Remote sensing of water optical property for China's inland Lake Taihu
基于Sentinel-1B SAR数据的2018年寿光洪水遥感监测及灾害分析
Vol. 30 No. 2Apr. 2021第30卷第2期2021年4月自然灾害学报JOURNAL OF NATURAL DISASTERS文章编号:1004 -4574(2021)02 -0168 -08 DOI: 10.135力/j. jnd. 2021.0217基于Sentinel - IB SAR 数据的2018年寿光洪水遥感监测及灾害分析栾玉洁郭金运打高永刚S 刘新I(1.山东科技大学测绘与空间信息学院,山东青岛266590 ; 2.福州大学环境与资源学院,福建福州350116)摘 要:基于Sentinel-IB SAR 数据采用面向对象阈值分割法提取2018年寿光洪灾前、中、后3个时期的水体信息,同时基于Sentinel-2A 光学数据利用面向对象CART 决策树分类法实现研究区土地利 用类型分类,分析了研究区的受灾情况。
由Sentinel-IB 弘R 数据得到的水体提取结果总体精度均在95%以上,表明SAR 数据适用于水体信息的提取。
据监测结果,研究区内洪水淹没总面积为198.59km 2,其中寿光市受淹面积最大,在各类地物中工矿仓储用地受灾情况最为严重。
关键词:Sentinel-1B ;面向对象;水体提取;寿光;洪水中图分类号:TP79; X43 文献标识码:ARemote sensing monitoring of flood and disaster analysis in Shouguangin 2018 from Sentinel - IB SAR dataLUAN Yujie 1, GUO Jinyun 1, GAO Yonggang 2, LIU Xin 1(1. College of Geomatics , Shandong University of Science and Technology , Qingdao 266590, China ;2. College of Environment and Resources , Fuzhou University , Fuzhou 350116,China)Abstract : Sentinel - IB SAR data is used to monitor the water information in the pre-flood , flooding and after-flood periods of the 2018 flood in Shouguang , based on the object-oriented threshold segmentation method. Using Senti- nel-2A optical images , we classify the land use types of the study area with the object-oriented CART decision treeclassification method , and analyze the disaster situation of the study area. Based on the Sentinel-1 B SAR data , the overall accuracy of the water extraction results is above 95% , indicating that the SAR data is suitable for the extrac tion of water information. The total flooded area in the study area was 198. 59 km 2, of which Shouguang City had the largest flooded area and the industrial and mining warehousing land was most severely affected in various typesof land.Key words : Sentinel-IB ; object-oriented ; water extraction ; Shouguang ; flood星载合成孔径雷达(SAR)工作于微波波段,具有一定的地表穿透能力,不受云雾限制,在洪水监测方面 具有独特的优势,受到了许多学者的重视。
物理学有哪些专业[2018托福物理学专业词汇:原理Principle]
物理学有哪些专业[2018托福物理学专业词汇:原理Principle]<i></i>托福网权威发布2016托福物理学专业词汇:原理Principle,更多2016托福物理学专业词汇相关信息请访问托福考试(TOEFL)网。
托福物理学学科分类词汇:原理Principle原理,Principle英语短句,例句大全原理,Principle1)Principle[英][“Pr?Ns?Pl][美][“Pr?Ns?Pl?]原理1.The Design Of Speed Chain And Principle In Paper Machine;造纸机速度链的设计与工作原理2.The Preliminary Analysis Of Technology Principle Of Laundry Soap Made By Non-Salting Out Mathod;无盐析法制洗衣皂的技术原理初步解析3.The Principle And Realization Of Micro EDM Deposition Technology;微细电火花沉积加工技术原理及实现分析英文短句/例句1.A Principle, Especially A Basic One.原理,尤指基本原理2.Edman ChemistryEdman化学(原理)3.Establish A Principle确定原则,形成原理4.Principle Of Accounting会计原理,会计原则5.Ultimate Principles, Questions, Causes基本原理、问题、原因6.An Established Rule, Principle, Or Law.公理,原理,原则建立起来的规则、原理、或法律7.Fundamentals Of Microcomputer IBM-PCibm-Pc微机原理8.The Theory And Application Of IEEE 802.1x;*****.1x原理及其应用9.An Analysis On Model Principle Of BitTorrentBitTorrent模型原理分析10.Principles Of Physical Geography(Ⅲ)自然地理学原理11.Principles And Applications Of Microprocessor微处理器原理及其应用12.The Principle Of Virtual Velocity And The Principle Of Virtual Acceleration And Its Application虚速度原理和虚加速度原理及其应用13.Fiber-Optic Bragg Grating Principle And Its Applications(Ⅰ)──Fiber-Optic Bragg Grating Principle光纤光栅原理与应用(一)──光纤光栅原理14.Unique Operation Modes, Fundamentals And Principles Of Management In Details;细节管理独特的运行方式、原理和原则15.Management: Principles Of Management, Organization Theory, Behavioral Science.管理学:管理学原理、组织理论、行为学。
地理专业词汇英语翻译Q-R.
地理专业词汇英语翻译Q-RQuackgrassmeadow 冰草草甸quadtree 象限四分树quadranglenet 四边形网quadran t象限quagmire 沼泽地qualitativeanalysisofelement 元素定性分析qualitativeanalysisoforganicfunctionalgroup 有机功能基定性分析qualitativeinterpretation 定性判读qualitativerepresentation 质量表示法quality 品质qualityclass 地位级qualitycontrol 品质管理qualitycontroloperation 品质管理操作qualitycontrolsystem 品质管理系统qualityengineering 品质工程qualityofgroundwater 地下水水质qualityofsoil 土壤地位级quantification 量化quantifiedsystemanalysis 定量系统分析quantitativeanalysis 定量分析quantitativeinterpretation 定量判读quantitativerepresentation 数量表示法quantitativespectralanalysis 定量光谱分析quantity 量quantityfactor 定量参数quantometer 光量计quarry 采石场quarrying 露天开采quartel 林班quarternary 第4纪quarternaryeustaticmovement 第四纪海面升降运动quarternaryexogeneticoredeposits 第四纪外生矿床quarternaryplacerdeposit 第四纪砂矿床quarternaryvolcanicoredeposit 第四纪火山矿床quarternaryweatheringoredeposit 第四纪风化矿床quartz 石英quartzandesite 英安岩quartzbasalt 石英玄武岩quartzdiorite 石英闪长岩quartzdolerite 石英粗玄岩quartzporphyry 石英斑岩quartzschist 石英片岩quartzspectrograph 石英摄谱仪quartztrachyte 疗岩quartzipsamment 石英砂新成土quartzite石英岩quartzysandstone 石英砂岩quasigeoid 似大地水准面quaternarygeochronology 第四纪地质年代学quaternarygeologicalmap第四纪地质图quaternarygeology 第四纪地质学quaternaryglacialperiod 第四纪冰期quaternaryilluviatedoredeposi 第四纪淋积矿床quaternarypaleogeography 第四纪古地理quaternaryperiod 第四纪quaternaryresearch 第四纪研究quaternarysedimentaryoredeposit 第四纪沉积矿床quicklime 生石灰quicksand 脸quiescence 休眠quisqueite 硫沥青quota 定额radar 雷达radaraltimeter 雷达测高计radarecho 雷达回波radarimage 雷达图像radarimagescale 雷达图像比例尺radarimagetexture 雷达图像纹理radarindicator 雷达显示器radarlevelling 雷达高程测量radarmap 雷达图radarmeteorology 雷达气象学radarnavigation 雷达导航radarphotogrammetry 雷达摄影测量radarreflectedimages 雷达反射图象radarreflectivity 雷达反射率radarreflectivityfactor 雷达反射率因子radarremotesensing 雷达遥感radarshadow 雷达阴影radarsignature 雷达标记radarsonde 雷达测风仪radarstereoviewing 雷达立体观测radarwavelength雷达波长radarweatherequation雷达气象方程radargrammetry雷达摄影测量radialdrainagepattern 放射状水系radialfracture 射状断裂radialrift放射断裂radialsymmetry 辐射对称radian 弧度radiantenergy 辐射能radiantexitance 辐射出射度radiantflux 辐射流radiantintensity 辐射强度radiation 辐射radiationbalance 辐射平衡radiationbalancemeter 辐射平衡表radiationbalanceofatmosphere 大气辐射平衡radiationbelts 辐射带radiationbiology 放射生物学radiationchemicalprocess 放射化学过程radiationchemicalreaction 放射化学反应radiationchemistry 放射化学radiationcoefficient 辐射系数radiationcounter 辐射计数管radiationdamage 放射线损伤radiationdetector 辐射探测器radiationdose 放射剂量radiationfog 辐射雾radiationfromseasurface 海面辐射radiationinjury 放辐射性伤害radiationinversion 辐射逆温radiationradiosonde 辐射探空仪radiationresolution 辐射分辨率radiationshielding 辐射防护radiativetransferequatio n辐射传递方程radical l基radicelle 小根radioaltimeter 无线电测高仪radioatmometer 辐射蒸发计radiobeacon 无线电信标radioobservation 无线电观测radioactivationanalysis 放射化分析radioactiveanomaly 放射性异常radioactivecontaminant 放射性污染物radioactivecontamination 放射性污染radioactivedecay 放射性衰变radioactivedecontamination 放射性去污radioactivedeposit 放射性沉淀物radioactivedisplacementlaw 放射性位移定律radioactiveelement 放射性元素radioactiveequilibrium 放射平衡radioactiveiron 放射性铁radioactiveisotope 放射性同位素radioactivelogging 放射性测井radioactivematerial 放射性物质radioactivemineral 放射矿物radioactivemineralspring 放射能矿泉radioactivepollution 放射性污染radioactiveprospecting 放射性勘探radioactiveradiation 放射性辐射radioactiveseries 放射系radioactivewastes 放射性废弃物radioactivewater 放射性水radioactivity 放射能radioactivitylog 放射性测井记录radiobiology 放射生物学radiocarbon 放射性碳radiocarbonage 放射性碳年龄radiocarbondating 放射性碳年代测定法radiochemicalanalysis 放射化学分析radiochemicalpurity 放射化学纯度radiochemistry 放射化学radiogenicheat 放射性热radiogeochemistry 放射地球化学radiogeodesy 无线电测地学radiographiccontrast 射线照像对照radiography 射线照相术radiohydrology 放射水文学radioisotope 放射性同位素radiolarian 放射虫radiolarianooze 放射虫软泥radiology 放射学radiometeorograph 无线电气象记录仪radiometeorography 无线电气象测量学radiometeorology 无线电气象学radiometer 辐射计radiometricage 绝对年龄radiometricanalysis 放射分析radiometricdating 放射性测定年代radionuclide 放射性核素radiosonde 无线电探空仪radiosondeobservation 无线电探空仪观测radiosoundingsystem 无线电高空测候技术radium 镭radiumage 镭龄radiumseries 镭系radiumspring 镭泉radius 半径radiusofaction 酌半径radiusofcurvature 曲率半径radiusofcurvatureoftheearth 地球曲率半径radiusofgyration 旋转半径radiusofinfluence影响半径radiusratio 半径比radon 氡radonsurvey 射气测量rafaelite 钒地沥青railway 铁道railwayaerosurveying 铁道航空勘测railwayjunction 铁路交叉点railwaymap 铁路路线图railwaytransport 铁路运输rainrainattenuatio n雨滴衰减raincapacity 降雨量rainchannel 水蚀沟raincloud 雨云rainday 雨日raindropimpression 雨痕rainfactor 降水因素rainfrequency 降水频率raingage 雨量器raingush 暴雨rainintensity 降雨强度rainrill 雨沟rainseason 雨季rainshadow 雨影rainwash 雨水冲刷rainbow 虹rainfallarea 降雨区rainfalldepth 雨量rainfalldistribution 雨量分布rainfallduration 降雨持续时间rainfallflood 降雨洪水rainfallintensity 降雨强度rainstorm 阵雨rainwater 雨水rainydays 降水日数rainygreenforest 雨绿林raisedbeach 滨岸淤积阶地raisedbog 高地沼泽ramification 分枝randomdistortion 随机畸变randomdistribution 随机分布randomerror 随机误差randomerrorofmeasurement 测量偶然误差randomevent 随机事件randommixedlayermineral 不规则混层矿物randomnoise 无秩序杂音randomnumber 随机数randomprocess 随机过程randomsampling 随机抽样randomvariable 随机变量randomvector 随机向量randomization 随机化range 区域rangeelevationindicator 距离仰角显示器rangefinder 测距仪rangeheightindicator 距离高度显示器rangenormalization 距离标准化rangeofvisibility 能见距离rangepole 视距尺rangeresolution 距离分辨率ranging 测距rangingpole 测杆rankers 薄层土rapakivi 奥环斑花岗岩rapid 急流急滩rapidflow 急流rareearthelements 稀土元素raregas 稀有气体raregaselements 惰性气体元素rarespecies 稀有种rarefaction 稀疏酌raspberrybrake 十丛林rateofstocking 载畜量ratingcurve 率定曲线ratiomethod 比值法ratioofionicradii 离子半径比ratiovegetationindex 比值植被指数rationalanalysis 示构分析ravine 沟壑rawhumus 粗腐殖质rawmaterial 原料rawore 未选的矿石raworganicsoil 粗有机质土壤rawsoil 生土rawwater 原水reach 河区reactioncurrent 逆流reactionforce 反酌力reactionisotherm 反应等温式reactionmechanism 反应机制reactionprinciple 反应原理reactionproduct 反应产物reactionrate 反应速度reactionrim 反应边缘reactionseries 反应系列reactionzone 反应区reactionalrim 反应边reactivity 反应性readilyavaiablefertilizer 速效肥料readingerror 读数误差readingonrod 标尺读数reafforestation 再造林realimage 实像realscale真比例尺realtimereconnaissance 实时侦察realgar 鸡冠石reallocationofland 土地规划receiver 接收机recentcrustalmevements 现代地壳运动recentsediments 新沉积物recentvegetation 现代植被reception 感受receptionbasin 集水盆recessioncurve 退水曲线recessionofglaciers 冰川减退酌recessionalmoraine 退缩碛rechargearea 补给区rechargewell 补水井reciprocallattice 倒易晶格reciprocalsightline 对向照准线reclaimedfensoi l耕种低位沼泽土壤reclamationofmarshland 沼泽开垦recognitionfeature 识别特征recombination 再化合recomputation 重新计算reconnaissance 踏勘reconnaissanceoffishshoal 鱼群侦察reconnaissancesoilmap 土壤概图reconnaissancesurvey 普查reconstruction 复原recorder 记录器recording 记录recordingdevice 记录装置recordinggauge 自记计recordingpen 记录笔recordingraingage 自记雨量计recovery再生recreation 休养recreationindustry 旅游产业recreationalgeography 旅游地理学recrystallization 重结晶酌rectangularcoordinate 直角坐标rectangularcoordinatesystem 直角坐标系rectangulardrainagepattern 矩状水系rectangularplanecoordinate 平面直角坐标rectangularweir 矩形堰rectifier 纠正仪rectilinearcoordinate 直角坐标recumbentanticcline 伏卧背斜recurrencehorizon 再现土层recurrentdeposition 叠次沉积redalgae 红藻redbrownmediterraneansoil 地中海赤褐色土redclay 红色粘土redfescuemeadow 羊茅甸地redhematite 红赤铁矿redmud 红泥redpodzolicsoil 灰化红壤redsnow 红雪redsoil 红壤redyellowpodzolicsoil 灰化红黄壤reddishbrownforestsoil 红棕色森林土reddishbrownlateritesoil 红棕色砖红壤性土reddishchestnutsoil 红栗钙土redeposition 再沉积redge 暗礁redoxequilibrium 氧化还原平衡redoxindicator 氧化还原指示剂redoxpotential 氧化还原电位redoxprocess 氧化还原过程redoxreaction 氧化还原反应redoxsystem 氧化还原系redoxtitration 氧化还原滴定reducedparameter 换算变量reducedzone 还原带reducers 还原剂reducibleness 可还原性reducingaction 还原酌reducingagent 还原剂reducingcalculus 归算reducingcapacity 还原能力reducingglass 缩小透镜reduction 还原reductioncoefficient 缩减系数reductionfactor 放大率reductiongeochemicalbarrier 还原地球化学障reductionofgravity 重力校正reductionpotential 还原电势reductionzone 还原区redactor 缩小仪redundancyofinformation 信息剩余度reduzate 还原产物reed 芦苇reedpeat 芦苇泥炭reedswamp 芦苇沼泽reedgrassmeadow 酚茅甸地reef 礁reefbuildingcorals 造礁珊瑚reefcap 礁帽reeflimestone 礁灰岩referencedata 参考数据referenceellipsoid 参考椭圆体referencelevel 高程基淮referencepoint 参考点referencesurface 参考面referencesystem 参考系refining 精制reflectancecoefficient 反射系数reflectancefactor 反射因子reflectancespectraofvegetation 植被反射波谱reflectedflux 反射流reflectedimage 反射影像reflectedlight 反射光reflectedray 反射线reflectedwave 反射波reflectingmicroscope 反射显微镜reflectingmirro r反光镜reflectingsurface 反射面reflectingtelescope 反射望远镜reflection 反射reflectioncoefficient 反射系数reflectionelectronmicroscope 反射电子显微镜reflectionmethod 反射法reflectionoflight 光反射reflectionpleochroism 反射多色性reflectiveopticalsystem 反射式光学系统reflectivepowe r反射功率reflectivity 反射能力reflectivityofseawater 海水反射率reflector 反射器reflex 反射reflexcenter 反射中枢reflexpaper 反光印象像纸reflexprinting 反光晒图reflux 逆流回流refoldedfold 复合褶皱reforestation 森林更新refraction 折射refractioncoefficient 折射系数refractionmethod 折射法refractionoflight 光折射refractiveandreflectiveopticalsystem折反射式光学系统refractiveindex折射率refractiveopticalsystem折射式光学系统refractoryclay耐火粘土refractorymaterial耐火材料refractorysand耐火砂refugium残遗种保护区refuse废石regelation复冰regeneratedflow回流回归水流regeneratedglacier再生冰川regeneration再生regenerationcutting更新伐regenerationofcyclon气旋再生regenerationofnaturalresources自然资源更新regime状况regimeofriver河灵况region地方regionofalimentation营养面积regionofescape逃逸区regionoflittlerelief小地形区域regionofrunoff径柳regionalgeochemicalanomaly区域地球化学异常regionalgeochemicalbackground区域地球化学背景regionalgeochemicaldifferentiation 区域地球化学分异regionalgeochemicalprospecting区域地球化学勘探regionalgeochemistry区域地球化学regionalgeologicalmap区域地质图regionalgeology区域地质学regionalgeomorphology区域地貌学regionalinformationsystem区域信息系统regionalmetamorphism区域变质regionalplanning区域规划regionalpollution地区性污染regionalremotesensing区域遥感regionalstructure区域构造regionaltrafficsurveys区域运输量甸regionaluplift区域抬升regionalization区划register套合registerdifferences套合差registerholes套印孔registering记录registration对准registrationpaper记录纸regolith表土regosols粗骨土regression海退regressionanalysis回归分析regressioncoefficient回归系数regressionequation回归方程regressivebedding海退层理regressiveerosion向源冲刷regressiveevolution后退演化regrowth再生植被regularbandmodel规则带模式regularsystem等轴晶系regulatedflow第径流regulation蝶regulationofmountainsteams山洪节制regulator第器rejuvenatedriver回春河rejuvenation回春酌rejuvenationofrelief地形复活relationship亲缘关系relativeabsorptioncoefficient相对吸收系数relativeabundance元素丰度relativeairhumidity相对空气湿度relativealtitude相对高度relativeaperture相对孔径relativeatomicweight相对原子量relativecontent百分数含量relativedensity相对密度relativeerror相对误差relativeevaporation蒸发率relativefrequency相对频数relativegeochronology相对地质年代学relativegravity相对重力relativegrowth相对生长relativeheight相对高度relativehue相对色调对比色调relativehumidity相对湿度relativeisotopicabundance同位素相对分布量relativemeasurement比较测量relativemoisture相对湿度relativeorientation相对定向relativereliefmap地貌量测图relativerepresentation相对值表示法releaseofpollutants污染物释放reliability可靠性reliabilitydiagram编图资料示意图relic遗物relicarea残遗分布区relicsoil残余土relicsinpeatbed泥炭层遗迹relict遗物relictelementsoflandscape景观残留成分relictlake残湖relictlandforms残余地形relictspecies残遗种relief地形reliefglobe立体地球仪reliefimage浮雕图像reliefinversion地形倒置reliefmap地势图reliefmodel地形模型reliefofendmoraine终碛地形reliefplate地貌版reliefprinting凸版印刷remotecontrol遥控remoteguidance遥控制导remotehybrid远缘杂种remoteobservation遥感remotesensing遥感remotesensingapplication遥感应用remotesensingapplicationinagriculture农业遥感remotesensingcamera遥感相机remotesensingcartography遥感制图学remotesensingforatmosphericpollution大气污染遥感remotesensingforplantprotection 植保遥感remotesensingimage遥感影像remotesensinginformation遥感信息remotesensingobservations遥感观测remotesensingofatmosphere大气遥感remotesensingofoilpollution油污染遥感remotesensingofsightseeingresource风景资源遥感remotesensingofsoil土壤遥感remotesensingofvegetation植被遥感remotesensingsurvey遥感测量remotesensingsystem遥感系统remotesensingtechnology遥感技术remotesensingusedinforestry林业遥感remotesensor 遥感器removechromewithbacteria用细菌除铬rendoll黑色石灰土rendzina腐殖质碳酸盐土rendzinalikebrownsoil黑色石灰土状棕色土rendzinification黑色石灰土形成renewableresources可更新资源renewedfault复活断层repetitionmeasurement复测repetitionofbeds地层重复replaceability置换能力replacement交代酌replacingpower置换力replicamethod复制法replicatechnique复制法replication复制reprecipitation再沉淀representation表现representationofdispersedphenomena离散表示法representationofdynamicphenomena动态表示法representationoffeaturesinplane平面图表示法representationofground地形表示法representationsymbol象形符号representativefraction数字比例尺representativesample代表样本representativespecies 代表种reprint再版reproducibility再生性reproduction复制reproductioncamera复照仪reproductionphotography照相制版reproductiveshoot 生殖苗reptiles爬虫类resection后方交会resectioninspace空间后方交会resequentriver复向河reservationpark自然保护区reserve保留地reservoir水库reservoircapacity水库容量reservoirrock贮油岩reservoirstructure 蓄水构造residencetime停留时间residentbirds留鸟residentialquarter居住区residualaffinity残留亲和力residualclay残积粘土residualdeformation剩余变形residualdeposit残留矿床residualelectriccharge剩余电荷residualhalos残积晕residualhill残丘residualmagma残余岩浆residualmagnetism剩磁residualmountain残余山residualplain残余平原residualsediment残积矿床residualshrinkage剩余收缩residualsoil原积土壤residualvalence剩余价residuarywater废水residue余渣resilification复硅resinousluster尸光泽resistance抵抗resistancethermometer电阻温度计resistancetoweathering抗风化性resistate残留产物resistivity电阻率resolutionoflens镜头分辨率resolutionofrealaperture直实孔径分辨率resolvingtime分辨时间resonance共振resonator共振器resorption再吸收resource资源resourcesinformationsystem资源信息系统resourcesremotesensing 资源遥感respiration呼吸respiratoryenzymesystem呼吸酶系统respiratorymetabolism呼吸代谢respirometer呼吸测定计rest休眠restarea休息场所restenergy静止能restperiod休眠期restitutionpoint纠正点restoration复原restorationofnaturalresources自然资源的恢复restoredplantcover 复原植被restoredspecies复原种retainedwater阻滞水retardation延时retention保留retentionwater支持水reticulatedmottles网纹reticulatedvein网状脉reticulecrossofmoon测月十字丝retinite尸石retouching修版retouchingmedium修版液retreatofmonsoon季风后退retrieval检索retroaction反酌retrogradation海蚀变狭酌retrogressivemetamorphism退化变质酌retrogressivesuccession倒退演替retting浸渍returnflow逆流回流returnstroke逆行reverberation反射reversal倒转reversalfilm反转片reversemechanism反转装置reverseposition倒转层位reversevisualangle反观测角reversedfault逆冲断层reversedfold倒转褶皱reversiblechemicalreaction可逆化学反应reversiblecolloid 可逆胶体reversibleprocess可逆过程reversiblereaction可逆反应reversiblerod双面水准尺reversingcurrent往复流reversingthermometer颠倒温度计reversion返祖遗传revisededition修订版revisioncycle更新周期revisionnote修订说明revolution公转revolutioncounter旋转计数器revolutionindicator转数指示器revolutionoftheearth地球公转revolvercamera转筒式摄影机revolvingdiaphragm回转光阑rhenium铼rheniumosmiummethod铼锇法rheologicalprocesses龄过程rheologymodel龄模型rheophyte廉植物rheotaxis窃rheotropism向猎rheumaticheartdisease风湿性心脏病rhizome根茎rhizopodium根足rhizosphere根圈rhodicferralsols暗红色铁铝土rhodium铑rhodochrosite菱锰矿rhodonite蔷薇辉石rhodophyta红藻门rhodopsinpigment视紫红色素rhombicsystem斜方晶系rhombohedralsystem菱形晶系rhombohedron菱面体rhumbline等角航线rhyodacite疗英安岩rhyolite疗岩rhyoliticstructure疗构造riascoast里亚式海岸ricecropping水稻栽培ricegrowing种稻riceplantation稻栽培riceseedlingbed水稻秧田richsoil肥沃土壤richetite水板铅铀矿rickets佝偻病rickettsia立克次体属ride区划线ridge岭ridgeofhighpressure高压背ridging培土riebeckite钠闪石riftvalley断层谷rightascension赤经rightbank右岸rightlateralfault右行断层rigidity刚性rill小河rilldrainage细僚水rillerosion带状沟蚀rillmarks鳞rime雾淞ring环ringcleavagereaction环破裂反应ringcompound环状化合物ringfracture环状断裂ringstructure环状构造ringstructureinterpretationmap环状构造判读图ripcurrent 离岸急流激流riparianpollution沿岸污染ripening成熟ripeningperiod成熟期ripeningprocess成熟过程ripeningsoil成熟土壤ripeningstage成熟期ripple波纹起rippleclouds波状云ripplemarks波痕ripples涟漪rise隆起river河riverbank河岸riverbasin硫riverbed河床riverbottom河底rivercapture河廉夺rivercrossing渡河riverdeposit 河亮积riverdevelopment河联发riverdischarge河量riverdrift河道漂溜rivererosion河蚀rivergravel河砾rivermarshsoil河滨沼泽土rivermouth河口riverport河港riverprofile河凛剖面riversand河拎沙riverstage河廉位riversystem河系riverterrace河成阶地rivertransport河运riverwidth河幅riverside河边riversidesoil河滨土rivulet小河roadpen双曲线笔roadreconnaissance道路侦察rock岩石rockbasin岩盆rockbreaking岩石破碎rockburst岩石破裂rockcreep岩石蠕动rockdebris岩屑rockdesert石漠rockdrawing石山表示rockexposure岩石露头rockfacies岩相rockfall岩崩rockfields石海rockflour岩粉rockformingelement造岩元素rockfragment岩屑rockgas天然气rockglacier冰川石流rockland石质地rockmass岩体rockoutcropsoil岩石露头土rockpillars岩柱rocksalt石盐rockseries岩系rockslide岩石崩塌rockstream石流rockterrace岩石阶地rocktype岩石类型rockvegetation岩石植物群落rocketsounding火箭探空rocketsonde火箭探空仪rockycoast岩石海岸rockydesert岩质沙漠rockysoil石质土rod棒rollfilm胶卷rollingcountry丘陵地区romer坐标格网尺roof顶板roofrock顶板岩石roofingslate瓦用板岩root根rootborers根茎天牛rootcrops块根植物rootfibril须根roothair根毛rootleaf根出叶rootnodule根瘤rootnodulebacteria根瘤菌rootpressure根压rootsystem根系roottubercrops块根罪rooting发根rootstockgrass根茎禾本科植物ropylava波纹熔岩roscoelite钒云母rosebayshrublet杜鹃灌丛rosette莲座丛rotarytidalstream旋转潮流rotatingcrystalmethod旋转晶体法rotatingmirror旋转镜rotation旋转rotationanemometer旋转风速表rotationofcrops轮作rotationofpasture轮牧rotationoftheearth地球自转rotationspectrum转动光谱rotationalgrazing轮牧rotatoryfault旋转断层roughness糙率roughnesscoefficient粗糙系数roundness圆度roundstone风刻石route航线routechart航线图routemap路线图routesurvey路线测量routinelibrary程序库row列rubberestate橡胶园rubble毛石rubbleland砂石田rubblestone毛石rubblysoil砾质土rubefication红壤化rubellite红电气石rubidium铷rubidiumstrontiummethod铷锶法rubrozem腐殖质红色土ruby红宝石ruggedlimestonerockyland石灰岩犬牙交错状裸露地段rule定律rulingpen绘图钢笔runoff瘤runoffforecast runner 纤匐枝 runningsand 脸 runningwater 径沥报怜水怜水水位runningwaterlevel runoffcoefficient 径恋数 runoffprocess runoffregime rupture 断裂ruralenvironment 农村环境 ruralhygiene 农村卫生 ruralsettle ments 村庄径笼程径链况 rushmarsh 灯心草沼泽 russianforestspringencephalitis rustcoloredforestsoil 潜育灰化土 rustfungus ruthenium rutherfordine rutile 金红石锈菌钌纤碳铀矿春季森林脑炎。
海洋测绘领域常用英语词汇
海洋测绘领域常用英语词汇001海洋测量marine survey002海洋大地测量marine geodetic survey003海底控制网submarine control network004岛陆联测island-mainland connection survey005海洋水准测量marine leveling006当地平均海面local mean sea level007日平均海面daily mean sea level008月平均海面monthly mean sea level009年平均海面yearly mean sea level010多年平均海面multi-year mean sea level011平均海面季节改正seasonal correction of mean sea level012海面地形sea surface topography013海洋测量定位marine survey positioning014光学[仪器]定位optical instrument positioning015卫星定位satellite positioning016无线电定位radio positioning017水声定位acoustic positioning018组合定位integrated positioning019圆一圆定位(又称“距离一距离定位”)range-range positioning 020双曲线定位(又称“测距差定位”)hyperbolic positioning021极坐标定位(又称“距离方位定位”)polar coordinate positioning 022差分法定位differentiation positioning023位置线line of position, LOP024位置线方程equation of LOP025位置[线交]角intersection angle of LOP026位置面surface of position,SOP027定位点间距positioning space028等角定位格网equiangular positioning grid029辐射线格网radial positioning grid030双曲线格网hyperbolic positioning grid031等距圆弧格网equilong circle arc grid032等精度[曲线]图equiaccuracy chart033岸台(又称“固定台”)base station034船台(又称“移动台”)mobile station035跟踪台track station036监测台(又称“检查台”)monitor station,check station037台链station chain038主台main station039副台slave station040相位周(又称“巷”)phase cycle,lane041相位周值(又称“巷宽”)phase cycle value,lane width042相位稳定性phase stability043相位多值性phase ambiguity044相位漂移phase drift045固定相移fixed phase drift046联测比对comparison survey047联测比对点point of comparison survey048接收中心receiving center (注:船台接收岸台发射的无线电信号的实际接收点,该点有时与天线位置不一致。
海面太阳耀光背景下的偏振探测技术
图 4 偏振探测仪点列图 Fig.4 Spotdiagram ofpolarizationdetector
234
中国光学
第 11卷
图 5 偏振分析仪 MTF曲线图 Fig.5 MTFofpolarizationanalyzer
制程序进行二次开发。利用偏振分析仪的探测矩 阵,实时解算目标偏振特性信息,并利用偏振探测 仪的探测矩阵,解算偏振片旋转角度,进而完成对 太阳耀光的抑制及抑制图像的采集。
W 的逆矩阵 W-1即可获得入射光的斯托克斯矢
量:
S =W-1I.
(5)
根据斯托克斯矢量中前三项 S0、S1、S2因子, 即可得到目标图像的偏振度 DoLP和偏振角 AoP
信息,表示如下:
DoLP= 槡S2 1 +S2 2 ,
S0
(6)
AoP= 1arctanS2 .
2
S1
(7)
根据偏振度 DoLP分析结果,控制偏振转轮
1 引 言
平静的海面或者低风速情况下的波动海面可 以近似看作微镜的组合。当太阳光入射时,在与 入射光方向关于法线对称的反射光方向上会产生 强烈的反射辐射,形成太阳耀光。受太阳耀光影 响的中心区域,辐射强度使得传感器极易达到饱 和,无法实现对海面目标的有效探测 。 [15]
偏振是光的另一个固有属性,是独立于强度、 波长和相 位 的 光 学 信 息 维 度 [612]。 研 究 表 明,太 阳耀光 具 有 较 明 显 的 偏 振 特 性[1314],基 于 该 特 性,采用偏振自适应滤波探测方法能够:(1)实现 对强背景辐 射 的 有 效 抑 制;(2)不 受 海 面 目 标 运 动的影响,不受太阳观测相对方位角、风速、风向 等因素影响,可实时检测出变化的强散射背景的 偏振特性,实现实时的偏振自适应滤波。与常规 探测方法相比,该方法能够显著提升海面目标在 强散射背景下的探测能力。
3S技术在滑坡地质灾害中的应用
3S技术在滑坡地质灾害中的应用3S技术在很多行业中都有着与其相关的重要的应用。
特别是在地质类行业,其扮演的角色往往是举足轻重的。
结合本专业,下面主要谈谈3S技术在滑坡地质灾害中的应用。
由于自然的变异和人为的作用所导致的地质灾害的发生,如崩塌,滑坡,泥石流等。
每年给人类社会造成重大危害,其中,滑坡灾害是全球分布范围广,影响大,破坏严重的地质灾害之一。
人类对资源的过度开发,对植被覆盖的破坏,加剧了滑坡灾害发生的频率,增加了滑坡灾害的破坏性及损失程度。
1.1 3S技术与滑坡监测对滑坡灾害的研究一直是众多学者关注的问题之一Q.Zaruba和V.Mencl 对滑坡的监测,相关理论及数据处理方法进行了比较综合的阐述#并给出大量工程实例[1]。
对滑坡产生成因,机理,风险预测及损失评估是当前滑坡地质灾害研究的重点。
摄影测量与遥感技术也被越来越广泛地应用滑坡监测与评估研究。
摄影测量可以用于生成大比例尺的三维数字高程模型,为研究滑坡体提供基础地形信息。
通过多源影像信息提取技术还可以获取更多的有效孕害背景信息。
这些信息可用作滑坡灾害风险评估的背景信息。
孕害背景信息主要包括以下几方面:1.地质水文背景基于遥感光谱特性可以进行岩性信息提取与岩石分类,判断滑坡发生的潜在地质条件,提取水系、水文信息。
高光谱遥感数据可以用于提取岩石中的矿物质成分、含量、分析地表土壤类型、利用微波传感器数据分析土壤的特性,如介电常数等,进行地表含水量反演等。
2.地形地貌特征提取摄影测量可以用于生成大比例尺的三维数字高程模型。
为研究滑坡体提供基础地形信息,遥感影像以及INSAR技术的发展也为DEM的获取提供了新的途径。
正射影像制作可以进行房屋、道路等地物信息的提取,还可通过间接分析获取地面纹理结构等信息[2]-[3]。
3.地表植被覆盖度植被覆盖情况是影响滑坡的一个重要因素,植被条件良好、地质条件稳定的区域常常不容易产生滑坡,植被差的地方就容易发生滑坡。
水体固有光学特性和表观光学特性测量在水色遥感中应用
• • • • • • •
HydroScat 光学结构
标定原理几何图形
标定得到的曲线 W(z) Weighting Function
140°的散射(单角度散射)
表示不同角度的散射分布 即体散射相函数
• S为 仪器测量的信号 • σ(Kbb) 是SIGMA校正因子,主要由光源和散射体 积间的衰减引起 • ρ是标定靶的反射率,为常数 • ∝与对W(z)从无穷远到0处的积分成反比 • Ψ是测量的角度,HS6采用的是固定角度140°
测量与计算的 存在误差 计算值 1.08 测量值1.13
HydroBeta 体散射相函数测量仪 美国NOAA 海军基金支持
•消偏振激光束532nm •12辐射计接收器从不同角度监测 •角度:0(beamtransmission),10,15,20, 30,50,70,90,120,140,160,and170 degrees •接收器固定,且角度可调 •高频脉冲激光,接收机同步到激光脉冲 •日光下使用,仪器自动消除背景光 •可迅速测量剖面体散射相函数 •前向接收器窄视场角FOV(<0.5°)和低 增益,以适应前向体散射函数的高信号 •背向接收器具有更宽接收器窄视场角FOV (高达2.2°)和高增益,以适应后向体散射 函数的低信号
新时期如何做好离退休老干部管理服务工作
1引言党中央要求必须要对离退休老干部的政治和生活进行认真管理和服务,这是当前企业必须做好的一项重要任务,同时,也是新时期企业思想工作的一个关键环节[1]。
最近几年,人们对于离退休老干部管理服务工作越来越关注,投入较多的人力、物力,这使得离退休老干部管理服务工作进步较大,但由于这一工作意义重大,且工作内容较为复杂,经常会出现一些不协调的问题,给管理服务工作造成困难,使得离退休老干部队伍稳定受到影响。
因此,在新时期开展离退休老干部管理服务工作的过程中,不仅需要与时俱进,贯彻党的方针,而且,也要对当前存在的问题进行研究,采取有效的措施积极进行解决。
做好离退休老干部的管理服务工作,使离退休老干部需求得到满足,身心收获快乐,这不仅是对为企业和国家默默贡献之人的一丝安慰,也是推动社会发展的有力保障,更是构建和谐社会的必然要求。
2做好离退休老干部管理服务工作的重要意义十八大中习近平总书记提出要全面做好离退休干部工作这一新时期的离退休干部工作指导方针[2]。
党中央对此格外重视,对于离退休群体十分关心,这不仅落实党的以人为本的工作方针,而且,也给离退休老干部管理工作增添一抹神圣的色彩。
企业当中离退休老干部是一个特殊的群体,每个人对于企业的发展都贡献卓越,但由于各种问题他们不得不从奋斗一生的岗位上离退下来,虽然如此,他们对于企业和社会来说仍然十分重要,因此,做好新时期离退休老干部管理服务工作是不容推辞的责任和义务。
近年来,老龄化的加剧使得离退休老干部人数逐年增多,这一部分弱势群体的离职生活受到广泛关注。
在企业中管理的中心并非离退休老干部管理服务工作,但这一内容却是关乎企业的发展和社会的稳定,因此,离退休老干部管理服务是十分重要的工作内容。
企业必须要对离退休老干部给予关心和照顾,对其离职生活给予重视和关爱,让他们明白即使离开原有岗位仍然有所依靠,生活有所保障[3]。
只有这样才能够落实党的指导方针,保障企业稳定,构建和谐社会。
(遥感专业英语)Overview of Remote Sensing
pigeons
1903
The TR-1 reconnaissance/surveillance aircraft.
The 2001 Mars Odyssey used spectrometers and imagers to hunt for evidence of past or present water and volcanic activity on Mars.
• The number of different intensities of radiation the sensor is able to distinguish.
Temporal resolution
Landsat 7 Fengyun-1C
• A performance index of the remote sensing image time interval. Also named as regression cycle.
Overview of Remote Sensing
杨龙龙 62100209 韩会鹏 62100210 崔 岩 62100224 郑学法 62100225
Overview of Remote Sensing
1.Concept of Remote Sensing 2.History of Remote Sensing 3.Types of Remote Sensing 4.Data Quality off Remote Sensing
• optical-mechanical remote sensing detectors.
Overview of Remote Sensing
The History of Remote Sensing
摄影测量与遥感英文单词
001摄影测量学photogrammetry002卫星摄影测量satellite photogrammetry003摄影学photography004航天摄影space photography005航空摄影aerial photography006航空摄影机aerial camera007立体摄影机stereocamera,stereometric camera008非量测摄影机non-metric camera009量测摄影机metric camera010全景摄影机panoramic camera,panorama camera011框幅摄影机frame camera012条幅[航带]摄影机continuous strip camera, strip camera013阵列摄影机array camera014电荷耦合器件摄影机(简称“CCD摄影机”)charge-coupled device camera015多谱段摄影机multispectral camera016地面摄影机terrestrial camera017弹道摄影机ballistic camera018水下摄影机underwater camera019大象幅摄影机large format camera,LFC020恒星摄影机stellar camera021地平线摄影机horizon camera022反束光导管摄象机return beam vidicon camera,RBV023象幅picture format024框标fiducial mark025象移补偿image motion compensation,IMC,forward motion compensation,FMC 026焦距focal length027快门shutter028中心快门between-the-lens shutter,lens shutter029帘幕快门(又称“焦面快门)focal plane shutter,curtain shutter030景深depth of field031超焦点距离hyperfocal distance032孔径(又称“光圈”)aperture033光圈号数f-number,stop-number034象场角objective angle of image field,angular field of view035瞬时现场(又称“空间分解力”,其值为地面分解力2.5~2.8倍)instantaneous field-of -view,IFOV036畸变[差]distortion037全景畸变panoramic distortion038几何畸变geometric distortion039径向畸变radial distortion040切向畸变tangential distortion,tangential lens distortion041物镜分辨率resolving power of lens042影象分辨率resolving power of image (注:一毫米内能分辨线对条数) 043正片positive044负片negative045透明负片dianegative046透明正片diapositive, transparent positive047反转片reversal film048盲色片achromatic film049正色片orthochromatic film050全色片panchromatic film051红外片infrared film052黑白片black-and-white film053彩色片color film054全色红外片panchromatic infrared film055彩色红外片(又称“假彩色片”)color infrared film,false color film 056航摄软片aerial film057感光度sensitivity058感光材料sensitive material059彩色感光材料color sensitive material060感光测定sensitometry061感光特性曲线characteristic curve of photographic emulsion062光谱感光度(又称“光谱灵敏度”)spectral sensitivity063黑白摄影black-and-white photography064彩色摄影color photography065假彩色摄影false color photography066红外摄影infrared photography067全息摄影hologram photography,holography068缩微摄影microphotography, microcopying069低倍放大摄影pnotomacrography070显微摄影photomicrography071多谱段摄影multispectral photography072全景摄影panoramic photography073竖直摄影vertical photography074倾斜摄影oblique photography075小象幅航空摄影small format aerial photography,SFAP076摄站camera station,exposure station077摄影航线flight line of aerial photography078摄影分区flight block079摄影比例尺photographic scale080摄影基线photographic baseline,air base081摄影质量photographic quality082航摄领航navigation of aerial photography083航摄计划flight plan of aerial photography084航摄漏洞aerial photographic gap085航高flying height,flight height086相对航高relative flying height087绝对航高absolute flying height088基一高比base-height ratio089航向重叠longitudinal overlap end overlap,forward overlap, fore-and-aft overlap090旁向重叠lateral overlap,side overlap,side laP091骨架航线(又称“构架航线”)control strip092曝光exposure093摄影处理photographic processing094显影developing095定影fixing096感光sensitising097接触晒印contact printing098投影晒印projection printing099反差contrast100反差系数contrast coefficient101景物反差object contrast102地面照度illuminance of ground103影象质量image quality104影象分辨力(又称“象元地面分辨力”。
光电英语词汇(R2)
光电英语词汇(R2)光电英语词汇(R2)光电英语词汇(R2)reflection type star optical couplers 星状光纤耦合器(反射形)reflection-deducting coating 减反射涂层reflection-densitometer 反射光密度计reflection-free transmission 无反射透射reflective multiplayer coating 多层反射膜reflective optics 反射光学reflectivity 反射性,反射率,反射系数reflectometer 反射计reflectometry 反射测量术reflector (1)反射镜(2)反射器(3)反射望远镜reflector alignment 反射器准直reflector lamp 反光灯reflector lens 反射[器]透镜reflector prism 反射棱镜reflectoscope (1)超声探伤仪(2)反射测试仪(3)反射镜reflex (1)回复(2)反射[现象](3)反作用reflex amplification 来复放大reflex angle 优角reflex boresight 反光小孔瞄准reflex camera 反射功能reflex reflection 来复反射reflex sight 反射式瞄准镜reflex sweep 反射扫瞄reflex sweep high speed camera 反射扫瞄高速照相机reflex versus rangefinder (1)反射式瞄准测距仪(2)反射式寻视器reflex viewfinder 反射型取景器reflexion (1)反射(2)反射波(3)反映reflexion hologram 反射全息图reflexion interference filter 反射干涉滤光片refocused beam 再聚焦光束refocused revolving beam 再聚焦旋转光束refocusing 再聚焦refocusing method 再聚焦法refracted 折射的refracted ray 折射光线refracted ray wave 折射波refracted wave 折射波refracting angle 折射角refracting edge 折射棱refracting power (1)折射率(2)折射本领,折光能力refracting prism 折射棱镜refracting telescope 折射望远镜refraction (1)折射(2)折光度refraction angle 折射角refraction correction 折射校正refraction loss 折射损失refraction objective 折射物镜refractive error 折射误差refractive index 折射率,折光率refractive index detector 折光率检测器refractive index discontinuity 折射系数不连续性refractive index liquids 折射率液refractive index profile 折射率分布refractive null corrector 折射零值校正器refractive optics (1)折射光学(2)折射光元件refractiveness 折射性refractivity 折射率refractometer 折射率refractometers 折射计refractometry (1)折射[分析]法(2)折射度量术refractor 折射器refractoriness 耐火性refractory 耐火的,难熔的refractory glass 耐火玻璃refractory material 耐火材料refractory metal 耐熔金属refractory metal crucible 耐熔金属坩埚refractoscope 折射测定仪,光率仪refresh memory 重复存储器refrigerant (1)致冷剂,冷冻剂(2)冷却物refrigerated system 致冷系统,制冷装置refrigeration (1)致冷,冷冻(2)致冷学refrigerator (1)电冰箱(2)致冷器refringence (refringency)(1)折射率(2)折射本领regeneration 再生现象regenerative amplification 再生放大regenerative getter 再生吸气剂regenerative image intensifier 再生式像增加器regenerative laser 再生激光器regenerative laser device 再生激光装置regenerative oscillator 再生振荡器regenerative reflector 再生反射器regenerator 再生器region (1)区,区域(2)范围region of transmission 透射区register (registor)(1)记录器(2)寄存器register pin [胶片]定位销registering chronograph 自记计时器registration (1)记录(2)读数(3)配准(图像)registration chart [电视]配准测试图regression line 回归线regressive wave 回归波regrowth 再生长regular band 有序[谱]带regular contour 规则轮廓regular matrix 规则矩阵regular mirror 规则[反射]镜regular polygon 正多边形,正多角形regular prism 规则棱镜regular reflection 规则反射regular spike 规则尖峰regular transmission 规则透射regularity 原律性,规则性regulater (1)调整器,调节装置(2)调压(2)调速器regulating 调整,调节regulating apparatus 调节器,调节装置regulating handle 调整手柄regulating knob 调整旋钮regulating lever 调整手柄,调整杆regulating valve 调节阀regulation (1)调整,调节(2)控制(3)规章,条例regulation factor 调整系数reheater 再热器reheating 再热,重热reimaging 重新成像reinforced 加强的,加固的reinforced rib 加强肋reinforcement (1)加强,强化(2)加强物rejection (1)阻碍,抑制(2)衰减,截止rejection band filters 排除频带滤光镜rejection image 衰落图像rejection passband filter 带阻滤波器rejection zone 截止带rejector (1)抑制器(2)带阻滤波器rejuvenation 恢复过程rel 利尔(磁阻单位,等於安匝∕麦克斯韦)related function 相关函数related point 相关点relation (1)关系(2)关系式relation density 相对密度relationship 关系relative 相对的relative accuracy 相对准确度relative aperture 相对孔径,相对口径relative brightness 相对亮度relative directional efficiency 相对方向效率relative dispersion 相对色散relative error 相对误差relative exposure 相对曝光量relative humidity 相对湿度relative illumination 相对照度relative index of refraction 相对折射率relative luminosity 相对发光度relative luminosity factor 相对发光度系数relative luminous efficiency 相对发光效率relative measurement 相对测量relative motion 相对运动relative opening 相对孔(物镜)relative parallax 相对视差relative partial dispersion 相对部分色散relative permeability (1)相对渗透率(2)相对磁导率relative phase 相对相位relative position 相对位置relative radiation density 相对辐射密度relative reciprocal dispersion 相对逆色散relative sensitivity 相对灵敏度relative spectral energy (power)distribution 相对[光]谱能量[功率]分布relative spectral luminous efficiency 相对光谱发光效率relative spectral response (1)相对光谱响应(2)相对频谱响应relative visibility factor 相对可见度因数relativistic electron beam 相对论性电子束relativistic electron bunching accelerator 相对论性电子群聚加速器relativistic electron generator 相对论性电子束发生器relativistic phase invariance 相对论性相位不变性relativistic propagation of light 业相对论性传播relativistic wave equation 相对论性波动方程relativity (1)相对性(2)相对论relaxation (1)张弛(2)弛豫relaxation oscillation 张弛振荡relaxation oscillator 张弛振荡器relaxation rate 弛豫率relaxation term 弛豫项relaxation time (1)弛豫时间(2)张弛时间relaxor 张弛振荡器relay (1)中继(2)继电器(3)转像系统relay condenser 转像聚光器,柯勒照相聚光器relay lens 中继透镜,转像透镜relay lenses 替续透镜relay objective 中继物镜,换向物镜relay system 转像系统release (1)分离(2)点动开关release lever 快门杆releasing device 点动开关装置relevant dimmer state 相关二聚物态reliability 可靠性relief (1)释放(2)浮雕relief developing machine 冲洗机relief image 浮雕像relief telescope 体视望远镜relief television 立体电视relocation 重定位置reluctance 磁阻remagnifier 再放大器remainder (1)余料,剩余物(2)余数remanence 剩磁remote 远距离的remote control 遥控remote heterodvne detection technique 远距离外差探测技术remote manipulation 遥控remote optical sensing 光学遥感remote sensing 遥感remote sensing systems 遥测系统remote sensor 遥感器remote signal 遥测信号remote viewing 远观察remote-control camera 遥控照相机remote-control microscope 遥控显微镜remotum 遥远,远距离removable handle 可拆折柄removal (1)排除(2)移动(3)切割removal of dominance 优势转移removal of electron 电影逸出remover 去除剂removing (1)移动(2)拆卸(3)排除,切割rendezvous sensor laser 会合传感激光器rendition 复制,再现rental equipment 设备出租reorientation 再取向性repartition 再分割repeatability 再复性repeatability error 重复性误差repeated reflection 重复反射repeater (1)重发器(2)增音机repeater theodolite 覆测经纬仪repeating circle 经纬仪度盘(复制盘)repeating optical transit 复测光学经纬仪repeating theodolite 复测经纬仪repeller 反射极repercussion (1)回声(2)反光repetition frequency 重复频率repetition interval 重复时段repetition measurement (1)复测(2)复角测法repetition method 复测法repetition period 重复周期repetition rate 重复率repetitive frequency laser 重复频率激光器repetitive projector 重复脉冲可调整谐红宝石激光器rephase 重相[位]replaceable-gas laser 可置换气体激光器replacement 置换,取代replacement part 备件replenisher 补充器replica 复制品replica grating 复制光栅replica method 复制法replica mirror 复制反射镜replication 复制replicator 复制器repopulation 布局数再增representation (1)表示,表示法(2)表达式reproducer (1)重现装置(2)扬声器reproducibility (1)再现性,重现性,再生性reproducible active-passive mode-locked oscillator 再生式主动–被动锁模振荡器reproducing camera 复制照相机reproduction (1)再现,复现(2)复制reproduction machine 复制机reprography (reproduction photography)照相复制(文献资料)repulsion (1)推斥(2)斥力repulsion force 斥力repulsive molecular 排斥分子的requency distorion 频率畸变reradiation pattern 二次辐射图样rescanning 重扫描,二次扫描rescattering 再散射,二次散射research microscope 研究显微镜reseau (1)栅网(2)滤屏(彩色照相用的)resectoscope 前列腺镜reservoir (1)容器(2)储存器(3)水库resettability (1)可重调性(2)可复位性resetting 重复定位reshaper 整形器reshaping 再成形residence time 居留时间residual (1)剩余的(2)残留的residual aberration 剩余像差residual absorption 剩余吸收residual astigmatism 剩余像散residual bubble 剩余汽泡residual conduction 剩余电导residual current 剩余电流residual curvature 剩余场曲residual deflection 剩余偏差residual deformation 残余变形residual error 残[余误]差residual image 残留图像,余像residual lattice absorption 残余点阵吸收residual magnetization 剩余磁化强度residual matrix 剩余[矩]阵residual ray 残留光线residual resistance 剩余电阻residual spherical abberation 剩余球差residual stress 残余胁强,残余应力residual wedge 剩余楔resilience (1)回弹(2)回弹能力resilient 有弹性的,弹回的resin (1)树脂(2)松香resinography 树脂显微照相术resinoid 热固产黏合剂resistance (1)阻力(2)电阻(3)抵抗resistance force 阻力resistance to abrasion (wear)耐磨性resistance-capacitance coupled amplifier 阻容耦合放大器resistance-coupled 电阻耦合的resistivity (1)电阻率(2)抵抗力resistor 电阻器resolidification 再凝固resolution (1)分辨固(2)析像(3)分解resolution capability 分辨本领resolution cell 分辨单元resolution chart 分辨率测试卡resolution function 分辨函数resolution limit 分辨率极限resolution of laser ranging 激光测距分辨率resolution pattern 分辨率测试图resolution power 分辨率resolution-retrieving 分辨率恢复resolvable spot 可分辨点resolver 分解器resolving chromatic power grating 色分辨率光栅resolving limit 分辨极限resolving power 分辨率resolving time 分辨时间resonance (1)共振,谐振(2)共鸣resonance absorber effect 共振吸收体效应resonance absorption 共振吸收resonance amplitude 共振振幅resonance bandwidth 共振带宽resonance broadening 共振展宽resonance characteristics 共振特性resonance curve 共振曲线resonance detector 共振探测器resonance effect 共振效应resonance energy transfer 共振能量传递resonance fluorescence 共振荧光resonance frequency 共振频率resonance hump 共振峰resonance imprisonment 共振陷禁resonance level 共振级resonance line satellite 共振伴线resonance pumping 共振抽运resonance radiation 共振抽运resonance raman spectroscopy 共振喇曼光谱学resonance self-focusing 共振自聚焦resonance sharpness 共振锐度resonance spectrum 共振光谱resonance state 共振状态resonance width 共振宽度resonance-amplifier 共振放大器resonance-type anomaly 共振型变态resonant (1)共振的,谐振的(2)共鸣的resonant cavity 共振腔,谐振腔resonant excitation 共振激发resonant frequency 共振频率resonant internal reflection 共振内反射resonant medium 共振媒质resonant mode 共振[波]质resonant mode structure 共振模结构resonant multiphoton ionization 共振多光子离化resonant optical faraday rotator 共振光学法拉第转子resonant optical schlieren system 共振光学纹影仪系统resonant raman scattering 共振喇曼散射resonant transfer 共振转移resonant transition 共振跃迁resonant vibration 共振,谐振resonant-mode analysis 共振模分析resonator 共振器resonator entropy 共振器熵resonator mirror 共振腔反射镜resonator mode 共振器模resonators for lasers 雷射用共振腔resonoscope 共振示波器resource 资源respectively 分别response (1)响应,反应(2)特性曲线(3)灵敏度response characteristic 响应特性response curve 响应曲线response function 响应函数response limit 灵敏度,响应极限response speed 响应速度response time 响应时间responsive quantum efficiency 响应量子效率responsiveness (1)响应性(2)响应度responsivity 响应率rest (1)刀架(2)座(3)静止(4)[扶]架rest energy 静能rest frequency 静止频率rest mass 静质量rest-mass energy 静质能量restoration 恢复,复原restrainer (1)限制器(2)[显形]抑制器restraint 限制器,阻尼器restricted exit angle 限制出射角restricted mode competition 限制模竞争restricting (1)保护套(2)表面覆层restrictor (1)限制器(2)限流[量]器reststahlen band 剩余射线谱带reststrahlen 剩余射线reststrahlen arrangment 剩余射线装置reststrahlen filter 剩余射线滤光器reststrahlen plate 剩余射线滤光极reststrahlen region 剩余剩线区resultant (1)合力(2)合量(3)合成的,综合的,总的resultant accuracy 总准确度resultant amplitude 合成振幅resultant colo[u]r shift 总色漂移resultant error 综合误差resultant force 合力resultant intensity pattern 合盛强度图样resultant locus 合矢量轨迹resultant prism 综合棱镜resulting 合成的resulting filter 合成滤波器retain seal 护圈密封retainer (1)护圈(2)保持器,定位器retainer ring 压紧圈,固定圈retaining pawl 止爪,制动爪retard (1)延迟,延缓(2)减速retard angle 滞後角retardance 延迟性retardation (1)延迟(2)阻止(3)减速(4)制动retardation factor 阻滞因数,滞留因数retardation plate 延迟板,减速板retardation plates (phase plates)相位延迟板retardation time 延时retardation wedge 减速光劈,延迟光楔retardation-modulated light wave 延迟调制光波retarded 减速的retarder (1)延迟器(2)减速器retarding electrode 减速电极retarding field method 减速电场法retarding potential 减速电势retempering 再次回火retention time 保持时间retentivity 剩磁,顽磁性rethrascope 尿道镜reticle (1)调制盘(2)分割板,标线片(3)光栅reticle axis 调制盘轴reticle blade 调制盘叶片reticle infrared system 光栅红外系统reticle pattern 光栅图样reticle width spacing 分度线宽间距reticle-mosaic system 光栅铸嵌系统reticular 网状的reticulation 网状物,网状结构reticule (1)分划板,标线片(2)标度线(3)十字线reticule plane 分划板平面retina 视网膜retinal astigmatism 视网膜像散retinal camera 视网膜照相机retinal illumination 视网膜照度retinal illumination mosaic 视网膜视见镶嵌结构retinal image 视网膜像retinal receptive 视网膜感受器retinal receptive field 视网膜感受场retinal stereophotograph 视网膜立体照相术retinal-temperature 视网膜温度retinoscope 视网膜镜,跟膜曲率计retinoscopy 视网膜镜检测术retouching (1)修版(2)精修光学表面retrace interval 回扫间隔retrace scanning 回扫[描]retrieval (1)恢复(2)补偿(3)检索(信息的)retrieved image 补偿像retrieving compensation 恢复补偿retroaction (1)逆反应(2)反馈retroactive amplification 恢复补偿retrodirection reflector 後向反射器retrodirective reflection 後向反射,逆向反射retrodirective reflector 後向反射器retrodirector 反向导向器retrofocus lens 反焦透镜retrogradation 减退作用retroreflectance 後向反射retroreflector (1)後向反射镜(2)後向反射镜return (1)反射(2)返回,折回return beam vidicon 回束管return cam 回行凸轮return circuit 回路return laser beam 激光反射光束,激光回波return light 回光return mechanism 回行机构return signal 回波信号return stroke 返回行程,返回冲程return wave 回波,反射波reverberation (1)混响(2)反射reverberator (1)反射器(2)反射镜reversal (1)反向,反转(2)改变方向(符号)reversal development 反转显影法reversal effect 反转效应reversal film 反转[正]片reversal finder 反转瞄准器reversal of diode 二极管反接reversal of spectral line 光谱线的自蚀reversal processing 反转处理reverse (1)反向的(2)颠倒的reverse azimuth 反方位角reverse bias 逆向偏压;反向偏压reverse biased junction 反向偏压结reverse current 反向电流reverse feedback 负反馈reverse gear 反向齿轮reverse image 倒像reverse telescope 倒像望远镜reverse turn 反转[动]性reverse-pumped raman laser 反转抽运喇曼激光器reversed line 自蚀[光谱]线reversed telephoto objective 反向望远物镜reverseibility 可逆的reverser (1)换向开关,换向器(2)反演机构reversible 可逆的reversible apparatus 倒镜装置reversible bleachable dye solution 可逆漂白染料液reversible level 可倒小准器reversible level tube 可倒水准管reversible medium 可逆媒质reversible mirror 反像平面镜reversible optical recording medium 可逆光学记录媒质reversible prism (1)可倒棱镜(2)反像棱镜reversible process 可逆过程reversible recording 可逆记录reversible spirit level 回转水准仪reversible telescope 回转望远镜reversible transformation 可逆变换reversible transit circle 转镜子午仪reversing clutch 反向离合器reversing dog 回动止块,回动轧头reversing mechanism 回动机构,反向机构reversing prism (1)反像棱镜(2)倒像棱镜reversing switch 转向开关reversion 反转revolution (1)循环(2)旋转(3)转数revolution counter 转数计数器revolution meter 转数计revolutionary 旋转的revolver (1)转筒(2)转换器revolving axle 回转轴revolving beam 旋转射束revolving center 活动尖revolving nosepiece 物镜转换器,换镜转盘revolving stage 旋转式镜台revolving table 旋转工作台rf cleaning-ring laser gyro 射频清洁环形激光陀螺rf resonance method 射频其振法rf switch 射频开关rf-mw photonics 微波光电rfi-immune 不受射频干扰的rhenium (re)铼rheometer (1)电流计(2)流速计rheostat 变阻器,可变电阻器rheostat control 变阻器控制rheostat knob 变阻器旋钮rheostaxial growth 液延生长rhomb (1)菱形(2)菱面体rhombic 菱形[的]rhombic dodecahedron 菱形十二面体rhombic prism 菱形棱镜rhombohedral (1)菱形的(2)菱面体的rhombohedral prism 菱形棱镜rhombohedron 菱面体rhomboid 长菱形rhomboidal 偏长菱形棱镜rhombus 菱体rhysimeter 流体流速测定计rib flange 肋凸缘rib waveguide switch 肋状波导开关ribbed back 肋背ribbed frame 有肋立柱ribbed mirror 带肋反射镜ribbon 光纤带ribbon beam 带状光束ribbon filament lamp 带状灯丝灯ribbon filament tungsten lamp 带状钨丝灯ribbon frame camera 带式画幅[高速]照相机,条带式画幅[高速]摄影机rider 游码ridge (1)背(2)山脊,屋脊(3)波峰ridge prism 屋脊棱镜ridge waveguid 脊形波导riding 波束导引,波束运动rifle scope 步枪瞄准镜rifle telescope 步枪瞄准望远镜rig (1)装配(2)装具,装备(3)台,试验台right (1)右边的(2)直角的(3)正确的right angle 直角right angle eyepiece 直角目镜right angle eyepiece adapter 直角目镜接合器(连接目镜和镜管的接合部件)right angle telescope 直角望远镜right angle triangle 直角三角形right angle[d] prism 直角棱镜right end clearance 右余隙,右间隙right hand (1)右手的,右边的(2)右旋的right line 直线right prism 直角棱镜right-anglerectangular prisms right-hand circular polarization 右旋圆偏振right-hand helix 右旋螺旋线right-handed (1)右手的,右边的(2)右旋的right-handed nut 右旋螺母right-handed polarized light 右旋偏振光right-handed polarized wave 右旋偏振波right-handed quartz 右旋水晶,右旋石英right-handed screw rule 右手螺旋定则right-handed system 右旋系统right-handed thread 右旋螺纹rigid 刚性的rigid body 刚体rigid coupling (1)刚性联接(2)刚性联轴节rigid fixing 固定rigid gas permeable contact lens 硬式透气隐形眼镜rigid gas permeable contact lens care products 硬式透气隐形眼镜保存用产品rigid rod 固定标尺rigid telescope 固定望远镜rigidity (1)刚性(2)刚度rigorous 精确的rigorous solution 精确解法rim (1)边缘,凸缘(2)轮辋(3)齿圈,齿环(4)垫环rim of tube 镜筒垫圈rim ray 边缘光线,沿边光线rim wave 边缘波rimmed resonator 镶边共振腔rims of the lens 透镜边缘rincoming radiation 入射辐射ring (1)环圈(2)环形物(3)环形电路ring blocking 环形上盘ring discharge ion laser 环状放电离子激光器ring gas laser 环形气体激光器ring ga[u]ge 环规ring gear 环形齿轮ring impulse 环形电路脉冲ring interferometer 环形干涉仪ring laser 环形激光器ring laser gyro 环形激光陀螺ring laser velocimeters, optical fiber laser gyros 环形雷射流速计,光纤陀螺仪ring level 环形水准仪ring mode 环形模ring oscillator 环形振荡器ring resonator 环形共振器ring spacer 环状垫圈ring-form spherometer 环形球径仪ring-shaped aperture 环形孔,环形孔径ringing 振铃振荡ringing pulse 振铃脉冲rinsing 漂洗riometer 噪声探测仪ripple (1)波纹,波动(2)皱纹ripple amplitude 波纹振幅ripple patern 波纹图样ripple ratio 波速比rise-time switching 上升时间开关riser 上升装置,立管risetime 上升时间rising characteristic 增长特性risley prism 里斯利[可变率]棱镜ritchey-chretien objective 里奇–克雷季昂[折反射]物镜ritchey-chretien telescope 里奇–古雷季昂望远镜ritchie prism 里奇棱镜rivet 铆钉rivet connection 铆接rivet joint 铆[钉]接[合]riveting 铆接road level 标尺水准器robot (1)机器人(2)自动装置(3)遥控的robotization 自动化rochon prism 罗雄棱镜rochon prismsrochon 棱镜rock crystal 水晶rock wool 石棉rocker 摇杆rocker arm 摇臂rocket 火箭rocket-borne 火箭载运的rocketry 火箭技术rocking grating 摆动光栅rocking grating spectrometer 摆动光栅光谱仪rocksalt 岩盐rockwell hardness tester 罗克韦耳硬度计,罗氏硬度计rod 杆,棒rod guide 导棒rod of the retina 视网膜杆状细胞,视网膜杆状体rod radiator 棒形辐射器rod vision 杆状细胞视觉,暗[处]视觉rod-shaped flash lamp 棒状闪光灯roentgen 伦琴(辐射剂量单位)roentgengraphy 伦琴射线照相术,x射线照相术roentgenization 伦琴射线照射roentgenkymography x射线动态摄影术roentgenogram 伦琴射线照相,x射线照相roentgenology 伦琴射线学,x射线学roll (1)滚动(2)滚轧(3)滚筒(4)辊roll coating 转动镀膜roll film [照相]胶卷roll-film camera 胶卷照相机rolled edge 滚边rolled glass 辊轧玻璃(板)roller (1)滚柱(2)滚筒,辊roller bearing 滚柱轴承roller chain 滚柱链roller clutch 滚柱离合器roller thrust bearing 滚柱推力轴承,滚柱止推轴承rolling bearing 滚动轴承rolling guide 滚动导轨ronchi grating 伦奇光栅ronchi ruling 伦奇刻线法ronchigram 伦奇图rontgen rays 伦琴射射(x射线)roof mirror 屋脊型反射镜roof photometer 屋脊型光度计roof prism 屋脊型棱镜roof prisms 脊角棱镜roof top reflector 屋脊型反射器roof-angle [屋]脊角roof-angle prism 脊角棱镜room utilization factor 空间利用系数room-temperature laser 室温激光器root angle 齿根锥角,伞齿底角root diameter 齿根圆直径root-mean-square 均方根root-mean-square deviation 均方根差root-mean-square displacement 均方根位移root-mean-square error 均方根[误]差,标准差root-mean-square value 均方根值rope pulley 绳索轮rosette method 系列法(度盘检验)rosette scan 花式扫描rosin 松香,松脂ross corrector 罗斯校正器ross wide angle lens 罗斯宽角透镜rosy 玫瑰色的rotameter 转子流量计rotary 旋转的,转动的rotary diaphragm 旋转光阑rotary index table 旋转分度台rotary indexing table 旋转分度台rotary microfilmer 旋转式缩微胶片复制机rotary mirror switch 旋[转]镜开关rotary plane workholder 旋转平面载盘rotary platform 转台rotary power 旋转功率rotary prism 旋转棱镜rotary table 旋转工作台rotary wave 旋转波rotary-scanning spectroscope 旋转扫描分光计rotating bexagonal prism 旋转六角棱镜rotating blade shutter 旋转叶片快门rotating chopper 旋转斩波器rotating hexagonal mirror 旋转六角反射镜rotating mirror 旋[转]镜rotating mirror camera 旋[转]镜式照相机rotating mirror q-switching 旋[转]镜式q开关rotating shutter 转动光闸rotating sleeve 转动套筒rotating stop 旋转光阑rotating vane 转动翼片rotating wedge 旋转光楔rotating wedge range finder 旋转光楔测距仪rotating-drum camera 转鼓式[高速]照相机,转鼓式[高速]摄影机rotating-prism camera 转动棱镜照相机rotation (1)转动,旋转(2)自转(3)旋度(4)旋光[本领]rotation axis 旋转轴rotation capacity 旋光本领rotation inertia 转动惯量rotation medium 旋光媒质rotation mirror 旋转镜rotation of plane of polarization 偏振面转动rotation photograph 周转照相rotation stage positioning equipment 回转台定位设备rotation wave 旋转波rotation-reflection axis 转动反射轴rotational band 旋转谱带,旋转波带rotational excitation 转动激发rotational level 转动能级rotational shearing interferometer 旋转剪切干涉仪rotational speed meters 转速仪rotational transition 转动跃迁rotator (1)旋转体(2)旋转器(3)转子rotatory (1)旋转的,循环的(2)旋光的rotatory capacity 旋光本领rotatory dispersion 旋光色散rotatory dispersion element 旋光色散元件rotatory polarization 旋光偏振rotatory power 旋光本领roton 旋子rotor (1)转[动]子(2)转动体(3)转片(4)回旋轮rotor of condenser 电容器转片rottenstone 擦亮石(抛光粉)rouge 红铁粉,铁丹,过氧化铁粉(抛光粉)rough air 扰动气流rough blank 粗毛坯rough focusing 粗调焦rough material 原料rough plan (1)初步计划(2)设计草图rough service lamp 耐用灯rough surface 粗糙表面rough-annealed glas 退火玻璃rough-cast glass 粗毛玻璃roughened metal plate 粗糙金属片rougher 粗磨模roughing (1)粗加工(2)粗磨roughing machine 粗磨机roughness [表面]粗糙度,不平度roughness spectrum 粗糙度谱roughnessmeter [粗]糙度计roughoeter 表面光度仪roulette 旋转线round (1)圆的(2)整数的round guide 圆导轨round waveguide 圆形波导管round-segment fused bifocal construction 圆弧熔接双焦距结构round-segment multifocal 圆弧多焦距[眼镜]round-trip gain 往返增益round-trip transit time 往返跃迁时间rounding error 舍入误差rounding of corner 倒棱rounding off (1)舍入(2)修整roundness 圆度,正圆度rousseau diagram 鲁梭图解(求光通量的图解法)route surveying 航线测量routine suitability 程序适用性routine test (1)程序检验(2)例行测验rovibronic transition 转振子跃迁row 行,排row matrix 行阵rowland arrangement reflection grating 罗兰排列反射光栅rowland circle 罗兰圆rowland ghost 罗兰鬼线rowland grating 罗兰光栅rowland mounting 罗兰[发光光谱仪]装置rowland-circle concave grating 罗兰圆凹面光栅rubber (1)橡皮(2)橡胶(3)磨光器rubber spring 橡皮弹簧rubber tube 橡胶管rubbing contact 摩擦接触rubidium (rb)铷ruby 红宝石ruby crystal laser 红宝石晶体激光器ruby filter 红宝石滤波器ruby laser 红宝石激光器ruby laser photocoagulator 红宝石激光焊接器ruby lasers 红宝石雷射ruby powder 红宝石粉,红玉粉(磨料)ruby ranging laser 红宝石测距激光器ruby rod 红宝石棒rudimentary compound microscope 基本组合显微镜ruff 轴环ruggedness (1)强度,坚固性(2)凹凸不平度rule (1)规则,规律,定律(2)尺rule depth ga[u]ge 深度规rule-of-thumb relation 经验关系式ruleability 可刻划性ruled area 刻划性ruled grating 刻划光栅ruled surface 刻划表面ruler 直规ruling 划线,刻度ruling engine 刻线机ruling grating 刻线光栅ruling span 刻线间距rumford's photometer 伦福德光度计run (1)运行,运转,开动(机器)(2)行程run-length coding 行程编码runner (1)抛光盘(2)黏盘(3)转子,动子runner cut 铣磨划痕running fit 松动配合,转动配合,转合座running wave 行波rupture (1)破裂,裂断(2)绝缘击穿rush (1)冲,冲击(2)骤增russel's angle 罗素角(光通量测量目角)russel-saunders coupling 罗素–桑德斯耦合russel-saunders quantum labels 罗素–桑德斯量子标记rust (1)锈(2)锈色rustless 不锈的rustproof 防锈的ruthenium (ru)钌rutile 金红石rutile prism 金红石棱镜rybderg state 里德伯态rydberg 里德伯(光谱学单位)rydberg constant 里德伯常数,里德伯恒量rydberg series 里德伯系光电英语词汇(R2) 相关内容:41。
峰值波长英文
峰值波长英文Peak wavelength, a fundamental concept in the field of optics, holds significant importance in various scientific and technological domains. It refers to the wavelength at which a specific optical signal, such as light emitted from a source or transmitted through a medium, reaches its maximum intensity. The comprehension of peak wavelength is pivotal in areas like spectroscopy, laser technology, telecommunications, and even environmental monitoring.In spectroscopy, peak wavelength is used to identify and analyze the chemical composition of matter. By observing the unique peak wavelengths emitted by atoms and molecules, scientists can gain insights into the presence and concentration of specific elements or compounds. This knowledge is crucial in fields like chemistry, physics, and even medicine, where it can aid in diagnosing diseases or understanding biological processes.In the realm of laser technology, peak wavelength is a critical parameter that determines the characteristics and applications of lasers. Different peak wavelengths correspond to different colors of light, which can be usedfor precision cutting, welding, marking, and otherindustrial processes. The precision and efficiency of these processes depend heavily on the accuracy with which thepeak wavelength can be controlled.Telecommunications also rely heavily on peak wavelength. In optical fiber communication systems, light signals carrying information are transmitted through glass fibersat specific peak wavelengths. These wavelengths must be carefully chosen to minimize signal attenuation and maximize transmission speed and bandwidth. By harnessingthe properties of peak wavelength, modern telecommunications systems are able to transmit vast amounts of data across vast distances with remarkable speed and reliability.Moreover, peak wavelength plays a vital role in environmental monitoring. Remote sensing techniques utilize specific peak wavelengths to detect and measure atmospheric pollutants, water quality, and other environmental parameters. By monitoring these wavelengths, scientists can assess the health of ecosystems and identify potential threats to human health and the planet's sustainability.In conclusion, peak wavelength is a fundamental aspectof light that has far-reaching applications across multiple disciplines. Its significance lies in its ability toprovide insights into the composition of matter, enable precise and efficient industrial processes, facilitatehigh-speed telecommunications, and safeguard the environment. As we continue to explore the wonders of light and its interaction with matter, the understanding and utilization of peak wavelength will remain a cornerstone of scientific and technological advancement.**峰值波长的精髓:多学科视角**峰值波长,作为光学领域的基本概念,在科学和技术的多个领域中都具有重要意义。
遥感水质cod反演模型算法流程
遥感水质cod反演模型算法流程英文回答:Remote Sensing Water Quality COD Inversion Model Algorithm Flow.1. Data Preprocessing.Collect and pre-treat remote sensing images (e.g., Sentinel-2, Landsat-8)。
Extract water body area from images using water index (e.g., Modified Normalized Difference Water Index)。
Normalize and standardize remote sensing reflectance.2. Feature Extraction.Calculate water quality-related optical indices (e.g., Coastal Aerosol Index, Absorption Aerosol Index)。
Extract spectral features using statistical methods (e.g., mean, standard deviation, skewness)。
Combine optical indices and spectral features to form a comprehensive feature set.3. Model Training.Collect in-situ water quality data (e.g., COD concentration)。
Divide the dataset into training and validation sets.Train and optimize machine learning models (e.g., random forest, support vector machine) using the training data.4. Model Evaluation.Evaluate the performance of trained models using the validation dataset.Calculate accuracy metrics (e.g., R-squared, root mean square error)。
东海有机碳存量估算
碳 储 量 在 4.119x l 〇13g 到 7.98〇x l 〇13 g 之 间 。全 水 柱 有 机 碳 储 量 整 体 呈 现 冬 季 高 、春季低的特点,真光
层 有 机 碳 储 量 整 体 呈 现 夏 季 高 、冬 季 低 的 特 点 。从 2 0 0 6 年 至 2 0 1 5 年 ,有 机 碳 存 量 呈 波 动 上 升 趋 势 。
东 海 拥 有 丰 富 的 自 然 资 源 ,是 中 国 重 要 的 碳 储 库 。 目前,对 于 中 国 东 海 碳 储 量 的 估 算 已 有 一 些 研 究[10"13]。 由于东海受人类活动影响很大,水体环境较
为复杂,近 岸 区 域 属 于 II类 水 体 1M1,估算时若采用过 于简单的反演模型或直接套用其他水域的反演模型, 都 难 以 满 足 较 高 估 算 精 度 。 因 此 ,确 定 适 用 于 东 海 海 域的有机碳反演算法对东海碳储量的评估与监测至 关 重 要 ,可 以 对 进 一 步 开 发 东 海 海 洋 资 源 提 供 指 导 , 也为今后中国海洋碳储量的评估提供了研究思路。 文中研究通过调研目前国内外对不同水域的有机碳 含量的反演算法,结 合 MODIS的水色遥感数据,分别 确 定适用于东海海域(117°E〜131°E,23°N~34°N) 表层 的 P O C 和 D O C浓度反演算法及基于季节、水团类型 划 分 的 垂 直 分 布 模 型 ,对 东 海 的 海 洋 有 机 碳 存 量 进 行 了 估 算 。并 分 析了东海有机碳存量的季节变化特点 以及2006~2015年的变化趋势。
量 可 以 通 过 遥 感 反 射 率 、水 体 光 学 特 性 等 参 数 反 演 得 到 。根 据 东 海 水 域 的 水 体 特 性 ,对比了多种有机
遥感期刊
截至到2009年8月SCI扩展版收录遥感学科期刊23种(SCI核心版6种),其中2009年开始被SCI收录的遥感学科期刊1种,2008年开始被SCI收录的遥感学科期刊4种,出版地为的美国遥感期刊10种,英国、德国、澳大利亚、荷兰各2种,巴西、加拿大、克罗地亚、印度、意大利各1种。
2005-2009年8月SCI共收录至少有一位中国作者(不包括台湾)的遥感学科论文801篇,其中2009年144篇(17.9775 %),2008年236篇(29.4632 %),2007年189篇(23.5955 %),2006年118篇(14.7316 %),2005年97篇(12.1099 %),2004年17篇(2.1223 %)。
801篇论文包括学术论文745篇、会议论文37篇、社论8篇、通讯5篇、更正5篇、评论1篇。
2005-2009年8月中国研究论文主要发表在18种SCI收录的遥感期刊上:INTERNATIONAL JOURNAL OF REMOTE SENSING 《国际遥感杂志》257篇、IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 《IEEE地学与遥感汇刊》147篇、IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 《IEEE地球科学与遥感快报》114篇、PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING 《摄影测量工程与遥感》58篇、REMOTE SENSING OF ENVIRONMENT 《环境遥感》51篇、JOURNAL OF GEODESY 《大地测量学杂志》35篇、RADIO SCIENCE 《无线电科学》31篇、CANADIAN JOURNAL OF REMOTE SENSING《加拿大遥感杂志》23篇、INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 《国际应用地球观测和地球信息杂志》19篇、SURVEY REVIEW 《测量评论》17篇。
KPAR:一个数值模糊的光学量.pdf
J. Lake Sci.(湖泊科学), 2009, 21(2): 159-164. E-mail: jlakes@©2009 by Journal of Lake SciencesK PAR : An optical property associated with ambiguous values ∗Zhongping Lee(Northern Gulf Institute , Mississippi State University , Stennis Space Center , MS 39529)Abstract : In studies of aquatic environments, an optical property, K PAR , which represents the diffuse attenuation coefficient of Photosynthetic Available Radiation (PAR), is used frequently. Because water’s diffuse attenuation coefficient is highly spectral dependent and PAR is spectrally narrowing to wavelengths with less attenuation coefficients with increasing depth, this K PAR is significantly depth dependent in the upper water column even for well-mixed waters. In this article, with an aim for more reliable attenuation products and more accurate description of PAR profiles, the ambiguity associated with K PAR is highlighted, and the proper representation of the vertical variation of K PAR is advocated.Keywords : PAR; K PAR ; ocean color remote sensingK PAR : 一个数值模糊的光学量李忠平(密西西比州立大学北部海湾研究所, MS 39529, USA)摘 要: 光合有效辐射(P AR )的漫衰减系数K PAR 是水环境研究中经常使用的一个光学量. 水体的漫衰减系数与波长紧密相关, 随着水体深度的不断增加, P AR 频谱收缩到具有更小衰减系数的波长处, 对上层水体或者混合均匀的水体而言, 此时的K PAR 与水深关系极为密切. 为了更为准确的描述P AR 剖面, 获取更可靠的光学衰减参数, 强调了K PAR 数值的模糊性, 倡导正确表达K PAR 的垂直变化.关键词: 光合有效辐射; 漫衰减系数; 水色遥感1 IntroductionIn limnology and oceanography, K PAR is a symbol commonly used to represent the diffuse attenuation coefficient of Photosynthetic Available Radiation (PAR ). P AR is a broad band (350–700nm), spectrally integrated measurement of light intensity (often described as a flux of quanta per unit time) at a given depth (z ). Knowing the intensity of PAR and its spatial variability, both horizontally and vertically, is of great importance for studies of heat transfer [1-3] and phytoplankton dynamics in lakes [4] and oceans [4-7]. Since surface PAR can be well measured or modeled [8], spatial information of K PAR is then critical for the evaluation of P AR at depth for global oceans. K PAR has also been used as an indicator of water quality [9-10].The depth dependence of PAR is commonly expressed as:PAR 0()e K z PAR z PAR −= (1)Here PAR 0 is the PAR value just beneath the water’s surface. Values of K PAR may be estimated from either the surface chlorophyll concentration [11-12] or Secchi disk depth [13-14]. Commonly, the value of K PAR in Eq.1 is presumed to be independent of depth in various studies [15-17], and it is usually represented by the average diffuse attenuation, K PAR , within the euphotic zone (down to 1% of PAR 0)[12,18]. However, it has been previously demonstrated that even for a homogeneous and well-mixed water column, the value of K PAR changes significantly with depth [12,19-20]. In this short note, along with numerical simulations, I demonstrate further the∗ Received November 3, 2008; Acceptted December 3, 2008. Dr. Zhongping Lee; E-mail: zplee@.J. Lake Sci .(湖泊科学), 2009, 21(2)160 vertical variability of K PAR by applying the various ways of calculating values of K PAR . The objective is to highlight its ambiguity, and more importantly, to advocate more robust approaches/products for quantifying water quality and for modeling the subsurface PAR field.2 Simulations and resultsTo illustrate the depth dependence of K PAR , a common feature of apparent optical properties [21-22], results of a numerical simulation by Hydrolight ® [23] are presented here. Hydrolight ®, a commercial software used by globalocean optics community, is a powerful tool thatcan be used to accurately simulate 1-dimensionalsubsurface light field for various kinds aquaticenvironments. In the simulation here, the water isassumed to be well mixed with a chlorophyllconcentration of 0.1mg/m 3, a value frequentlyobserved for world oceans [24]. Absorption ofcolored dissolved organic matter (CDOM) at 440nm is considered equivalent to that ofchlorophyll [25], and scattering of particulates isbased on the model of Gordon and Morel [26]. Thesky is assumed cloudless with the sun at 30o fromthe zenith.Fig.1 shows the vertical distributions of PAR (z ) and K PAR (z ) calculated from the numerical simulation. Note that K PAR (z ) here is the diffuse attenuation coefficient at depth z , or the so-called instantaneous attenuation coefficient, defined as: PAR d ln(())()d PAR z K z z≡−(2) K P AR (z ) is approximated here as: PAR ln(())ln(())()PAR z z PAR z K z z +Δ−=−Δ (3)with a depth increment (Δz ) of 0.1m. For waters in this example, it is clear that K PAR (z ) is depth dependent and it varies by three fold from the surface to the bottom of the euphotic zone (76.7m for this example). This is because that P AR measures integrated photons in the visible domain. Water and its dissolved and suspended constituents absorb and scatter photons spectrum selectively; therefore, PAR at greater depth is spectrally weighted towards bands that are least attenuated in the water column. This explains why K PAR (z ) approaches an asymptotic minimum with increasing depth.Because K PAR (z ) changes with depth, an expression with greater fidelity to the physics for vertical PAR profile should bePAR 0()d 0()e zK z zPAR z PAR −∫= (4)To write this expression in a simple fashion as Eq.1, the vertical variation of PAR can be expressed asPAR ()0()e K z z PAR z PAR −=(5)Zhongping Lee: K PAR : An optical property associated with ambiguous values161This PAR()K z , however, is no longer the instantaneous attenuation at depth z (K PAR (z )), nor the vertically averaged value in the euphotic zone (PAR K ). PAR()K z is the vertical average of K PAR (z ) between the surface and depth z :0PAR ln(())ln()()PAR z PAR K z z−≡− (6) Based on Eq.6, PAR ()K z can be easily derived from vertical profiles of PAR (z ). Because of its simplicity, the K PAR values reported in the literature [27] or data bases (e.g., WorldwideOcean Optics Database-WOOD, SeaWiFSBio-optical Archive and Storage System-SeaBASS) are likely calculated based on thisexpression. However, because instantaneousK PAR (z ) changes with depth, PAR ()K z also differs if inconsistent ranges are used for its calculation (see Tab.1). For the example shown in Fig.1, Table 1 presents the instantaneous PAR attenuation, K PAR (z ), the depth-averaged P AR attenuation, PAR ()K z , and the euphotic zone averaged PAR attenuation, PAR K . Clearly, because of the different definitions and the depth ranges used in their calculations, different K PAR values (candiffer by a factor of 3) could be obtained forthe same well-mixed water body. Note that, similarly, the diffuse attenuation coefficient of downwelling irradiance at a wavelength (K d ) also differs with ways of calculation and depths [28-29], but its magnitude of variation is significantly smaller than that of K PAR . Because of such inherent ambiguity associated with K PAR , it is quite difficult to compare reported K PAR values in the literature [15-16,18] and data bases (WOOD, SeaBASS) before their definitions and depth ranges used in their calculations are explicitly provided. Furthermore, it is not surprising to see different parameterizations when depth-averaged K PAR is empirically linked to either chlorophyll concentration [11-12,30] or Secchi disk depth [13,31], even if regional or temporal variations in bio-optical properties are assumed negligible. Consequently, for global oceans, significantly different K PAR values could be generated from these different empirical relationships [32].Due to the large vertical variation of K PAR (z ), vertical distribution of PAR (z ) by Eq.1 would be a coarse approximation if K PAR is treated as a depth-independent variable. To illustrate this point, Figure 2 shows PAR (z ) obtained from the Hydrolight ® simulation (used herein as a reference field) and that modeled by Eq.1 with two different depth-independent K PAR values, respectively. When PAR K (the averaged value within the euphotic zone,0.060m -1) is used, P AR (z ) value from Eq.1 matches true value for depths around the euphotic depth, butsignificantly overestimates P AR in the 0–30m range by as much as 40%. When PAR(020)K − (average K PAR for depth range of 0–20m, 0.078m -1) is used, not only is the estimated euphotic zone depth shallower (~59.0m, a ~30% shoaling), the PAR values are overestimated in the 0–20 meter depth range, while they are Tab.1 V alues of various K PAR of a homogeneous water body(from Hydrolight ® simulated PAR (z ) profile)Depth z (m)K PAR (z ) (m -1)PAR ()K z (m -1) PAR K (m -1) 0.1 0.176 0.176 1.1 0.148 0.162 5.1 0.085 0.121 7.1 0.073 0.109 10.1 0.064 0.097 15.1 0.058 0.08520.1 0.057 0.07830.1 0.055 0.07140.1 0.054 0.06750.1 0.053 0.06460.1 0.053 0.06270.1 0.052 0.06180.1 0.052 0.06090.1 0.051 0.059100.1 0.051 0.058 0.060J. Lake Sci.(湖泊科学), 2009, 21(2) 162underestimated in the 40–70meter range (by a factor up to 3). All these discrepancies could have significant impacts upon model simulations of heat transfer and primary production in the upper water column.The ambiguity associated with K PAR adds difficulties to the task of defining a standard remote-sensingproduct of K PAR. First, it is not clear which K PAR should be considered as the “standard” product because K PAR value varies significantly with depth (also weakly sun-angle dependent); second, it is not clear if K PAR values reported by different research groups follow the same definition or if they have used the same depth ranges(either geophysical depth or optical depth) for their calculations; and third, even ifPARK is considered as the standard product (then requires all reported and to be reported K PAR be calculated between surface and a depth where PAR is 1% of PAR0), its value is only good to calculate PAR values around the euphotic depth (which is4.6/PARK), but it does not yield accurate estimates of PAR at other depths (see Fig.2).Figure 2 Modeled vertical profiles of PAR(z) are compared with true PAR(z) profile(circle with solid line) Symbol square with dash line is for modeled PAR(z) with a depth-independent K PAR of 0.060 m-1; Symbol triangle with dot line is for modeled PAR(z) with a depth-independent K PAR of 0.078 m-13 ConclusionsAs shown in various studies[12,33], treating K PAR as a depth-independent property is not consistent with the physics of light propagation through an aquatic environment; and such K PAR approach results in coarse, if not erroneous, approximation of PAR’s vertical profile. In a broader perspective, these inconsistencies indicate that depth-independent K PAR is not a robust candidate to be considered as a stand-alone product (in analogy to concentration of chlorophyll) for ocean color remote sensing. To accurately model or predict PAR levels in both horizontal and vertical dimensions from ocean color remote sensing, either spectrally-resolved light field[34-35]or depth-dependentPAR ()K z(for spectrally-integrated approach) is better to be adopted[20]. PresentlyPAR ()K zcan be modeled from other well-defined properties or products, such as the diffuse attenuation coefficient at 490nm[20], concentration of chlorophyll[36-37], and the inherent optical properties[19,38]. Separately, for the application of measuring water quality from observation of water color[10], instead of using the ambiguous K PAR, it is better to use water’s inherent optical properties[39-40] or photic depths[41]. Acknowledgment:Financial support by NASA’s Ocean Biology and Biogeochemistry is greatly appreciated. Discussions with Dr. Jason Jolliff also improved this article.4 Reference[1] Kara AB, Wallcraft AJ, Hurlburt HE. Sea surface temperature sensitivity to water turbidity from simulations of the turbid BlackSea using HYCOM. J Phys Oceanogr, 2005, 35:33-54.Zhongping Lee: K PAR: An optical property associated with ambiguous values 163[2] Lewis MR, Carr M, Feldman G et al. Influence of penetrating solar radiation on the heat budget of the equatorial pacific ocean.Nature, 1990, 347:543-545.[3] Zaneveld JRV, Spinrad RW. An arc tangent model of irradiance in the sea. J Geophys Res, 1980, 85:4919-4922.[4] Fahnenstiel GL, Bridgeman TB, Lang GA et al. Phytoplankton productivity in Saginaw Bay, Lake Huron: Effects of zebramussel (Dreissena polymorpha) colonization. J Great Lakes Res, 1995, 21:465-475.[5] Behrenfeld MJ, Falkowski PG. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr,1997, 42:1-20.[6] Platt T, Sathyendranath S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science, 1988,241:1613-1620.[7] Siegel DA, Doney SC, Yoder JA. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis.Science, 2002, 296: 730-733.[8] Frouin R, Lingner DW, Gautier C et al. A simple analytical formula to compute clear sky total and photosynthetically availablesolar irradiance at the ocean surface. J Geophys Res, 1989, 94:9731-9742.[9] Stumpf RP, Frayer ML, Durako MJ. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997. Estuaries,1999, 22:431-444.[10]Woodruff DL, Stumpf RP, Scope JA et al. Remote estimation of water clarity in optically complex estuarine waters. RemoteSens Environ, 1999, 68:41-52.[11]Mitchell BG, Holm-Hansen O. Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth.Deep-Sea Res, 1991, 38:981-1007.[12]Morel A. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J Geophys Res, 1988,93:10749-10768.[13]Buiteveld H. A model for calculation of diffuse light attenuation (PAR) and Secchi depth. Neth J Aquat Ecol, 1995, 29:55-65.[14]Weinberg S. Submarine daylight and ecology. Mar Biol, 1976, 37:291 - 304.[15]Carter CM, AH Ross, DR Schiel et al. In situ microcosm experiments on the influence of nitrate and light on phytoplanktoncommunity composition. Journal of Experimental Marine Biology and Ecology, 2005, 326:1-13.[16]RasmusE Graneli W, Wangberg SA. Optical studies in the Southern Ocean. Deep-Sea Res(II), 2004, 51: 2583-2597.[17]Rochford PA, Kara AB, Wallcraft AJ et al. Importance of solar subsurface heating in ocean general circulation models. JGeophys Res, 2001, 106:30923-30938.[18]Krick JTO. Light & photosynthesis in aquatic ecosystems. University Press, 1994.[19]Lee ZP, Du K, Arnone R et al. Penetration of solar radiation in the upper ocean-A numerical model for oceanic and coastalwaters. J Geophys Res, 2005, 110:C09019(doi:09010.01029/02004JC002780).[20]Zaneveld JRV, Kitchen JC, Mueller JL. Vertical structure of productivity and its vertical integration as derived from remotelysensed observations. Limnol Oceanogr, 1993, 38:1384-1393.[21]Kirk JTO. The vertical attenuation of irradiance as a function of the optical properties of the water. Limnol Oceanogr, 2003, 48:9-17.[22]Preisendorfer RW. Hydrologic optics vol. 1: introduction. National Technical Information Service. Also available on CD, Officeof Naval Research, 1976.[23]Mobley CD. Hydrolight 3.0 Users' Guide. SRI International, 1995.[24] Antoine DJ, Andre M, Morel A. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone colorscanner) chlorophyll. Global Biogeochemical Cycles, 1996, 10:57-69.[25]Siegel DA, Maritorena S, Nelson NB et al. Global distribution and dynamics of colored dissolved and detrital organic materials.J Geophys Res, 2002, 107: 3228 (doi:3210.1029/2001JC000965).[26]Gordon HR, Morel A. Remote assessment of ocean color for interpretation of satellite visible imagery: A review.Springer-Verlag, 1983.J. Lake Sci.(湖泊科学), 2009, 21(2) 164[27]Letelier RM, Karl DM, Abbott MR et al. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone ofthe North Pacific Subtropical Gyre. Limnol Oceanogr, 2004, 49:508-519.[28]Berwald JD, Stramski CD, Mobley. Influences of absorption and scattering on vertical changes in the average cosine of theunderwater light field. Limnol Oceanogr, 1995, 40:1347-1357.[29]Kirk V olume scattering function, average cosines, and the underwater light field. Limnol Oceanogr, 1991, 36:455-467.[30]Smith RC, Baker KS. The bio-optical state of ocean waters and remote sensing. Limnol Oceanogr, 1978, 23:247-259.[31]Montes-Hugo MA, Alvarez-Borrego S, Giles-Guzm AD. Horizontal sighting range and Secchi depth as estimators ofunderwater PAR attenuation in a coastal lagoon. Estuaries, 2003, 26:1302-1309.[32]Gattuso JP, Gentili B, Duarte CM et al. Light availability in the coastal ocean: impact on the distribution of benthicphotosynthetic organisms and their contribution to primary production. Biogeosciences, 2006, 3:489-513.[33]Morel A, Gentili B. Radiation transport within oceanic (case 1) water. J Geophys Res, 2004, 109:C06008,(doi:06010.01029/02003JC002259).[34]Liu CC, Carder KL, Miller RL et al. Fast and accurate model of underwater scalar irradiance. Applied Optics, 2002, 41:4962-4974.[35]Sathyendranath S, Platt T. The spectral irradiance field at the surface and in the interior of the ocean: a model for applications inoceanography and remote sensing. J Geophys Res, 1988, 93:9270-9280.[36]Morel A, Antoine D. Heating rate within the upper ocean in relation to its bio-optical state. J of Physical Oceanography, 1994,24:1652-1665.[37]Ohlmann JC, Siegel D. Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J ofPhysical Oceanography, 2000, 30:1849-1865.[38]Barnard AH,Zaneveld JRV, Pegau WS et al. The determination of PAR levels from absorption coefficient profiles at 490nm.Ciencias Marinas, 1999, 25:487-507.[39]Gordon HR, Smith RC, Zaneveld JRV. Introduction to ocean optics Ocean Optics VI. Proc SPIE, 1980, 208: 1-43.[40]IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. In:Lee ZP ed.Reports of the International Ocean-Colour Coordinating Group, No. 5. IOCCG, 2006: 126.[41]Lee ZP, Weidemann A, Kindle J et al. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. JGeophys Res, 2007, 112: C03009(doi:03010.01029/02006JC003802).。
水下光谱漫射衰减系数遥感反演解读
水下光谱漫射衰减系数遥感反演朱乾坤,何贤强,毛志华,龚芳卫星海洋环境动力学国家重点实验室,杭州310012摘要:光谱漫衰减系数是水体表观光学量随深度变化的反映。
到目前为止,国际上对水下光谱漫射衰减系数的遥感反演模式研究的还不够深入,而对水下光谱漫射衰减系数遥感反演研究得更少。
目前反演水下光漫射衰减系数均采用建立实测数据基础上的波段比值法。
少数的科学家利用Mueller(2002)的算法从遥感数据(SeaWiFSandMoDIS)反演水下光漫射衰减系数。
本文在ZhongpingLee(2002)水体固有光学量半分析遥感算法的基础上,建立了水下光谱漫射衰减系数的半分析遥感反演模型。
利用1999年在南海测得的水下光场剖面数据进行验证,结果表明七个波段(412nm,443nm,490nm,510nm,520nm,555nm和565nm)的平均相对误差分别为:15.4%,12.6%,13.3%,10.2%,11.9%,9.8%,10.3%,说明本文建立的水下光谱漫射衰减系数反演模型是可行的。
由于上述实测数据均为清洁一类水体数据,对二类水体的适用情况还需要进一步检验。
关键词:光谱漫射衰减系数,海洋水色遥感,半分析模型前言光谱漫衰减系数是水体表观光学量随深度变化的反映。
对不同类型的海水光谱漫衰减系数的值是随着光谱的波长变化而变化。
对于沿海水体,光谱漫衰减系数的值随着光谱波长从400nm到555nm的增加会明显的减少;而随着光谱波长从555nm到700nm的增加而增加。
对于大洋水体,光谱漫衰减系数的值很小。
对于不同类型的海水,同一波长的光谱漫衰减系数变化很大。
如当波长为412nm时,光谱漫衰减系数的范围为0.016m~一1.341聊~,而波长为555r珈时,光谱漫衰减系数的值相差可达到50倍。
到目前为止,国际上对水下光谱漫射衰减系数的遥感反演模式研究的还不够深入,而对水下光谱漫射衰减系数遥感反演研究得更少;目前反演水下光谱漫射衰减系数均采用建立实测数据基础上的波段比值。
地理词汇英语翻译(O开头)
地理词汇英语翻译(O开头) oak 栎oak forest 栎林oak pine forest 松栎林oakery 栎林oasis 沙漠绿洲oasis farming 绿洲农业oasis vegetation 绿洲植被obduction 仰冲obduction zone 仰冲带object 目标object contrast 景物反差object distance 物距object program 目标程序object space 物方objective 物镜objective analysis 客观分析oblateness 扁率oblateness of the earth 地球扁率obligate anaerobe 专性嫌气微生物oblique aerial photography 倾斜航空摄影oblique bedding 斜层理oblique fault 斜断层oblique hill shading 斜照晕渲法oblique joint 斜节理oblique projection 斜投影obsequent river 逆向河obsequent valley 逆向谷observation 观测observation base 观测基线observation field 观测场observation network 观测站网observation period 观测时期observation range 测程observation system 观测系统observation time 观测时间observation well 观测井observational error 观察误差observations of water stage 水位观测observatory 天文台observer 测候员observing tower 观测塔obsidian 黑曜岩obsidian dating 黑曜石年代测定法obstacle 障碍物occluded front 锢囚锋occlusion 锢囚occlusion water 封闭水occultation 隐蔽occultation method 掩星法occupation disease 职业病occupational cancer 职业癌occupational pathology 职业病学occupational poisoning 职业中毒occurence 出现ocean 大洋ocean acoustic remote sensing 海洋声波遥感ocean acoustic tomography 海洋声层析成相ocean climate 海洋气候ocean current 海流ocean surface topography 海面形态oceanic basin 海洋盆地oceanic earth's crust 大洋地壳oceanic fringing rises 边缘海岭oceanic front 海洋锋oceanic island 海洋岛oceanic rift valley system 大洋裂谷系oceanic tholeite 海洋性拉斑玄武岩oceanic trenches 海沟oceanicity 海洋度oceanics 海洋工程学oceanite 大洋岩oceanographic altas 海洋地图集oceanographic survey 海洋甸oceanographic tracer 海洋示踪物oceanographical remote sensing 海洋遥感oceanography 海洋学oceanology 海洋学ochraqualf 淡潮淋溶土ochre 舣ochrept 淡始成土ochric andosols 淡暗色土ochric epipedon 淡色表层ochric ferralsols 淡色铁铝土ochric podzols 淡色灰壤octahedron 八面体ocular 目镜odinite 拉辉煌斑岩odometer 里程表odorant 着嗅剂odour 气味office operation 内业official cartography 官方地图制图official map 官方地图offset machine 胶印机offset printing 胶版印刷offshore 滨外的offshore bar 近岸沙洲offshore current 离岸流oikesis 定居oil basin 含油盆地oil bearing rock 油母岩oil deposit 石油矿床oil field 油田oil field water 油田水oil gas 油气oil geology 石油地质学oil horizon 含油层oil plant 油料罪oil pool 油藏oil sand 油砂oil seepage 油苗oil shale 油页岩oil slick 油膜oil well 油井old mountains 老年山old red sandstone 古老红色砂岩old stage 老年期old valley 老年谷olfaction 嗅觉oligocene 渐新世oligoclase 奥长石oligodynamic action 微毒酌oligotrophic brown soil 贫瘠棕色土oligotrophic conditions 贫瘠条件oligotrophic lake 寡养湖oligotrophic moor 寡养沼泽oligotrophic plant 寡养植物olive 油橄榄olivine 贵橄榄石ombrogenic bog 喜雨沼泽ombrogenous peat 可变泥炭ombrograph 雨量记录仪ombrometer 雨量计ombrophilous plant 喜雨植物ombrophobe 嫌雨植物ombrophyte 喜雨植物on demand system 按需股务系统oncogeography 肿瘤地理学oncolysis 瘤细胞溶解one crop system 单作one dimensional correlation 一维相关one side sight 单向照准线onkilonite 橄辉霞玄岩online data processing system 联机数据处理系统onshore wind 向岸风ontogenesis 个体发生ontogeny 个体发生oolitic limestone 鲕状石炭岩ooze mud 软泥opal 蛋白石opalization 乳白化opaque paint 不透谜料open canopy 稀疏林冠open chain 开链open channel 摸open channel flow 摸流open community 稀疏群落open commuunity 稀疏群落open cut drain 玫open ditch drainage 玫排水open fault 张开断层open fold 开褶皱open forest 疏林open pit 露天开采坑open river stage 畅廉位open sand 松砂open system 开放系统open water 开敞水面operating instruction 使用说瞄operating program 操滋序operating system 操椎统operation 运算operations research 运筹学ophicalcite 蛇纹大理岩ophitic texture 辉绿结构opoka 蛋白土oppression 抑制optical attenuation length of sea water 海水光学衰减长度optical camouflage 光学伪装optical density 光学深度optical density of atmosphere 大气光学密度optical depth 光学深度optical digital processor 光学数字处理机optical electronic viewing instrument 光电观察仪器optical enlargement 光学放大optical glass 光学玻璃optical image 光学图像optical mechaical scanning 光机扫描optical mechanical projection 光学机械投影optical mechanical rectification 光学机械纠正optical micrometer 光学测微器optical mosaic 光学镶嵌optical pantograph 光学缩放仪optical phenomenon 光学现象optical radiation 光辐射optical scanning system 光学扫描系统optical sighting device 光学照准器optical system 光学系统optical transformation of photograph 航摄照片的光学变换optical wedge 光楔optics 光学optimal control 最佳控制optimal design 优化设计optimeter 光学比较仪optimization method 最优化法optimum 最适条件optimum density 最佳密度optimum moisture 最适水分orbit 轨道orbit calculation 轨道计算orbital altitude 轨道高度orbital eccentricity 轨道偏心率orbital motion 轨道运动orchard savanna 果园热带稀林草原order 目order of crystallization 结晶次序ordering 排序ordinary chernozem 普通黑土ordinary polyconic projection 普通多圆锥投影ordinary water discharge 常泄水量ordinate 纵坐标ordnance survey 军事测量ore 矿石ore body 矿体ore bunch 矿袋ore deposit 矿床ore dressing 造矿ore geochemical anomaly 成矿地球化学异常ore grade 矿石品位ore mineral 矿石矿物ore reserve 矿石储量ore shoot 富矿体ore surface halo 矿上晕oreforming element 成矿元素organ 瀑organic acid 有机酸organic chemistry 有机化学organic colloids 有机胶体organic compound 有机化合物organic environment 有机环境organic fertilizer 有机肥料organic geochemistry 有机地球化学organic geochemistry method 有机地球化学法organic matter 有机物organic rock 有机岩organic silt 沼泥炭organic soil 有机土organic substance 有机物质organic weathering 有机风化organization 组织organo metallic compound 有机金属化合物organomercurous fungicide 有机汞杀菌剂orictocoenosis 化石群oriental region 东洋区orientation 方位查字典地理网有最全面的地理知识,欢迎大家继续阅读学习。
水下航行器光学隐蔽深度测量系统
水下航行器光学隐蔽深度测量系统朱海荣;朱海;刘金涛;温亚楠;李惟羽【摘要】为了实现对水下航行器光学隐蔽深度的实时测量,研制了水下航行器光学隐蔽深度测量系统.根据目标背景对比度的传输理论,分析了目标背景对比度在海水、大气、海面的传输特性,建立了水下航行器光学隐蔽深度模型.基于该模型分析了测量水下航行器光学隐蔽深度所需要的参数,设计了测量海水上行辐照度、海水下行辐照度、海水体衰减性系数、海水漫衰减性系数和水下航行器表面反射率的测量方法,并完成一次海上试验.试验测得良好天气情况下特征尺度为12 m的水下航行器的光学隐蔽深度为25~35m.试验结果表明,设计的测量系统可以实现对水下航行器光学隐蔽深度测量,并适用于各类潜艇.由于改变了传统的在水面进行深度测量的方式,该系统工作稳定可靠,提高了隐蔽性和对海域测量的准度,可为水下作战决策提供帮助.【期刊名称】《光学精密工程》【年(卷),期】2015(023)010【总页数】7页(P2778-2784)【关键词】光学隐蔽深度测量;水下航行器;目标背景;对比度【作者】朱海荣;朱海;刘金涛;温亚楠;李惟羽【作者单位】海军潜艇学院,山东青岛266000;海军潜艇学院,山东青岛266000;中国海洋大学信息科学与工程学院,山东青岛266000;青岛市光电工程技术研究院,山东青岛266000;海军潜艇学院,山东青岛266000【正文语种】中文【中图分类】TJ67;U666.161 引言非声学水下航行器的探测手段主要有光学探测、微波遥感探测、磁探测、电场探测等。
随着水下航行器消音、消磁技术的应用,光学探测成为了基本的水下目标探测手段[1],因此水下航行器的光学隐蔽是最基本的航行安全保证条件之一。
水下航行器的光学隐蔽深度是指在平静海面和大气能见度较好的情况下,在海面200m 高处航空侦察机上通过目力、望远镜或光学相机能够观测到的水下目标的最大深度[2]。
中国近海水深较浅,实时获取所在海洋环境的光学隐蔽深度,对确保水下航行器活动过程中航行的安全性,提高航行器的隐蔽能力和作战能力,正确指导指挥员反光学侦查及辅助作战的意义重大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Remote Sensing of Water Optical Property for China’s Inland Lake Taihu Using the SWIR Atmospheric Correction With1640and2130nm BandsMenghua Wang,SeungHyun Son,Yunlin Zhang,and Wei ShiAbstract—Using the shortwave infrared(SWIR)atmospheric correction algorithm with1640and2130nm bands,water optical property data for China’s inland freshwater Lake Taihu have been derived from measurements of the Moderate Resolution Imaging Spectroradiometer(MODIS)on the satellite ing MODIS-Aqua measurements from2002to2010,seasonal and spatial distributions of the normalized water-leaving radiance spectra from visible to the near-infrared(NIR)and nm)are derived and used for study and charac-terization of Lake Taihu water optical properties.In particular, for thefirst time,spatial and seasonal variations ofat the SWIR1240nm are derived for theand show some different those of the red and NIRand.Time series of monthly MODIS-derived spectra for Taihu are obtained and analyzed,showing seasonal and interannual variations. The results indicate that the SWIR contributions in the lake are mainly due to the presenceficant amounts of algae,while the red and NIR variations result from changes of total suspended sediment amounts in the water column.Furthermore,this study shows that all three SWIR bands at1240,1640,and2130nm are useful and required for satellite water quality remote sensing for extremely turbid near-shore and inland waters.Index Terms—Atmospheric correction,lakes,remote sensing, water pollution,water quality.I.I NTRODUCTIONL AKE Taihu is the third-largest inland freshwater lake in China with an areal coverage of2300km and a mean water depth of2m.China’s Lake Taihu is located in the Yangtze River delta(Fig.1),which is one of the world’s most heavily populated regions with the highest rate of economic Manuscript received November08,2012;revised December18,2012;ac-cepted January22,2013.Date of publication March12,2013;date of cur-rent version November21,2013.The in situ data collection in Lake Taihu(Y. Zhang)was jointly supported by the Knowledge Innovation Project of the Chi-nese Academy of Sciences(KZCX2-YW-QN312),the Major Projects on Con-trol and Rectification of Water Body Pollution(No.2012ZX07101-010),and the National Natural Science Foundation of China(41271355,40825004,and 41230744).(Corresponding author:M.Wang.)M.Wang,S.Son,and W.Shi are with the NOAA National Environmental Satellite,Data,and Information Service,Center for Satellite Applications and Research,College Park,MD20740USA(e-mail:Menghua.Wang@). S.Son and W.Shi are with CIRA,Colorado State University,Fort Collins, CO80523USA.Y.Zhang is with the State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences, Nanjing,China.Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/JSTARS.2013.2243820development in the last ke Taihu provides normal water usage for several million residents in nearby Wuxi City (Fig.1).Waters in Lake Taihu are consistently highly turbid [1],with the exception of East Taihu Bay and some of the East Lake regions(Fig.1),where waters are often clear,with aquatic vegetation in the bottom[2].In addition,Lake Taihu has frequent algae blooms in the spring-summer,polluting the lake water[1],[3]–[5].In particular,in the last decade or so, algae blooms happen more often with largescale effects and disastrous impacts regionally,e.g.,the2007blue-green algae (Microcystis)bloom event in the lake[3],[4].Algae-polluted waters in the lake have affected and interrupted the normal life of the several million residents nearby.Therefore,there is an urgent need for effectively monitoring and managing water quality in inland freshwater lakes such as Lake Taihu,and for a broader understanding of the optical,biological,and ecological processes and phenomena in all fresh inland waters. Recently,Wang et al.(2012)[1]examined and characterized Lake Taihu water optical,biological,and biogeochemical properties using measurements from the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard the Aqua satel-lite.In the study,the shortwave infrared(SWIR)atmospheric correction algorithm[6]–[8]using MODIS SWIR bands of 1240nm and2130nm in addition to an iterative approach, has been developed specifically for Lake Taihu in order to account for some extremely turbid water cases,where the SWIR1240nm band has important water-leaving radiance contributions[1].To accurately derive satellite-measured nor-malized water-leaving radiance spectra,for which the definition can be found in various references[9]–[13], sensor-measured radiances at the two near-infrared(NIR)or SWIR bands are used for atmospheric correction[6],[9],[10] with the assumption of known water-leaving radiance contri-butions for these two bands,e.g.,the black ocean assumption [9]or modeling for the NIR radiance contributions[14]–[17]. There are also some other attempts with non-ocean color satel-lite sensor for deriving water optical property of Lake Taihu [18].In a more recent study,the SWIR atmospheric correction algorithm was used to derive and characterize water turbidity for a freshwater Lake Okeechobee in Florida from long-term MODIS-Aqua measurements[19].However,with the SWIR atmospheric correction algorithm using MODIS-Aqua bands at 1240and2130nm for deriving water property data for Lake Taihu,Wang et al.(2012)[1]shows that the SWIR1240nm band is not always black for the entire lake,i.e.,the normalized water-leaving radiance at1240nm is not always1939-1404©2013IEEEFig.1.Maps of China’s inland freshwater Lake Taihu with indications of four in situ data locations(a)–(d),which correspond to latitudes and longitudes of (31.26N,119.98E),(31.01N,120.24E),(31.14N,120.16E),and(31.16N,120.19E),respectively.negligible for waters in some regions[1],in particular,for regions with very significant amounts of algae(algae blooms), such as those with surface-floating algae[20].Thus,an iterative approach was developed in the previous study[1],accounting for non-negligible water-leaving radiance contribution at the SWIR1240nm band.It should be noted that satellite-measured spectra data are essential for remote sensing of water optical,biological,and biogeochemical properties,e.g.,chloro-phyll-a concentration,the diffuse attenuation coefficient,total suspended sediment(TSS),as well as water inherent optical properties(IOPs)[21]–[27].In this paper,we further our efforts in deriving water optical properties for China’s Lake Taihu using the SWIR-based atmo-spheric correction algorithm with MODIS SWIR bands1640 and2130nm.In particular,at the SWIR band1240nm can be derived routinely for Lake Taihu.Both MODIS SWIR bands at wavelengths of1640and2130nm are generally black(i.e.,negligible radiance contributions at these two SWIR bands)for Lake Taihu and can be used for carrying out atmospheric correction[28].Although detailed simulations[6] and some MODIS case studies[28]have been done,it is for the first time that long-term satellite measurements are extensively used to characterize the water optical property for the highly turbid inland Lake Taihu using the SWIR atmospheric correction with MODIS1640and2130nm bands.Water optical property results for the lake from this study are compared with those from the previous study,showing consistent results from both methods,although there are some differences,particularly for spectra at the shorter wavelengths.In addition,spatial and seasonal variability of spectra from visible to the NIR and SWIR(1240nm)for Lake Taihu is examined,including climatology spatial distributions of(1240)for the lake derived from MODIS-Aqua measurements from2002to2010.II.T HE MODIS-A QUA-D ERIVED W ATER O PTICALP ROPERTY D ATAA.The SWIR Atmospheric Correction Algorithm Using1640 and2130nm BandsSince Lake Taihu contains consistently highly turbid waters [29]with significant NIR water-leaving radiance contributions [1],the SWIR-based atmospheric correction algorithm[6]–[8] is required for deriving lake water optical property data from MODIS-Aqua measurements.The methodology of the SWIR atmospheric correction algorithm[6]is essentially the same as the Gordon and Wang[9]NIR atmospheric correction algo-rithm.Instead of using two NIR bands for atmospheric cor-rection[9],the SWIR atmospheric correction algorithm uses a combination of two SWIR bands,e.g.,1240and2130nm,or 1640and2130nm[6].However,it has been further demon-strated that the SWIR1240nm band is not always black for the entire Lake Taihu,i.e.,at the wavelength of1240nm is not always negligible for waters in some regions[1].Thus, in this study,the SWIR-based atmospheric correction algorithm with MODIS SWIR bands at1640and2130nm is used[6].The black ocean pixel assumption for the SWIR bands at1640and 2130nm is generally valid[28]even for the most turbid waters because of considerably large water absorptions at these wave-lengths[30],[31].The performance of the SWIR atmospheric correction algorithm including some error analysis has been dis-cussed in detail in[6].For MODIS-Aqua,however,four out of ten detectors for the SWIR1640nm band are inoperable and cannot be used effectively.For this reason,the MODIS-Aqua SWIR1240 and2130nm bands have been typically used for carrying out atmospheric correction,e.g.,in the previous study[1].On the other hand,the SWIR1640and2130nm bands have beenWANG et al.:REMOTE SENSING OF WATER OPTICAL PROPERTY FOR CHINA’S INLAND LAKE TAIHU2507used previously to assess the black ocean pixel assumption for three MODIS SWIR bands[28],and thus the SWIR1640 and2130nm algorithm is readily available to apply to Lake Taihu.In addition,the SWIR1640and2130nm atmospheric correction algorithm has also been used to derive sea ice optical properties in the Bohai Sea[32],[33].In fact,using the SWIR atmospheric correction algorithm with1640and2130nm bands,satellite ocean(water)property data can be derived directly and more efficiently without the iteration process.It should be noted that,with only six working detectors(four dysfunctional detectors)for the MODIS-Aqua SWIR1640nm band,satellite-derived ocean(water)color products will miss a significant amount of data,in particular,for the individual Level-2file[28].Due to significantly less amount of Level-2 data,in this study,we focus on deriving climatology seasonal results(composite images)for Lake Taihu using the SWIR 1640and2130nm atmospheric correction algorithm.It should also be noted that the implementation of the NOAA satellite ocean(water)color data processing system—NOAA Multi-Sensor Level-1to Level-2(NOAA-MSL12)—is different from the current NASA data processing system;particularly for the SWIR-based data processing[8],[34],e.g.,cloud masking [35],an ice detection algorithm[36],the lookup tables[6], [37]–[39],detection of turbid waters and absorbing aerosols [40],and some codes in data processing,as well as vicarious gains,are different.The vicarious gains for MODIS-Aqua visible to NIR bands are derived consistently for carrying out the NIR-SWIR combined atmospheric correction for deriving ocean(water)color products in open oceans and coastal regions [8],[34].Thus,the NOAA-MSL12data processing system used in this study is different from the NASA standard data processing system.Also,for NOAA operational ocean color data processing(near-real time),ancillary data(the total column ozone amount,sea surface wind speed,atmospheric pressure, and total column water-vapor amount)from the Global Forecast System(GFS)model are used[41].B.MODIS-Aqua Data Compared With In Situ Measurements In addition to the in situ data used in the previous study for Lake Taihu[1],there are some other in situ data that are now available to use in this study.It should be noted,however,that these new in situ data were only available after the previous work[1]was published,although these data were acquired much earlier[42].Zhang et al.[42],[43]provide some detailed description and discussions about in situ data.Briefly,five seasonal cruises in Lake Taihu were carried out in January 7–9,2006,July29–August1,2006,October12–15,2006, January7–9,2007,and April25–27,2007for collecting in situ physical,optical,and biological lake data[42].In particular, in situ water-leaving radiance spectra data from350–2500 nm were measured using an Analytical Spectral Devices,Inc. (ASD)FieldSpec Dual UV/VNIR spectrometer,for which the instrument spectral sampling interval is about1nm for its entire spectral coverage(350–2500nm).In situdata in the SWIR wavelengths,however,are quite noisy as radiance values in the SWIR bands are very low.It should be noted that,for near-zero values such as for the SWIR data,it is quite reasonable one gets both positive and sometime slightly negative in situ values due to instrument noise and noise from the in situ data processing.The in situ data collection and processing were carried out following the procedures outlined in the NASA ocean optics protocols[44]. Specifically,in the in situ data processing,the radiance that is contributed by the water surface reflection from the sky radiance to the instrument detector has been calculated and removed[42]as outlined in[45].Thus,MODIS-Aqua-derived spectra in Lake Taihu can be compared with those from the in situ measurements.It is important to note that we use the same in situ matchup procedure as described in[8]from the MODIS-Aqua-derived daily data,in particular, a valid satellite/in situ matchup requires50%valid pixels from satellite measurements,i.e.,13pixels in a55box surrounding the in situ data,and the recalculation of satellite data for satisfying a uniformity criterion[8].Fig.2provides four examples of spectra data for these validation comparisons.Fig.2(a)–(d)are spectra data that were collected at the locations indicated in Fig.1 marked as(a)–(d),i.e.,the corresponding latitudes and longi-tudes for the data obtained in Fig.2(a)–(d)are at(31.26N, 119.98E)for January9,2006,(31.01N,120.24E)for July 30,2006,(31.14N,120.16E)for July30,2006,and(31.16 N,120.19E)for October15,2006,respectively.In Fig.2, there are two sets of MODIS-Aqua-measured spectra data,i.e.,from the SWIR1240and2130nm method with an iteration approach[1]and the SWIR1640and2130nm method (this study).In addition,spectra results with the SWIR 1640and2130nm method also include MODIS-measured data in Fig.2.The in situ data in Fig.2 are shown from400to1240nm.Results in Fig.2show that both SWIR-based atmospheric correction algorithms(i.e.,SWIR1240and2130nm with an iterative approach and the SWIR1640and2130nm method) performed reasonably well for these highly turbid inland lake waters.Indeed,both in situ[42],[46]and MODIS-Aqua-mea-sured data show significantly high NIR water-leaving radiance values,i.e.,values at the wavelength of859nm range from0.3to 1.5mW cm m sr (see also results in Fig.3).In particular,in Fig.2(a)–(d),the corresponding MODIS-derived values using the SWIR1640and2130nm method are0.038,0.008,0.002, and0.01mW cm m sr,respectively.Significant contribution in Fig.2(a)leads to biased low MODIS-Aqua-derived in the visible bands with the SWIR1240and2130nm method.For cases with negligible (1240)contributions,on the other hand,both SWIR-based atmospheric correction algorithms produce consistent spectra results.Nevertheless,results in Fig.2show that the MODIS-derived at the visible bands compare reason-ably well with the in situ measurements.Fig.3further shows comparisons between MODIS-Aqua and in situ-measured values at the selected six(Fig.3(b)) or seven(Fig.3(a))MODIS-Aqua bands(412,443,488,555, 645,859,and1240nm).It is noted that for extremely turbid waters some of MODIS ocean color bands are often saturated. Fig.3(a)shows results(including SWIR from the SWIR1640and2130nm atmospheric correction algorithm,2508IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERV ATIONS AND REMOTE SENSING,VOL.6,NO.6,DECEMBER2013Fig.2.MODIS-Aqua-derived normalized water-leaving radiance spectra data using the modi fied SWIR 1240and 2130nm method [1]and the SWIR 1640and 2130nm algorithm in Lake Taihu compared with in situ data that were acquired on (a)January 9,2006,(b)July 30,2006,(c)July 30,2006,and (d)October 15,2006.The locations in latitude and longitude are indicated in each plot and also shown in Fig.1.while Fig.3(b)demonstrates cases using the SWIR 1240and 2130nm with an iteration approach [1].For a fair comparison,the same in situ data for the first six MODIS bands (visible to NIR)are used for both Fig.3(a)and (b).It should be noted that there were signi ficant reductions in the number of matchup data in order to satisfy the criterion of 50%of valid pixels in a 55box surrounding the in situ data.For example,there are 40–60satellite/in situ matchup comparisons with a criterion of 5valid pixels (20%)in a 55box,while with the re-quired 13valid pixels (50%)and the spatial uniformity cri-teria in a 55box the valid number of comparisons reduces to 12–24.It was further con firmed from in situ observations that these matchup requirements [8]are necessary,particularly for such a highly turbid and often spatially non-uniform lake.With a relaxed requirement,e.g.,a criterion of 5valid pixels in a 55box,we found some in situ data even larger than MODIS-Aqua-measured top-of-atmosphere (TOA)radi-ances due to highly spatial non-uniform distribution of water property in Lake Taihu.In Fig.3,the corresponding number of matchup data forat MODIS wavelengths of 412,443,488,555,645,and 859nm are 12,12,14,18,18,and 24,respectively.The number of matchup data for the SWIRin Fig.3(a)is 21.Although there are some variations (noise errors)due to both sensor (e.g.,poor MODIS SWIR bands performance)and algorithm performance errors [6],[47]results in Fig.3show reasonable matchup comparisons between MODIS-Aqua and in situ measurements.In Fig.3mean ratio values inbetween MODIS-Aqua-derived and in situ-measureddata for wavelengths of 412,443,488,555,645,859,and 1240nm with the corresponding standard deviation (STD)values are provided and also summarized in Table I.Results in Fig.3and Table I show that the SWIR 1640and 2130nm method performed slightly better with reduced bias errors in,compared with those from the modi fied SWIR 1240and 2130nm method [1].However,noise errors (i.e.,STD values)are generally lower with the SWIR 1240and 2130nm method as also demonstrated in [6].It is particularly noted that comparisons of the SWIR are very noisy with a very large STD value (as expected).In summary,satellite/in situ comparison results show that the SWIR 1640and 2130nm algorithm can produce reasonable MODIS-Aqua-measured spectra data for Lake Taihu,particularly for spectra at the visible wavelengths.WANG et al.:REMOTE SENSING OF WATER OPTICAL PROPERTY FOR CHINA’S INLAND LAKE TAIHU2509Fig.3.MODIS-Aqua-derived spectra data using(a)the SWIR1640and2130nm method and(b)the SWIR1240and2130method with an iteration approach[1]in Lake with in situ measurements for wavelengths of412,443,488,555,645,859,and1240nm.The SWIR comparison results are only shown in plot(a).The mean ratio(MODIS-Aqua vs.in situ)and STD values at each wavelength are listed in both also shown in Table I.TABLE IM ATCHUP C OMPARISON R ESULTS(F IG.3)OF THE M EAN R ATIO(MODIS VS.I N S ITU)ANDTHE C ORRESPONDING STD V ALUES FOR QUA V ARIOUS B ANDS2510IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERV ATIONS AND REMOTE SENSING,VOL.6,NO.6,DECEMBER2013Fig.4.MODIS-Aqua-measured (2002–2010)seasonal climatology (panels a–d),(panels e–h),(panels i–l),(panelsm–p),and(panels q–t)in Lake Taihu using the SWIR 1640nm method.data are cm m sr.III.S ATELLITE -M EASURED S PECTRA F ROM V ISIBLE TO THE NIR AND SWIR B ANDSMODIS-Aqua measurements from 2002to 2010in Lake Taihu were acquired to produce water optical property data using the SWIR-based (1640and 2130nm)atmospheric correction algorithm.These satellite remote sensing data are used for char-acterizing water optical properties for Lake Taihu;in particular,for the first time,satellite-measured at the SWIR band 1240nm are derived for Lake Taihu.Detailed results and discussions are provided in the following sections.WANG et al.:REMOTE SENSING OF WATER OPTICAL PROPERTY FOR CHINA’S INLAND LAKE TAIHU2511A.Spectra From Visible to the NIR Wavelengths Fig.4provides seasonal climatology spectra images at wavelengths of443,555,645,859,and1240nm for the entire Lake Taihu.These images were derived from MODIS-Aqua measurements from2002–2010using the SWIR-based at-mospheric correction algorithm with bands1640and2130nm [6].Thus,spectra results in Fig.4provides overall characteristics of optical property both spatially and seasonally for Lake Taihu.It is noted that color scales in Fig.4are dif-ferent(indicated in the right side)for images in various MODIS-Aqua bands.Fig.4(a)–(d)show seasonal climatology(2002–2010)of at the wavelength of443nm for spring (March,April,and May),summer(June,July,and August),fall (September,October,and November),and winter(December, January,and February),respectively,representing character-ization of algae absorption distributions for Lake Taihu[48]. Spatially,low values are observed in various bay regions,e.g.,the Meiliang Bay,Gonghu Bay,and Zhushan Bay, compared with other lake regions,particularly in the central lake region.Overall,for most of the lake,high values occur in the spring season,while lows are shown in the fall season. On the other hand,seasonal climatology images (Fig.4(e)–(h))show relatively stable values throughout the year for Meiliang Bay,Gonghu Bay,and Zhushan Bay,while there are significant seasonal changes in for most of the other lake regions.For most of the lake regions,highvalues are observed in the winter-spring seasons and low values are shown in the summer-fall seasons.These varia-tions are mainly influenced by changes of the TSS concentra-tion in the lake.The TSS spatial and seasonal variations in Lake Taihu are also represented through seasonal climatology results in(Fig.4(i)–(l)),which can be related to TSS con-centration[26],[27],[49],[50],with highs in the winter-spring seasons and lows in the summer-fall seasons.The TSS seasonal variation in Lake Taihu has been observed from in situ measure-ments[43].Furthermore,results of the NIR water-leaving radiance con-tributions for Lake Taihu(Fig.4(m)–(p))show that the seasonal pattern in is similar to that of, i.e.,highs in the winter-spring and lows in the summer-fall sea-sons for most of the lake regions.Clearly,variation in Lake Taihu is also mainly controlled and influenced by the TSS variation in the lake.Fig.4(p)shows that the winter season includes the most turbid water for Lake Taihu with the largest located in the lower western part of the lake.It is important to note that for Lake Taihu,contribution is significant over most of the lake and has to be accurately ac-counted for in satellite remote sensing of the lake water property with the NIR atmospheric correction algorithm[9].These spatial and seasonal distribution results from the visible to the NIR bands are consistent with those derived from the previous study using the SWIR-based(1240and 2130nm)bands with an iterative approach for atmospheric correction in Lake Taihu[1].However,compared with the results from the previous study,at the blue bands are notably larger with the SWIR1640and2130nm method(e.g.,Figs.2(a)Fig.5.Histogram results of for Lake Taihu from(a)MODIS-Aqua-measured(2002–2010)data climatological four seasons(spring, summer,fall,and winter)and(b)overall distributions from all MODIS-Aqua-measured(2002–2010)and in situ data.and3).In addition,more data noises are notable from the SWIR 1640and2130nm method mainly due to four dysfunctional de-tectors in MODIS-Aqua SWIR band1640nm,i.e.,considerably less data for deriving the seasonal composite images.B.Data in the SWIR1240nm BandFig.4(q)–(t)provide seasonal climatology of at the SWIR wavelength of1240nm for Lake Taihu. Note that the color scale for is from0to0.15mW cm m sr.For a reference,contribution ofwith a value of0.1mW cm m sr is very significant. In fact,the TOA radiance at the SWIR1240nm for a clear sky over ocean is generally0.1mW cm m sr.For most part of the lake,contribution is negligible.How-ever,there are some noticeable contributions in var-ious bay regions,e.g.,Zhushan Bay,Meiliang Bay,etc.Par-ticularly,it is important to note that both spatial and seasonal distributions in(Fig.4(q)–(t))are different from those of(Fig.4(m)–(p))or(Fig.4(i)–(l)), indicating that the reason and mechanism for(or and variations are different for Lake Taihu.Some significant contributions in Zhushan Bay and Meiliang Bay are in the summer-fall seasons,likely due to the presence of significant amounts of algae,e.g.,sur-facefloating algae[20].In the winter,while has2512IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERV ATIONS AND REMOTE SENSING,VOL.6,NO.6,DECEMBER2013Fig.6.MODIS-Aqua-derived(from2002–2010)density-scattering plots of(a)vs.,(b)vs.,(c)vs.,and(d)vs.for China’s Lake Taihu.the highest contributions in Lake Taihu(Fig.4(p))due to high loading of TSS[51],is actually negligible for al-most entire Lake Taihu(Fig.4(t)).Fig.5further quantifies the contributions in Lake Taihu,showing histogram results of for the four climatological seasons(Fig.5(a))and overall distributions from satellite and in situ measurements(Fig.5(b)).Results in Fig.5(a)show that mode values in histograms for spring,summer,fall,and winter seasons are quite small with the corresponding values of0.02,0.005,0.01,and 0.01mW cm m sr,respectively.Again,a very small negative value(near zero)is due to data noise.Some notice-able cases with large(e.g.,larger than0.1mW cm m sr show up seasonally in the order of the most to the least as summer,fall,spring,and winter,respectively, showing that the most significant SWIR contribu-tions are in the summer-fall season in Lake Taihu(Fig.5(a)). On the other hand,Fig.5(b)compares overall histogram results in from MODIS-Aqua and in situ measure-ments for the lake.In fact,because of data noise in, comparisons of histogram results are more meaningful.The total numbers of data contributed to the results in Fig.5(b)from MODIS-Aqua and in situ measurements are58134and135, respectively.In Fig.5(b),the mode,mean,median,and STD values for the MODIS-Aqua results are0.010,0.023,0.016, and0.030mW cm m sr,respectively,compared with the corresponding values from in situ measurements of0.010, 0.079,0.021,and0.369mW cm m sr,respectively. Both mode and median values from satellite and in situ data are comparable,with significantly high mean and STD values from in situ data.Again,these values should be compared with the TOA radiance of0.1mW cm m sr at the SWIR 1240nm.Fig.5shows clearly that there are some significant contributions in Lake Taihu,and con-tributions need to be accurately accounted for in atmospheric correction for deriving accurate satellite spectra data.C.Relationships Among Various MODIS-MeasuredDataUsing all MODIS-Aqua measurements from2002 to2010in Lake Taihu,relationships(or correlations)between at various bands vs.NIR have been inves-tigated.Fig.6provides results of density-scattering plots for vs.at wavelengths of555,645,748,and 1240nm.It is noted that MODIS-Aqua-measured data in Fig.6are from Level-2results.Results in Fig.6show that for Lake Taihu there are strong correlations betweenvs.(Fig.6(a)),vs.(Fig.6(b)), and vs.(Fig.6(c)),while correlations between vs.are quite weak(Fig.6(d)). The weak correlation has also been shown and discussed in the previous results(Fig.4)due to different mechanisms forWANG et al.:REMOTE SENSING OF WATER OPTICAL PROPERTY FOR CHINA’S INLAND LAKE TAIHU2513Fig.7.MODIS-Aqua-derived monthly mean values ofover entire Lake Taihu as a function of time covering from 2002–2010for parameters of (a)and ,(b)and,(c),and (d),respectively.driving and changes.As also found fromShi and Wang (2009)study [28],at first,both andincrease almost linearly as increase of(Fig.6(a)and (b)).Then,with further increase of ,the rate of increase in (or is reduced.Finally,with more increase of and reach their corresponding maximum values (first and then ,respectively.This phenomenon [52],[53]is attributed to the dominance of for extremely turbid waters in a function of and are total absorption coef ficient and backscattering coef ficient,respec-tively),of which can be expressed as a function [54].When reaches its maximum value.In addition,with all MODIS-Aqua-measured data in Fig.6,the best fitting curves for vs.(Fig.6(a)),vs.(Fig.6(b)),and vs.(Fig.6(c))for Lake Taihu have been derived and shown in each plot in Fig.6,i.e.,(1)where fitting coef ficients of (for wave-lengths of 555nm in Fig.6(a),645nmin Fig.6(b),and 748nm in Fig.6(c)are (0.7517,0.2181,0.1455),(0.6727,0.4475,0.1510),and (0.2864,0.8675,0.1498),respectively.These derived rela-tionships (Fig.6(a)–(c))from MODIS-Aqua measurements can be used for a regional (Lake Taihu)atmospheric correction for satellite remote sensing of water optical properties,e.g.,with measurements from the Korean Geostationary Ocean Color Imager (GOCI)[17].Furthermore,we found from the results in Fig.6(c)that the NIR normalized water-leaving re flectance ratio [55],[56]between bands at 748and 859nm at low re flectance value is about 1.73,compared to the value of 1.84—the ratio of water absorption coef ficients between bands at 859and 748nm [55]D.Time Series of MODIS-Aqua-Measured for LakeTaihuTime series of monthly averages of MODIS-Aqua-derived,anddata are obtained for the entire Lake Taihu.Fig.7provides the monthly mean values of over entire Lake Taihu at spectral bands of the blue and 488nm (Fig.7(a)),green and red(Fig.7(b)),NIR (Fig.7(c)),and。