七年级数学上册74一元一次方程的应用《应用一元一次方程—“希望工程”义演》典型例题素材青岛版.
七年级数学说课《一元一次方程的应用》
目录
• 课程导入 • 一元一次方程的概念与性质 • 一元一次方程的应用实例 • 教学方法与手段 • 课程总结与作业布置 • 教学反思与改进
01 课程导入
课程背景
一元一次方程是初中数学的重要基础,其应用广泛,对于培养学生的逻辑思维和问 题解决能力具有重要意义。
小组讨论
案例分析
将学生分成小组,让他们在小组内讨论一 元一次方程的应用实例,培养学生的合作 精神和交流能力。
选取实际生活中的问题,引导学生分析并 建立一元一次方程模型,提高他们解决实 际问题的能力。
教学手段:PPT、实物模型、数学软件
PPT
01
使用PPT展示教学内容,包括一元一次方程的概念、应用实例和
化简
将方程化简为一元一次方程的 标准形式。
一元一次方程的应用场景
生活中的问题
如路程、速度、时间问题; 购物问题;工程问题等。
自然科学中的问题
如物理中的力学、光学问 题;化学中的反应速率、 浓度问题等。
经济领域的问题
如成本、利润、折扣问题 等。
03 一元一次方程的应用实例
生活中的一元一次方程应用
解题过程等,使教学更加生动形象。
实物模型
02
利用实物模型帮助学生理解抽象的数学概念,例如使用小球和
绳子演示等量关系,帮助学生建立一元一次方程。
数学软件
03
介绍一些数学软件,如GeoGebra、Desmos等,让学生通过软
件进行数学实验和探究,提高他们的学习兴趣和探究能力。
05 课程总结与作业布置
课程总结
如何改进教学方法和手段。
作业布置
基础练习题
布置与本节课知识点相关的基本练习 题,帮助学生巩固所学内容,提高解 题能力。
七年级数学北师大版上册课时练第5章《应用一元一次方程——“希望工程”义演》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练应用一元一次方程——“希望工程”义演一、选择题1.北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51~100人时,每人门票价格45元;购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,442.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是()A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组3.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x 辆旅游大巴,则可列方程()A.45x+28=50x﹣12B.45x﹣28=50x+12C.45x﹣28=50x﹣12D.45x+28=50x+124.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.3205.某班同学一起去看电影,票价每张50元,20张以上(不含20张)打八折,他们一共花了1000元,则共买了()张电影票.A.20B.25C.20或25D.25或306.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是()A.()121826x x =-B.()181226x x =-C.()2181226x x ´=-D.()2121826x x ´=-7.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是()A.2(30)41x x --=B.(41)302xx +-=C.41302x x -+=D.3041x x-=-8.甲、乙、丙三人共捐611元支援山区建设,甲比乙多25元,比丙少36元,则丙捐款()A.200元B.175元C.236元D.218元9.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元11.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到州两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元12.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t 小时,下列方程正确的是()A.80.257t t -=B.()80.257t t-=C.()()80.2570.25t t-=+D.80.2570.25t t -=+13.在2016年“手拉手”活动中,新泰安实验小学向山区一所农村学校赠送了20个日记本和20支钢笔,价值共70元.已知每个日记本比每支钢笔少0.5元,则每个日记本和每支钢笔的价格分别为()A.1元,1.5元B.2元,2.5元C.1.5元,2元D.2元,1.5元14.《九章算术》是中国古代数学最重要的著作,奠定了中国古代数学的基本框架.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数,羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x 钱,则可列方程为()A.45375x x --=B.45357x x ++=C.45357x x --=D.45375x x ++=15.某班参加“3.12”植树活动,若每人植2棵树,则余21棵树;若每人植3棵树,则差24棵树,求该班有多少名学生?若设该班有x 名学生,则可列方程是()A.224321x x +=+B.224321x x -=-C.221324x x -=+D.221324x x +=-二、填空题16.一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则大人有____个,幼儿有____个.17.某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半,走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________角.18.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.19.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏_____元.20.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.21.校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块,则这些新团员中有______名男同学.三、解答题22.为拓宽学生视野,某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带19个学生,还剩11个学生没人带;若每位老师带20个学生,就有一位老师少带7个学生,为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3050租金/(元辆)300400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)这次活动全部租甲种客车行吗?如果行,怎样安排;如果不行,请说明理由.(3)学校计划此次研学旅行活动的租车总费用不超过4100元,租用乙种客车不少于7辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.24.临近春节,上海到扬州的单程汽车票价为80元/人,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打6折非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打8折.(1)若有15名非学生乘客团购买票,则共需购票款多少元?(2)已知一辆汽车共有乘客60名,非学生乘客若达到团购人数则按团购方式缴款,这一车总购票款为3680元,则车上有学生和非学生乘客各多少名?25.某种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案1-5:CDABC6-10:DCCAD 11-15:DDCCD 16.3417.4518.6419.9.20.721.3022.解:(1)设有x 个老师,依题意,得:19x +11=20x -7,解得:x =18,∴19x +11=353.(2)(18+353)÷30=12(辆)……11(人),12+1=13(辆),13×2=26(人),∵18<26,∴老师数不足以每辆车分2人,∴这次活动不能全部租甲种客车.(3)18+353-50×7=21(人),21<30<50,∴有两种租车方案,方案1:租用1辆甲种客车,7辆乙种客车;方案2:租用8辆乙种客车.方案1所需费用为300+400×7=3100(元);方案2所需费用为400×8=3200(元).∵3100<3200,∴方案1最省钱,即:租用1辆甲种客车,7辆乙种客车.23.解:(1)甲:2080.8(40)0.8128x x ´+-=+乙:(2080.8)0.90.72144x x ´+´=+(2)令0.81280.72144x x +=+200x =(3)(方案一)单独去甲店:0.8x 1280.860128176+=´+=(元)(方案二)单独去乙店:0.72x 1440.7260144187.2+=´+=(元)(方案三)208160´=0.80.9(6040)14.4´´-=(元)16014.4174.4+=由此方案三最省钱,即去甲店买20本笔记本,去乙店买20支圆珠笔.24.解:(1)由题意得:10×80+(15-10)×80×0.8=1120(元);(2)解:设车上有非学生x 人,则有学生(60-x )人,①若0≤x ≤10,由题意得:80x +80×0.6(60-x )=3680,x =25不符合题意,舍去,②若10<x ≤60,由题意得:80×10+80×0.8(x -10)+80×0.6(60-x )=3680,x =40符合题意,综上所述,x =40,25.解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样.根据题意:()()3055530550.9x x ´+-´=´+´,解得20x =.所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款()3051555200´+-´=(元),乙店需付款()3051550.9202.5´+´´=(元).因为200202.5<,所以,购买15盒乒乓球时,去甲店较合算.当购买30盒时:甲店需付款()3053055275´+-´=(元);乙店需付款()3053050.9270´+´´=(元).因为275270>,所以购买30盒乒乓球时,去乙店较合算.。
《应用一元一次方程-“希望工程”义演》教案 (公开课)2022年3
应用一元一次方程——“希望工程〞义演教学设计〖教学目标〗1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,开展分析问题、解决问题的能力。
2.让学生在自己不断的努力和对实际问题的探索研究中,体验成功的快乐,激发学生的学习兴趣和热情,培养学生勇于探索的科学精神。
3.通过对“希望工程〞义演中的数学问题的探讨,进一步体会方程模型的作用。
〖教材分析〗通过前几节知识的学习,学生已学会通过分析简单问题中量与未知量的关系列出方程解应用题。
列一元一次方程解应用题的难点在于根据题意找出等量关系,它同时又是解决这个问题的关键所在。
所以,本节课仍然以生动的联系生活的情境,继续培养学生分析等量关系,列方程解决实际问题的能力。
本节课以求解一个实际问题为切入点,让学生经历抽象、符号变换、应用等活动,展现运用方程解决实际问题的一般过程。
帮助学生认识寻找等量关系是列方程解决实际问题的核心和关键。
我们有时可以借助图示或列表的方法去表达问题的信息,寻求其中的等量关系。
〖学校及学生状况分析〗在前面的学习中,学生经历了“建立方程模型〞这一数学化的过程,理解了学习方程的意义,初步掌握了运用方程解决实际问题的一般过程。
但学生在列方程解应用题时常常会遇到以下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到一些等量关系但不能列出方程。
因此,教学中要指导学生借助图表整体把握和分析问题,引导学生多角度思考问题,寻找等量关系。
〖教学设计〗(一)创设情境多媒体显示场景“希望工程〞义演现场,两人对话如下:A:观众真多呀!B:是呀,这次演出共售出了1000张票。
A:筹了多少钱?B:共筹得票款6950元,全部捐给了“希望工程〞。
问:你知道成人票与学生票各售出多少张吗?【教学说明:以动画的形式再现生活场景,让学生感受到数学就在我们身边,有利于调动学生的积极性和参与意识。
】(二)探索研讨1.议一议(1)从动画中,你可以得到哪些信息?(2)在这个问题中包含了哪些等量关系?学生汇报:量:成人票价8元/张、学生票价5元/张、成人和学生总票数1000张、成人和学生总票款6950元。
北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)
一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。
青岛版数学七上74《一元一次方程的应用》ppt课件
例1 某房间里有四条腿的椅子和三条腿的凳子共16个, 如果椅子腿数与凳子腿数的和为60条,有几张椅子 和几条凳子?
分析 本问题中涉及的等量关系有: 椅子数+凳子数=16, 椅子腿数+凳子腿数=60.
解 设有x 张椅子,则有(16-x)条凳子.
3. 足球比赛的记分规则是:胜一场得3分,平一场 得0分,负一场得 -1分. 某队在某次比赛中共踢了 14场球,其中负5场,共得19分. 问这个队共胜了多少场?
答:这个队共胜了8场.
解:设这个队共胜了x场, 则平了(9-x)场,根据题意 得 3x+0× (9-x)+(-1) ×5=19 解 得 x=8
解:设长方形长xcm,则宽为(x-5)cm,根据题意 得 2x+2(x-5)=60 解得 答:长方形的长为17.5 cm.
(2)一个长方形的周长是60cm,且长与宽的比是 3∶2,求长方形的宽.
解:设长方形长3xcm为则宽为2xcm,根据题意 得 2(3x+2x)=60 解得 x=6 因此 宽2x=2×6=12 答:长方形的宽为12 cm.
一元一次方程的应用
某湿地公园举行观鸟节活动,其门票价格如下:
全价票
20元/人
半价票
10元/人
该公园共售出1200张门票,得总票款20000元问全价票和半价票各售出多少张?
本问题中涉及的等量关系有: 全价票款+半价票款=总票款.
解:设售出全价票x张,则售出半价票(1200-x)张,
根据题意,得4x+ 3(16-x)=60 .
去括号,得 4x+48-3x=60 .
移项,合并同类项,得 x = 12 .
凳子数为16-12=4(条).
人教版数学七年级上册3.2《一元一次方程的应用》教学设计
人教版数学七年级上册3.2《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是人教版数学七年级上册3.2的内容。
本节内容是在学生学习了方程的解法的基础上,引导学生将实际问题转化为方程,培养学生的数学建模能力。
教材通过丰富的例题和习题,使学生掌握一元一次方程的应用,进一步体会数学与生活的紧密联系。
二. 学情分析七年级的学生已经具备了一定的数学基础,对方程的概念和解法有一定的了解。
但学生在解决实际问题时,往往不知道如何将问题转化为方程,对于如何选择合适的未知数也有所困惑。
因此,在教学本节内容时,教师需要引导学生将实际问题与方程联系起来,培养学生解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握一元一次方程的应用,能够将实际问题转化为方程,求解未知数。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生体会数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 教学重难点1.教学重点:使学生掌握一元一次方程的应用,能够将实际问题转化为方程。
2.教学难点:如何引导学生选择合适的未知数,以及如何将实际问题转化为方程。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考,从而激发学生的学习兴趣;通过分析典型案例,使学生掌握一元一次方程的应用;通过小组合作学习,培养学生解决实际问题的能力。
六. 教学准备1.准备相关的例题和习题,以便进行课堂练习。
2.准备多媒体教学设备,以便进行案例展示。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生思考:“在日常生活中,我们经常会遇到一些需要求解未知数的问题,如何用数学方法来解决这些问题呢?”从而引出一元一次方程的应用。
2.呈现(10分钟)教师通过多媒体展示典型案例,使学生了解一元一次方程的应用。
例如,展示一个有关购物的问题:“小王购买了一本书,价格为x元,他还购买了一个笔记本,价格为y元。
新人教版七年级数学上册3.4 《一元一次方程的应用》教学设计2
新人教版七年级数学上册3.4 《一元一次方程的应用》教学设计2一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和性质的基础上,进一步学习方程在实际问题中的应用。
本节内容通过解决实际问题,让学生理解一元一次方程在生活中的意义,培养学生运用数学知识解决实际问题的能力。
教材通过丰富的案例,引导学生发现方程、列出方程、求解方程,从而达到解决实际问题的目的。
二. 学情分析七年级的学生已经掌握了方程的基本解法和性质,对一元一次方程有一定的理解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为方程,缺乏将数学知识应用到实际问题中的意识。
因此,在教学本节内容时,需要引导学生发现方程、列出方程,并培养学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解一元一次方程在实际问题中的应用,培养学生运用数学知识解决实际问题的能力。
2.学会将实际问题转化为方程,掌握一元一次方程的求解方法。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.教学重点:引导学生发现方程、列出方程,并求解方程。
2.教学难点:如何将实际问题转化为方程,理解方程在实际问题中的意义。
五. 教学方法1.情境教学法:通过丰富的案例,引导学生发现方程、列出方程,求解方程。
2.小组讨论法:学生分组讨论,培养团队协作能力和逻辑思维能力。
3.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教学PPT:制作包含丰富案例的教学PPT。
2.练习题:准备适量的一元一次方程应用题。
3.教学道具:准备一些实物道具,以便于学生更好地理解实际问题。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学知识解决这些问题。
例如,某商场举行促销活动,购买一件商品需要支付x元,现在有100元,问最多能购买几件商品?2.呈现(10分钟)展示教材中的案例,讲解如何将实际问题转化为方程。
以教材中的案例为例,假设一个人每小时走5千米,问这个人走x千米需要多少时间?引导学生列出方程,并求解方程。
七年级数学上册一元一次方程的应用经典题型整理
七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案
北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案一. 教材分析《应用一元一次方程——希望工程义演》这一节内容,主要让学生学会运用一元一次方程解决实际问题。
通过希望工程义演的问题情境,引导学生理解并掌握一元一次方程的解法及其应用。
教材通过具体的问题,让学生体会数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析学生在学习了《方程》这一章的内容后,对一元一次方程的概念、解法已经有了初步的了解。
但部分学生可能对实际问题转化为数学方程还有一定的困难,因此在教学过程中,需要关注学生的这一情况,引导学生正确地将实际问题转化为数学方程。
三. 教学目标1.知识与技能:让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。
2.过程与方法:通过解决希望工程义演的问题,培养学生将实际问题转化为数学方程的能力,提高学生的数学应用能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的社会责任感。
四. 教学重难点1.重点:一元一次方程的解法及其应用。
2.难点:将实际问题转化为数学方程。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置具体的问题情境,引导学生独立思考、合作交流,培养学生的解决问题的能力。
六. 教学准备1.准备希望工程义演的相关背景材料和问题情境。
2.准备一元一次方程的解法教学课件。
七. 教学过程1.导入(5分钟)–向学生介绍希望工程义演的相关背景,激发学生的学习兴趣。
–提出问题:如何合理安排演出现金收入与支出,使希望工程受益最大?引出本节课的主题。
2.呈现(10分钟)–呈现希望工程义演的具体问题情境,引导学生观察、分析问题。
–提出问题:如何用数学方程来表示这个问题?让学生独立思考,尝试列出方程。
3.操练(10分钟)–引导学生讨论如何将实际问题转化为数学方程,展示不同的解题思路。
–分组进行练习,让学生动手解一元一次方程,体会解题过程。
4.巩固(5分钟)–对学生进行解答情况进行总结,指出解题的关键步骤。
最新北师大版七上数学应用一元一次方程“希望工程”义演习题课件 (2)
类型之二 总量调配问题
某车间有 62 名工人,生产甲、乙两种零件,每人每天平均能生产甲 种零件 12 个或乙种零件 23 个,应分配多少人生产甲种零件,多少人生产乙 种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每 3 个甲种零件 和 2 个乙种零件配成一套) 解:设应分配 x 人生产甲种零件,则(62-x)人生产乙种零件. 根据题意,得132x=23(622-x), 解得 x=46,所以 62-x=16. 则应分配 46 人生产甲种零件,16 人生产乙种零件.
x
x
解:设小明有外国邮票 x 枚,故可列方程 2x-5+x=145,解得 x=50.
则他有中国邮票 95 枚,外国邮票 50 枚.
【点悟】 通过列表的方式分析实际问题中的等量关系,使题中的已知条件与未知 条件的关系清晰明了.
1.学校机房今年和去年共购置了 100 台计算机,已知今年购置计算机数量
类型之三 利用表格解决其他问题
小明喜欢集邮,他共有中外邮票 145 枚,其中中国邮票的枚数比外
国邮票的枚数的 2 倍少 5 枚,请问:小明有中外邮票各多少枚? 【解析】 我们通过列表的方式分析实际问题中的等量关系.设小明有外国邮票 x
枚,列表如下:
中国邮票 的枚数 145-x 2x-5
外国邮票
的枚数
(2)记录了两次加油时的累积里程(注:“累积里程”指汽车从出厂开始累
积行驶的路程).以下是李老师连续两次加油时的记录:
加油时间
加油量 加油时的累计
(升)
里程(千米)
2017 年 3 月 18 日 15
1 200
七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)
七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。
七年级数学上册《一元一次方程模型的应用》教案、教学设计
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同分析问题、构建方程并求解。这样的题目有助于培养学生的团队合作意识和交流能力。
5.思考反思题:请学生回顾本节课的学习内容,写一篇学习心得,内容包括对一元一次方程的理解、解题过程中的困惑和收获,以及对接下来的学习的期望。
作业要求:
1.请学生按时完成作业,保持书写工整、清晰。
2.对于应用提高题和创新思维题,鼓励学生展示解题思路,提倡多种解法。
3.小组合作题需注明小组成员姓名,每个成员都要参与讨论和解答。
七年级数学上册《一元一次方程模型的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解一元一次方程的概念,掌握一元一次方程的解法,并能熟练运用到实际问题中。
2.培养学生运用方程模型解决实际问题的能力,使学生能够将现实生活中的问题转化为数学方程,进而求解。
3.通过一元一次方程的学习,让学生掌握基本的数学运算规律,提高学生的运算速度和准确性。
1.培养学生对数学学科的兴趣,激发学生的学习热情,使学生树立自信心,勇于面对数学难题。
2.通过解决实际问题,让学生认识到数学在现实生活中的重要性,增强学生的应用意识。
3.在教学过程中,注重培养学生的诚信品质和责任感,使学生养成严谨、踏实的学术态度。
教学设计:
1.导入:以生活中的实际问题为例,引导学生思考如何运用数学知识解决问题,从而引出一元一次方程的概念。
4.思考反思题要求真实反映学习情况,不少于200字。
应用一元一次方程——“希望工程”义演
0.5x-1分别有40人,121人,19人.
1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量;
3.学会用表格分析数量间的关系.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个
劳动力,由于各村人口数不等,只有按2:3:6的比
例摊派才较合理,则三个村庄各派多少个劳动力? 2:某校组织活动,共有100人参加,要把参加活动的人
分析:票数=总票款÷票价.
6400 2500 解: 8 5 800 500 1300 (元).
答:成人票和学生票共卖出1300元.
例1:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元. (3)如果本次义演共售出1000张票,筹得票 款6950元,成人票与学生票各售出多少张?
应用一元一次方程 —— “希望工程”义演
审——通过审题找出等量关系;
设——设出合理的未知数(直接或间接),注意单位名称; 列——依据找到的等量关系,列出方程; 解——求出方程的解(对间接设的未知数切记继续求解);
检——检验求出的值是否为方程的解,并检验是否符合实际问题; 答——注意单位名称.
“希望工程”义演
分成两组,已知第一组人数比第二组人数的2倍少8人,
问这两组人数各有多少人?
习题5.8 1、2、3题
分析:本题中存在2个等量关系: 总票数=成人总票数+学生总票数; 总票款=成人总票款+学生总票款. 方法1分析:列表 学生
票数(张) 票款(元) x 5x
成人 1000-x 8(1000-x)
(方法1)解:设学生票为x张,
据题意得 5x+8(1000-x) =6950. 解,得 x=350. 此时,1000-x = 1000-350 = 650(张). 答:售出成人票650张,学生票350张.
5.5应用一元一次方程-“希望工程”义演七年级数学上册课件(北师大版)
数学问题的解(一 元一次方程的解)
六、作业布置
习题
这道题还有没 有其他解法呢?
二、新知探究
解法二:设所得的学生票款为y元,填下表:
学生
成人
票数/张
票款/元
y
根据等量关系①,可列出方程
6 950-y
列表格能清晰明了 的表示出各个量之 间的关系.
二、新知探究
知识归纳
议一议:通过上面的探究,你们有什么发现? 1.当遇到的问题较复杂,含有两个未知量、两个等量关系时,可以把其 中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示 为含未知数的代数式,而另一个等量关系则用来列方程. 列表格的方法搞清较复杂问题中的各个量之间的关系. 3.设未知数的方法不同,方程的复杂程度一般也不同,因此在设未知 数时要灵活选择.
少95元,两次共捐款3 025元,则第一次捐款__7_8__0___元.
5.甲队有32人,乙队有28人,若要使甲队人数是乙队人数的2倍,则需要
从乙队抽调___8_____人到甲队.
四、当堂练习
6.某天,一蔬菜经营户用114元从蔬菜批发市场购进 黄瓜和土豆共40 kg到菜市场去卖,黄瓜和土豆这
品名
天的批发价和零售价(单位:元/kg)如右表所示. 黄瓜
(1)他当天购进黄瓜和土豆各多少千克?(2)如 土豆
果黄瓜和土豆全部卖完,他能赚多少钱?
解:(1)设黄瓜买了x kg,则土豆买了(40-x)kg,
根据题意得 x+3(40-x)=114,
解得 x=10,40-10=30(kg).
答:黄瓜购进10kg,土豆购进30kg;
(2)10×(4-2.4)+30×(5-3)=76(元).
5.4应用一元一次方程-“希望工程”义演(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
然而,我也观察到在小组讨论环节,有些学生较为内向,不太愿意表达自己的观点。我意识到需要进一步创造一个更加包容和鼓励的环境,让每个学生都有机会发表自己的看法。也许下次我可以尝试一些更互动的讨论形式,比如角色扮演或辩论,来激发这部分学生的积极性。
在解方程的步骤讲解中,我发现有些学生对于移项和合并同类项的运算规则掌握得不够牢固,这导致他们在解题时出现了一些错误。我打算在下一节课中,通过更多的例题和练习,来巩固这些基本技能。同时,我也计划设计一些更具挑战性的问题,以适应不同学生的学习需求,让他们在巩固基础的同时,也能得到适当的拓展。
-掌握一元一次方程在实际问题中的应用:本节课的核心是让学生学会将实际问题转化为数学问题,特别是运用一元一次方程来解决“希望工程”义演门票收入等类似问题。
-理解方程的建模过程:学生需要了解如何从现实情境中抽象出数学模型,包括如何设定未知数、如何根据问题情境建立方程。
-掌握一元一次方程的解法:学生需要熟练掌握一元一次方程的解法,包括移项、合并同类项、化简等基本技能。
3.培养学生的数据分析素养,使学生能够对实际问题进行数据整理和分析,提高数据处理能力;
4.培养学生的团队协作意识,通过小组讨论和合作,共同解决“希望工程”义演问题,提高沟通与协作能力。
本节课旨在让学生在学习一元一次方程应用的过程中,全面提升数学核心素养,为学生的终身发展奠定基础。
北师大版七年级上册数学5.5应用一元一次方程—希望工程义演课件
5(x-2)+3x=14
张数 一元+五元=12
“希望工程”义演问题的特点:
2、某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,则购买甲种票( )张,乙
种票( )张。
3、某篮球运动员 2、练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去了14元,如果设水性笔的单价为x元,则可列方程为
2、练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去了14元,如果设水性笔的单价为x元,则可列方程为
在一次比赛中22投14中 答:因为x=
不符合题意,所以如果票价不变,
问题1:若小彬买了3本甲种书,5本乙种书,共花了多少钱?
得28分,除了投中3个 张数 一元+五元=12
解一元一次方程的基本步骤:审、设、找、列、解、验、答。 1、小悦买书需用48元,付款时恰好用了一元和五元的纸币共12张,设所用的一元纸币为x张,则可列方程为
根据题意得 5x+8(1000-x) =6930.
解这个方程,得
x= 356 2 . 3
一定要检验解 的合理性哦!
答:因为x= 356 2 . 不符合题意,所以如果票价不变,
3
售出1000张票所得票款不可能是6930元.
2 自主学习 探究新知
活动一
设——(设出1)合理在的“未知希数望(直工接程或间”接义),演注问意单题位中名称,;转 D根据5题0化X意+得未30(知57x0+0量+8X(和1)=020列900-0方0x) =程69各30.需要一个等量关
种张票数(表一格)元张分+五。析元=,12在表格中表示每一个数量,
“希望工程”义演问题的特点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《应用一元一次方程——“希望工程”义演》
例1 有甲乙两种学生用本,甲种本的单价是0.25元,乙种本的单价是0.28元,两种本共卖了100本,卖了26.65元,问两种本各卖出多少?
例2 某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过12吨,按每吨1.8元收费;若超过12吨,则超过部分按每吨3.6元收费.如果某户居民某月交水费50.4元,问该户共用了多少吨水?
例3 (中考题)
张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入________元.
例4 某商店售货时,在进价的基础上加上一定利润,其数量与售价的关系如下表,如果数量是x ,请根据表中提供的信息,把售价用含有x 的代数式表示出来;如果售价是952.4元,请求出售出该货的数量.
例5 某人共收集邮票若干张,其中
41是2000年以前的国内外发行的邮票,81是2001年国内发行的,
19
1是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.
参考答案
例1 分析 由题意可知有如下相等关系:
(1)卖出甲种本的个数+卖出乙种本的个数=100;
(2)卖甲种本得的钱+卖乙种本得的钱=26.65.
若我们设甲种本卖了x 个,我们就必须用x 把乙种本卖出的个数表示出来,而卖甲种本的钱数是0.25x ,则卖乙种本获得的钱数就是26.65-0.25x ,所以卖乙种本的个数就是28
.025.065.26x -,这样就可以得出方程,我们也可以用第二个相等关系列出方程,请读者试一试.
解 设甲种本卖出x 个,依题意,得10028
.025.065.26=-+
x x 解这个方程,得 45=x
所以, 100-45=55
答:卖出甲种本45个,乙种本55个.
说明:如果利用第二个相等关系列方程,而求出的是甲或乙卖得的钱,还需求出甲、乙各类多少本.
例2 分析 由题意可知,用水总量超过12吨,所以总的水费有如下关系:l.8 ×12+
3.6×(超过12吨的吨数)=水费
若及该户用水x 吨,则可得方程4.50)12(6.3128.1=-+⨯x
解 设该户用水x 吨,依题意,得4.50)12(6.3128.1=-+⨯x
解方程,得20=x
答:该户共用了20吨水.
说明:在列方程之前我们应根据总的水费情况,估计该户用水量是否超过12吨.
例3 分析:张大伯售出1份报纸,可赚(0.5-0.4)元钱;剩下的报纸退回报社,每退1份报纸(0.4-0.2)元钱.
解:))(2.04.0()4.05.0(b a b ---- b a b 2.02.01.0+-=
a b 2.03.0-=(元)
答:张大伯卖报收入为)2.03.0(a b -元.
说明:“盈”与“亏”是一对具有相反意义的量,在数学中对应着“正数”与“负数的概念.中考命题不仅关注知识技能,更加关注过程与方程,尤其是知识的形成背景,数学源于生活,源于自然,我们要善于用数学的眼光看世界.
例4 分析 从表中很容易看出售价中前面的整数恰是数量中数的8倍,而小数不变,所以售价可表示为4.08+x ,而当售价是952.4元,就是4.9524.08=+x ,容易求出数量x .
解 由题意可知,售价可以表示为:4.08+x ,当4.9524.08=+x 时,238=x 即如果售价是952.4元时,售出该货的数量是119.
说明:这个题的关键是通过对表的观察,找出售价和数量之间的关系.
解 设该人共有国内外邮票m 张,其中国外邮票n 张(1000<<n ),依题意得 m n m =+⎪⎭
⎫ ⎝⎛++1918141, 化简得 .87
152n m = 因为152和87互质(最大公约数是1),而n m n 、,1000<<均为正整数,所以.152,87==m n
答:该人共有152张邮票.
说明: 这里是不定方程,m 、n 可取任意值(开放),探究符合要求的值.。