速度闭环控制的直流调速系统

合集下载

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。

其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。

ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。

ACR系统的设计首先需要确定控制器的参数。

其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。

这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。

在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。

积分时间决定了对速度误差的积分时间长度,即速度误差累计值。

在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。

积分时间决定了对电流误差的积分时间长度,即电流误差累计值。

ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。

速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。

这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。

在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。

然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。

这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。

ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。

通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理1.双闭环直流调速系统的特性:(1)调速性能优良:双闭环控制可以提高调速性能,使得速度响应更加迅速、稳定。

由于速度闭环控制,系统可以实时检测速度偏差,并根据偏差调整电机的控制信号,从而使电机转速保持恒定。

(2)载荷抗扰性好:双闭环直流调速系统具有良好的抗负载扰动能力。

通过电流闭环控制器对电流进行反馈控制,一旦发生负载变动,系统可以根据反馈信号快速调整电流,以保持电机输出功率稳定。

(3)适应性强:双闭环直流调速系统适应性强,可以适应各种负载条件下的调速要求。

通过速度闭环控制器可以实时检测速度偏差,并根据偏差调整电机的控制信号,以适应不同的负载要求。

(4)技术难度较高:双闭环直流调速系统需要同时进行速度闭环控制和电流闭环控制,涉及到多个反馈环节和控制算法的设计与调试,技术难度相对较高。

2.双闭环直流调速系统的原理:(1)速度闭环控制原理:速度闭环控制器测量电机的速度,并将测量值与期望速度信号进行比较,得到速度偏差。

根据速度偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得速度偏差减小,并最终稳定在期望速度值上。

(2)电流闭环控制原理:电流闭环控制器测量电机的电流输出值,并将测量值与期望电流信号进行比较,得到电流偏差。

根据电流偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得电流偏差减小,并最终稳定在期望电流值上。

(3)内环逆变器控制:双闭环直流调速系统通常采用内环逆变器控制方式。

内环逆变器控制主要是通过改变电机的输入电压或者电流来控制其输出转矩和速度。

内环逆变器可以调整直流电动机的极性和大小,以实现对电机力矩和速度的精确控制。

(4)反馈和调节:双闭环直流调速系统中的反馈环节起到了至关重要的作用。

通过测量电机的速度和电流输出值,并与期望值进行比较,得到偏差信号,通过控制器计算得到控制信号,对电机输入电压或者电流进行调节,以实现对速度和电流的闭环控制。

双闭环直流调速系统工作原理

双闭环直流调速系统工作原理

双闭环直流调速系统工作原理1.系统结构:双闭环直流调速系统主要由两个闭环控制组成,即速度内环和电流外环。

速度内环控制器接收速度设定值和速度反馈信号,通过计算得到电流设定值,并发送给电流外环控制器。

电流外环控制器接收电流设定值和电流反馈信号,通过计算得到电压设定值,并输出给电源控制器。

电源控制器接收电压设定值和电源反馈信号,通过调节电源输出电压,以确保电机输出的电压和电流符合控制要求。

2.速度内环控制:速度内环控制器是实现速度调节的关键部分。

它通过比较速度设定值和速度反馈信号,得到速度差,然后根据速度差来调节电流设定值。

控制器根据速度差的大小来调整电流设定值的大小,如果速度差较大,则增大电流设定值;如果速度差较小,则减小电流设定值。

通过不断调整电流设定值,使得速度差逐渐减小,最终达到设定的速度。

3.电流外环控制:电流外环控制器是为了保证电流的稳定性而设置的闭环控制。

它接收电流设定值和电流反馈信号,通过比较二者的差异,计算得到电压设定值。

控制器根据电流设定值和电流反馈信号的差异来调整电压设定值的大小,如果电流差较大,则增大电压设定值;如果电流差较小,则减小电压设定值。

通过不断调整电压设定值,使得电流差逐渐减小,最终达到设定的电流。

4.电源控制:电源控制器是为了保证电机输出的电压和电流符合控制要求而设置的。

它接收电压设定值和电源反馈信号,通过调节电源输出电压来实现电机的调速。

当电压设定值与电源反馈信号存在差异时,控制器会相应地改变电源输出电压,使得电机的电压和电源设定值尽可能接近。

通过不断调整电压输出,最终使得电机的电压和电流稳定在设定值。

5.系统优点:双闭环直流调速系统能够实现对电机的精确调节,具有较高的速度和电流控制精度。

通过速度内环和电流外环的联合控制,可以准确地调节电机的转速,并且能够自动调整输出电流,适应不同负载。

此外,该系统还具有较好的稳定性和抗干扰能力,在外界干扰较大时仍能保持较高的控制精度。

双闭环直流电动机调速系统

双闭环直流电动机调速系统

04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的

双闭环直流调速系统介绍

双闭环直流调速系统介绍
速度环的设计:采用PI控制器,实现对电机转速的精确控 制。
电流环的设计:采用PI控制器,实现对电机电流的精确控 制。
双闭环调速系统的参数整定:根据系统特性和实际需求,对 速度环和电流环的参数进行整定,以实现最佳的调速性能。
双闭环直流调速 系统的应用
双闭环调速系统在工业控制中的应用
01 电机控制:用于控制电机 的转速、位置和扭矩等参 数,实现精确控制
04
够抵抗各种干扰和故障,保持正常运行
双闭环调速系统的设计步骤
01
确定系统需求:分 析系统需求,确定 调速系统的性能指

02
设计调速系统结构: 选择合适的调速系 统结构,如双闭环
调速系统
03
设计控制器:设计 控制器参数,包括 比例、积分、微分
等参数
05
设计驱动电路:设 计驱动电路,包括 功率放大器和驱动
双闭环调速系统的特点
速度闭环控制:通过速度传
感器检测电机转速,实现速
01
度的精确控制
响应速度快:双闭环调速系
统能够快速响应负载变化, 03
提高系统的动态性能
精度高:双闭环调速系统能
够实现高精度的速度和位置 05
控制,满足各种应用需求
位置闭环控制:通过位置传
02 感器检测电机位置,实现位
置的精确控制
双闭环直流调速系统介 绍
演讲人
目录
01. 双闭环直流调速系统的基本 概念
02. 双闭环直流调速系统的设计 03. 双闭环直流调速系统的应用 04. 双闭环直流调速系统的发展
趋势
双闭环直流调速 系统的基本概念
双闭环调速系统的组成
01
速度环:用于控 制电机转速,实
现速度调节

双闭环直流调速系统设计

双闭环直流调速系统设计

双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。

根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。

2.速度内环设计速度内环负责实现期望速度的跟踪控制。

常用的设计方法是采用比例-积分(PID)控制器。

PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。

PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。

3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。

一般采用PI调节器进行设计。

PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。

4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。

稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。

分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。

常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。

5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。

通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。

常用的鲁棒性设计方法包括H∞控制、μ合成控制等。

以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。

设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。

双闭环直流调速系统

双闭环直流调速系统

Ui(-)
负反馈极性要求 Ufi(+)
ASR反号要求
负反馈极性要求 Un(+)
Ufn(-)
其极性标在双闭环系统电路原理图 所示的系统中。
.
若系统为双环以上的多环调速系统, 则完全可以按同样的方法直接推出各个 调节器的输入输出信号的极性。但实际 分析系统时,必须注意调节器的具体线 路及其输入端的具体接法,以免搞错反 馈极性使系统无法正常工作。
负反馈; 稳态时,只有转速负反馈,没有电流负
反馈。 怎样才能做到这种既存在转速和电流两 种负反馈,又使它们只能分别在不同的阶 段里起作用呢?
.
2.1 双闭环调速系统的构成
转速、电流双闭环调速系统的组成 调节器输出限幅值的整定 调节器锁零 系统中调节器输入、输出电压极性
的确定
.
2.1.1 转速、电流双闭环调速系统的组成
+
RP1 Un R0
-
R0
Ufn
-
Rn Cn
U+fi
R0
ASR
-
+
+
Ui
LM
R0
-
TA
Ri Ci
L
ACR
LM GT
-
+
+
Uc
V
Id
UPE +Ud
M
+
+
-
n
+
RP2 TTGG -
双闭环直流调速系统电路原理图
.
2.1.2 调节器输出限幅值的整定
图中表出,两个调节器的输出都是带限幅 作用的。
转速调节器ASR的输出限幅电压Uim决定了电流 给定电压的最大值, 完全取决于电动机所允许 的过载能力和系统对最大加速度的需要。

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。

在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。

转速环用于控制电机转速,电流环用于控制电机电流。

本文将对转速、电流双闭环直流调速系统进行详细设计。

二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。

转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。

通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。

2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。

电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。

通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。

2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。

具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。

2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。

第1章闭环控制的直流调速系统

第1章闭环控制的直流调速系统
sp1-2 某直流调速系统,其额定数据如下:60kW, 220V,305A,1000r/min,Ra=0.05,电枢回路总 电阻R=0.18 ,如果要求调速范围 D = 20,静差率 s<= 5%,问开环系统能否满足要求?
1.3.7 限流保护 — 电流截止负反馈
▪ 问题的提出 :
➢ 起动的冲击电流——直流电动机全电压起动时,会产生很大 的冲击电流。
1.3.5 反馈控制规律 (闭环调速系统的三个基本性质)
▪ 1)被调量偏差控制 ▪ 2)抵抗扰动, 服从给定 ▪ 3)系统的精度依赖于给定和反馈检测的精度
NEXT
1.3.6 闭环直流调速系统稳态参数的计算
sp1-1 某晶闸管整流装置供电的转速负反馈单闭环 有静差调速系统的调速范围是1500~150r/min,系 统开环速降为80r/min,若要求静差率由10%降到 5%,则系统的开环系数如何变化?
➢ 堵转电流——电动机堵转时,电流将远远超过允许值。
▪ 有两类生产机械要求限制电流:
➢ 一类,快速启动和制动的生产机械。 ➢ 另一类,经常在堵转状态下工作的生产机械,如挖土机。
▪ 解决办法:引入电流截止负反馈
--- 按照反馈原理,引入电流负反馈,保持电流不超过允许值。 而且,这种办法只在启动和堵转时存在,正常运行时取消, 保持静特性有较好的硬度。
图5 :V—M系统的电流波形
抑制电流脉动的主要措施:
➢ 设置平波电抗器; a.电感量大➢,增且加负整载也流足电够路大相时数,。电流连续(脉动)
b.电感量小,且负载轻时,电流断续
3)晶闸管—电动机系统的机械特性
▪ 当电流连续时,V-M系统的机械特性方程式为
n
1 Ce
(U d 0
Id

晶闸管双闭环直流调速系统设计

晶闸管双闭环直流调速系统设计

晶闸管双闭环直流调速系统设计引言:直流调速系统广泛应用于电机控制领域,其中晶闸管双闭环直流调速系统具有较好的性能和可靠性。

本文将介绍晶闸管双闭环直流调速系统的设计原理和步骤,并分析其性能和可行性。

一、系统设计原理:晶闸管双闭环直流调速系统由速度环和电流环组成。

其中速度环通过测量电机转速与期望速度之间的误差并反馈控制,通过调整电机的输入电压来改变电机的转速。

电流环通过测量电机输出电流与期望电流之间的误差并反馈控制,通过调整晶闸管的导通角来改变电机的输出电流。

速度环和电流环通过PID控制器进行控制,实现闭环控制。

二、系统设计步骤:1.确定系统参数:包括电机参数、电压参数、电流参数和速度参数等。

根据实际情况选择合适的参数值。

2.设计速度环:首先选择合适的速度传感器进行速度测量,如光电编码器或霍尔元件。

然后根据测量值与期望速度之间的误差计算PID控制器的输出值,进一步控制电机的输入电压。

3.设计电流环:选择合适的电流传感器进行电流测量,如电流互感器或霍尔元件。

根据测量值与期望电流之间的误差计算PID控制器的输出值,进一步控制晶闸管的导通角。

4.设计反馈回路:将测量到的速度和电流信号经过滤波器进行滤波处理,减小干扰。

然后将滤波后的信号输入到PID控制器,计算控制器的输出值。

最后将控制器的输出值经过扩大器进行放大,最终作为输入信号驱动电机。

5.系统仿真和优化:使用MATLAB等仿真软件进行系统仿真,分析系统的性能和稳定性。

根据仿真结果,调整控制参数和系统结构,优化系统性能。

三、系统性能和可行性分析:晶闸管双闭环直流调速系统具有较好的稳态和动态性能。

速度环能够实现对电机速度的精确控制,适应不同负载的要求。

电流环能够实现对电机输出电流的精确控制,保证电机的安全运行。

经过优化设计的系统具有较快的响应速度、较小的超调量和较好的稳定性。

总结:本文介绍了晶闸管双闭环直流调速系统的设计原理和步骤,并分析了其性能和可行性。

《电力拖动自动控制系统》习题答案

《电力拖动自动控制系统》习题答案

第一章闭环控制的直流调速系统1-1 为什么 PWM —电动机系统比晶闸管—电动机系统能够获得更好的动态性能? 答:PWM —电动机系统在很多方面有较大的优越性:(1) 主电路线路简单,需用的功率器件少。

(2) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。

(3) 低速性能好,稳速精度高,调速范围宽,可达 1:10000 左右。

(4) 若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。

(5) 功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。

(6) 直流电源采用不控整流时,电网功率因数比相控整流器高。

1-2 试分析有制动通路的不可逆 PWM 变换器进行制动时,两个 VT 是如何工作的。

答:在制动状态中,i d 为负值,VT 2 就发挥作用了。

这种情况发生在电动运行过程中需要降 速的时候。

这时,先减小控制电压,使U g 1 的正脉冲变窄,负脉冲变宽,从而使平均电枢电 压U d 降低。

但是,由于机电惯性,转速和反电动势还来不及变化,因而造成 E > U d ,很 快使电流 i d 反向,VD 2 截止,在 t on δ t <T时,U g 2 变正,于是VT 2 导通,反向电流沿回路 3 流通,产生能耗制动作用。

在T δ t <T+ t on 时,VT 2 关断, i d 沿回路 4 经VD 1 续流,向电源回馈制动,与此同时,VD 1 两端压降钳住VT 1 使它不能导通。

在制动状态中,VT 2 和VT 1轮流导通,而VT 1 始终是关断的。

在轻载电动状态,这时平均电流较小,以致在VT 1 关断后 i d 经VD 2 续流时,还没有达到周期T,电流已经衰减到零,这时VD 2 两端电压也降为零,VT 2 便提前导通了,使电流反向, 产生局部时间的制动作用。

1-3 调速范围和静差率的定义是什么?调速范围、静差速降和最小静差率之间有什么关 系?为什么说“脱离了调速范围,要满足给定的静差率也就容易得多了”? 答:生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,用字母D表示,即D =n max n min其中,n max 和 n min 一般都指电动机额定负载时的最高和最低转速,对于少数负载很轻的机械,可以用实际负载时的最高和最低转速。

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍双闭环直流调速系统由两个环路组成,速度环和电流环。

速度环控制电机的速度,使其始终保持在设定值附近,而电流环控制电机的电流,保证电机的负载特性和响应速度。

速度环和电流环是相互独立的控制过程,通过串联连接实现整体调速控制。

速度环负责对电机转速进行调节,基本原理是将实际转速与设定转速进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压实现转速调节。

速度环的核心是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对转速的精确调节。

速度环还可以加入速度前馈器,将速度设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

电流环负责对电机的电流进行调节,保证电机的负载特性和响应速度。

电流环的基本原理是将实际电流与设定电流进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压或电流实现电流调节。

电流环的核心也是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对电流的精确调节。

电流环还可以加入电流前馈器,将电流设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

双闭环直流调速系统中,速度环和电流环之间通过串联连接的方式进行控制。

速度环输出电压指令作为电流环的输入电流设定值,电流环通过调节电机的输入电流实现电流调节。

而电流环输出电压指令作为速度环的输入电压设定值,速度环通过调节电机的输入电压实现转速调节。

通过这种双重反馈的控制方式,可以实现对电机转速和电流的精确控制。

1.精确控制:通过精确的调节速度环和电流环的参数,可以实现对电机转速和电流的精确控制,满足不同工况下的要求。

2.快速响应:双闭环结构可以利用速度环和电流环的双重反馈信息,在系统受到外部扰动时,能够快速调节输出,保持稳定的运行状态。

3.负载适应性:通过电流环的控制,可以根据电机所承受的外部负载变化,自动调整输出电压或电流,保持电机的运行稳定性和性能。

第二章 闭环控制直流调速系统的稳态分析与计算

第二章 闭环控制直流调速系统的稳态分析与计算

带电流截止负反馈的转速单闭环直流调速系 统稳态分析(续)
U com
将电流截止负反馈环节画 在方框中,再和系统的其它部
- + Rs
Id
分连接起来,便得到带电流截
止负反馈的转速负反馈单闭环
R
调速系统的静态结构图
U
* n
- Ui ASR
+
+
PI
U ct
Ud0 -
Ks
+
E
n
1/Ce
图中 U i I d U com
图2-1 不同转速下的静差率
根据式(2-2)的定义,由于n0a n0b ,所以sa sb 。 对于同样硬度的特性,理想空载转速越低时,静差
率越大,转速的相对稳定度也就越差。例如:当理
想空载转速为1000r/min时,额定速降为10r/min, 静差率为1%;当理想空载转速为100r/min时,额 定速降同样为10r/min,则静差率却为10%。
的转速是无静差的,静
特性是平直的。
2、当 I d I dcr 时,A-B段 的静特性则很陡,静态 速降很大。
0
I dcr
B
I dbl
Id
图2-8 带电流截止负反馈的转速 负反馈单闭环调速系统的静特性
例题
带有电流截止负反馈的转速负反馈单闭环直流 调速系统如图所示:
图1-24 电流截止负反馈闭环直流调速系统的原理框图
要求 s 值越小时,系统能够允许的调速范
围也越小。
例题2-1
某直流调速系统电动机额定转速为 nN 1430 r / min 额定速降 nN 115 r / min,当要求静差率 s 30% 时,允许多大的调速范围?如果要求静差率 s 20% ,试求最低运行速度及调速范围。

双闭环直流调速系统介绍

双闭环直流调速系统介绍

双闭环直流调速系统介绍
系统由两个主要的闭环控制回路组成:速度环和电流环。

速度环是系统的外环控制回路,其作用是根据用户对电机转速的需求进行反馈控制。

速度传感器测量电机的转速,并将测量值与设定值进行比较,产生差值作为输入信号。

这个差值通过控制器(通常为PID控制器)进行处理,并输出一个调节信号。

调节信号通过控制执行器(如PWM控制器)调节电机的输入电压或电流,从而控制电机的转速。

速度环的目标是使电机的转速稳定在用户设定的值附近。

电流环是系统的内环控制回路,其作用是根据速度环的输出信号来补偿负载扰动和电机参数变化所引起的转矩变化。

电流环的输入信号为速度环的输出调节信号,通过控制器处理后,输出一个电流指令。

这个电流指令通过控制执行器调节电机的输入电压或电流,从而控制电机的转矩。

电流环的目标是使电机的转矩稳定在速度环要求的范围内。

1.高精度:通过使用两个闭环控制回路,系统能够实现高精度的电机转速调节,并具备对负载扰动和电机参数变化的补偿能力。

2.快速响应:系统使用PID控制器作为控制算法,能够快速响应用户对电机转速的需求。

3.稳定性好:速度环和电流环形成了互补的控制关系,能够保持电机转速和转矩的稳定性。

4.可靠性高:双闭环直流调速系统结构简单,组件少,可靠性较高。

综上所述,双闭环直流调速系统通过使用速度环和电流环两个闭环控制回路,实现对电机转速的高精度控制和负载扰动补偿。

该系统具备精度
高、响应快、稳定性好、可靠性高等优点,广泛应用于各种需要精确电机调速的领域。

直流调速系统概述

直流调速系统概述
抗干扰能力
指系统在受到外部干扰时,能够保持稳定运行的 能力。抗干扰能力越强,系统鲁棒性越好。
04 典型直流调速系统分析
单闭环直流调速系统
转速负反馈单闭环调速系统
通过引入转速负反馈,实现转速的无静差调节,提高系统的动态性能和稳态精度 。
电压负反馈单闭环调速系统
通过引入电压负反馈,稳定直流电动机的端电压,从而改善系统的静态特性和动 态性能。
现状
目前,直流调速系统已经广泛应用于各个领域,如工业、交 通、能源等。随着电力电子技术和控制理论的不断发展,直 流调速系统的性能不断提高,应用领域也不断扩展。
应用领域与前景
应用领域
直流调速系统广泛应用于需要精确控制转速的场合,如机床、风机、水泵、压缩机、卷扬机等机械设备,以及电 动汽车、电动自行车等交通工具。
前景
随着工业自动化和智能制造的推进,以及新能源汽车等产业的快速发展,直流调速系统的需求将不断增长。同时, 随着电力电子技术和控制理论的不断进步,直流调速系统的性能将不断提高,应用领域也将不断扩展。未来,直 流调速系统将在更多领域发挥重要作用,推动相关产业的持续发展。
02 直流调速系统组成及工作 原理
流。
多环控制直流调速系统
三环控制直流调速系统
在双闭环的基础上,引入第三个控制环,如位置环、速度环或加速度环等,进一步提高系统的控制精 度和动态性能。
多环串级控制直流调速系统
将多个控制环按照串制。该系统适用于对控制精度和动态性能要求较高的场合。
双闭环直流调速系统
转速、电流双闭环调速系统(ASR+ACR)
在转速负反馈的基础上,引入电流负反馈,构成转速、电流双闭环调速系统。其中, ASR为转速调节器,ACR为电流调节器。该系统具有较快的动态响应和良好的稳态精度。

转速﹑电流双闭环直流调速系统

转速﹑电流双闭环直流调速系统
图2-4双闭环直流调速系统的稳态结构框图
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。

调速系统开环闭环介绍

调速系统开环闭环介绍

1. 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton Ud
M
_O
t
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
2. 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器 件,VD 表示续流二极管。当VT 导通时, 直流电源电压 Us 加到电动机上;当VT 关 断时,直流电源与电机脱开,电动机电枢 经 VD 续流,两端电压接近于零。如此反 复,电枢端电压波形如图1-5b ,好像是电 源电压Us在ton 时间内被接上,又在 T – ton 时间内被斩断,故称“斩波”。
• 逆变颠覆限制
O
通过设置控制 电压限幅值, 来限制最大触 发角。
图1-8 相控整流器的电压控制曲线
1.2.2 电流脉动及其波形的连续与断续
由于电流波形的脉动,可能出现电流连续 和断续两种情况,这是V-M系统不同于G-M系 统的又一个特点。当V-M系统主电路有足够大 的电感量,而且电动机的负载也足够大时,整 流电流便具有连续的脉动波形。当电感量较小 或负载较轻时,在某一相导通后电流升高的阶 段里,电感中的储能较少;等到电流下降而下 一相尚未被触发以前,电流已经衰减到零,于 是,便造成电流波形断续的情况。
因此,自动控制的直流调速系统往往以 调压调速为主。
第1章 闭环控制的直流调速系统
本章着重讨论基本的闭环控制系统 及其分析与设计方法。
本章提要
1.1 直流调速系统用的可控直流电源 1.2 晶闸管-电动机系统(V-M系统)的主要问题 1.3 直流脉宽调速系统的主要问题 1.4 反馈控制闭环直流调速系统的稳态分析和设计 1.5 反馈控制闭环直流调速系统的动态分析和设计 1.6 比例积分控制规律和无静差调速系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016/6/7
直流调速电源
2 静止式可控整流器 • V-M系统的问题

CSSSE


由于晶闸管的单向导电性,它不允许电流反向,给系统的可 逆运行造成困难。 晶闸管对过电压、过电流和过高的dV/dt与di/dt 都十分敏感 ,若超过允许值会在很短的时间内损坏器件。 由谐波与无功功率引起电网电压波形畸变,殃及附近的用电 设备,造成“电力公害”。
d m wm dt


其中,J——机械转动惯量,——转子的机械角速度,——转子的机械 转角,——电磁转矩,——负载转矩,D——与转速成正比的阻尼转矩 系数,K——扭转弹性转矩系数。 若忽略阻尼转矩系数和扭转矩系数和扭转弹性转矩,或者将其归入负载 转矩,则运动控制系统的基本运动方程式可简化为
dwm J Te TL dt
主要知识结构

CSSSE
第一部分:直流调速系统
单闭环调速系统 双闭环调速系统 直流数字调速



第二部分:交流调速系统
CSSSE
第一部分 电力拖动直流调速系统
主要内容
CSSSE
前言及开环调速系统
开环调速系统的机械特性
开环调速系统的性能和存在的问题
第1章 速度单闭环控制的调速系统
速度闭环调速系统的组成及其静特性 单闭环调速系统的限流保护 速度闭环控制调速系统的动特性分析 无静差调速系统
CSSSE
对于要求在一定范围内无级平滑调速的系统来说,以调节 电枢供电电压的方式为最好。改变电阻只能有级调速;减弱 磁通虽然能够平滑调速,但调速范围不大,往往只是配合调 压方案,在基速(即电机额定转速)以上作小范围的弱磁升 速。 因此,自动控制的直流调速系统往往以调压调速为主。
2016/6/7
直流调速电源
电力拖动控制系统的发展概况与趋势
(1)发展过程:

CSSSE


19世纪80年代以前:直流电气传动(惟一)。 19世纪末:出现了交流电,解决了三相交流电的输送和分配问题,研制成了鼠笼异 步电机。问题:无法解决非线性性质的转矩控制问题,交流电气传动应用于恒速运 行场合。 20世纪30年代:直流电机易于实现速度调节和转矩控制,开始使用直流调速系统。 20世纪70年代以来:交流调速系统,特点:宽调速范围、高稳速精度、快速动态响 应、四象限运行,可与直流调速相媲美。 发达国家中生产的总电能的一半以上由电动机转换为机械能,所以电拖动的运动控 制系统的应用已相当普及,到处可以看到以运动控制系统为动力核心的电力拖动机 械。 制造业 高新技术产业 日常生活
(2)应用:


(3)发展趋势 1)驱动的交流化 2)驱动系统的超高速化和超小、超大型化: 3)系统实现的集成化 4)控制的数字化、智能化和网络化
运动控制系统的转矩控制规律

CSSSE
运动控制系统的基本运动方程式如下:
dwm J Te TL Dwm K m dt
2016/6/7
直流调速电源
2 静止式可控整流器 近似传递函数
CSSSE
考虑到 Ts 很小,可忽略高次项,则传递函数便近似 成一阶惯性环节。
Ks Ws ( s) 1 Ts s
(1-16)
2016/6/7
直流调速电源
2 静止式可控整流器 晶闸管触发与整流装置动态结构
CSSSE
Uc(s)
计算机 控制技术
和系统的可靠性。



控制理论是运动控制系统的理论基础, 是指导系统分析和设计的依据。 为了保护系统安全可靠地运行,必须对实际 检测的信号进行滤波等处理,提高系统的抗干扰能力 微电子技术:方便和简化了运动控制系统的硬件电路设计及调试工作
信号检测 与处理
控制 理论
运动控制系统及其组成
2016/6/7
直流调速电源
2 静止式可控整流器 • V-M系统工作原理
CSSSE
晶闸管-电动机调速系统(简称V-M系统,又称静止的 Ward-Leonard系统),图中VT是晶闸管可控整流器, 通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲 的相位,即可改变整流电压Ud ,从而实现平滑调速。
直流电动机
电动机类型
CSSSE
驱动电动机—调速系统 电动机用途 伺服电动机—伺服系统
交流异步电动机
交流同步电动机
运动控制系统及其组成
(2)功率放大与变换装置

CSSSE
功率放大与变换装置有电机型、电磁型、电力电子型等,现在多用电 力电子型的。电力电子器件经历了由半控型向全控型、由低频开关向 高频开关、由分立的器件向具有复合功能的功率模块发展的过程,电 力电子技术的发展,使功率放大与变换装置的结构趋于简单、性能趋 于完善。 控制器分模拟控制器和数字控制器两类,也有模数混合的控制器,现 在已越来越多地采用全数字控制器。
CSSSE
(1) 基本概念: 拖动:采用动力设备(或称原动机)带动工作机械形成不同的运动。 电力拖动:采用电动机为动力设备的拖动方式。 电力拖动自动控制系统(广义):具有自动控制和调节工作机械的速度 或位移的电力拖动系统。 从能量的转换及传递(传输)角度来看: 电力拖动=电力传动; 电力拖动控制系统=电力传动控制系统。 (2)定义(狭义): 电力拖动自动控制系统(Automatic Control System of Electric Drive )也可称为运动控制系统(Motion Control System): 以电动机及其拖动的机械设备为控制对象,以控制器为核心,以电力 电子功率变换装置为执行机构,在控制理论等指导下可实现电气传动功 能的自动控制系统。 (3)任务: 通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的 转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。
控制理论 电力电子与驱动技术
CSSSE
电机原理与模型
+
控制器
-
功率放大与变换装置
电动机及负载
信号处理
传感器
信号检测与 数据处理技术
运动控制系统及其组成
运动控制系统及其组成
(1)电动机及负载 控制对象——电动机 电动机:电能转换,输入的电能转换为机械能; 机械传动机构:机械能传递给工作机械。
电力拖动自动控制系统及其相关学科
(4)分类: 按控制量 的不同
以电动机的转速 — 调 速系统 以工作机构的角位移或直线位移—位置伺服系 统(位置随动系统)
CSSSE

按控制量的不同:

以电动机的转速—调速系统 以工作机构的角位移或直线位移—位置伺服系统(位置随动系统)

各种电力拖动控制系统都是通过控制电动机的转速来工作 的,因此,调速系统是最基本的电力拖动控制系统。
2016/6/7
直流调速电源
1 旋转变流机组 • G-M系统特性
n 第II象限
CSSSE
第I象限
n1 n2
n0
-TL
O TL Te
第III象限
图1-2 G-M系统机械特性
2016/6/7
第IV象限
直流调速电源
2 静止式可控整流器
CSSSE
图1-3 晶闸管可控整流器供电的直流调速系统(V-M系统)
运动控制及其相关学科图

CSSSE 电力电 子技术
电动机是运动控制系统的执行机构
电机学
以电力电子器件为基础的功率放大 与变换装置是弱电控制强电的媒介 计算机控制技术:使对象参数辨识、 控制系统的参数自整定合资学习、 智能控制、故障诊断等成为可能, 大大提高了运动控制系统的智能化

微电子 技术
运动 控制
(3)控制器

(4)信号检测与处理

运动控制系统中常用的反馈信号时电压、电流、转速和位置,为了 真实可靠地得到这些信号,并实现功率电路(强电)和控制器(弱 电)之间的电气隔离,需要相应的传感器。电压、电流传感器的输 出信号多为连续的模拟量,而转速和位置传感器的输出信号因传感 器的类型而异,可以是连续的模拟量,也可以是离散的数字量。由 于控制系统对反馈通道上的扰动无抑制能力,所以,信号传感器必 须有足够高的精度,才能保证控制系统的准确性。
2016/6/7
直流调速电源
2 静止式可控整流器 • V-M系统的特点
CSSSE
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而 且在技术性能上也显示出较大的优越性。晶闸管可控整流器 的功率放大倍数在10 4 以上,其门极电流可以直接用晶体管 来控制,不再像直流发电机那样需要较大功率的放大器。 在控制作用的快速性上,变流机组是秒级,而晶闸管整流器 是毫秒级,这将大大提高系统的动态性能。
电力拖动 自动控制系统
张凤
沈阳建筑大学 信息学院
课程简介
课程基础 课程地位
是自动化专业的一门专业课、必修课。
CSSSE
电机与拖动、自动控制原理、模拟电 子技术、电力电子技术
学时学分 考核方式
64学时、4学分
期末考试 —— 80分(闭卷) 平时成绩 —— 20分(作业5、实验10、课堂笔记5)
电力拖动自动控制系统及其相关学科
Ks e
Ts ss
Ud0(s)
Uc(s)
Ks Ts s 1
(b) 近似的
Ud0(s)
(a) 准确的
图1-15 晶闸管触发与整流装置动态结构图
第2章 转速、电流双闭环控制的直流调速系统
转速电流双闭环调速系统的组成及静特性 双闭环调速系统的启动过程分析 双闭环调速系统的动态性能
重点内容
2016/6/7 第1章 速度闭环控制的直流调速系统 13
前言
相关文档
最新文档