(全国2卷)吉林省2020年高考数学最新信息卷 理

合集下载

2020年高考全国2卷理科数学带答案解析

2020年高考全国2卷理科数学带答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A.43i 55-- B.43i 55-+ C.34i 55-- D.34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A.9 B.8 C.5 D.43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A.4B.3C.2D.05.双曲线22221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为A.2y x =±B.3y x =±C.22y x =± D.32y x =± 6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A.42 B.30 C.29 D.257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i =+B.2i i =+ C.3i i =+D.4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112 B.114 C.115 D.1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A.15B.56 C.55D.2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A.π4 B.π2 C.3π4D.π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A.50- B.0 C.2 D.5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A.23 B.12 C.13D.14二、填空题:本题共4小题,每小题5分,共20分。

2020年高考全国卷Ⅱ数学(理)试卷及答案详解,

2020年高考全国卷Ⅱ数学(理)试卷及答案详解,

2020年高考全国卷Ⅱ数学(理)试卷一、选择1. 已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)= ( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2. 若α为第四象限角,则( )A.cos2α>0B.cos2α<0C.sin2α>0D. sin2α<03. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为( )A.√55B. 2√55C.3√55D.4√556. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k= ()A.2B.3C.4D.57. 如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H8. 设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.329. 设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)( )A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递减C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递减10. 已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211. 若2x−2y<3−x−3−y,则( )A. ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012. 0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m∑a i m i=1a i+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( ) A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________.①p 1∧p 4 ;②p 1∧p 2 ;③¬p 2∨p 3 ; ④¬p 3∨¬p 4. 三、解答题△ABC 中, sin 2A −sin 2B −sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求△ABC 周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1√2≈1.414.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2x sin22x sin24x⋯sin22n x≤3n4n.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(θ为参数),C2:{x=t+1t,y=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.参考答案与试题解析2020年高考全国卷Ⅱ数学(理)试卷一、选择1.【答案】A【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由题意可知A∪B={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.【答案】D【考点】任意角的三角函数【解析】此题暂无解析【解答】解:∵α为第四象限角,∴−π+2kπ<α<2kπ,2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.【答案】B【考点】生活中概率应用【解析】此题暂无解析【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.【答案】C【考点】等差数列的前n项和等差数列的性质等差数列【解析】此题暂无解析【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块. 故选C.5.【答案】B【考点】点与圆的位置关系点到直线的距离公式【解析】此题暂无解析【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心(1,1)到直线的距离是d=5=2√55,圆心(5,5)到直线的距离是d=√5=2√55.故选B.6.【答案】C【考点】等比数列的前n项和等比关系的确定【解析】此题暂无解析【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n. 又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C.7.【答案】A【考点】由三视图还原实物图【解析】此题暂无解析【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.【答案】B【考点】直线与双曲线结合的最值问题双曲线的渐近线【解析】此题暂无解析【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8. 又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.【答案】D【考点】函数奇偶性的判断复合函数的单调性【解析】此题暂无解析【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,+∞)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.【答案】C【考点】三角形的面积公式三角形五心球的体积和表面积【解析】此题暂无解析【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1. 故选C.11.【答案】A【考点】利用导数研究函数的单调性函数单调性的性质【解析】此题暂无解析【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.【答案】C【考点】函数新定义问题数列的求和【解析】此题暂无解析【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C.二、填空题【答案】√22向量的数量积判断向量的共线与垂直 平面向量数量积 【解析】 此题暂无解析 【解答】解:∵ 单位向量a →,b →的夹角为45∘, ∴ a →⋅b →=|a →|⋅|b →|⋅cos 45∘=√22. ∵ ka →−b →与a →垂直, ∴ (ka →−b →)⋅a →=k −√22=0,∴ k =√22. 故答案为:√22.【答案】36【考点】排列、组合及简单计数问题 【解析】 此题暂无解析 【解答】解:由题意可得,不同的安排方法有C 42A 33=36种. 故答案为:36. 【答案】2√3【考点】 复数的模 【解析】 此题暂无解析 【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i , 故 |z 1|2=a 2+b 2=4, |z 2|2=(√3−a)2+(1−b )2 =a 2+b 2−2√3a −2b +4=4, 则|z 1−z 2|2=(2a −√3)2+(2b −1)2 =4a 2+4b 2−4√3a −4b +4=2(a 2+b 2)+2(a 2+b 2−2√3a −2b)+4 =2×4+4=12, 故|z 1−z 2|=2√3. 故答案为:2√3.①③④【考点】逻辑联结词“或”“且”“非”命题的真假判断与应用空间中直线与平面之间的位置关系空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,若不相交,可能平行,也可能异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,因为直线l⊂平面α,故m⊥l,故p4为真命题.综上可知:①p1∧p4为真命题;②p1∧p2为假命题,③¬p2∨p3为真命题;④¬p3∨¬p4为真命题.故答案为:①③④ .三、解答题【答案】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2, (b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【考点】基本不等式在最值问题中的应用正弦定理【解析】此题暂无解析【解答】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2,(b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【答案】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【考点】众数、中位数、平均数相关系数收集数据的方法此题暂无解析【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【答案】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【考点】圆锥曲线的综合问题椭圆的离心率抛物线的标准方程抛物线的定义椭圆的标准方程【解析】此题暂无解析【解答】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【答案】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【考点】直线与平面所成的角两条直线平行的判定平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【答案】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数.f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯ sin 22n−1x sin 2n x ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x ≤(34)3n2 , ∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x =sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2nx ≤(34)3n 2,∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【考点】 不等式的证明利用导数研究函数的单调性 【解析】 此题暂无解析 【解答】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增; 当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减;当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数. f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯,sin 22n−1x sin 2nx ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22nx ≤(34)3n 2,∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x=sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2n x ≤(34)3n2, ∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【答案】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710,则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2,即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【考点】圆的极坐标方程与直角坐标方程的互化 直线与双曲线结合的最值问题 参数方程与普通方程的互化 点到直线的距离公式 【解析】 此题暂无解析 【解答】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t 可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t 2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710, 则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2, 即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【答案】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.试卷第21页,总21页 因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).【考点】绝对值不等式的解法与证明绝对值三角不等式【解析】此题暂无解析【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。

2020年高考全国卷Ⅱ理数试题+答案

2020年高考全国卷Ⅱ理数试题+答案

绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3,2,1,0,1,2{--=U ,},1,0,1{-=A },2,1{=B 则=)(B A C U ( )A .}3,2{-B .}3,2,2{-C .}3,0,1,2{--D .}3,2,0,1,2{--2.若α为第四象限角,则A .02cos >αB .02cos <αC .02sin >αD .02sin <α3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天 积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块5.若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A .55B .552C .553D .554 6.数列}{n a 中,21=a ,n m n m a a a =+,若515102122-=++++++k k k a a a ,则=kA .2B .3C .4D .57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于E D 、两ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .329设函数12ln 12ln )(--+=x x x f ,则)(x fA .是偶函数,且在),21(+∞单调递增B .是奇函数,且在)21,21(-单调递减C .是偶函数,且在)21,(--∞单调递增D .是奇函数,且在)21,(--∞单调递减10. 已知ABC △是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为π16,则球O 到平面ABC 的距离为( ) A .3B .23 C .1 D .23 11. 若y x y x ---<-3322,则( ) A. 0)1ln(>+-x yB .0)1ln(<+-x yC .0ln >-y xD .0ln <-y x12.0-1周期序列在通信技术中有着重要应用,若序列⋯⋯n a a a 21满足),2,1)(1,0(⋯=∈i a i ,且存在正整数m ,使得),2,1(⋯==+i a a i m i 成立,则称其为0-1周期序列,并称满足),2,1(⋯==+i a a i m i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列⋯⋯n a a a 21,∑=+-⋯==mi k i i m kaa mk C 1)1,,2,1(1)(是描述其性质的重要指标.下列周期为5的0-1序列中,满足)4,3,2,1(51)(=≤k k C 的序列是A .11010…B .11011…C .10001…D .11001…二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知单位向量b a ,的夹角为45°,k b a -与a 垂直,则=k _______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数21,z z 满足i z z z z +=+==322121,,则=-21z z ______. 16.设有下列四个命题: 1P :两两相交且不过同一点的三条直线必在同一平面内. 2P :过空间中任意三点有且仅有一个平面. 3P :若空间两条直线不相交,则这两条直线平行. 4P :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是________. ①41p p ∧②21p p ∧③32p p ∨⌝④ 43p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △中,222sin sin sin sin sin A B C B C --=.(1)求A ;(2)若3BC =,求ABC △周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=i y x i i ,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160i i x ,∑==2011200i i y ,()∑==-201280i i x x ,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.19.(12分)已知椭圆1C :()012222>>=+b a by a x 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与的2C 的顶点重合. 过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且AB CD 34=.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M ,N 分别为BC ,11C B 的中点,P 为AM 上一点,过11C B 和P 的平面交AB 于E ,交AC 于F .(1)证明:MN AA ∥1,且平面F C EB AMN A 111平面⊥;(2)设O 为△111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.21.(12分)已知函数()2sin sin 2f x x x =.(1)讨论()f x 在区间()0,π的单调性; (2)证明:()33f x ≤; (3)设*n ∈N ,证明:22223sin sin 2sin 4sin 24nnn x x x x ≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知曲线1C ,2C 的参数方程分别为1C :224cos 4sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),2C :11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23.[选修4-5:不等式选讲](10分)已知函数()221f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集; (2)若()4f x ≥,求a 的取值范围.参考答案1.A 2.D3.B4.C5.B6.C7.A8.B9.D10.C11.A12.C13.214.3615. 16.①③④17.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =. (2)由正弦定理及(1)得sin sin sin AC AB BCB C A===,从而AC B =,π)3cos AB A B B B =--=.故π33cos 3)3BC AC AB B B B ++=+=++. 又π03B <<,所以当π6B =时,ABC △周长取得最大值3+18.解:(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20)()0.943(iix y y x r --===≈∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样. 理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19.解:(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E .由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则1(NQ B a =,故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 所成角的正弦值为10.21.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为33()3f π=,最小值为33()3f 2π=.而()f x 是周期为π的周期函数,故33|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.22.解:(1)1C 的普通方程为4(04)x y x +=≤≤.由2C 的参数方程得22212x t t =++,22212y t t=+-,所以224x y -=. 故2C 的普通方程为224x y -=.(2)由224,4x y x y +=⎧⎨-=⎩得5,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 的直角坐标为53(,)22. 设所求圆的圆心的直角坐标为0(,0)x ,由题意得220059()24x x =-+,解得01710x =. 因此,所求圆的极坐标方程为17cos 5ρθ=. 23.解:(1)当2a =时,72,3,()1,34,27,4,x x f x x x x -≤⎧⎪=<≤⎨⎪->⎩因此,不等式()4f x ≥的解集为311{|}22x x x ≤≥或.(2)因为222()|||21||21|(1)f x x a x a a a a =-+-+≥-+=-,故当2(1)4a -≥,即|1|2a -≥时,()4f x ≥.所以当a ≥3或a ≤-1时,()4f x ≥.当-1<a <3时,222()|21|(1)4f a a a a =-+=-<, 所以a 的取值范围是(,1][3,)-∞-+∞.。

2020年高考试题——数学(理)(全国卷II)

2020年高考试题——数学(理)(全国卷II)

2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(A∪B)=1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则UA.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-10,2,3}2.若α为第四象限角,则A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为52535456.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k=A.2B.3C.4D.57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:22221(0,0)x ya ba b-=>>的两条渐近线分别交于D,E两点。

2020年高考理科数学全国2卷真题及答案解析

2020年高考理科数学全国2卷真题及答案解析

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,有一项是符合题目要求的。

1. 已知集合{}2,1,0,1,2,3U=--,{}-1,0,1A=,{}1,2B=,则()UA B=A. {} 2,3 -B. {} 2,2,3 -C. {} 2,1,0,3 --D. {} 2,1,0,2,3 --2. 若α为第四象限角,则A. cos20α>B. cos20α<C. sin20α>D. sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块。

下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块。

已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 A.55 B.255 C.355 D. 4556.数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k = A. 2 B. 3 C. 4 D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点。

2020年高考全国2卷理科数学带答案解析

2020年高考全国2卷理科数学带答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x--=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角1011(50)f ++B .0 12222x y Ca b+:在的直线上, 13141516.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。

2020年高考理科数学全国2卷(附答案)

2020年高考理科数学全国2卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -2020年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏) 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

答题卡上,写在本试卷上无效。

3.考一、 选择题:本题共12小题,每小题项中, 1. 3+i 1+i= A .1+2i B .1–2i 2. 设集合A={1,2,4},B={x 2–4x +m=0}A .{1,–3} B .{1,0} 3. 倍加增,共灯三百八十一,A .1盏 B .3盏 C 4. 如图,网格纸上小正方形的边长为A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩, B .丁可以知道四人的成绩 D .乙、丁可以知道自己的成绩,则输出的S= (x–2)2+y2=4所截得的弦长为C . 2D .23310. 已知直三棱柱ABC–A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1, 则异面直线AB 1与BC 1所成角的余弦值为( )A .32B .155C .105D .3311. 若x=–2是函数f(x)=(x2+ax–1)e x –1的极值点,则f(x)的极小值为( )A .–1B .–2e –3C .5e –3D .1 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-二、填空题:本题共4小题,每小题513. 一批产品的二等品率为0.02100次,X 14. 函数()23sin 4f x x x =+-(15. 等差数列{}n a 的前n 项和为n S ,3a =16. 已知F 是抛物线C:28y x =的焦点,点N .若M 为F N 的中点,则F N 三、解答题:共70为必做题,每个试题考生都必须作答。

2020年高考全国卷Ⅱ数学(理)试卷【word版本;可编辑;含答案】

2020年高考全国卷Ⅱ数学(理)试卷【word版本;可编辑;含答案】

2020年高考全国卷Ⅱ数学(理)试卷一、选择1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√556.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k= ()A.2B.3C.4D.57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O 到平面ABC 的距离为() A.√3B.32C.1D.√3211.若2x −2y <3−x −3−y ,则() A.ln (y −x +1)>0 B.ln (y −x +1)<0 C.ln |x −y|>0D.ln |x −y|<012.0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m ∑aim i=1a 1+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是() A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题13.已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________. 16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③¬p 2∨p 3;④¬p 3∨¬p 4. 三、解答题17.△ABC 中,sin 2A −sin 2B −sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i20i=1=1200,∑(x i−x ¯)220i=1=80,∑(y i−y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1,√2≈1.414.19.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合.C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点.且|CD|=43|AB|. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.20.如图已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F . (1)证明:AA 1//MN ,且平面A 1AMN ⊥面EB 1C 1F .(2)设O 为△A 1B 1C 1的中心,若AO//面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.21.已知函数f (x )=sin 2x sin 2x . (1)讨论f(x)在(0,π)上的单调性; (2)证明:|f(x)|≤3√38; (3)证明:sin 2x sin 22x sin 24x ⋯sin 22nx ≤3n4n .22.已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t ,y =t −1t(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23.已知函数f (x )=|x −a 2|+|x −2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围.。

2020年高考理科数学全国卷2含答案(A4打印版)

2020年高考理科数学全国卷2含答案(A4打印版)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分. 2作答时,将答案写在答题卡上写在本试卷上无效 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的是符合题目要求的..1.已知集合{10{2101}1{1223U A B --==-}=},,,,,,,,,,,则)(UA B = ( ( )A .{23-},B .{223-},,C .{2103--},,,D .{21023--},,,, 2若α为第四象限角,则为第四象限角,则( ( )A .cos20α>B .cos20α<C .sin20α>D .sin20α<3.在新冠肺炎疫情防控期间,在新冠肺炎疫情防控期间,某超市开通网上销售业务,某超市开通网上销售业务,某超市开通网上销售业务,每天能完成每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者则至少需要志愿者( ( )A.3 699块B.3 474块C.3 402块D.3 339块 4.北京天坛的圜丘坛为古代祭天的场所,北京天坛的圜丘坛为古代祭天的场所,分上、中、分上、中、分上、中、下三层,上层中心有一块圆形石板下三层,上层中心有一块圆形石板下三层,上层中心有一块圆形石板((称为天心石心石)),环绕天心石砌9块扇面形石板构成第一环,块扇面形石板构成第一环,向外每环依次增加向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板块,则三层共有扇面形石板((不含天心石不含天心石) )( ( )A .3 699块B .3 474块C .3 402块D .3 339块5.若过点(2)1,圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( ( )A .55B .255C .355D .4556.数列{n a }中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( ( ) A .2B .3C .4D .57如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为,则该端点在侧视图中对应的点为( ( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D E ,两点,若ODE △的面积为8,则C 的焦距的最小值为( ( ) A .4B .8C .16D .32 9.设函数()ln 21ln 21f x x x =+--,则()f x( ( )A .是偶函数,且在1()2+∞,单调递增B .是奇函数,且在11()22-,单调递减 C .偶函数,且在1()2-∞-,单调递增 D .是奇函数,且在1()2-∞-,单调递减10.已知ABC △是面积为934的等边三角形,且其顶点都在球O 的球面上的球面上..若球O 的表面积为16π,则O 到平面ABC 的距离为( ( ) A .3 B .32C .1D .3211.若2233xyx y----<,则( ( )A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln 0x y ->D .ln 0x y -<12.01-周期序列在通信技术中有着重要应用周期序列在通信技术中有着重要应用..若序列12n a a a 满足,且存在正整数m ,使得(12)i m ia a i +==,,成立,则称其为0-1周期序列,并称满足(12)i m i a a i +==,,的最小正整数m 为这个序列的周期.对于周期为的01-序列12na a a ,11()(121)mi i ki C k a ak m m+===-∑,,,是描述其性质的重要指标,下列周期为5的0-1序列中,1C k kA .11010B .11011C .10001D .11001二、填空题:本题共4小题,每小题5分,共20分13.已知单位向量a b ,的夹角为45︒,ka b -与a 垂直,则=k ________.________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有名同学,则不同的安排方法共有________________________种种.15设复数1z ,1z 满足12|=||=2z z ,123i z z +=+,则12||=z z -________.________. 16.设有下列四个命题:设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内:两两相交且不过同一点的三条直线必在同一平面内.. 2p :过空间中任意三点有且仅有一个平面:过空间中任意三点有且仅有一个平面..3p :若空间两条直线不相交,则这两条直线平行:若空间两条直线不相交,则这两条直线平行..4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是则下述命题中所有真命题的序号是________.________.________. ①14p p ∧②12p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤..第17~21题为必考题,每个试题考生都必须作答个试题考生都必须作答..第22、23题为选考题,考生根据要求作答题为选考题,考生根据要求作答.. (一)必考题:共60分. 17.(12分)分)在ABC △中,222sin sin sin sin sin A B C B C =--. (1)求A ;(2)若3BC =,求ABC △周长的最大值周长的最大值. .18.(12分)分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1220iix y i =⋯,,,,,其中ix 和iy 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800ii i x y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()1220iix y i =⋯,,,,的相关系数(精确到0.01); (3)根据现有统计资料,各地块间植物覆盖面积差异很大各地块间植物覆盖面积差异很大..为提高样本的代表性以获得该地附:相关系数12211))=))ii i i ni nni i x y x y x y r x y ===----∑∑∑((((,2=1.41419(12分)分) 已知椭圆2221201()x y a b C a b +=>>:的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合点重合..过F 且与x 轴垂直的直线交1C 于A B ,两点,两点,交交2C 于C D ,两点,两点,且且43CD AB =. (1)求1C 的离心率;的离心率;(2)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程的标准方程..20.(12分)分)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA MN ∥,且平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值所成角的正弦值. .21.(12分)分)已知函数2sin n )si (2f x x x =(1)讨论()f x 在区间(0)π,的单调性; (2)证明:33()8f x ≤; (3)设*n N ∈,证明:22223sin sin 2sin 4sin 24n nnx x x x ⋯≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分多涂、错涂、漏涂均不给分..如果多做,则按所做的第一题计分如果多做,则按所做的第一题计分.. 22.[选修4—4:坐标系与参数方程](10分)分) 已知曲线12C C ,参数方程分别为参数方程分别为2124cos 4sin x C y θθ⎧=⎨=⎩,:(θ为参数),21π1x t t C y t t ⎧=+⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12C C ,的参数方程化为普通方程;的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系轴正半轴为极轴建立极坐标系..设12C C ,的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程的圆的极坐标方程. .23[选修4—5:不等式选讲](10分)分)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求()4f x 不等式的解集; (2)若()4f x ,求a 的取值范围的取值范围..2020年普通高等学校招生全国统一考试·全国Ⅱ卷年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学答案解析一、选择题1.【答案】A【解析】由题意可得:{}1012AB =-,,,,则{2()3UAB =-},.故选:A .【考点】并集、补集的定义与应用【考点】并集、补集的定义与应用 2.【答案】D【解析】当π6α=-时,πcos2cos 03α⎛⎫=- ⎪⎝⎭>,选项B 错误;当π3α=-时,2πcos 2cos 03α⎛⎫=- ⎪⎝⎭<,选项A 错误;由α在第四象限可得:sin 0cos 0αα,><,则sin22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【考点】三角函数的符号,二倍角公式,特殊角的三角函数值 3.【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B .【考点】函数模型的简单应用 4.【答案】C【解析】设第n 环天心石块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C .【考点】等差数列前n 项和有关的计算 5.【答案】B【解析】由于圆上的点()21,在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()11,或()55,,圆心到直线230x y --=距离均为22555d -==;所以,圆心到直线230x y --=的距离为255.故选:B .6.【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=.所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++--∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C . 【考点】利用等比数列求和求参数的值 7.【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A .【考点】根据三视图判断点的位置 8.【答案】B 【解析】22221(00)x y C a b a b-=:>,> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线22221(00)x y C a b ab-=:>,>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x ay b =⎧⎨=⎩ 故()D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x ay b =⎧⎨=-⎩ 故()E a b -,ED b∴ODE △面积为:1282ODESa b ab =⨯==△ 双曲线22221(00)x y C a b a b-=:>,>∴其焦距为2222222168c a b ab =+==当且仅当22a b ==取等号∴C 的焦距的最小值:8.故选:B .【考点】双曲线焦距的最值问题 9.【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1122x ⎛⎫∈-⎪⎝⎭,时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1122⎛⎫- ⎪⎝⎭,上单调递增,()ln 12y x =-在1122⎛⎫- ⎪⎝⎭,上单调递减,()f x ∴在1122⎛⎫- ⎪⎝⎭,上单调递增,排除B ;当12x ⎛⎫∈-∞- ⎪⎝⎭,时,()()()212ln 21ln 12lnln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在12⎛⎫-∞- ⎪⎝⎭,上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在12⎛⎫-∞- ⎪⎝⎭,上单调递减,D 正确.故选:D .【考点】函数奇偶性和单调性的判断10.【答案】C【解析】设球O 的半径为R ,则24π16πR =,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=⨯-=⨯-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【考点】球的相关问题的求解11.【答案】A【解析】由2233x y x y ----<得:2323x x y y ----<,令()23ttf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,y x y x x y无法确定.故选:A . 【考点】数式的大小的判断问题 12.【答案】C 【解析】由i mi aa +=知,序列i a 的周期为m ,由已知,5m =,511()12345i i ki C k a ak +===∑,,,, 对于选项A ,511223344556111111(1)()(10000)55555ii i C a aa a a a a a a a a a +===++++=++++=∑≤ 52132********1112(2)()(01010)5555i i i C a aa a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555ii i C a aa a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;,不满足;故选:C【考点】数列的新定义问题 二、填空题 13.【答案】22【解析】由题意可得:211cos452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-= ⎪⎝⎭, 即:2202k a a b k →→→⨯-=-=,解得:22k =.故答案为:22. 【考点】平面向量的数量积定义与运算法则【考点】平面向量的数量积定义与运算法则14.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,∴先取2名同学看作一组,选法有:246C =.现在可看成是3组同学分配到3个小区,分法有:336A =.根据分步乘法原理,可得不同的安排方法6636⨯=种.故答案为:36. 【考点】计数原理的实际应用 15.【答案】23z zz()()122cos cos 2sin sin i 3i z z θαθα∴+=+++=+,()()2cos cos 32sin sin 1θαθα⎧+=⎪∴⎨+=⎪⎩,两式平方作和得:()422cos cos 2sin sin 4θαθα++=, 化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin iz z θαθα∴-=-+-()()()224cos cos 4sin sin 88cos cos sin sin θαθαθαθα=-+-=-+8423=+=.故答案为:23. 【考点】复数模长的求解 16.【答案】①③④ 【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.为真命题.故答案为:①③④. 【考点】复合命题的真假,空间中线面关系有关命题真假的判断 三、解答题 17.【答案】(1)23π;(2)323+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-,()0πA ∈,,2π3A ∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-=++=,即()29AC AB AC AB +-=.22AC AB AC AB +⎛⎫ ⎪⎝⎭≤(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-+-=+ ⎪⎝⎭,解得:23AC AB +≤(当且仅当AC AB =时取等号),ABC ∴△周长323L AC AB BC =+++≤,ABC ∴△周长的最大值为323+.【考点】解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题最大值的求解问题 18.【答案】(1)12000; (2)0.94; (3)详见解析【解析】(1)样区野生动物平均数为201111200602020i i y==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(),i i x y 的相关系数为20120202211()()800220.943809000()()ii i iii i xx y y r xx yy ===--===≈⨯--∑∑∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样,先将应采用分层抽样,先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取 19.【答案】(1)12;(2)22113627x y C +=:,2212C y x =:. 【解析】(1)()0F c ,,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =, 联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843bc a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12; (2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y cc ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【考点】椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程 20.【答案】(1)证明见解析; (2)1010. 【解析】(1)M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴.在ABC△中,M 为BC 中点,则BC AM ⊥.又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M =,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN .又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC , 11//B C ∴平面ABC .又11B C ⊂平面11EB C F ,且平面11EB C F平面ABC EF =11//B C EF∴//EF BC ∴又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN .(2)连接NP//AO 平面11EB C F ,平面AONP 平面11EB C F NP =,∴//AO NP .根据三棱柱上下底面平行,其面1A NMA 平面ABC AM =,面1A NMA 平面1111A B C A N =,∴//ON AP .故:四边形ONPA 是平行四边形.设ABC △边长是6m (0m >),可得:ON AP =,6NP AO AB m ===.O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 6033ON m =⨯⨯︒=,故:3ON AP m ==.//EF BC ,∴APEPAM BM =,∴3333EP =.解得:EP m =.在11B C 截取1B Q EP m ==,故2QN m =,1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ .由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角.在Rt QPN △,根据勾股定理可得:()()222226210PQ QN PN mmm =+=+=,210sin 10210QN m QPN PQ m ∴∠===,∴直线1B E 与平面1A AMN 所成角的正弦值:1010. 【考点】证明线线平行和面面垂直,线面角21.【答案】(1)当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)证明见解析; (3)证明见解析.【解析】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()22423sin cos sin f x x x x'=-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()0f x '=在()0πx ∈,上的根为:12π2π33x x ==,,当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)注意到()()()()22πsin πsin 2πsin sin2f x x x x x f x+=+⎡+⎤==⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()0π0f f ==,2π33333228f ⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,2233333228f π⎛⎫⎛⎫⎛⎫=⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,据此可得:()max 338f x ⎡⎤=⎣⎦,()min 338f x ⎡⎤=-⎣⎦,即()338f x ≤.(3)结合(2)的结论有:2222222sin sin 2sin 4sin 2nx x xx233333sin sin 2sin 4sin 2nx x x x ⎡⎤=⎣⎦()()()22222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x xx x x -⎡⎤=⎣⎦232333333sinsin 2888n x x ⎡⎤⨯⨯⨯⨯⨯⎢⎥⎣⎦≤23338n⎡⎤⎛⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦≤34n⎛⎫= ⎪⎝⎭.【考点】导数的应用22.【答案】(1)14C x y +=:;2224C x y -=:; (2)17cos 5ρθ=. 【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.【考点】极坐标与参数方程的综合应用23.【答案】(1)32x x ⎧⎨⎩≤或112x ⎫⎬⎭; (2)(][)13-∞-+∞,,. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-,解得:32x ≤;当34x <<时,()4314f x x x =-+-=,无解;当4x 时,()43274f x x x x =-+-=-,解得:112x ;综上所述:()4f x 的解集为32x x ⎧⎨⎩≤或112x⎫⎬⎭. (2)()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-,解得:1a -≤或3a ,a ∴的取值范围为(][)13-∞-+∞,,. 【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值。

2020年普通高等学校招生全国统一考试数学试题 理(全国卷2,含解析)

2020年普通高等学校招生全国统一考试数学试题 理(全国卷2,含解析)

绝密★启用前2020年普通高等学校招生全国统一考试课标II理科数学【命题特点】2020年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第Ⅰ卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一。

试卷坚持对基础知识、基本方法与基本技能的考查, 注重数学在生活中的应用。

同时在保持稳定的基础上,进行适度的改革和创新,与2020年相比难度稳中有降略。

具体来说还有以下几个特点:1.知识点分布保持稳定小知识点集合,复数,程序框图,线性规划,向量问题,三视图保持一道小题的占比,大知识点三角数列三小一大,概率统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数导数三小一大(或两小一大)。

2.注重对数学文化与数学应用的考查教育部2020年新修订的《考试大纲(数学)》中增加了数学文化的考查要求。

2020高考数学全国卷II理科第3题以《算法统宗》中的数学问题为进行背景,理科19题、文科18题以以养殖水产为题材,贴近生活。

3.注重基础,体现核心素养2020年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及。

【命题趋势】1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用。

2. 立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何的面积与体积结合在一起考查,解答题一般分2进行考查。

3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(有详细解析)

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(有详细解析)

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则C U(A⋃B)=()A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则()A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√556.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+⋯+a k+10=215−25,则k=()A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H8.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A. 是偶函数,且在(12,+∞)单调递增B. 是奇函数,且在(−12,12)单调递减C. 是偶函数,且在(−∞,−12)单调递增D. 是奇函数,且在(−∞,−12)单调递减10.已知▵ABC是面积为9√34的等边三角形,且其顶点都在球O的表面上,若球O的表面积为16π,则球O到平面ABC的距离为()A. √3B. 32C. 1 D. √3211.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<012.0−1周期序列在通信技术中有着重要应用,若序列a1a2…a n…满足a i∈(0,1)(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2…a n…,C(k)=1m ∑a i a i+k(k=1,2,…,m−1)mi=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A. 11010…B. 11011…C. 10001…D. 11001…二、填空题(本大题共4小题,共20.0分)13.已知单位向量a,b的夹角为45°,ka−b与a垂直,则k=_______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15. 设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=______. 16. 设有下列四个命题:P 1:两两相交且不过同一点的三条直线必在同一平面内. P 2:过空间中任意三点有且仅有一个平面. P 3:若空间两条直线不相交,则这两条直线平行. P 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________.①p 1∧p 4 ②p 1∧p 2 ③¬p 2∨p 3 ④¬p 3∨¬p 4 三、解答题(本大题共7小题,共80.0分)17. ▵ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求▵ABC 周长的最大值.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.19.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与的C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.20.如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC 于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO//平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤3√38;(3)设n∈N∗,证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.22.已知曲线C1,C2的参数方程分别为C1:{x=4cos 2θy=4sin2θ(θ为参数),C2:{x=t+1ty=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.答案和解析1.A解:∵A∪B={−1,0,1,2},∴∁U(A∪B)={−2,3}.2.D+2kπ<α<2kπ,∴−π+4kπ<2α<4kπ,解:∵−π2∴2α是第三象限或第四象限角或终边在y轴的非正半轴上,∴sin2α<0.3.B解:因为公司可以完成配货1200份订单,=18名.则至少需要志愿者为1600+500−1200504.C解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9,由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,得n=9,×9=3402块.则三层共有扇形面石板为S3n=S27=27a1+27×2625.B解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,.所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√556.C解:取m=1,则a n+1=a1a n,=2,又a1=2,所以a n+1a n所以{a n}是等比数列,则a n=2n,所以,得k=4.7.A解:该几何体是两个长方体拼接而成,如图所示,显然选A.8.B解:双曲线C 的两条渐近线分别为y =±ba x ,由于直线x =a 与双曲线的两条渐近线分别交于D 、E 两点, 则易得到|DE|=2b ,则S △ODE =ab =8,c 2=a 2+b 2⩾2ab =16 ,即c ⩾4, 所以焦距2c ⩾8.9. D解:由已知,函数定义域为(−∞,−12)∪(−12,12)∪(12,+∞),关于原点对称, 函数f(−x)=ln |−2x +1|−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f(x), 则f(x)为奇函数,当x ∈(−12,12)时,f(x)=ln (2x +1)−ln (1−2x)=ln 2x+11−2x=ln (1+41x−2),单调递增; 当x ∈(−∞,−12)时,f(x)=ln(−2x −1)−ln(1−2x)=ln 2x+12x−1=ln(1+22x−1),单调递减.10. C解:设△ABC 的外接圆圆心为O 1,设OO 1=d ,圆O 1的半径为r ,球O 的半径为R , △ABC 的边长为a ,则S △ABC =√34a 2=9√34,可得a =3,于是r =√3=√3, 由题意知,球O 的表面积为16π, 则R =2,由R 2=r 2+d 2,求得d =1, 即O 到平面ABC 的距离为1.11.A解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,所以函数f(x)在R上单调递增,因为f(x)<f(y),所以x<y,则y−x+1>1,ln(y−x+1)>0.12.C解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;13.√22解:由单位向量a⃗,b⃗ 的夹角为45∘,k a⃗−b⃗ 与a⃗垂直,所以(k a⃗−b⃗ )⋅a⃗=k−√22=0,则k=√22.14.36解:由题意,先将4名同学分成三组,一组两人,其余两组各一人,再将3组分到3个小区,可得不同的安排方法有:C42A33=36.15.2√3解:在复平面内,用向量方法求解,原问题即等价于平面向量a⃗,b⃗ 满足|a⃗|=|b⃗ |=2,a⃗+b⃗ =(√3,1),求|a⃗−b⃗ |,由(a⃗+b⃗ )2+(a⃗−b⃗ )2=2|a⃗|2+2|b⃗ |2,可得4+(a⃗−b⃗ )2=16,故|a⃗−b⃗ |=2√3.16.①③④解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.17.解:(1)在▵ABC中,设内角A,B,C的对边分别为a,b,c,因为sin2A−sin2B−sin2C=sinBsinC,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cosA=b2+c2−a22bc =−12,因为0<A<π,所以A=2π3.(2)由(1)知,A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bccosA,所以9=b2+c2+bc=(b+c)2−bc,由基本不等式可得bc≤(b+c)24,所以9=(b+c)2−bc≥34(b+c)2,所以b+c≤2√3(当且仅当b=c=√3时取得等号),所以▵ABC周长的最大值为3+2√3.18.解:(1)由题可知,每个样区这种野生动物数量的平均数为120020=60,所以该地区这种野生动物数量的估计值为60×200=12000(2)根据公式得r=i −x)(y i−y)ni=1√∑(x i−x)∑(y i−y)i=1i=1=80×9000=32≈0.94(3)为了提高样本的代表性,选用分层抽样法更加合理,因为分层抽样可以按照规定的比例从不同的地块间随机抽样,其代表性较好,抽样误差更小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(全国2卷)吉林省2020年高考理数最新信息卷注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2020·吉林实验中学]在复平面内与复数2i1iz =+所对应的点关于实轴对称的点为A ,则A 对应的复数为( ) A .1i +B .1i -C .1i --D .1i -+2.[2020·哈六中]03x <<是12x -<成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.[2020·衡阳联考]比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图1所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是( )A .乙的逻辑推理能力优于甲的逻辑推理能力B .甲的数学建模能力指标值优于乙的直观想象能力指标值C .乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D .甲的数学运算能力指标值优于甲的直观想象能力指标值4.[2020·西安中学]若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A .12B .3 C .3 D .65.[2020·郑州一中]已知函数()2log ,11,11x x f x x x≥⎧⎪=⎨<⎪-⎩,则不等式()1f x ≤的解集为( ) A .(],2-∞ B .(](],01,2-∞U C .[]0,2 D .(][],01,2-∞U6.[2020·烟台一模]将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 2π6f x x ⎛⎫=+ ⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭7.[2020·聊城一模]数学名著《九章算术》中有如下问题:“今有刍甍(méng),下广三丈,袤(mào)四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”.现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为(单位:立方丈)( )A .5.5B .5C .6D .6.58.[2020·哈六中]实数x ,y 满足不等式组()20200x y x y y y m -⎧≤+≥-≤⎪⎨⎪⎩,若3z x y =+的最大值为5,则正数m 的值为( )A .2B .12C .10D .1109.[2020·镇海中学]已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a ,使得2116m n a a a ⋅=,则19m n+的最小值为( ) A .32B .114 C .83D .10310.[2020·聊城一模]如图,圆柱的轴截面为正方形ABCD ,E 为弧»BC的中点,则异面直线AE 与BC 所成角的余弦值为( )A 3B 5C 30D 611.[2020·天津毕业]已知双曲线()222210,0x y a b a b-=>>,过原点的直线与双曲线交于A ,B 两点,以AB 为直径的圆恰好过双曲线的右焦点C ,若ABC △的面积为22a ,则双曲线的渐近线方程为( ) A .2y = B .2y x = C .3y = D .3y x =12.[2020·上高二中]定义:若数列{}n a 对任意的正整数n ,都有()1n n a a d d ++=为常数,则称{}n a 为“绝对和数列”,d 叫做“绝对公和” .已知“绝对和数列”{}n a 中,12a =,绝对公和为3, 则其前2020项的和2019S 的最小值为( ) A .2019- B .3010-C .3025-D .3027-第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2020·呼和浩特质检]在52x x ⎛- ⎝的展开式中,2x 的系数为______.14.[2020·衡水二中]已知函数()22sin tan ,,0e xx x x f x x -⎧-<⎪=⎨≥⎪⎩,则25π4f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭_____.15.[2020·福建联考]在边长为2的等边三角形ABC 中,2BC BD =u u u r u u u r ,则向量BA u u u r 在AD u u u r上的投影为______.16.[2020·德州一模]已知函数()22f x x ax =+,()24ln g x a x b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()0,a ∈+∞时,实数b 的最大值是______.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2020·甘肃联考]在ABC △中,3sin 2sin A B =,tan 35C (1)求cos2C ;(2)若1AC BC -=,求ABC △的周长.18.(12分)[2020·保山统测]某市移动公司为了提高服务质量,决定对使用A ,B 两种套餐的集团用户进行调查,准备从本市()n n ∈*N 个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是小集团的概率为415. (1)求n 的值;(2)若取出的2个集团是同一类集团,求全为大集团的概率;(3)若一次抽取4个集团,假设取出小集团的个数为X ,求X 的分布列和期望.19.(12分)[2020·河南名校]如图所示的三棱柱111ABC A B C-中,1AA⊥平面ABC,AB BC⊥,133BC BB==,1B C的中点为O,若线段11A C上存在点P使得PO⊥平面1AB C.(1)求AB;(2)求二面角11A B C A--的余弦值.20.(12分)[2020·烟台一模]已知F为抛物线()2:20C y px p=>的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,4AB=.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.21.(12分)[2020·济南模拟]已知函数()()2ln12af x x x x a x=-+-,其导函数()f x'的最大值为0.(1)求实数a的值;(2)若()()()12121f x f x x x +=-≠,证明:122x x +>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2020·宝鸡模拟]点P 是曲线()22124C x y -+=:上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹为曲线2C . (1)求曲线1C ,2C 的极坐标方程; (2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,设定点()2,0M ,求M AB △的面积.23.(10分)【选修4-5:不等式选讲】[2020·上饶二模]已知函数()()10f x ax a =->.(1)若不等式()2f x ≤的解集为A ,且()2,2A ⊆-,求实数a 的取值范围;(2)若不等式()1232f x f x aa ⎛⎫++> ⎪⎝⎭对一切实数x 恒成立,求实数a 的取值范围.绝密 ★ 启用前理科数学答案一、选择题. 1.【答案】B 【解析】Q 复数()()()2i 1i 2i1i 1i 1i 1i z -===+++-,∴复数的共轭复数是1i -, 就是复数2i1iz =+所对应的点关于实轴对称的点为A 对应的复数,故选B . 2.【答案】A【解析】解12x -<得到13x -<<,假设03x <<,一定有13x -<<,反之不一定, 故03x <<是12x -<成立的充分不必要条件.故答案为A . 3.【答案】C【解析】对于选项A ,甲的逻辑推理能力指标值为4,优于乙的逻辑推理能力指标值为3, 所以该命题是假命题;对于选项B ,甲的数学建模能力指标值为3,乙的直观想象能力指标值为5, 所以乙的直观想象能力指标值优于甲的数学建模能力指标值,所以该命题是假命题; 对于选项C ,甲的六维能力指标值的平均值为()12343453466+++++=,乙的六维能力指标值的平均值为()154354346+++++=,因为2346<,所以选项C 正确; 对于选项D ,甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故该命题是假命题.故选C . 4.【答案】A【解析】由题意,椭圆的两个焦点与短轴的一个端点构成一个正三角形,即2c a =, 所以离心率12c e a ==,故选A . 5.【答案】D【解析】当1x ≥时,()1f x ≤,即为2log 1x ≤,解得12x ≤≤; 当1x <时,()1f x ≤,即为111x≤-,解得0x ≤, 综上可得,原不等式的解集为][(,01,2⎤-∞⎦U ,故选D . 6.【答案】C【解析】将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移π6个单位长度后,可得πsin 6y x ωωϕ⎛⎫=-+ ⎪⎝⎭的图象, ∵所得图象关于y 轴对称,∴πππ62k ωϕ-+=+,k ∈Z . ∵()1sin πsin 2πf ϕϕω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2ϕ=,则当ω取最小值时,π6ϕ=,∴ππ63πk ω-=+,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭,故选C .7.【答案】B【解析】根据三视图知,该几何体是三棱柱,截去两个三棱锥,如图所示:结合图中数据,计算该几何体的体积为111231423115232V V V =⨯⨯⨯-⨯⨯⨯⨯⨯==-三棱柱三棱锥(立方丈). 8.【答案】A【解析】先由2020x y x y -≤+≥⎧⎨⎩画可行域,发现0y ≥,所以()0y y m -≤可得到y m ≤,且m 为正数. 画出可行域为AOB △(含边界)区域.3z x y =+,转化为3y x z =-+,是斜率为3-的一簇平行线,z 表示在y 轴的截距,由图可知在A 点时截距最大,解2y x y m ==⎧⎨⎩,得2m x y m ==⎧⎪⎨⎪⎩,即,2m A m ⎛⎫ ⎪⎝⎭,此时max 352mz m =+=,解得2m =,故选A 项. 9.【答案】B【解析】设正项等比数列{}n a 的公比为q ,且0q >, 由7652a a a =+,得6662q a a a q=+, 化简得220q q --=,解得2q =或1q =-(舍去), 因为2116m n a a a =,所以()()11211116m n a qa qa --=,则216m n q+-=,解得6m n +=,所以()1911919198101026663n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当9n m m n =时取等号,此时96n m m n m n =+=⎧⎪⎨⎪⎩,解得3292m n ⎧⎪⎪⎨==⎪⎪⎩, 因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>,验证可得,当2m =,4n =时,19m n +取最小值为114,故选B .10.【答案】D【解析】取BC 的中点H ,连接EH ,AH ,90EHA ∠=︒,设2AB =,则1BH HE ==,5AH 6AE =, 连接ED ,6ED =因为BC AD ∥,所以异面直线AE 与BC 所成角即为EAD ∠, 在EAD △中,6cos 226EAD ∠==⨯⨯,故选D . 11.【答案】B【解析】Q 以AB 为直径的圆恰好经过双曲线的右焦点C ,∴以AB 为直径的圆的方程为222x y c +=,由对称性知ABC △的面积212222OBC S S ch ch a ==⨯==△,即22a h c =,即B 点的纵坐标为22a y c=,则由22222a x c c ⎛⎫+= ⎪⎝⎭,得224222224a a x c c c c ⎛⎫=-=- ⎪⎝⎭,因为点B 在双曲线上,则4422222441a a c c c a b--=, 即()22422222441c a a a c c c a --=-,即2222222411c a a a c c a ⎛⎫-+= ⎪-⎝⎭, 即222222241c a c a c c a -⋅=-,即2222241c a a c a -=-, 即2222222241c a c a a c a a --==-,得()24224a c a =-, 即2222a c a =-,得223a c =,得3c a =,2b a =. 则双曲线的渐近线方程为2by x x a=±=,故选B .12.【答案】C【解析】依题意,要使其前2020项的和2019S 的最小值只需每一项的值都取最小值即可, ∵12a =,绝对公和3d =,∴21a =-或21a =(舍), ∴32a =-或32a =(舍),∴41a =-或41a =(舍),L ,∴满足条件的数列{}n a 的通项公式2,12,11,n n a n n =⎧⎪=-⎨⎪-⎩为大于的奇数为偶数, ∴所求值为()()()2345201801912a a a a a a a +++++++L ()2019121230252-=+--⨯=-,故选C .二、填空题. 13.【答案】80【解析】52x x ⎛- ⎝的展开式中,通项公式()()35552155C 22C 1rr r r r r r r T x x x ---+⎛ ⎝==-,令3522r -=,解得2r =.2x ∴的系数325C 280==,故答案为80. 14.【答案】31e 【解析】因为225π25π25π13sin tan 144422f ⎛⎫⎛⎫⎛⎫-=---=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以3232331ee 2ef -⨯-⎛⎫===⎪⎝⎭.故答案为31e. 15.【答案】3-【解析】2BC BD =u Q u u r u u u r ,D ∴为BC 的中点,()12AD AB AC ∴=+u u u r u u u r u u u r,111222cos1203222BA AD AB BA AC BA ∴⋅=⋅+⋅=-+⨯⨯⨯︒=-u u u r u u u r u u u r u u u r u u u r u u u r ,221112442223222AD AB AC AB AC =++⋅=++⨯⨯⨯=u u u r u u u r u u u r u u u r u u u r ,则向量BA u u u r 在AD u u u r 上的投影为33BA AD AD⋅==-u u u r u u u r u u u r ,故答案为3-. 16.【答案】2e【解析】设()00,P x y ,()22f x x a '=+,()24a g x x'=.由题意知,()()00f x g x =,()()00f x g x ''=,即2200024ln x ax a x b +=+,① 200422a x a x +=,②解②得:0x a =或02x a =-(舍), 代入①得:2234ln b a a a =-,()0,a ∈+∞,()68ln 4214ln b a a a a a a '=--=-,当140,e a ⎛⎫∈ ⎪⎝⎭时,0b '>;当14e ,a ⎛⎫∈+∞ ⎪⎝⎭时,0b '<.∴实数b 的最大值是1144e e e 4e 3ln e 2b ⎛⎫=-= ⎪⎝⎭.故答案为2e .三、解答题.17.【答案】(1)1718-;(2)511+. 【解析】(1)∵tan 35C =,∴1cos 6C =,∴2117cos 221618C ⎛⎫=⨯-=- ⎪⎝⎭.(2)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c . ∵3sin 2sin A B =,∴32a b =,∵1AC BC b a -=-=,∴2a =,3b =.由余弦定理可得2222cos 13211c a b ab C =+-=-=,则11c =,ABC △的周长为511+.18.【答案】(1)7n =;(2)37;(3)详见解析.【解析】(1)由题意知共有8n +个集团,取出2个集团的方法总数是28C n +,其中全是小集团的情况有28C ,故全是小集团的概率是()()282856487C C 15n n n +==++, 整理得到()()78210n n ++=,即2151540n n +-=,解得7n =.(2)若2个全是大集团,共有27C 21=种情况; 若2个全是小集团,共有28C 28=种情况, 故全为大集团的概率为21321287=+.(3)由题意知,随机变量的可能取值为0,1,2,3,4,计算()0487415C C 10C 39P X ===;()1387415C C 81C 39P X ===;()2287415C C 282C 65P X ===;()3187415C C 563C 195P X ===;()4087415C C 24C 39P X ===,故X 的分布列为:X 0 1 2 3 4 P139839286556195239数学期望为()182856232012343939651953915E X =⨯+⨯+⨯+⨯+⨯=. 19.【答案】(16(26 【解析】(1)方法一:设AB 的长为t ,依题意可知BA ,BC ,1BB 两两垂直,分别以BC u u u r ,1BB uuu r ,BAu u u r的方向为x ,y ,z 轴正方向建立空间直角坐标系,如图所示.则()0,0,A t ,()3,0,0C ,()10,1,0B ,()13,1,0C ,31,,02O ⎛⎫⎪ ⎪⎝⎭,()10,1,A t ,因此()13,1,0B C =-u u u u r,()3,0,AC t =-u u u r,()113,0,AC t =-u u u u r.设()1113,0,A P AC t λλλ==-u u u r u u u u r,易求得点P 的坐标为()3,1,t t λλ-,所以313,,2OP t t λλ⎛⎫=-- ⎪ ⎪⎭u u u r . 因为OP ⊥平面1AB C ,所以()11133022133102OP B C OP AC t t λλλ⎧⎪⎛⎫⋅=⨯--= ⎪⎝⎭⎛⎫⋅=⨯--⋅-= ⎪⎪⎨⎪⎝⎪⎩⎭u u u r u u u u r u u u r u u u r .解之得623t λ⎧⎪⎪⎨==⎪⎪⎩,所以AB 的长为6.方法二:如图,在平面11BCC B 内过点O 作1B C 的垂线分别交BC 和11B C 于M ,N ,连接PN , 在平面ABC 内过点M 作BC 的垂线交AC 于R ,连接OR .依题意易得,11RM A B PN R ⇒∥∥,M ,N ,P ,O 五点共面.因为PO ⊥平面1AB C ,所以RM ONPO RO RMO ONP MO PN⊥⇒~⇒=△△.① 在1B ON △中,13tan30ON B O =⋅︒=1123cos30OB B N ==︒N 为线段11B C 靠近1C 的三等分点.由对称性知,M 为线段BC 靠近B 的三等分点,因此23RM AB =,13PN AB =. 代入①,得33622AB OM ON ⋅==. (2)由(1)方法一可知,3162OP =⎝⎭u u u r 是平面1AB C 的一个法向量且)13,1,0B C =-u u u u r ,116B A ⎛= ⎝⎭u u u u r . 设平面11A B C 的法向量为n ,则11100B C B A ⋅=⇒⋅=⎧⎪⎨⎪⎩u u u u ru u u u rn n n 可以为()3,0. 2363cos 22,OP OP OP ⋅〈〉===⨯u u u ru u u r u u u rn n n. 因为二面角11A B C A --为锐角,故所求二面角11A B C A --620.【答案】(1)24y x =;(2)()1,2P ±.【解析】(1)因为,02p F ⎛⎫⎪⎝⎭,在抛物线方程22y px =中,令2p x =,可得y p =±.于是当直线与x 轴垂直时,24AB p ==,解得2p =. 所以抛物线的方程为24y x =.(2)因为抛物线24y x =的准线方程为1x =-,所以()1,2M --. 设直线AB 的方程为1y x =-,联立241y xy x ==-⎧⎨⎩消去x ,得2440y y --=.设()11,A x y ,()22,B x y ,则124y y +=,124y y =-. 若点()00,P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--, 因为点P ,A ,B 均在抛物线上,所以2004y x =,2114y x =,2224y x =.代入化简可得()()00122200120122224y y y y y y y y y y y +++=++++,将124y y +=,124y y =-代入,解得02y =±. 将02y =±代入抛物线方程,可得01x =. 于是点()1,2P ±为满足题意的点.21.【答案】(1)1a =;(2)见解析.【解析】(1)由题意,函数()f x 的定义域为()0,+∞,其导函数()()ln 1f x x a x '=--, 记()()h x f x =',则()1axh x x='-.当0a ≤时,()10axh x x-'=≥恒成立,所以()h x 在()0,+∞上单调递增,且()10h =. 所以()1,x ∀∈+∞,有()()0h x f x ='>,故0a ≤时不成立;当0a >时,若10,x a ⎛⎫∈ ⎪⎝⎭,则()10ax h x x -'=>;若1,x a ⎛⎫∈+∞ ⎪⎝⎭,则()10ax h x x -'=<.所以()h x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.所以()max 1ln 10h x h a a a ⎛⎫==-+-= ⎪⎝⎭.令()ln 1g a a a =-+-,则()111a g a a a'-=-=. 当01a <<时,()0g a '<;当1a >时,()0g a '>. 所以()g a 在()0,1的单减,在()1,+∞单增. 所以()()10g a g ≥=,故1a =.(2)当1a =时,()21ln 2f x x x x =-,则()1ln f x x x =+-'.由(1)知()1ln 0f x x x '=+-≤恒成立, 所以()21ln 2f x x x x =-在()0,+∞上单调递减,且()112f =-,()()()12121f x f x f +=-=,不妨设120x x <<,则1201x x <<<, 欲证122x x +>,只需证212x x >-,因为()f x 在()0,+∞上单调递减,则只需证()()212f x f x <-,又因为()()121f x f x +=-,则只需证()()1112f x f x --<-,即()()1121f x f x -+>-.令()()()2F x f x f x =+-(其中()0,1x ∈),且()11F =-. 所以欲证()()1121f x f x -+>-,只需证()()1F x F >,()0,1x ∈, 由()()()()()21ln 1ln 22F x f x f x x x x x =--=+--+-'-'+',整理得()()()()ln ln 2210,1F x x x x x -'=--+∈,, ()()()22102x F x x x -=-'>',()0,1x ∈,所以()()()ln ln 221F x x x x =--+-'在区间()0,1上单调递增, 所以()0,1x ∀∈,()()()()ln ln 22110F x x x x F =--+-<'=', 所以函数()()()2F x f x f x =+-在区间()0,1上单调递减, 所以有()()1F x F >,()0,1x ∈, 故122x x +>.22.【答案】(1)1:4cos C ρθ=,2:4sin C ρθ=;(2)3.【解析】(1)曲线1C 的圆心为()2,0,半径为2,把互化公式代入可得:曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2πP ρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin π2ρθθ⎛⎫=-= ⎪⎝⎭.所以曲线2C 的极坐标方程为4sin ρθ=. (2)M 到射线π3θ=的距离为2sin 3πd =)4sin cos ππ2133B A AB ρρ⎛⎫=-=-= ⎪⎝⎭,则132S AB d =⨯= 23.【答案】(1)3,2⎛⎫+∞ ⎪⎝⎭;(2)1,22⎛⎫⎪⎝⎭.【解析】(1)12ax -≤,212ax -≤-≤,13x a a -≤≤,13,A a a ⎡⎤=-⎢⎥⎣⎦.()2,2A ⊆-Q ,1232aa⎧->-⎪⎪∴⎨⎪<⎪⎩,32a >,a ∴的取值范围3,2⎛⎫+∞ ⎪⎝⎭.(2)由题意3112ax x -++>恒成立,设()11h x ax x =-++, ()()()()()1,1112,111,a x x h x a x x a a x x a ⎧⎪-+<-⎪⎪⎛⎫=-+-≤<⎨ ⎪⎝⎭⎪⎪⎛⎫+≥⎪ ⎪⎝⎭⎩,①01a <≤时,由函数单调性()()min 11h x h a =-=+,312a +>,112a ∴<≤, ②1a >时,()min 11a h x h a a +⎛⎫== ⎪⎝⎭,132a a +>,12a ∴<<,综上所述,a 的取值范围1,22⎛⎫⎪⎝⎭.。

相关文档
最新文档