平分线过旋转中心是找旋转中心常用的方法,需要熟练掌握.23.(1)每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.【分析】(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据“销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为180元”列方程组解答即可;(2)根据题意即可得出y关于x的函数关系式;再根据题意列不等式得出x的取值范围,再结合一次函数的性质解答即可.【详解】解:(1)设每只A 型口罩销售利润为a 元,每只B 型口罩销售利润为b 元,根据题意得:804521406018a b a b +=⎧⎨+=⎩, 解得0.150.2a b =⎧⎨=⎩, 答:每只A 型口罩销售利润为0.15元,每只B 型口罩销售利润为0.2元;(2)设购进A 型口罩x 只,这2000只口罩的销售总利润为y 元.根据题意得,y=0.15x+0.2(2000-x ),即y=-0.05x+400;根据题意得,200020003x x x x-≥⎧⎨-≤⎩,解得500≤x≤1000, ∴y=-0.05x+400(500≤x≤1000);∵k=-0.05<0;∴y 随x 的增大而减小,∵x 为正整数,∴当x=500时,y 取最大值,则2000-x=1500,即药店购进A 型口罩500只、B 型口罩1500只,才能使销售总利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y 值的增减情况.24.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .25.(1)见解析;(2)等边三角形,理由见解析【分析】(1)根据题意可证ABC AED ≌△△,继而得出结论; (2)根据BC CD ⊥,可知90BCD B ∠=∠=︒,即可判断//AB CD ,进而可证AD CD AC ==,从而得出结论;【详解】(1)证明:∵90B ∠=︒,DE AC ⊥,∴90B AED ∠=∠=︒,∵AC 平分BAD ∠,∴BAC EAD ∠=∠,在ABC 和AED 中,∵ABC AED AB AE BAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC AED ASA ≌△△,∴AC AD =;(2)解:ACD △是等边三角形,理由如下:∵BC CD ⊥,∴90BCD B ∠=∠=︒,∴//AB CD ,∴BAC ACD DAC ∠=∠=∠,∴AD CD AC ==,∴ACD △是等边三角形;【点睛】本题考查了全等三角形的性质与判定、平行线的性质与判定、等边三角形的判定,熟练掌握知识点是解题的关键;26.(1)27°;(2)26【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠ABC 的度数,根据线段的垂直平分线的性质求出∠EBA 的度数,计算即可;(2)根据线段的垂直平分线的性质和三角形的周长公式求出AC +BC +AB =16+5+5=26,计算即可.【详解】(1)∵AB=AC,∠A=42︒,∴∠ABC=∠C=69︒.∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=42︒,∴∠EBC=27︒;(2)∵DE是AB的垂直平分线,AB=10∴EB=AE,△BEC的周长=EB+BC+EC=EA+BC+EC=AC+BC=16,则△ABC的周长=AB+BC+AC=26.【点睛】本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
2012年八年级(下)期中考试数学试卷(含答案)
xyO图1xO yP 4题图八 年 级 (下) 期 中 数 学 试 题(友情提醒:全卷满分120分,答卷时间100分钟,请你掌握好时间.)题号 一 二 三 四 总 分得分一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)题号 1 2 3 4 5 6 7 8 9 10 答案1.代数式42,1,3,31nm b a b a ,x -++π中,分式有( ☆ ) A .1个; B .2个; C .3个; D .4个。
2.若分式方程33x x -++1=m 有增根,则这个增根的值为( ☆ )A .1B .3C .-3D .3或-33.(2011广西来宾)计算11x x y--的结果是( ☆ ) A.()y x x y -- B.2()x y x x y -+ C.2()x y x x y -- D.()yx x y -4.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点,图中 阴影部分的面积为10π,则反比例函数的解析式为 ( ☆ ) A .y =3x B .y =5x C .y =10x D .y =12x5.反比例函数1y x=(x >0)的图象如图1所示,随着x 值的增大,y 值( ☆ ). A .减小 B .增大 C .不变 D .先减小后不变 6.已知反比例函数1y x-=,下列结论不正确...的是( ☆ ) A .图象经过点(-1,1) B .图象在第二、四象限C .当1x >时,10y -<<D .当0x <时,y 随着x 的增大而减小 7.若反比例函数ky x=的图象经过点(-3,2),则k 的值为( ☆ ). A .-6 B .6 C .-5 D .5 8.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ☆ )图4S 2S 3S 1C BA12-3-210-13A 9.如图所示:数轴上点A 所表示的数为a ,则a 的值是 ( ☆ ) A .5+1B .-5+1C .5-1D .510.如图2是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ☆ ) A .4 cm B .5 cm C .6 cm D .10 cm 二、填空题(每小题3分,共30分)11.若方程0414=----xxx m 有增根,则m 的值是 . 12.计算:x 2x y - xy =_______13.当x= 时,分式31x x +-的值等于2 14.已知反比例函数1m y x-=的图象如图3,则m 的取值范围是 .15.观察下面一列有规律的数:31,82,153,244,355,486,……,根据其规律可知第n 个数应是 (n 为整数).16.若点(-2,-1)在反比例函数xky =的图象上,则该函数的图象位于第 象限. 17.有两块面积相同的果园,分别收获苹果900kg 和1500kg .已知第一块试验田每亩收获苹果比第二块少300kg ,求第一块试验田每亩收获苹果多少千克.设第一块试验田每亩收获苹果x kg ,根据题意,可得方程 。
湘教版八年级数学下册期中试卷(完整版)
湘教版八年级数学下册期中试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若一个多边形的内角和为1080°,则这个多边形的边数为( )A .6B .7C .8D .94.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2+=(,大正方形的面积为13,则小正方形的面积为())21a bA.3 B.4 C.5 D.69.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.若23(1)0m n -++=,则m -n 的值为________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.5.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE 绕点A 逆时针旋转,连接DE ,M 是DE 的中点,连接MB 、MC (图2),证明:MB =MC .(2)若将图1中的CE 向上平移,∠CAE 不变,连接DE ,M 是DE 的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?实用文档参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、A5、C6、B7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)12、-153、44、x=25、30°.实用文档6、13 2三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、原式=a b a b -= +3、(1)a≥2;(2)-5<x<14、(1)略;(2)3.5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
湘教版八年级下册数学期中考试试卷及答案
湘教版八年级下册数学期中考试试题一、单选题1.已知Rt ABC 中,90C ∠=︒,57A ∠=︒,则B ∠=( )A .57ºB .43ºC .33ºD .47º 2.下列图形中既是中心对称图形又是轴对称图形的是( )A .正三角形B .正方形C .正五边形D .平行四边形 3.不能判定一个四边形是平行四边形的条件是( )A .两组对边分别平行B .一组对边平行,另一组对边相等C .一组对边平行且相等D .两组对边分别相等4.如图,PD AB ⊥,PE AC ⊥,垂足分别为D 、E ,且PD PE =,则直接判定APD △与APE 全等的理由是( )A .SASB .AASC .SSSD .HL 5.下列各组数中,能构成直角三角形的是( )A.4,5,6 B .1,1 C .6,8,11 D .5,12,23 6.到三角形的三边距离相等的点是( )A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .不能确定 7.如图,在ABCD 中,已知90ODA =∠°,10cm AC =,6cm BD =,则AD 的长为( )A .4cmB .5cmC .6cmD .8cm 8.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角9.横坐标为负,纵坐标为零的点在( )A .第一象限B .第二象限C .x 轴的负半轴上D .y 轴的负半轴上 10.在x 轴上,且到原点的距离为2的点的坐标是( )A .(2,0)B .(-2,0)C .(2,0)或(-2,0)D .(0,2)二、填空题11.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.12.ABC 的周长为12,点D 、E 、F 分别是ABC 的边AB 、BC 、CA 的中点,连接DE 、EF 、DF ,则DEF 的周长是______.13.一个正多边形的一个外角为30°,则它的内角和为_____.14.顺次连结任意四边形各边中点所得到的四边形一定是______形.15.若矩形的对角线长为8cm ,两条对角线的一个交角为60°,则该矩形的面积为__cm 2 16.点()39,1P a a -+在第二象限,则a 的取值范围为______17.在平面直角坐标系中,坐标轴上到点A (3,4)的距离等于5的点有_____个. 18.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=2,P 为AC 上的一个动点,则PF +PE 的最小值为______________三、解答题19.已知:如图AC 、BD 相交于点O ,AC BD =,90C D ∠=∠=︒,求证:AD BC =.20.已知:如图,点E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF . 求证:∠CDF =∠ABE21.在菱形ABCD 中,AC 与BC 相交于O ,ABC ∠与BAD ∠的度数比为1:2,周长是48cm .求:(1)两条对角线的长度;(2)菱形的面积.22.在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:∠BEC∠∠DFA ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.23.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E .(1)试找出一个与AED 全等的三角形,并加以证明.(2)若8AB =,3DE =,P 为线段AC 上的任意一点,PG AE ⊥于G ,PH EC ⊥于H ,试求PG PH +的值,并说明理由.24.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60˚的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,则A 城遭受这次台风影响有多长时间?25.如图,在直角梯形ABCD 中,//AD BC ,90B ∠=︒,8cm AB =,24cm AD =,26cm BC =,动点P 从点A 开始沿AD 边向点D 以1cm/s 速度运动,动点Q 从点C 开始沿CB 边向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t 秒.求:(1)t 为何值时,四边形PQCD 为平行四边形?(2)t 为何值时,四边形ABQP 为矩形?26.如图1,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角平分线CF 于点F .请你认真阅读下面关于这个图的探究片段,完成所提出的问题. (1)请证明AE EF =.(2)若把条件“点E 是边BC 的中点”改为“点E 是线段BC 上任意一点”,其余条件不变,那么(1)中的结论AE EF =是否成立?若成立,请给与证明;若不成立,请你说明理由.参考答案1.C【解析】根据直角三角形两锐角互余计算即可;【详解】∠Rt ABC 中,90C ∠=︒,57A ∠=︒,∠90905733B A ∠=︒-∠=︒-︒=︒;故答案选C .【点睛】本题主要考查了直角三角形两锐角互余,准确计算是解题的关键.2.B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、正三角形是轴对称图形,不是中心对称图形,故此选项不符合题意; B 、正方形是轴对称图形,也是中心对称图形,故此选项符合题意;C 、正五边形是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、平行四边形不是轴对称图形,是中心对称图形,故此选项不符合题意. 故选:B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.B【解析】根据平行四边形的判定:∠两组对边分别平行的四边形是平行四边形;∠两组对边分别相等的四边形是平行四边形;∠两组对角分别相等的四边形是平行四边形;∠对角线互相平分的四边形是平行四边形;∠一组对边平行且相等的四边形是平行四边形. A 、D 、C 均符合是平行四边形的条件,B 则不能判定是平行四边形.故选B .4.D【解析】【分析】根据题中的条件可得ADP ∆和AEP ∆是直角三角形,再根据条件DP EP =,AP AP =可根据HL 定理判定APD APE ∆∆≌.【详解】解:PD AB ⊥,PE AC ⊥,90ADP AEP ∴∠=∠=︒,在Rt ADP △和Rt AEP △中PD PE AP AP =⎧⎨=⎩, ()Rt ADP Rt AEP HL ∴≅,故选:D .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .解题的关键是结合已知条件在图形上的位置选择判定方法. 5.B【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为42+52≠62,所以不能构成直角三角形;B、因为12+12=)2,所以能构成直角三角形;C 、因为62+82≠112,所以不能构成直角三角形;D 、因为52+122≠232,所以不能构成直角三角形.故选:B .【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.C【解析】【分析】要找到三角形三边距离相等的点,应该根据角平分线的性质,三角形内的到三边的距离相等的点是三角形三个内角平分线的交点.【详解】解:三角形内到三边的距离相等的点是三角形三个内角平分线的交点.故选C .【点睛】此题主要考查角平分线的性质,注意区别三角形三条边垂直平分线的交点到三个顶点的距离相等.7.A【解析】【分析】由平行四边形ABCD ,根据平行四边形的对角线互相平分,可得OA OC =,OB OD =,又由90ODA =∠°,根据勾股定理,即可求得AD 的长.【详解】 解:四边形ABCD 是平行四边形,10AC cm =,6BD cm =152OA OC AC cm ∴===,132OB OD BD cm ===, 90ODA ∠=︒,4AD cm ∴.故选:A .【点睛】本题考查了平行四边形的性质:平行四边形的对角线互相平分,解题的关键是还要注意勾股定理的应用.8.B【解析】【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【详解】解:A、对角线相等,菱形不具有此性质,故本选项不符合题意;B、对角线互相平分是平行四边形具有的性质,正方形、菱形、矩形都具有此性质,故本选项符合题意;C、对角线互相垂直,矩形不具有此性质,故本选项不符合题意;D、对角线平分对角,矩形不具有此性质,故本选项不符合题意;故选:B.【点睛】本题考查正方形的性质、菱形的性质、矩形的性质,解答本题的关键是明确矩形、菱形、正方形都是平行四边形.9.C【解析】【分析】根据x轴上点的纵坐标为零,横坐标小于零在x轴的负半轴,可得答案.【详解】解:横坐标为负,纵坐标为零的点在x轴的负半轴上.故选:C.【点睛】本题考查了点的坐标,解题的关键是掌握x轴的负半轴上的点的横坐标小于零,纵坐标等于零;x轴的正半轴上的点的横坐标大于零,纵坐标等于零.10.C【解析】【分析】找到纵坐标为0,且横坐绝对值标为2的坐标即可.【详解】∠点在x轴上,∠点的纵坐标为0,∠点到原点的距离为2,∠点的横坐标为±2,∠所求的坐标是(2,0)或(-2,0),故选C11.AB=BC(或AC∠BD)答案不唯一【解析】【分析】根据邻边相等的平行四边形是菱形可知添加条件AB=BC.【详解】解:添加条件:AB=BC,根据邻边相等的平行四边形是菱形可以判定四边形ABCD是菱形.故答案为AB=BC.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:∠菱形定义:一组邻边相等的平行四边形是菱形;∠四条边都相等的四边形是菱形;∠对角线互相垂直的平行四边形是菱形.12.6【解析】【分析】根据三角形中位线定理计算即可;【详解】如图,∠点D、E分别是ABC的边AB、BC的中点,∠12DE AC =, 同理可得:12EF AB =,12DF BC =, ∠()1112622DEF C DE EF DF AC AB AC =++=++=⨯=△;故答案是:6.【点睛】本题主要考查了三角形中位线定理,准确计算是解题的关键. 13.1800°【解析】【详解】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°. 故答案为1800°.考点:多边形内角与外角.14.平行四边形【解析】【分析】根据中点四边形的性质判断即可;【详解】如图所示,四边形ABCD ,E ,F ,G ,H 是四边形的中点,∠//FG AC ,12FG AC =,//EH AC ,12EH AC =,∠FG EH =,//FG EH ,∠四边形EFGH 是平行四边形;故答案是平行四边形.【点睛】本题主要考查了平行四边形的判定与三角形中位线定理,准确判断是解题的关键.15.【解析】【分析】【详解】∠四边形ABCD 是矩形,∠AC=BD ,OA=OC ,OD=OB ,∠OA=OB ,∠∠AOB=60°,∠∠AOB 是等边三角形, ∠OA=OB=AB=12AC=4,∠矩形ABCD ,∠AB=CD=4,∠ABC=90°,在∠ABC 中,由勾股定理得:∠矩形的面积故答案为:【点睛】此题主要考查了矩形对角线相等且互相平分的性质,等边三角形的判定,熟练掌握性质定理是解题的关键.16.13a -<<【解析】【分析】根据平面直角坐标系中各个象限内点的特点,列出不等式组即可解答.【详解】解:∠点()39,1P a a -+在第二象限,∠39010a a -<⎧⎨+>⎩, 解得:13a -<<,故答案为:13a -<<【点睛】本题考查了平面直角坐标系中点的特征及一元一次不等式组的应用,解题的关键是熟知各象限中点的特点.17.3【解析】【分析】【详解】解:点A 的坐标是(3,4),因而OA=5,坐标轴上到点A (3,4)的距离等于5的点就是以点A 为圆心,以5为半径的圆与坐标轴的交点,圆与坐标轴的交点是原点,另外与两正半轴有两个交点,共有3的点.所以坐标轴上到点A (3,4)的距离等于5的点有3个. 故答案是:3.【点睛】正确确定满足条件的点是解决本题的关键.18【解析】【详解】试题分析:∠正方形ABCD 是轴对称图形,AC 是一条对称轴∠点F 关于AC 的对称点在线段AD 上,设为点G ,连结EG 与AC 交于点P ,则PF+PE 的最小值为EG 的长∠AB=4,AF=2,∠AG=AF=2=考点:轴对称图形19.见解析【解析】【分析】根据HL 定理证明三角形全等即可;【详解】证明:∠90C D ∠=∠=︒,∠ADB △与BCA 都是直角三角形,又∠AC BD =,AB BA =(公共边),∠()Rt ADB Rt BCA HL ≌,∠AD BC =.【点睛】本题主要考查了三角形全等证明,准确分析证明是解题的关键.20.见解析【解析】【分析】根据平行四边形的性质证得CD=AB ,∠DCF=∠EAB ,又AE=CF ,所以∠CDF∠ACBE 得证.【详解】∠四边形ABCD 是平行四边形,∠CD=AB ,CD//AB ,∠∠DCF=∠EAB ,CD AB DCF EAB CF AE =⎧⎪∠=∠⎨⎪=⎩,∠∠CDF∠ACBE (SAS )∠∠CDF =∠ABE .【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,熟练掌握平行四边形的性质是解答本题的关键.21.(1)12cm AC =,BD =;(2)2【解析】【分析】(1)根据菱形的性质得到180ABC BAD ∠+∠=︒,再根据:1:2ABC BAD ∠∠=,得到60ABC ∠=︒,180BAD ∠=︒,得到12cm AC AB ==,得到BO =,即可得解; (2)根据菱形的面积计算方法计算即可;【详解】(1)∠菱形ABCD 的周长是48cm .∠AD BC =且//AD BC ,12cm AB BC CD AD ====,∠180ABC BAD ∠+∠=︒,∠:1:2ABC BAD ∠∠=,∠60ABC ∠=︒,180BAD ∠=︒,∠12cm AC AB ==,∠30ABD ∠=︒,6cm OA =,∠BO =,∠BD =;(2)2122S =÷=菱形;【点睛】本题主要考查了菱形的性质和菱形的面积求解,准确计算是解题的关键.22.(1)证明见解析;(2)四边形AECF 是矩形,证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB=CD ,∠B=∠D ,BE=DF ,再利用SAS 证明全等; (2)根据三线合一得到∠AEC=90°,再根据有一个角是直角的平行四边形是矩形可得.【详解】证明:(1)∠四边形ABCD 是平行四边形∠AB=CD ,∠B=∠D ,BC=AD∠E 、F 分别是AB 、CD 的中点 ∠BE=12AB ,DF=12CD∠BE=DF∠∠BEC∠∠DFA(2)四边形AECF 是矩形.理由是:∠CA=CB ,E 是AB 的中点,∠CE∠AB ,即∠AEC=90°∠四边形ABCD 是平行四边形, ∠AECF 是矩形.【点睛】本题考查平行四边形的性质,三角形全等和矩形的判定.难度不大.23.(1)AED CEB '≌△△,证明见解析;(2)4PH PG +=,见解析【解析】【分析】(1)根据矩形的折叠性质判断即可;(2)连接EP ,根据矩形的性质计算即可;【详解】解:(1)AED CEB '≌△△,∠矩形ABCD ,∠AD BC =,B D ∠=∠,∠点B 折叠点B′,∠B C BC '=,B B '∠=∠,∠AD B C '=,B D '∠=∠,∠DEA B EC '∠=∠(对顶角相等),∠()AED CEB AAS '≌△△;(2)∠矩形ABCD 中,8AB =,3DE =,∠8CD AB ==,∠3DE =,∠5CE =,∠AED CEB '≌△△,∠5AE CE ==,∠4=AD ,∠54210AEC S =⨯÷=,连接EP ,则10PEC AEP S S +=△△,∠PG AE ⊥于G ,PH EC ⊥于H ,∠()55210PH PG +÷=,∠4PH PG +=;【点睛】本题主要考查了矩形的性质和全等三角形的判定与性质,准确识图,灵活运用相关知识是解题的关键.24.(1)A 城受台风影响;(2)DA=200千米,AC=160千米【解析】【详解】试题分析:(1)由A 点向BF 作垂线,垂足为C ,根据勾股定理求得AC 的长,与200比较即可得结论;(2)点A 到直线BF 的长为200千米的点有两点,分别设为D 、G ,则∠ADG 是等腰三角形,由于AC∠BF ,则C 是DG 的中点,在Rt∠ADC 中,解出CD 的长,则可求DG 长,在DG 长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.试题解析:(1)由A 点向BF 作垂线,垂足为C ,在Rt∠ABC 中,∠ABC=30°,AB=320km ,则AC=160km ,因为160<200,所以A 城要受台风影响;(2)设BF 上点D ,DA=200千米,则还有一点G ,有AG=200千米.因为DA=AG ,所以∠ADG 是等腰三角形,因为AC∠BF ,所以AC 是DG 的垂直平分线,CD=GC ,在Rt∠ADC 中,DA=200千米,AC=160千米,由勾股定理得,千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).25.(1)6t =;(2)132t =【解析】【分析】(1)四边形PQCD 为平行四边形,即PD CQ =,列出等式求解;(2)四边形ABQP 为矩形,即AP BQ =,列出等式,即可求解.【详解】(1)由题意得:24PD t =-,3CQ t =,∠四边形PQCD 为平行四边形,∠//,PD CQ PD CQ =,∠243t t -=,解得:6t =,∠当6t =秒时,四边形PQCD 为平行四边形;(2)由题意得:AP t =,263BQ t =-,∠四边形ABQP 为矩形,∠//,AP BQ AP BQ =,解得:132t =, ∠当132t =秒时,四边形ABQP 为矩形. 【点睛】本题主要考查了矩形、平行四边形的判定与性质应用,要求学生掌握对各种图形的认识,同时学会数形结合的数学解题思想.26.(1)见解析;(2)成立,见解析【解析】【分析】(1)取AB 中点M ,连结ME ,证明()AME ECF ASA =△△,即可得解;(2)在AB 上取点P ,使得AP EC =,连接EP ,证明PAE CEF ≅△△即可得解;【详解】(1)∠四边形ABCD 为正方形,∠AB CB =,90B BCD ∠=︒=∠,∠90BAE AEB ∠+∠=︒,∠90AEF ∠=︒,∠90AEB FEC ∠+∠=︒,∠BAE FGC ∠=∠,取AB 中点M ,连结ME ,∠E 为BC 中点,∠MB BE =,AM CE =,∠45BME ∠=︒,∠135AME ∠=︒,∠CF 平分BCD ∠的外角,∠45DCF ∠=︒,∠135ECF ∠=︒,∠ECF AME ∠=∠,∠()AME ECF ASA =△△,(2)在AB 上取点P ,使得AP EC =,连接EP ,∠四边形ABCD 为正方形,∠AB CB =,90B BCD ∠=︒=∠,∠AP EC =,∠BP BE =,∠45BPE ∠=︒,135APE ∠=︒,∠CF 平分BCD ∠的外角,∠135ECF ∠=︒,∠90AEF ∠=︒,90B ∠=︒,∠BAE CEF ∠=∠,在MAE 和CEF △中,PAE CEFPA EC APE ECF∠=∠⎧⎪=⎨⎪∠=∠⎩,∠PAE CEF ≅△△,∠AE EF =;【点睛】本题主要考查了四边形综合,结合三角形全等证明是解题的关键.。
湘教版八年级下册数学期中考试试卷附答案
湘教版八年级下册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是()A .选①②B .选②③C .选①③D .选②④3.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC4.下列各组数据中,不能作为一个直角三角形三边长的一组是()A .2223,4,5B .C .1,D .5.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把 CDB 旋转90°,则旋转后点D 的对应点D ¢的坐标是()A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)6.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=D.AF=EF7.如图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是()A.8B.5C.6D.48.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米B.10米C.12米D.14米9.下列四组线段中,可以构成直角三角形的是()A.2,3,4B.4,5,6C.1,3D.110.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.20二、填空题11.如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,12DC AD,则D到AB的距离为________.12.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是_____.13.如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分 的最小值为________.别为M和N,则M N14.如图所示,已知 ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC 中,能说明 ABCD是矩形的有______________(填写序号)15.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为__________.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;三、解答题17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)19.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.20.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.21.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.23..已知如图,DC =4,AC =3,∠ACD =90°,AB =13,BD =12.试求出:(1)∠ADB 的度数.(2)求出△ABD 的面积.24.已知:□ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOD 的周长比△BOA 的周长长5cm ,求这个平行四边形各边的长.25.在四边形ABCD 中,//AD BC ,BC CD ⊥,6cm AD =,10cm BC =,点E 从A 出发以1cm /s 的速度向D 运动,点F 从点B 出发,以2cm /s 的速度向点C 运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t .(1)t 取何值时,四边形EFCD 为矩形?(2)M 是BC 上一点,且4BM =,t 取何值时,以A 、M 、E 、F 为顶点的四边形是平行四边形?参考答案1.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2.B【详解】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.3.D【详解】根据平行四边形判定定理进行判断:A 、由“AB ∥DC ,AD ∥BC”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB=DC ,AD=BC”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO=CO ,BO=DO”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB ∥DC ,AD=BC”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .考点:平行四边形的判定.4.A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.【详解】A 、()()()222222345+≠,不符合勾股定理的逆定理,故本选项符合题意;B 、2221+=,符合勾股定理的逆定理,故本选项不符合题意;C 、22212+=,符合勾股定理的逆定理,故本选项不符合题意;D 、22211+=,符合勾股定理的逆定理,故本选项不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.C【解析】【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D (5,3)在边AB 上,∴BC =5,BD =5﹣3=2,①若顺时针旋转,则点D ¢在x 轴上,O D ¢=2,所以,D ¢(﹣2,0),②若逆时针旋转,则点D ¢到x 轴的距离为10,到y 轴的距离为2,所以,D ¢(2,10),综上所述,点D ¢的坐标为(2,10)或(﹣2,0).故选:C .【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.6.D【解析】【详解】试题分析:∵AD ∥BC ,∴∠AFE=∠FEC ,∵∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AF=AE ,∴选项A 正确;∵ABCD 是矩形,∴AB=CD ,∠B=∠C=90°,∵AG=DC ,∠G=∠C ,∴∠B=∠G=90°,AB=AG ,∵AE=AF ,∴△ABE ≌△AGF ,∴选项B 正确;设BE=x ,则CE=BC ﹣BE=8﹣x ,∵沿EF 翻折后点C 与点A 重合,∴AE=CE=8﹣x ,在Rt △ABE 中,222AB BE AE +=,即2224(8)x x +=-,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE=∠CEF ,∴∠AEF=∠AFE ,∴AE=AF=5,过点E 作EH ⊥AD 于H ,则四边形ABEH 是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF ﹣AH=5﹣3=2,在Rt △EFH 中,EF=C 正确;由已知条件无法确定AF 和EF 的关系,故选D .考点:翻折变换(折叠问题).7.B【解析】【分析】作DE⊥AB于E,根据角平分线的定义得到∠DAB=30°,根据等角对等边得到BD=AD=10,然后利用30°所对直角边是斜边的一般求解.【详解】解:作DE⊥AB于E,∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=30°,∴∠B=∠DAB,∴BD=AD=10,∴在Rt△DEB中,DE=12BD=5,即点D到AB的距离是5,故选B.【点睛】本题考查的是角平分线的性质、等角对等边,含30°直角三角形的性质,掌握直角三角形中30°所对直角边是斜边的一般是解题的关键.8.B【解析】【详解】试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.9.D【解析】【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【详解】解:A、32+22≠42,即三角形不是直角三角形,故本选项错误;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、12+22≠32,即三角形不是直角三角形,故本选项错误;D、12+223)2,即三角形是直角三角形,故本选项正确;故选D.【点睛】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.10.C【解析】【详解】试题分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选C.考点:菱形的性质,勾股定理.11.8 3【解析】【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=CD,根据已知可得CD=83,所以DE=83,即D点到BC的距离可得.【详解】过点D作DE⊥AB于点E,∵已知∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴∠C=∠DEB=90°,根据角平分线的性质可得:DE=CD.∵AC=8,DC=12 AD,∴CD=8 3,∴DE=8 3,∴D到AB的距离为8 3,故答案为:8 3.【点睛】本题主要考查角平分线的性质,正确作出辅助线是解决本题的关键.12.2【解析】【详解】试题分析:解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=12AD=2,故答案为2.【点睛】本题考查三角形中位线定理;含30度角的直角三角形.13.360【解析】【分析】根据多边形内角和定理:()2180n -︒ ,列出M+N 的式子,然后求出最小值.【详解】一条直线将该矩形ABCD 分割成两个多边形,设两个多边形的分别为m 边形和n 边形,则M+N=()()21802180m n -︒+-︒ ,∵3m ≥,3n ≥,∴360M N +≥︒,即最小值为:360︒.故答案为:360︒.【点睛】本题主要考查了多边形的内角和定理,解答本题的关键是掌握多边形的内角和定理.14.①④【解析】【详解】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD 是矩形的条件是①和④.15.30°.【解析】【详解】∵四边形ABCD 是平行四边形∴AB ∥DC ,∠ABC=∠D∴∠DAB+∠D=180°,∵∠D=100°,∴∠DAB=80°,∠ABC=100°又∵∠DAB的平分线交DC于点E ∴∠EAD=∠EAB=40°∵AE=AB∴∠ABE=12(180°-40°)=70°∴∠EBC=∠ABC-∠ABE=100°-70°=30°.考点:1.角平分线的性质;2.平行四边形的性质.16.6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AED CAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.17.(1)(﹣3,2);(2)作图见解析(3)(﹣2,3).【解析】【详解】试题分析:(1)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(2)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(1)因为B的坐标是(3,2),所以B关于y轴对称的点的坐标是(-3,2)(2)将A向左移三个格得到A1,O向左平移三个单位得到O1,B向左平移三个单位得到B1,再连线得到△A1O1B1.(3)因为A的坐标是(1,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A1是(-2,3).考点:1.关于y轴对称点坐标规律2.图形平移后点的坐标规律18.直线L上距离D点566米的C处开挖.【解析】【详解】试题分析:根据条件证明∠D=∠DBC=45°,得出△BCD是等腰直角三角形,然后利用勾股定理可得CD2+BC2=BD2计算即可.试题解析:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,≈566(米),答:直线L上距离D点566米的C处开挖.考点:勾股定理的应用.19.(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE∥BC.又∵EF∥AB,∴四边形DBFE是平行四边形.(2)当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=12 AB.∵DE是△ABC的中位线,∴DE=12 BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(1)证明见解析;(2)∠EBC=30°.【解析】【分析】(1)由矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定△DEF≌△BCF;(2)由已知知△ABD 是直角三角形,由已知AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC 的度数.【详解】解:(1)由折叠的性质可得:DE=BC ,∠E=∠C=90°,在△DEF 和△BCF 中,DFE BFC E C DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BCF (AAS );(2)在Rt △ABD 中,∵AD=3,BD=6,∴∠ABD=30°,由折叠的性质可得;∠DBE=∠ABD=30°,∴∠EBC=90°﹣30°﹣30°=30°.【点睛】本题考查1、矩形的性质;2、全等三角形的判定与性质;3、图形的翻折.21.(1)证明见解析;(2)四边形ACEF 是菱形,理由见解析.【解析】【分析】(1)由三角形中位线定理得出DE ∥AC ,AC=2DE ,求出EF ∥AC ,EF=AC ,得出四边形ACEF 是平行四边形,即可得出AF=CE ;(2)由直角三角形的性质得出∠BAC=60°,AC=12AB=AE ,证出△AEC 是等边三角形,得出AC=CE ,即可得出结论.【详解】试题解析:(1)∵点D ,E 分别是边BC ,AB 上的中点,∴DE ∥AC ,AC=2DE ,∵EF=2DE ,∴EF ∥AC ,EF=AC ,∴四边形ACEF 是平行四边形,∴AF=CE ;(2)当∠B=30°时,四边形ACEF 是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE ,∴△AEC 是等边三角形,∴AC=CE ,又∵四边形ACEF 是平行四边形,∴四边形ACEF 是菱形.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.22.(1)12,2)【解析】【分析】(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm ,然后再证明△ABC 是等边三角形,进而得到AC=AB=12cm ,然后再根据勾股定理得出BO 的长,进而可得BD 的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.【详解】解:(1)∵菱形ABCD 的周长是48cm ,∴AB=BC=CD=DA=12cm ,又∵∠ABC 与∠BAD 的度数比为1:2,∠ABC=60°,∴△ABC 是正三角形,AC=AB=12cm ,又∠ABO=30°,∴AO=6cm ,=,BD=,(2)S 菱形ABCD=12AC·BD=2.23.(1)∠ADB=90°;(2)30.【解析】【分析】(1)首先根据勾股定理求出AD ,然后利用勾股定理逆定理求解即可;(2)直接利用三角形面积公式计算即可.【详解】解:(1)∵DC =4,AC =3,∠ACD =90°,∴5=,∵52+122=169=132,即AD 2+BD 2=AB 2,∴△ADB 是直角三角形,∠ADB=90°.(2)△ABD 的面积=11=512=3022AD BD ⋅⨯⨯.【点睛】本题考查了勾股定理及勾股定理的逆定理,难度不大,熟练掌握基础知识是解题关键.24.AB=CD=252cm,AD=BC=352cm【解析】【分析】平行四边形周长为60cm,即相邻两边之和为30cm,△AOD的周长比△BOA的周长长5cm,而AO为公共边,OB=OD,所以AD比AB长5cm,问题得解.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵△AOD的周长比△BOA的周长长5cm,∴AD−AB=5(cm),又∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴AB=CD=252cm,AD=BC=352cm.【点睛】此题主要考查了平行四边形的性质,熟练掌握平行四边形对边相等,对角线互相平分是解题关键.25.(1)t=4(2)t=4或4 3【解析】【分析】(1)当DE=CF时,四边形EFCD为矩形,列出方程即可解决问题;(2)分两种情形列出方程即可解决问题;【详解】解:(1)当DE=CF时,四边形EFCD为矩形,则有6−t=10−2t,解得t=4,答:t=4s时,四边形EFCD为矩形.(2)①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4−2t,解得t=4 3,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t−4,解得t=4,综上所述,t=4或43s时,以A、M、E、F为顶点的四边形是平行四边形.【点睛】本题考查矩形判定和性质、平行四边形的判定和性质等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.。
湘教版八年级数学下册期中试卷(完美版)
湘教版八年级数学下册期中试卷(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 2.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠3.下列计算正确的是( )A .235+=B .3223-=C .623÷=D .(4)(2)22-⨯-= 4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2< D .x 3<8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x y x y +=⎧⎨-=⎩ (2)12163213x y x y --⎧-=⎪⎨⎪+=⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、B6、B7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、直角3、a(a﹣b)2.4、(-4,2)或(-4,3)5、(-2,0)6、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、x+2;当1x=-时,原式=1.3、(1)详见解析(2)k 4=或k 5=4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、(1)略;(2)8.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
湘教版八年级数学下册期中试卷(含答案)
湘教版八年级数学下册期中试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为()A.485B.325C.245D.1257.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=________厘米.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、C6、C7、B8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、30°或150°.3、720°.4、35、46、20三、解答题(本大题共6小题,共72分)1、32x =- 2、3.3、(1)详见解析(2)k 4=或k 5=4、E (4,8) D (0,5)5、(1)略;(2略;(3)BD=1.6、(1)2400个, 10天;(2)480人.。
湘教版八年级数学下册期中考试卷(完整版)
湘教版八年级数学下册期中考试卷(完整版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.实数a 、b 在数轴上的位置如图所示,且|a|>|b|a b +的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为______。
湘教版八年级数学下册期中考试题及答案【完美版】
湘教版八年级数学下册期中考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x =,则x=__________2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x+=-,求k的值.4.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.5.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、B5、C6、A7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、0或1.2、k<6且k ≠33、3m ≤.4、20°.5、21x y =⎧⎨=⎩.6、2.三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、3、(1)见解析;(2)k =84、(1)略;(2)37°5、(1)略;(2)CD =36、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
湘教版八年级数学下册期中测试卷附答案
湘教版八年级数学下册第二学期期中测试卷一、选择题(每题3分,共24分)1.在Rt△ABC中,∠C=90°,∠B=40°,则∠A的度数是() A.60°B.30°C.50°D.40°2.下列图形既是轴对称图形又是中心对称图形的是()3.一个多边形的内角和是720°,则这个多边形的边数是()A.6 B.7 C.8 D.94.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是()A.AC=3 cm B.BC=6 cmC.AB=6 cm D.AC=AD=3 cm5.已知平行四边形ABCD的周长为20,且AB∶BC=2∶3,则CD的长为() A.4 B.5 C.6 D.86.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.32D. 37.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为()A.10 B.12C.13 D.8 38.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每题4分,共32分)9.正五边形每个外角的大小是________度.10.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN=BC,测得MN=200 m,则A,B间的距离为________m.11.矩形、菱形、正方形的对角线都具有的性质是______________.12.如图,一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地的高度是________尺.13.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.14.如图,在△ABC中,AB=6 cm,BC=7 cm,AC=5 cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于________cm.15.在△ABC中,如果AB=5,AC=4,BC边上的高线AD=3,那么BC的长为______________.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为________.三、解答题(17,18题每题7分,24题10分,其余每题8分,共64分)17.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.18.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1)求AB,AC,BC的长;(2)判断△ABC的形状,并说明理由.19.如图,在平行四边形ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.20.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)根据条件与作图信息知四边形ABEF是________;A.非特殊的平行四边形B.矩形C.菱形D.正方形(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.21.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE ⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE ⊥DE于点E.(1)若B,C在直线DE的同侧(如图①所示),且AD=CE.求证:AB⊥AC;(2)若B,C在直线DE的两侧(如图②所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.24.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案一、1.C 2.D3.A 点拨:设这个多边形的边数为n ,则(n -2)×180°=720°,解得n =6,故这个多边形的边数是6.4.C 5.A6.B 点拨:∵∠ACB =90°,∠A =30°,∴AB =2BC =4,又∵D 是AB 的中点,∴CD =12AB =2.∵E ,F 分别是AC ,AD 的中点,∴EF 为△ACD 的中位线,∴EF =12CD =1.7.B 点拨:如图,连接CD 交OE 于点F ,连接DE ,CE ,由作图过程可知OC =OD =DE =CE ,∴四边形ODEC 是菱形.∴OE ⊥CD ,OF =FE =12OE =8,∵OC =10,∴CF =DF =102-82=6,∴CD =2CF =12.8.C二、9.7210.10011.对角线互相平分12.912013.414.11 点拨:∵D ,E 分别是AB ,BC 的中点,∴DE ∥AC ,DE =12AC =2.5 cm ,同理可得EF ∥AB ,EF =12AB =3 cm ,∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2×(2.5+3)=11(cm).15.4+7或4-7 点拨:如图①,当点D 落在BC 上时,∵AB =5,AD =3,AC =4,AD ⊥BC ,∴BD =AB 2-AD 2=4,CD =AC 2-AD 2=7,则BC =BD +CD =4+7.如图②,当点D 落在BC 的延长线上时,∵AB =5,AD =3,AC =4,AD ⊥BC ,∴BD =AB 2-AD 2=4,CD =AC 2-AD 2=7,则BC =BD -CD =4-7. 综上所述,BC 的长为4+7或4-7.16.72 点拨:∵CE =5,△CEF 的周长为18,∴CF +EF =18-5=13.∵F 为DE的中点,∴DF =EF .又四边形ABCD 是正方形,∴∠BCD =90°,∴CF =12DE=DF ,∴DE =EF +DF =EF +CF =13,∴CD =DE 2-CE 2=132-52=12.∵四边形ABCD 是正方形,∴BC =CD =12,O 为BD 的中点,∴OF 是△BDE的中位线,∴OF =12(BC -CE )=12×(12-5)=72.三、17.解:∵ED ⊥BC ,∴∠BDE =90°,又∵∠E =35°,∴∠B =55°.∵∠BAC =90°,AD 是BC 边上的中线,∴DA =DB ,∴∠B =∠DAB =55°,∴∠BDA =180°-55°-55°=70°.18.解:(1)根据勾股定理,得AB =5,AC =5,BC =10.(2)△ABC 是等腰直角三角形.理由如下:∵AB 2+AC 2=5+5=10=BC 2,∴△ABC 是直角三角形.∵AB =AC ,∴△ABC 是等腰直角三角形.19.(1)证明:∵在△ABC中,AB=6,BC=8,AC=10,∴62+82=102,即AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:由(1)知四边形ABCD是矩形,∴BD=AC.又∵AC=10,∴BD=10.20.解:(1)C(2)易知AE⊥BF,OB=OF,AO=EO,BE=EF,AB∥EF.∵BF=4,∴OB=12BF=2.∵四边形ABEF的周长为16,四边形ABEF是菱形,∴BE=4.在Rt△OBE中,根据勾股定理,得OE=2 3,∴AE=2OE=4 3.∵BE=BF=EF=4,∴△BEF是等边三角形,∴∠FEB=60°.∵四边形ABCD是平行四边形,∴AB∥CD.∵AB∥EF,∴CD∥EF,∴∠C=∠BEF=60°.21.解:(1)∵在△ABC中,∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°.∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°.∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°-∠BAD-∠DEA=180°-30°-90°=60°.(2)如图,过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC =12AB·DE+12AC·DF=12×10×3+12×8×3=27.22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE . ∴AF =DB .∵D 是BC 的中点,∴DB =DC ,∴AF =CD ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形.(2)解:如图,连接DF ,∵AF ∥BC ,且由(1)知AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC ·DF =12×4×5=10.23.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°.在Rt △ABD 和Rt △CAE 中,⎩⎨⎧AB =CA ,AD =CE ,∴Rt △ABD ≌Rt △CAE .∴∠DBA =∠CAE .∵∠DAB +∠DBA =90°,∴∠BAD +∠CAE =90°. ∴∠BAC =180°-(∠BAD +∠CAE )=90°.∴AB ⊥AC .(2)解:AB ⊥AC .证明:同(1)可证得Rt △ABD ≌Rt △CAE .∴∠DAB =∠ECA .∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC .24.(1)证明:过点E 作EP ⊥CD 于点P ,EQ ⊥BC 于点Q .∵四边形ABCD 为正方形,∴∠DCA =∠BCA ,∴EQ =EP .由题易知∠QEF +∠FEC =45°,∠PED +∠FEC =45°,∴∠QEF =∠PED .在△EQF 和△EPD 中,⎩⎨⎧∠QEF =∠PED ,EQ =EP ,∠EQF =∠EPD =90°,∴△EQF ≌△EPD ,∴EF =ED ,∴矩形DEFG 是正方形.(2)解:由题意知AC =2 2.∵CE =2,∴AE = 2. ∴AE =CE .∴点F 与点C 重合,此时△DCG 是等腰直角三角形,易知CG = 2.(3)解:∠EFC =120°或30°.。
湘教版八年级数学下册期中考试卷及参考答案
湘教版八年级数学下册期中考试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2的结果是________.()a b2.比较大小:23________13.3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C 重合),I为△APC的内心,若∠AIC的取值范围为m°<∠AIC<n°,则m+n=________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、C6、C7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、44、255.56三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、11a -,1.3、(1)见解析;(2)k =84、(1)略;(25、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
湘教版八年级下册数学期中考试试卷(带答案)
湘教版八年级下册数学期中考试试题一、单选题1.下列汽车标志中既是轴对称图形又是中心对称图形的是A.B.C.D.2.Rt ABC中,∠ACB=90°,AC=6cm,BC=8cm,D为斜边AB的中点,则CD的长是A.3cm B.4cm C.4.8cm D.5cm3.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为A.6B.5C.4D.34.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为A.6B.5C.4D.35.如图,在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是A.∠E=∠CDF B.BE=2CF C.AD=2BF D.EF=DF 6.如图,在 ABC中,∠B=50°,点D在BC上,且AB=BD,AD=CD,则∠C的度数为A .30°B .32.5°C .45°D .60°7.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为A .30°B .60°C .90°D .120°8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形9.如图,∠BAC=90°,AD ⊥BC ,则图中与∠ABD 互余的角有A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的对角线AC 、BD 交于点O .AC =4,∠AOD =120°,则BC 的长为A .3B .4C .3D .2二、填空题11.在ABC 中,5AC =,12BC =,13AB =,则ABC 的面积为________.12.某多边形的每个内角均为120°,则此多边形的边数为____.13.在平行四边形ABCD 中,∠B =70°,则∠D =_______.14.矩形的长为6厘米,宽为8厘米,则它的对角线长为_________.15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.16.如图,在平行四边形ABCD中,若AB=4,BC=6,∠B=30°,则此平行四边形ABCD 的面积是_______.17.如图,菱形的对角线AC、BD交于点O,E为AD边中点,OE的长为3,则菱形ABCD 的周长为______.18.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为____________.三、解答题19.如图,在 ABC中,∠ACB=90°,CD⊥AB于点D,AC=12cm,BC=16cm,求CD 的长.20.如图,DB∥AC,且DB=1AC,E是AC的中点,2(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?21.如图,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,M是 ABC的边BC的中点,已知AB=10,BC=16,MN=4.(1)求证:BN=DN(2)求 ABC的周长.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,OE=OF.(1)求证:AE//CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:O是BD的中点;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=2时,求AE的长.24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图,并简单叙述理由.(1)在图1中,画出一个平行四边形ABCD,使其面积为6;(2)在图2中,画出一个菱形ABCD,使其面积为4;(3)在图3中,画出一个矩形ABCD,使其邻边不等,且都是无理数.25.已知:正方形ABCD的边长为6,点E,F分别在边AD,边AB的延长线上,且DE=BF.(1)如图1,连接CE,CF,EF,请判断△CEF的形状;(2)如图2,连接EF交BD于M,当DE=2时,求AM的长;(3)如图3,点G,H分别在边AB,边CD上,且EF与GH的夹角为45°时,求DE的长.26.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.参考答案1.C2.D3.A4.D5.B6.B7.B8.C9.A10.C11.30【详解】解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=12×5×12=30,故答案为:30.12.6【详解】解:180°-120°=60°,360°÷60°=6.即此多边形的边数为6.故答案为:6.13.70°【详解】∵∠B=70°,∴∠D=70°,故答案为:70°.14.10cm【详解】如图所示:已知CD=6,AD=8,∠D=90°,AC==,∴10∴对角线为:10cm,故答案为:10cm.15.60°【详解】解:延长AB交直线b于点E,∵a∥b,∴∠AEC=∠1=60°,∵四边形ABCD是矩形,∴AB∥CD,∴∠2=∠AEC=60°,故答案为60°.16.12【详解】解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=12AB=12×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,故答案为:12.17.24【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∵E为AD边中点,∴OE是Rt△AOD的斜边中线,∴AD=2OE=6,∴菱形ABCD的周长=4×6=24;故答案为:24.18.6.【详解】试题分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10.在Rt△CDF中,由勾股定理得:6=.考点:1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.19.9.6cm【详解】∵∠ACB=90°,AC=12cm,BC=16cm,∴AB=20cm,根据直角三角形的面积公式,得:9.6AC BC CD cm AB== ,∴9.6CD cm =.20.(1)证明见解析(2)添加AB=BC 【详解】试题分析:(1)要证明BC=DE ,只要证四边形BCED 是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E 是AC 中点,∴EC=AC .∵DB=AC ,∴DB ∥EC .又∵DB ∥EC ,∴四边形DBCE 是平行四边形.∴BC=DE .(2)添加AB=BC .理由:∵DB ∥AE ,DB=AE∴四边形DBEA 是平行四边形.∵BC=DE ,AB=BC ,∴AB=DE .∴▭ADBE 是矩形.考点:矩形的判定;平行四边形的判定与性质.21.(1)见解析;(2)44【详解】解:(1)证明:∵AN 平分∠BAC∴∠1=∠2∵BN ⊥AN∴∠ANB=∠AND=90°在△ABN 和△ADN 中,12AN AN ANB AND∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ),∴BN=DN .(2)∵△ABN ≌△ADN ,∴AD=AB=10,又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD=2MN=8,故△ABC 的周长=AB+BC+CD+AD=10+16+8+10=44.22.(1)见解析;(2)【详解】解:(1)证明:∵四边形ABCD 是矩形∴OA=OC ,在△AOE 和△COF 中,OA OCAOE COF OE OF=⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴∠OAE=∠OCF ,∴AE //CF ;(2)∵OA=OC ,OB=OD ,AC=BD ,∴OA=OB ,∵∠AOB=∠COD=60°,∴△AOB 是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt △ABC 中,=∴矩形ABCD 的面积=AB•BC=6⨯=23.(1)见解析;(2)6【详解】解:(1)∵四边形ABCD 是平行四边形,∴DC //AB ,∴∠OBE=∠ODF .在△OBE 与△ODF 中,OBE ODFBOE DOF BE DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴BO=DO ,即O 是BD 的中点;(2)∵EF ⊥AB ,AB //DC ,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD ⊥AD ,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO ,∴OF=FG=2,由(1)可知,OE=OF=2,∴GE=OE+OF+FG=6,∴AE=6.24.(1)见解析;(2)见解析;(3)见解析【详解】解:(1)在图1中,平行四边形ABCD 如图所示;(2)在图2中,菱形ABCD 如图所示;(3)在图3中,矩形ABCD 如图所示;25.(1)△CEF 是等腰直角三角形,理由见解析;(2)25(3)3.【详解】(1)如图1,△CEF 是等腰直角三角形,理由是:在正方形ABCD 中,BC=DC ,∠FBC=∠D=90°,∵BF=DE ,∴△FBC ≌△EDC ,∴CF=CE ,∠ECD=∠FCB ,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF 是等腰直角三角形;(2)如图2,过E 作EN ∥AB ,交BD 于N ,则EN=ED=2,∵EN ∥AB ,∴∠F=∠MEN ,∵∠BMN=∠EMN ,∴△FBM ≌△ENM ,∴EM=FM ,在Rt △EAF 中,224(62)++5∴AM=125(3)如图3,连接EC 和FC ,由(1)得∠EFC=45°,∵∠EMH=45°,∴∠EFC=∠EMH ,∴GH ∥FC ,∵AF ∥DC ,∴四边形FCHG 是平行四边形,∴由勾股定理得:,∴DE=BF=3.26.(1)见解析;(2)①5;②【详解】(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,∵AD ∥AC ,∴∠FAC =∠ECA ,在△AOF 和△COE 中,FAO ECOAO CO AOF COE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF ≌△COE ,∴OF =OE ,∵OA =OC ,AC ⊥EF ,∴四边形AECF 为菱形;(2)①设菱形的边长为x ,则BE =BC ﹣CE =8﹣x ,AE =x ,在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8﹣x )2+42=x 2,解得x =5,即菱形的边长为5;②在Rt △ABC 中,AC∴OA =12AC =在Rt △AOE 中,AE =5,OE∴EF =2OE =。
湘教版八年级下册数学期中试卷1
湘教版八年级下册数学期中试卷一.选择题(共12小题,每小题3分,共36分)1.(3分)下面的性质中,平行四边形不一定具有的是( )A.内角和为360°B.邻角互补C.对角线相等D.对角相等2.(3分)如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL3.(3分)下列条件中,不能判定一个四边形为平行四边形的是( )A.一组对边相等且平行B.一组对边平行,另一组对边相等C.两条对角线互相平分D.两组对边分别相等4.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.155.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是( )A.8B.5C.6D.46.(3分)用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤7.(3分)如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E,若AE=2,平行四边形ABCD的周长等于24,则线段AB的长为( )A.5B.6C.7D.88.(3分)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是( )A.B.C.D.9.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM =PN,若MN=2,则OM=( )A.3B.4C.5D.610.(3分)如图,P为正方形ABCD的对角线AC上任意一点,PE⊥AB于E,PF⊥BC于F,若AC=,则四边形PEBF的周长为( )A.B.2C.2D.111.(3分)如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为( )A.16cm2B.8cm2C.16cm2D.32cm212.(3分)如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为( )A.4s B.3s C.2s D.1s二.填空题(共6小题,每小题3分,共18分)13.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B= .14.(3分)若一个直角三角形的其中两条边长分别为6和8,则第三边长为 .15.(3分)平行四边形ABCD中,AB、BC、CD的长度分别为2x+1,3x,x+4,则平行四边形ABCD的周长 .16.(3分)已知正方形的一条对角线长为4cm,则它的面积是 cm2.17.(3分)如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为 .18.(3分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则△A2021B2021C2021的周长是.三.解答题(总分66分)19.(6分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.20.(6分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且AF=CE.求证:△ADF≌△CBE.21.(8分)如图,在△ABC中,∠C=90°,∠A=30°,点D在AC上,且∠BDC=60°,AC=12,求BD、BC的长.22.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点.求证:DE∥BF.23.(8分)如图,四边形ABCD是边长为13的菱形,其中对角线AC的长为10.计算:(1)对角线BD的长度.(2)菱形ABCD的面积.24.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.(10分)已知,如图,在Rt△ABC中,∠ACB=90°,E是两锐角角平分线的交点,ED ⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.26.(12分)如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一.选择题(共12小题,每小题3分,共36分)1.【分析】利用平行四边形的性质依次判断可求解.【解答】解:∵平行四边形的性质有对角相等,邻角互补,内角和为360°,∴平行四边形的性质不一定具有对角线相等,故选:C.2.【分析】根据题中的条件可得△ADP和△AEP是直角三角形,再根据条件DP=EP,AP =AP可根据HL定理判定△APD≌△APE.【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP(HL),故选:D.3.【分析】根据平行四边形的判定方法一一判断即可.【解答】解:A、一组对边相等且平行的四边形是平行四边形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,可能是等腰梯形,故本选项符合题意;C、两条对角线互相平分是平行四边形,故本选项不符合题意;D、两组对边分别相等的四边形是平行四边形,故本选项不符合题意;故选:B.4.【分析】本题可根据“两个非负数相加和为0,则这两个非负数的值均为0”解出x、y的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【分析】作DE⊥AB于E,根据角平分线的定义得到∠CAD=30°,根据直角三角形的性质得到CD=5,根据角平分线的性质得到答案.【解答】解:作DE⊥AB于E,∵∠C=90°,∠B=30°,∴∠CAB=60°,又AD是∠BAC的平分线,∴∠CAD=30°,∴CD=AD,又AD=10,∴CD=5,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB∴DE=CD=5,故选:B.6.【分析】此题需要动手操作或画图,用两块完全相同的直角三角形可以拼成平行四边形、矩形、等腰三角形.【解答】解:根据题意,能拼出平行四边形、矩形和等腰三角形.故选D.7.【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE =DC=AB求出即可.【解答】解:在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,AD=BC,∴∠DEC=∠DCE,∴DE=DC=AB,∵四边形ABCD的周长等于24,AE=2,∴AB+AD=12,∴AB+AE+DE=12,∴AB=5.故选:A.8.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.9.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD 的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.10.【分析】首先根据正方形的性质和勾股定理可求出AB的长,再由条件可知:四边形PEBF 为矩形,三角形AEP和三角形PFC为等腰直角三角形,所以PE+PF+BE+BF=2AB,问题得解.【解答】解:∵四边形ABCD是正方形,∴∠A=90°,AB=BC,∴AB2+BC2=AC2,∵AC=,∴AB=BC=1,∵四边形ABCD是正方形,∴∠BAC=∠BCA=45°,∵PE⊥AB于E,PF⊥BC于F,∴四边形PEBF为矩形,△AEP和△PFC为等腰直角三角形,∴PF=BE,PE=AE,∴PE+PF+BE+AE=2AB=2,即四边形PEBF的周长为2,故选:C.11.【分析】根据直角三角形斜边上的中线等于斜边的一半求出BC,再根据直角三角形两锐角互余求出∠BCE=60°,判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质求出EG,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵F是BC中点,∠BEC=90°,∴EF=BF=FC,BC=2EF=2×4=8cm,∵∠ECD=30°,∴∠BCE=90°﹣∠EBC=90°﹣30°=60°,∴△CEF是等边三角形,过点E作EG⊥CF于G,则EG=EF=×4=2cm,∴矩形的面积=8×2=16cm2.故选:C.12.【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【解答】解:由题意,点P在CD上,设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选:B.二.填空题(共6小题,每小题3分,共18分)13.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.14.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.15.【分析】根据平行四边形的对边相等可列出方程,从而解出x,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,∴2x+1=x+4解得:x=3,即得AB=7、BC=9、CD=7、DA=9,∴平行四边形ABCD的周长是:AB+BC+CD+DA=32,故答案为:32.16.【分析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可知正方形的边长,进而可得这个正方形的面积.【解答】解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.17.【分析】根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【解答】解:连接O1B、O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形=1,同理另外两个正方形阴影部分的面积也是S正方形=1,∴把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为(n﹣1).故答案为:n﹣118.【分析】由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.【解答】解:∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=7,∴△A1B1C1的周长是16,∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,∴△A2B2C2的周长是×16=8,同理,△A3B3C3的周长是××16=×16=4,…,以此类推,△A n B n∁n的周长是×16=,∴△A2021B2021C2021的周长是=.故答案是:=.三.解答题(总分66分)19.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数是n,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.20.【分析】根据矩形的性质得出∠D=∠B=90°,AD=CB,根据直角三角形全等的判定定理推出即可.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=CB,在Rt△ADF和Rt△CBE中,∴Rt△ADF≌Rt△CBE(HL).21.【分析】先根据三角形外角的性质得出∠ABD=30°,则∠A=∠ABD,再由等角对等边得出BD=AD,设CD=x,则BD=AD=2x,求出x=4,即可求出BC的值.【解答】解:∵∠A=30°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=30°.∴∠A=∠ABD=30°,∴BD=AD.在Rt△BCD中,∠C=90°,∠DBC=30°,∴BD=2CD,设CD=x,则BD=AD=2x,∴x+2x=12,∴x=4,∴BD=8,∴BC===4.22.【分析】由平行四边形的性质可得AB=CD,AB∥CD,由中点的性质可得DF=BE,可得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点.∴DF CD,BE=AB,∴DF=BE,又∵DF∥BE,∴四边形DFBE是平行四边形,∴DE∥BF.23.【分析】(1)由菱形的性质可知AC⊥BD,在Rt△ABE中可求得BE的长,则可求得BD 的长;(2)利用菱形的面积公式即可求得答案.【解答】解:(1)∵四边形ABCD为菱形,∴AC⊥BD,且AE=EC=AC=5,且BE=DE=BD,∵菱形的边长为13,∴AB=13,在Rt△ABE中,BE===12,∴BD=2BE=24;(2)∵AC=10,BD=24,∴S菱形ABCD=AC•BD=×10×24=120.24.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.25.【分析】过E作EM⊥AB,根据角平分线的性质可得EF=ED=EM.再证明四边形EFDC 是矩形,可根据邻边相等的矩形是正方形得到四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形CDEF是矩形,∵EF=ED,∴四边形CDEF是正方形.26.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形。
湘教版八年级数学下册期中考试卷【及答案】
湘教版八年级数学下册期中考试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.(1)已知x 35y 352x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.5.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、A7、A8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、30°或150°.3、如果两条直线平行于同一条直线,那么这两条直线平行.4、40°5、2456、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、(1)42,(2)13+-3、(1)a ≥2;(2)-5<x <14、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)略(2)90°(3)AP=CE6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
湘教版八年级数学下册期中考试【参考答案】
湘教版八年级数学下册期中考试【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A5、A6、B7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1002、﹣33、204、425、406、12三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、3x3、(1)-4;(2)m=34、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)略(2)略6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年下东中学八年级第一次月考数学试题
姓名 班次 考号 考室 (时间:120分钟 满分:100分) 一、填空题:(每小题3分,共30分)
1、用科学记数法表示0.0000296=
2、当x 时,分式
4
162
--x x 的值为零.
3、(2010年株洲中考)因式分解:3+2x x= .
4、3a 2m +6am 2-12am 的公因式是
5、(2011年株洲中考)当10x =,9y =时,代数式22x y -的值是 .
6、若x n
- y m
可分解为(x+y )(x-y )(x 2
+y 2
),则n= m= .
7、. 若2,4,m n a b ==则22m n a b -= 8、已知m+n=5,mn= -4,则m 2
n + mn 2
= . 9、已知13
a b a
-=, 则
a b
= 10.
观察下列各
式
:
,
,
…根据前面的规律,得:。
(其中n 为正整数)
11、计算2101
(1)()51)2--+-÷的结果是( )
A 、5
B 、-6
C 、-5
D 、-2 12 计算23
4x x ⋅的结果是 ( ) A .3
4x
B .4
4x
C .5
4x
D . 64x
13、已知:M=4
42
-a ,N=2
1+a +
a
-21
则 M、N 的关系是( )
A .M=N
B .M×N=1 C.M+N=0 D.不能确定
14、下列分解因式正确的是( )
A 、2a 2-3ab+a=a (2a -3b )
B 、-x 2-2x=-x (x -2)
C 、2πR -2πr=π(2R -2r )
D 、5m 4+25m 2=5m 2(m 2+5)
15、下列从左到右的变形中,不属于因式分解的是( )
A 、x 5+x 4=x 4(x+1)
B 、-2a 2+4ab= -2a (a -2b )
C 、mx+my+xy=m (x+y )+xy
D 、a 2-b 2
=(a+b )(a -b )
16、若(x -2)º =1,则( )
A .x ≠0
B .x ≥2
C .x ≤2
D .x ≠2
17、若x 2
+kx+25是完全平方式,则k 等于( )
A 、±10
B 、20
C 、-20
D 、±20
18、下列化简正确的是 ( )
A 、b a b a b
a +=++2
B 、
1-=+--b a b a C 、1-=---b a b a D 、b a b a b
a -=--2
2
19. (2011年株洲中考)若分式
25
x -有意义...
,则x 的取值范围是( ) A .5x ≠
B .5x ≠
-
C .5x >
D .5x >-
20、化简
2
2
2
2
a
b a b
b a
-
--的结果为( )
A 、2
()
a b
a b +- B 、2
2
a b a b
+- C 、
1a b
- D 、
1a b
+
三、解答题(本大题共7小题,共50分)
21.(2011年株洲中考)计算:02011|2|(1)--+- (4分)
22.(2011年株洲中考)当2x =-时,求2
211
1
x
x x x ++
++的值.(4分)
23、因式分解:(12分)
(1)-2x x 22
+ (2)a a -3
A B
(3) )1(4)(2----y x y x
24.(2011年株洲中考)食品安全是老百姓关注的话题,在食品中添加 过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品 的储存和运输.某饮料加工厂生产的A B 、两种饮料均需加入同种 添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加 剂3克,已知270克该添加剂恰好生产了A B 、两种饮料共100瓶, 问A B 、两种饮料各生产了多少瓶?(6分) 25.已知
211-=-b
a ,求分式
232a ab b a ab b
+---的值 (4分)
26、若a 、b 是△A BC 的两边,且a 2+b 2-6a -8b +25=0 (6分) ①试求a ,b 的值
②求第三边c 的取值范围
③若△A BC 是直角三角形,试求其周长.
27、计算:(4分) 1
3)1
81(+++--x x x x ÷
28、(6分)
已知关于x 的二次三项式x 2-ax +b 因式分解的结果是(x -3)(x -4) (1)求a ,b 的值.
(2)若a ,b 是一个直角三角形的两条直角边,求其斜边的长. (3)写出直线y =ax +b 的图象经过哪些象限.
29 . 先化简再求值:(4分) 2
222
ab
b a b
a --÷ 1+
ab
b a 22
2+ 其中a =-2,b =4。