1.6.2完全平方公式2

合集下载

七年级数学下册《1.6.2 完全平方公式》教案 (新版)北师大版

七年级数学下册《1.6.2 完全平方公式》教案 (新版)北师大版
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以此等式是(a-b)2=a2-2ab+b2.故选C.
方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
1.6.2完全平方公式
教学目标
会运用完全平方公式进行一些数的简便运算
教学重、难点
重点:会运用完全平方公式进行一些数的简便运算
难点:会运用完全平方公式进行一些数的简便运算
导学方 法
启发 式教学、小组合作学习
导学步骤
导学行为(师生活动)
设计意图
回顾旧知,引出新课
1、平方差公式的内容是什么?
2、完全平方公式的内容是什么?
则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等 于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、 1;(a+b)5的各项系数依次为1、5、10、10、5、1,因此(a+b)6的各项系数分别为1、6、15、20、15、6、1.故填20.
方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.
引出研究本节课要学习知 识的必要性,清楚新知识的引出是由于实际生活的需要
学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性
体现教师的主导作用

北师大版七年级数学下册1.6.2 完全平方公式 教案设计

北师大版七年级数学下册1.6.2  完全平方公式 教案设计

1.6 完全平方公式(2)教学目标:1.运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算;区分(a+b)2与a2+b2的关系.2.能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.教学重点与难点:重点是巩固完全平方公式,区分(a+b)2与a2+b2的关系;熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.难点是区分(a+b)2与a2+b2的关系;熟悉乘法公式的运用,体会公式用中字母a、b的广泛含义.教法与学法指导:教法:运用让学生自主探究的方法,帮助学生在学习的过程中理解、掌握新知识,提高他们的自学能力和解决实际问题的能力.学法:引导学生主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力.课前准备:多媒体课件.教学过程:一、引导回顾,搭建桥梁1.复习完全平方公式的有关知识.(多媒体出示)师:上节课我们学习了运用完全平方公式进行整式乘法的运算.哪位同学能说一说什么是完全平方公式?用文字语言如何叙述?公式中的字母a、b可以表示什么?(学生思考、稍作沉思后)生1:(a+b)2=a2+2ab+b2;(a-b)2=a2 -2ab+b2.(教师板书)生2:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍.生3:数或代数式.2.计算:(1)(2x+y)2;(2)(-2x+3y)2;(3)(-2x-3y)2;(4)(1-3a)2.(按学习小组分配,每组一题.学生完成后,教师利用实物投影让学生进行评价,教师进行点评)设计意图:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,起到了承上启下的作用.二、构造悬念,创设情境(多媒体出示,提出问题)师:有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……如果让你去你会怎么做?为什么?生4:(学生非常兴奋)如果是我,我会和很多人一起去.因为去一个人只能得一块糖;去两个人每人就能得两块糖;去三个人,每人就能得三块糖;去的越多每人分到的糖越多.(全班同学哈哈大笑,课堂气氛热烈.)师:(微笑)你有点贪吃呦.同学们,假如第一天有a 个孩子一起去看老人,第二天有b个孩子一起去看老人,第三天有(a+b)个孩子一起去看老人,那么第三天老人给出去的糖果和前两天给出去的糖果总数一样多么吗?(学生开始思考并讨论.)师:本节课我们继续来学习运用完全平方公式来进行整式乘法运算.【板书课题:§1.6 完全平方公式(2)】设计意图:数学源自于生活,通过生活当中的一个有趣的分糖场景,创设活跃的课堂气氛,培养学生的学习兴趣及学习热情.及时抛出问题,设置悬念,激发学生的求知欲.三、目标导向,探究学习探究一:(a+b)2与a2+b2的关系(多媒体出示,引导探究问题)(1) 第一天有a个孩子一起去看老人,老人一共给了这些孩子多少块糖?(2) 第二天有b个孩子一起去看老人,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(学生思考、稍作沉思后)生5:第一天有a 个孩子一起去了老人,老人一共给了这些孩子a2块糖.生6:第二天有b个孩子一起去了老人,老人一共给了这些孩子b2块糖.生7:第一天有(a + b)个孩子一起去了老人,老人一共给了这些孩子(a + b)2块糖.师:你们回答的很好.那么这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?生8:第三天得到的糖果数比前两天他们得到的糖果总数多.师:多多少?为什么?(学生开始计算,计算后回答.)生9:多2ab块糖果.因为第三天得到的糖果总数是(a + b)2块,前两天他们得到的糖果总数是(a2+b2)块,(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.师:为什么会多出2ab块糖果呢?同学们可分组讨论多出2ab块糖的原因.(老师可参与到学生的讨论,撞击他们思想的火花.)生10:对于a个孩子来说,每个孩子第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同样对于b个孩子第三天得到的糖果总数比第二天也多了ab 块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.师:同学们,你们同意他的分析吗?生:同意.师:这位同学分析的很好!上面的问题充分说明:(a+b)2≠a2+b2,同时可以我们还可以得出(a+b)2与a2+b2的关系,即(a+b)2-(a2+b2)= 2ab.(板书)下面我们再来看一个例题,你会有更多的发现.设计意图:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.探究二:简便计算(多媒体出示)例利用完全平方公式计算:(1) 1022;(2) 1972.学生先自主探究,然后在小组内交流.教师适时引导:如果直接计算1022,1972会很繁.根据题目的提示可以想到1022可以写成(100+2)2,1972可以写成(200-3)2.最后让学生利用实物投影展示,并让生生互评.展示:1022=(100+2)21972 =(200-3)2=1002+2×100×2+22=2002-2×200×3+32=1000+400+4 =4000-1200+9=10404;=38809.师:把1022改写成(a+b)2还是(a−b)2 ? a、b怎样确定?生11:把1022改写成(a+b)2,a为100,b为2.师:把1972改写成(a+b)2还是(a−b)2 ? a、b怎样确定?生12:把1972改写成(a−b)2,a为100,b为2.师:由以上两题可以看出对于一些数的运算,如果运用完全平方公式可以使运算变的更简便.下面两道练习题哪位同学能主动到前面来板演?(两名同学主动到黑板板演.)巩固训练:利用乘法公式计算:(1) 962;(2) 2032.(两名学生板演,其余学生在练习本上完成,教师巡视指导,及时评价.)设计意图:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.通过在解题之前的观察与思考,使学生养成认真审题的好习惯,同时对于知识的掌握更有深度,也为后面乘法公式的综合应用奠定了良好的活动基础.四、诱向深入,拓展思维师:通过上面的学习,我们可以发现运用完全平方公式进行一些有关数的运算会很简便,同时也进一步体会到符号运算对解决问题的作用.下面我们再来看一个例题.(多媒体出示)例2 计算:(1)(x+3)2-x2;(2)(a+b+3)(a+b-3);(3)(x+5)2-(x-2)(x-3).师:请同学们认真观察、分析,在小组内讨论交流,说出各题特点及做法.(学生开始认真观察、分析,并在小组内热烈讨论、交流.完成后教师让学生说出自己的看法,教师及时补充.注意要为学生提供充分交流的机会.)生13:第(1)题可以直接用完全平方公式计算.生14:第(1)题也可以逆用平方差公式计算.生15:第(2)题每个因式含有三项,可以利用多项式乘以多项式的法则直接运算.生16:第(2)题利用多项式乘以多项式的法则直接运算过程很复杂而且易错.第(2)题虽然每个因式含有三项,但可以利用加法的结合律整理成能用平方差公式计算的多项式相乘的形式.生17:第(3)题前面可以直接运用完全平方公式展开,后面要运用多项式乘以多项式的法则直接运算.师:同学们分析的很好.但是第(3)题的后面,要注意运算顺序,减号后面的积算出来一定先放在括号里,然后再去括号,避免符号上面出错.下面哪位同学能主动根据分析到黑板来板演?(学生自主选择不同的方法进行板演,其它学生在练习本上完成,教师来回巡视指导,帮助学困生.)展示:(1)方法一:直接利用完全平方公式 方法二:逆用平方差公式解: (x +3)2-x 2 解:(x +3)2-x 2=x 2+6x +9-x 2 =(x +3+x )(x +3-x )=6x +9. =(2x(2) 方法一:平方差公式解: (a +b +3)(a +b =[(a +b )+3][(a +=(a +b )2-32=a 2+2ab +b 2-9.方法二:多项式乘以多项式法则解: (a +b +3)(a +b -3)=a 2+ab -3a +ab +b 2-3b +3a +3b -9= a 2+2ab +b 2-9(3) 解: (x +5)2-(x -2)(x -3)=(x 2+10x +25)-(x 2-5x +6) =x 2+10x +25-x 2+5x -6=15x +19.教师在学生展示完成后及时给予评价,指出存在的问题,引导学生比较(1)、(2)两小题两种方法的优劣,进行方法优化.同时强调第(3)小题当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是非常容易出错的地方.巩固练习:(1)(a-b+3)(a-b-3);(2)(ab+1)2-(ab-1)2;(3)(2x-y)2-4(x-y)(x+2y).(让三名学生板演,其余学生在练习本上完成,教师巡回指导,及时点评.)设计意图:使学生进一步熟悉乘法公式的运用,同时体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第(2)小题体会整体思想,同时渗透添加括号的思想.借助巩固练习,强化学生优化选择的意识.五、总结患联,建构体系师:同学们,在紧张而又活泼的气氛中度过了一节课,你有何收获和体会,不妨和大家共享.生18:在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a+b)2与a2+b2的关系.生19:通过实例,我更进一步体会到完全平方公式中的字母a,b的含义是很广泛的,它可以是数,也可以是整式.生20:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.……设计意图:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.教师对于发言进行鼓励,进一步梳理本节所学,明确所涉及的数学思想和数学方法.六、达标检测,评价矫正A层:1.利用完全平方公式计算(1) 982;(2) 1032.2.计算(1)(x-2y)(x+2y)-(x-4y)2;(2)(m+2n+3)(m+2n-3);(3)(2a+1)2-91-2a)2.B层:3.已知:a+b=3,ab=-12,求下列各式的值(1) (a-b)2;(2) a2+b2.4.若(x-2y)2=(x+2y)2+A,则A = .5.若9x2-12x+m是完全平方式,则m = .(学生完成后,教师及时点评、总结)设计意图:进一步巩固完全平方公式的应用.A层题目是基础题,面向全体.B层题是拓展题面向中等以上学生,进一步提高他们的能力.七、布置作业,课后提升必做题:课本P27习题1.12 第1题(2)、(4)小题.选做题:课本P27习题1.12 第2、4题.设计意图:课下将所学知识进一步巩固,并得以反馈.板书设计:1.6 完全平方公式(2)完全平方公式:(a+b)2= a2+ 2ab+ b2 (a-b)2 = a2 - 2ab + b2分糖问题:(a+b)2-(a2+b2)= 2ab 例1利用完全平方公式计算:(1) 1022;(2) 1972例2 计算:(1)(x+3)2-x2;(2)(a+b+3)(a+b-3);(3)(x+5)2-(x-2)(x-3)巩固训练学生活动区学生活动区学生活动区教学反思:1.重视学生的自我生成.本课整体设计重视使学生学习过程与学生的自我生成相一致,让学生通过自己的经验来学习,这样的教学有利于激发学生的学习积极性,增强学习主动性.2.教学中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式.遵循了课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念.3.在整个新课的教学中,引导学生采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”;这样做,体现了素质教育下塑造“创新”型人才的优势.4.选择具有典型性,由浅入深的例题.结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.不足之处:(1)时间把握的不够好,后面显得有点紧.当看到学生做不出来时,急于求成减少了学生的锻炼机会.(2)学生在利用乘法公式具体做题时,时常犯符号错误,整体转换的思想还需加强.。

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。

完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。

通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。

但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。

三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。

2.培养学生解决二次方程和二次不等式的能力。

3.培养学生合作学习、积极思考的能力。

四. 教学重难点1.完全平方公式的概念和运用。

2.解决二次方程和二次不等式。

五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。

2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。

3.采用小组合作学习,培养学生合作学习的能力。

六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。

2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。

3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。

4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。

5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。

6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。

北师大版七年级下册数学教学设计:1.6.2 《完全平方公式》

北师大版七年级下册数学教学设计:1.6.2 《完全平方公式》

北师大版七年级下册数学教学设计:1.6.2 《完全平方公式》一. 教材分析《完全平方公式》是北师大版七年级下册数学的一个重要内容。

本节课主要让学生掌握完全平方公式的推导过程及应用。

完全平方公式是初中学历阶段数学知识的重要组成部分,对于培养学生的运算能力、逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,对于本节课的完全平方公式,他们需要将已有的知识进行迁移,从而理解并掌握完全平方公式。

学生在学习过程中,需要通过观察、思考、操作、交流等活动,体验完全平方公式的发现和探究过程,提高他们的数学素养。

三. 教学目标1.让学生掌握完全平方公式的推导过程及应用。

2.培养学生观察、思考、操作、交流等能力,提高他们的数学素养。

3.激发学生学习数学的兴趣,培养他们克服困难的信心。

四. 教学重难点1.完全平方公式的推导过程。

2.完全平方公式的应用。

五. 教学方法1.引导发现法:教师引导学生观察、思考、操作、交流,让学生自主发现完全平方公式的推导过程。

2.实例讲解法:教师通过具体的例子,讲解完全平方公式的应用,让学生在实践中掌握知识。

六. 教学准备1.课件:制作课件,展示完全平方公式的推导过程及应用。

2.练习题:准备一些练习题,用于巩固学生对完全平方公式的掌握。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数运算、整式乘法等知识,为新课的学习做好铺垫。

2.呈现(15分钟)教师利用课件,展示完全平方公式的推导过程。

引导学生观察、思考,让学生自主发现完全平方公式的规律。

3.操练(15分钟)教师给出一些具体的例子,让学生运用完全平方公式进行计算。

教师引导学生操作,并及时给予反馈,纠正学生的错误。

4.巩固(10分钟)教师布置一些练习题,让学生独立完成。

教师及时批改,并对学生的错误进行讲解,帮助学生巩固完全平方公式的应用。

5.拓展(10分钟)教师提出一些拓展问题,引导学生运用完全平方公式进行解决。

七年级数学下册1.6.2完全平方公式教案

七年级数学下册1.6.2完全平方公式教案

课题:1.6完全平方公式(2)教学目标:1.熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,通过添括号和公式变形进一步巩固掌握完全平方公式.2.掌握每一个乘法公式的结构特征及公式的含义;会正确地运用这些公式,感悟换元变换的思想方法,提高灵活应用乘法公式的能力.3.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美. 教学重点与难点:重点:正确地运用乘法公式(平方差公式、完全平方公式).难点:灵活运用平方差和完全平方公式进行整式的简便运算.课前准备:多媒体课件.教学过程:一.故事引入、 激发兴趣活动内容:回答下列问题.教师:很久很久以前,有一个国王的公主被妖怪抓到了森林里,两个农夫一起去森林打猎时打死了妖怪救出了公主。

国王要赏赐他们, 这两个农夫原来各有一块边长为a 米的正方形土地, 第一个农夫就对国王说:“您可不可以再给我一块边长为b 米的正方形土地呢?”国王答应了他,国王问第二个农夫:“你是不是要跟他一样啊?”第二个农夫说:“不,我只要您把我原来的那块地的边长增加b 米就好了。

国王想不通了,他说:“你们的要求不是一样的吗?” 你认为他们的要求一样吗? 大臣们开始讨论这个问题,最后一个聪明的大臣完成了国王心愿!国王和大臣们…处理方式:1.引导学生:聪明的同学你能用上节课所学的数学知识帮助国王解开这个迷吗?2. 提示学生可以画图来进行分析.学生画完图形后,教师找比较好的进行投影展示.3. 画图表示如图第一个农民的土地扩大后土地面积为)(22b a .4. 画图表示为第二个农民的土地扩大后土地面积为2)(b a +.5. 请同学们观察图1,图2能够发现什么?学生交流讨论后,2分钟找学生代表发言. 设计意图:利用学生感兴趣的故事引入新课,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让聪明的学生进一步体会了)(22b a +与2)(b a + 的关系,这也为新课的学习做好铺垫.巩固训练2222)41()14)(2(14)14)(1(a a a a -=+-+=--明理由.下列等式是否成立?说二、探究学习,感悟新知 活动内容1:呢?+与 有什么关系?与 相等吗?与 2222222)()3()()()2()()()1(b a b a a b b a b a b a -----+ 处理方式:同位之间相互合作,一个人负责计算(1)(2)小题的前一个式子,另一个人负责计算另一个式子,计算后相互比较结果,看看有什么新的发现?第(3)个小题共同计算. 比较结果后,然后观察两个式子,你认为它们表面不同,结果的变化为什么是这样?设计意图: 2)(b a +与2)(b a -- 相等,2)(b a - 与2)(a b -相等;以后的学习中,如果有需要,两个式子可以互相借用或相互转化,从而解决一些障碍问题.巩固训练...... ).下列计算正确的是()(_________4)2(244)2()2()2()2()2()(12222222222222++=-++-=+-+=--+=+-+=+b a ab b ab a b a D y x y x C n m n m B y x y x A活动内容2:简单?.样计算例22197,1021(多媒体出示) 处理方式: 学生自己看课本26页方框内的解题过程.提示学生用的是凑整法(为什么用凑整法?).设计意图:本活动的设计通过自主学习,让学生直观的接触求解过程,比较符合形象思维占主导的年龄段学生的认知特点.授人以鱼不如授之以渔,授之以渔不如授之以欲.教师一句激励的话语,给学生自学的动力.活动内容3:完全平方公式的逆用 (多媒体出示)222)(16_______16 ,的值是则是一个完全平方公式,如果多项式=++++mx x m mx x处理方式: 学生思考并尝试解决问题4分钟,4分钟后留给学生2分钟的交流时间,然后学生整理思路后,展示结果,并把大概的想法和知识之间的联系讲出来.设计意图:可能部分学生毫无方向和目标,但是还得给它们思考的时间,然后通过交流,部分学生明白了,这里不仅可以增强善于思考学生的自信,而且提高了学生相互交流和学习的习惯和能力.巩固练习.则.若..)(_________)1(,122)2(_______4122222=+=+-=++x x x y x y x三、例题解析,应用新知 活动内容1:.;; 计算:例)3)(2()5)(3()3)(3)(2()3)(1(2222---+-+++-+x x x b a b a x x处理方式:把例2抄在黑板上,先给学生30秒钟时间观察例2的各式子的特点,然后找有后进生来展示求解过程,其余学生在练习本完成最少一道题;展示的答案会出现各式的问题,这是正常情况,然后再让部分学生订正,让大部分的学生都有收获,在不断出问题、纠正问题中成长,最后看课本,学习课本过程的优点.设计意图:例2的设计主要是直接利用完全平方公式进行整式的乘法运算,使学生进一步熟悉乘法公式的运用同时进一步体会完全平方公式中字母a ,b 的含义是很广泛的,它可以是数,也可以是整式.,并且在解题过程中学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时注意添加括号的思想. 学生还会出现运算顺序和符号的问题,我们不怕学生出错,出错学生可以改掉;就怕学生隐藏错误带来以后的运算隐患. 巩固练习. ; 计算:22)1()1()2()12)(12()1(--+-+++ab ab y x y x活动内容2:完成课本第27页做一做,请你用数学公式解释自己的结论.师:请同学们思考老人前三天各给了多少块糖果?生1:第一天有 a 个孩子一起去了老人,老人一共给了这些孩子a 2块糖。

七年级数学下册 1.6.2 完全平方公式教案 北师大版(2021学年)

七年级数学下册 1.6.2 完全平方公式教案 北师大版(2021学年)

七年级数学下册1.6.2 完全平方公式教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册1.6.2完全平方公式教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册1.6.2完全平方公式教案(新版)北师大版的全部内容。

课题:1.6完全平方公式(2)教学目标:1.熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,通过添括号和公式变形进一步巩固掌握完全平方公式.2.掌握每一个乘法公式的结构特征及公式的含义;会正确地运用这些公式,感悟换元变换的思想方法,提高灵活应用乘法公式的能力.3.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.教学重点与难点:重点:正确地运用乘法公式(平方差公式、完全平方公式).难点:灵活运用平方差和完全平方公式进行整式的简便运算.课前准备:多媒体课件.教学过程:一.故事引入、激发兴趣活动内容:回答下列问题。

教师:很久很久以前,有一个国王的公主被妖怪抓到了森林里,两个农夫一起去森林打猎时打死了妖怪救出了公主。

国王要赏赐他们,这两个农夫原来各有一块边长为a米的正方形土地, 第一个农夫就对国王说:“您可不可以再给我一块边长为b米的正方形土地呢?”国王答应了他,国王问第二个农夫:“你是不是要跟他一样啊?”第二个农夫说:“不,我只要您把我原来的那块地的边长增加b米就好了。

国王想不通了,他说:“你们的要求不是一样的吗?” 你认为他们的要求一样吗?大臣们开始讨论这个问题,最后一个聪明的大臣完成了国王心愿!国王和大臣们…处理方式:1.引导学生:聪明的同学你能用上节课所学的数学知识帮助国王解开这个迷吗?2。

完全平方公式口诀表

完全平方公式口诀表

完全平方公式口诀表
中国古代数学家华罗庚曾经提出完全平方公式,也叫华罗庚定理,它给了我们解决复杂问题的有效方法。

这个定理可以用来求解自然数的完全平方。

它的公式如下:完全平方公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式有一个口诀,可以帮助我们更好地记忆它:“加减同根,平方等于毕;加减
不同根,两边和等于积。

”完全平方公式的口诀表可以帮助我
们更好地理解它的用法:
1、当两个数字的平方相加时,可以直接用完全平方公式:
(a + b)² = a² + 2ab + b²
2、当两个数字的平方相减时,也可以直接用完全平方公式:(a - b)² = a² - 2ab + b²
3、两个数字的平方相乘时,可以先用完全平方公式把它
们分解成两部分,然后再用乘法解决:(a + b) (a - b) = a² - b²
4、两个数字的平方相除时,可以先用完全平方公式把它
们分解成两部分,然后再用除法解决:(a² - b²) / (a - b) = a + b
完全平方公式口诀表给了我们一个有用的工具,可以帮助我们解决许多复杂的数学问题,比如二次方程的求解。

它的口诀表可以帮助我们更容易地记忆它的用法,从而更好地理解它的应用。

完全平方公式口诀表是一种有用的数学工具,它可以帮助我们更容易地理解和解决复杂的数学问题。

只要记住它的口诀表,就可以轻松地掌握它的用法,从而更好地理解和应用它。

1.6完全平方公式(2)

1.6完全平方公式(2)
3..已知 ,求 和 的值
4.计算:(过程写在右边空白处,标清题号)
(1)(x-2y)(x+2y)-(x+2y) ;(2)(a+b+c)(a+b-c);
(3)(2a+1) -(1-2a) ;(4)(3x-y) -(2x+y) +5x(y-x).
5.计算:(x+2y)(x-2y)(x -4y ),
6.解关于x的方程:(x+ ) -(x- )(x+ )= .
二、合作探究:
例2利用完全平方公式计算:(1) 1022; (2) 1972
例3计算:
(1)(x+3)2-x2(2)(x+5)2–(x-2)(x-3)(3)(a+b+3)(a+b-3)
三、当堂检பைடு நூலகம்:
1.利用整式乘法公式计算:(1) 962;(2) 2032
2.计算:(1)(a-b+3)(a-b-3)(2)(x-2)(x+2)-(x+1)(x-3)
(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)
2.已知:a+b=5,ab=-6,求下列各式的值
(1)(a+b)2(2)a2+b2
3.若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?
四、总结反思:
五、课后练习:
1.先化简,再求值:
2.已知x+y= 8,xy= 12,求x2+y2的值
7.根据已知条件,求值:
(1)已知x-y=9,x·y=5,求x +y 的值.
(2)已知a(a-1)+(b-a )=-7,求 -ab的值.
课后反思:
课题:完全平方公式(2)
学习目标:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.

1.6.2完全平方公式(2)

1.6.2完全平方公式(2)
=10404
探究一:利用完全平方公式计算
(1)
2 102
;
(2)
2 197
.
把 改写成 2 (a−b) ?
2 197
2 (a+b )
还是
a,b怎样确定?
2 197
2 =(200-3) 2 2 =200 -2×200×3+3
=40000-1200+9
=38809
针对性练习
1.利用整式乘法公式计算:
解: (a+b+3) (a+b−3) = [ (a+b) +3] [ (a+b) -3] 2 2 =( a+b ) − 3 2 2 =a +2ab+b -9
温馨提示:将(a+b)看作一个整
体,解题中渗透了整体的思想
课内检测:
(1)(a-b+3)(a-b-3)
(2) (x-2)(x+2)-(x+1)(x-3) (3) (4)
有一位老人非常喜欢孩子, 每当有孩子到他家做客时, 老人都要拿出糖果招待他们。 来一个孩子,老人就给这个 孩子一块糖,来两个孩子, 老人就给每个孩子两块糖, 来三个,就给每人三块 糖,……
(3) 第三天这(a + b)个孩子一起去看老 人,老人一共给了这些孩子多少块糖?
2 (a+b)
有一位老人非常喜欢孩子,每 当有孩子到他家做客时,老人 都要拿出糖果招待他们。来一 个孩子,老人就给这个孩子一 块糖,来两个孩子,老人就给 每个孩子两块糖,来三个,就 给每人三块糖,……
即 (a−b)2 = a2−2ab+b2
探究一:利用完全平方公式计算: (1) 1022 ; (2) 1972 .

七年级数学下册1.6.2完全平方公式教案2(新版)北师大版

七年级数学下册1.6.2完全平方公式教案2(新版)北师大版

整式的乘除1.6完全平方公式1.6.1完全平方公式2【教学内容】【教学目标】知识与技能会运用完全平方公式进行一些数的简便运算过程与方法利用完全平方公式解决一些计算问题体会完全平方公式的有效性。

情感、态度与价值观培养学生观察、类比、发现的能力,体会数学活动的探索性和创造性。

【教学重难点】重点:公式的应用及推广难点:公式的应用及推广【导学过程】【知识回顾】完全平方公式想一想:(1)两个公式中的字母都能表示什么?(2)完全平方公式在计算化简中有些什么作用?(3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?【情景导入】有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们。

来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有 a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有 b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?【新知探究】探究一、1、 利用完全平方公式计算:(1) 1022 ; (2) 1972 .2、尝试练习:(1) 962 ; (2) 2032 .探究二、1、平方差公式和完全平方公式的逆运用由()()22b a b a b a -=-+ 反之 ()()b a b a b a -+=-22 ()2222b ab a b a +±=±反之 ()2222b a b ab a ±=+± (1)若22)2(4+=++x k x x ,则k =(2)若92++kx x 是完全平方式,则k =2、计算:(1)22(3)x x +- (2)22(1)(1)ab ab +--探究三、1、计算:(1)2(3)x y -- (2)2()a b c ++ (3)2)3(-+b a (4))2)(2(-++-y x y x【知识梳理】你有什么收获?【随堂练习】1、计算:(1)9982 (2)7032 (3)5062(4)(a+b+c)2 (5)(x-y-2z)2 (6)(2m-n+6)2 (4)(x+5)2–(x-2)(x-3)(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y )2.先化简,再求值:()()()2112322,,22x y x y x y x y +-+-==-其中 3.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值4.已知5=+b a 3ab =,求22b a +和 2)(b a -的值中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

北师大版数学七年级下册1.6.2完全平方公式 课件

北师大版数学七年级下册1.6.2完全平方公式 课件

= a2-b2+2ab-c2 =a2-4ab+b2-9
知识要点
添括号法则:
添括号时,如果括号前面是正号,括到 括号里的各项都不变符号;如果括号前面是 负号,括到括号里的各项都改变符号.也就 是说,遇“加”不变,遇“减”都变.
例3:计算:
(1) (x-5)2- (x+2) (x-2)
(2) (2x+3)2- 4(x+1) (x-1)
例5:运用完全平方公式计算
(1) (x-2y)2- (x+4y) (x-y) (2) 4(2x-1) (x-1)- (x-2)2
例6:转化思想
(1)a b (2)a b (3)ab (4)a2b2
若a b 5, ab 6; 求a2 b2
若a-b -5, ab 6; 求a2 b2
若a b 5, a-b 6; 求ab
北师大版七年级数学下册
第一章 整式的乘除 1.6.2 完全平方公式
一、复习导入
平方差公式的数学表达式:
(a+b) (a-b) = a2 -b2 a2 -b2= (a+b) (a-b)
平方差公式的文字叙述:
两个数和与这两数的积,等于它们的平 方差.
完全平方公式的数学表达式:
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
对应计算: (1)(a+b-c)(a-b+c) (2)(a-2b+3)(a-2b-3)
解:(1)(a+b-c)(a-b+c) (2)(a-2b+3)(a-2b-3)
= [a+(b-c)][(a- (b-c)] = [(a-2b)+3][(a-2b)-3]

1.6.2完全平方公式2

1.6.2完全平方公式2
合并同类项
本题也可直 接用完全平 方公式解
自学指导2(1分钟)
自学课本P27页做一做内容并思考: 1、第一天有a个男孩去了老人家,老人一共给了这些孩 子多少块糖?
2、第? 3、第三天这(a+b)个孩子去了老人家,老人一共给了 这些孩子多少块糖?
1.6.2完全平方公式(2)
学习目标:(1分钟)
1、应用完全平方公式解决数字 计算问题 2、完全平方公式在整式计算中 的应用
自学指导1(1分钟)
自习课本P26页“怎样计算1022,1972更 简单呢?”下面的内容,并思考:
1、如何应用公式解决数字计算问题? 2、仿照课本解法计算:(1)1012(2)982 3、仿照课本例2的解法计算:
点拨、更正
解:1(1)962=(100-4)2 =1002-2×100×4+42 =9216 (2)原式=[(2x+y)+1][(2x+y)-1] =(2x+y)2-1 =4x2+4xy+y2-1
这里的2不能 漏乘
注意这 里应添 括号
点拨、更正
2(1)原式=(ab+1+ab-1)(ab+1-ab+1) =2ab· 2 这里只能用 =4ab 多项式×多 2-4-(x2-2x-3) (2)原式=x 项式来解 =x2-4-x2+2x+3 =2x-1 (3)原式=4x2-4xy+y2-4(x2+xy-2y2) =4x2-4xy+y2-4x2-4xy+8y2 这里应注意 =9y2-8xy
课堂小结:
① 平方差公式 ( a + b ) ( a – b ) = a2 – b2 ②完全平方公式 ( a + b )2 = a2 + 2ab + b2 ( a – b )2 = a2 – 2ab + b2

北师大版七年级数学下册1.6.2完全平方公式(教案)

北师大版七年级数学下册1.6.2完全平方公式(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解完全平方公式的概念。完全平方公式是指两个数的平方和(或差)可以表示为这两个数和(或差)的平方。它是代数运算中的重要工具,可以简化多项式的乘法运算。
2.案例分析:接下来,我们来看一个具体的案例,如(x + 3)^2的展开。这个案例将展示完全平方公式在实际中的应用,以及它如何帮助我们简化计算。
(3)结合正方形面积的计算,说明a^2和4a^2之间的关系,以及如何运用完全平方公式。
2.教学难点
-理解和记忆完全平方公式的推导过程,尤其是中间项2ab的来源;
-灵活运用完全平方公式,特别是在多项式乘法中的应用;
-解决与完全平方公式相关的复杂问题,如含有多项式的平方差问题。
举例:在突破难点时,可以采取以下方法帮助学生理解:
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算某个数的平方的情况?”比如,计算正方形面积时,我们会用到边长的平方。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
在学生小组讨论后,我要求每个小组分享他们的成果,这不仅能让学生们相互学习,也能让我及时了解他们对于知识点的掌握情况。我发现,有些学生在分享时能够清晰地表达自己的思路,而有些学生则显得有些紧张和不自信。为了提高学生们的表达能力和自信心,我考虑在以后的课堂中增加更多的小组展示机会,并给予他们更多的鼓励和支持。
五、教学反思
在本次完全平方公式的教学中,我发现学生们对于公式推导和应用的过程有着不同的接受程度。有的同学能够迅速理解并运用公式,而有的同学则在推导过程中感到困惑,特别是在理解中间项2ab的来源上。这让我意识到,在讲解这类抽象的数学概念时,需要更加注重直观演示和实际例子的运用。

北师大七年级数学下册课件:《1.6 完全平方公式》2

北师大七年级数学下册课件:《1.6 完全平方公式》2
(1)(x+y)2=x2 +y2 错 (x +y)2 =x2+2xy +y2
(2)(x -y)2 =x2 -y2 错 (x -y)2 =x2 -2xy +y2 (3) (-x +y)2 =x2+2xy +y2错
(-x +y)2 =x2 -2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2 错
例3、
若 a b 5,ab 6, 求 a2b2,a2ab b2.
课本P26习题1.11
(2x +y)2 =4x2+4xy +y2
例1、运用完全平方公式计算:
(1)(4m+n)2
解: (4m+n)2= (4m)2+2•(4m) •n+n2
(a +b)2= a2 + 2 a b + b2 =16m2 +8mn +n2
(2)(x-2y)2 解: (x-2y)2= x2 -2•x •2y +(2y)2
完全平方公式 的几何意义
和的完全平方公式:
b ab b²
(a+b)²
a a² ab
abb2
完全平方公式 的几何意义
差的完全平方公式:
b ab b²
a
a² ab
(a-b)²
ab
(a b)2 a2 ab ab b2
a2 2ab b2
(a+b)2= a2 +2ab+b2 公式特征: (a-b)2= a2 - 2ab+b2
1、积为二次三项式;
2、积中两项为两数的平方和;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.用完全平方公式计算: 答案
(1) 4992 (2) 9982 (1) 249001 (2)996004
(3) 532 (4) 882 (3) 2809 (4) 7744
2、a,b,c是三个连续的正整数,以b为 边长作正方形,分别以a,c为长和宽作长 方形,哪个图形的面积大?大多少? 答案:正方形面积大,大1个面积单位。
点拨、更正
1、解:依题意,得 6[(a+5)2-52] =6(a2+10a+25-25) =6a2+60a
因此这个长方体的体积增加了(6a2+60a)cm3.
联系是 左右两边的结构分别相同、 .
第二项的符号与左边括号内的符号相同。
两个公式中的字母都表示什么? (数或代数式)
根据两数和或差的完全平方公式, 能够计算多个数的和或差的平方吗? 完全平方公式在计算化简中有些什么用?
这节课我们就来研究这个问题。
自学指导1
自学课本P26页“怎样计算1022,1972更 简单呢?”下面的内容,并思考:
=4
自学指导2
自学课本P27页做一做内容并思考: 1、第一天有a个男孩去了老人家,老人一共给了这些孩 子多少块糖?
2、第二天有b个女孩去了老人家,老人一共给了这些孩 子多少块糖?
3、第三天这(a+b)个孩子去了老人家,老人一共给了 这些孩子多少块糖?
4、这些孩子第三天得到的糖果数与前两天他们得到的 糖果总数哪个多?多多少?为什么?
注意这 里应添 括号
点拨、更正
本题也可直 接用完全平

2(1)原式=(ab+1+ab-1)(ab+1-ab+1) 方公式解
=2ab·2 =4ab (2)原式=x2-4-(x2-2x-3) =x2-4-x2+2x+3
这里只能用 多项式×多 项式来解
=2x-1
(3)原式=4x2-4xy+y2-4(x2+xy-2y2)
点拨:这里求的是长方体体积的增加 量,后面作答时必须加上单位。
点拨、更正
2、解:由题意可知(a+1)=b;(c-1)=b
所以a=b-1;c=b+1 所以b2-ac=b2-(b-1)(b+1)
=b2-b2+1 =1
这里是应用 比差法来对 两个图形的 面积进行比

所以正方形的面积大,大1个面积单位。
课堂小结:
1.6.2完全平方公式(2)
学习目标:
1、应用完全平方公式解决数字 计算问题 2、完全平方公式在整式计算中 的应用
回顾 & 思考☞
完全平方公式共有回2顾个与:((思aa+−+−bb考))22==
a2 a2
+ 2ab+ b2; − 2ab+ b2;
这2个公式的区别是 左边括号内与右边第二项;的符号不同
① 平方差公式 ( a + b ) ( a – b ) = a2 – b2
②完全平方公式 ( a + b )2 = a2 + 2ab + b2 ( a – b )2 = a2 – 2ab + b2
①弄清在什么情况下才能使用各乘法公式. ②注意公式的逆用. ③注意公式的灵活运用. ④公式中的a,b可以是数,也可以是单项式 或多项式.
答案:(1) a2 (2) b2 (3) (a b)2 (4) (a b)2 (a2 b2) 2ab
所以第三天得到的糖果数最多
自学检测2
1、一个底面是正方形的长方体,高为6cm, 底面正方形边长为5cm。如果它的高不变, 底面正方形边长增加了acm,那么它的体 积增加了多少?
答案:(6a2+60a)㎝3
2、计算:
(1)(ab+1)2-(ab-1)2 (2)(x-2)(x+2)-(x+1)(x-3) (3)(2x-y)2-4(x-y)(x+2y)
点拨、更正
这里的2不能 漏乘
解:1(1)962=(100-4)2 =1002-2×100×4+42 =9216
(2)原式=[(2x+y)+1][(2x+y)-1] =(2x+y)2-1 =4x2+4xy+y2-1
1、课本是如何应用公式解决数字计算问题的?
2、仿照课本解法计算:(1)1012(2)982
3、仿照课本例2的解法计算: (1)(ab+1)2-(ab)2 (2)(a-b+3)(a-b-3) (3)(y-7)2-(y+1)(y+2)
自学检测1
1、利用整式乘法公式计算:
(1)962 (2)(2x+y+1)(2x+y-1)
当堂训练
1.代数式2xy-x2-y2= ( D )
A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2
2.若a+b=7,ab=12,则 a2 ab b2 的值为( B )
A. -11 B. 13 C. 37 D. 61
3.若 (x y)2 9,(x y)2 5, 则xy= 1 4.若x-y=3,xy=10,则 x2 y2 29
=4x2-4xy+y2-4x2-4xy+8y2
=9y2-8xy
这里应注意 合并同类项
学一学
(补充)思考例题题:解析
计算:1.23452+0.76552+2.469×0.7655
解:原式=1.23452+2×1.2345×0.7655+0.76552
=( 1.2345 + 0.7655 )2 = 22
相关文档
最新文档