最新人教版七年级上册数学期中考试
最新人教版七年级上册数学《期中考试试题》(含答案解析)
期 中 测 试 卷一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是( ) A. 13-B.13C. 3-D. 32.如果收入80元记作+80元,那么支出20元记作( ) A. +20元B. -20元C. +100元D. -100元3.如图,在数轴上点A 表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.44.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和05.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102B. 274.8×104C. 2.748×106D. 0.2748×1076.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A .5315--+- B. 5315-+- C. 5315++-D. 5315---7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同D. 底数相同,结果相同9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5xB. 305+xC. 300+5xD. 300+15x 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个B. 1个C. 2个D. 3个11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个B. 2个C. 3个D. 4个12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个B. 2个C. 1个D. 0个13.若a <c <0<b ,则abc 与0的大小关系是( ) A. abc <0 B. abc=0 C. abc >0D. 无法确定14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中规律,猜想20193的末位数字是( ) A. 3B. 9C. 7D. 115.某月的月历上连续三天的日期之和不可能是 ( ) A. 87B. 52C. 18D. 916.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种规律下去,第n 次移动到点A n ,如果点A n ,与原点的距离不少于20,那么n 的最小值是( )A. 11B. 12C. 13D. 20二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a 与1互为相反数,则|a +2|=_________. 18.“比 a的123多 4”用代数式表示为_____ 19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______. 20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 22.计算(1)﹣28﹣(﹣19)+(﹣24); (2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.23.定义一种新运算“※”,即m ※n=(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗? 24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合; 操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______; 操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少? 26.从2开始,连续的偶数相加,它们和的情况如下表: (1)若n=8时,则 S 的值为_____________.(2)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n=____________. 加数的个数nS12 = 1×2(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.答案与解析一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.如果收入80元记作+80元,那么支出20元记作( )A. +20元B. -20元C. +100元D. -100元【答案】B【解析】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.考点:具有相反意义的量.3.如图,在数轴上点A表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.4【答案】C【解析】【分析】根据点在数轴上的表示方法即可得出答案.【详解】由图可知,点A在-2和-3之间,故答案选择C.【点睛】本题考查的是点在数轴上的表示,比较简单,需要熟练掌握数轴的性质. 4.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和0【答案】A 【解析】 【分析】分别计算各选项中两个数的乘积,根据倒数的概念,如果积为1,那么这两个数互为倒数. 【详解】A. -2×(12-)=1,选项正确; B. −1×1=−1,选项错误; C. 23-×1.5=-1,选项错误; D. 0×0=0,选项错误. 故选A.【点睛】此题考查倒数,解题关键在于掌握其性质.5.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102 B. 274.8×104C. 2.748×106D. 0.2748×107【答案】C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据274.8万用科学记数法表示为274.8×104=2.748×106. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A. 5315--+-B. 5315-+-C. 5315++-D. 5315---【答案】B 【解析】 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:原式=(+5)+(-3)+(+1)+(-5)=5-3+1-5. 故选B .【点睛】本题考查有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--【答案】A 【解析】试题分析:负数之间的大小比较,绝对值大的数反而小.=-4;;-2.考点:数的大小比较8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同 D. 底数相同,结果相同 【答案】A 【解析】 【分析】n 个相同的因数a 相乘,记作n a ,其中底数是a ,【详解】解:23-的底数为3,()23-的底数为-3,239=--,()239=-,故23-与()23-底数不同,结果不同, 故选A.【点睛】此题考查的是乘方的定义,n 个相同的因数a 相乘,记作n a ,这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在乘方运算n a 中,a 叫做底数,n 叫做a 的幂的指数,简称指数.9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5x B. 305+xC. 300+5xD. 300+15x 【答案】C 【解析】 【分析】降价x 元就可多售出5x 个,再加上300即为所求.【详解】由题意可得,如果每个降价x 元,那么每月可售出机器人的个数是:300+5x ,故选C . 【点睛】本题考查如何列代数式,能够读懂题意是解题关键. 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个 B. 1个C. 2个D. 3个【答案】A 【解析】 【分析】直接根据单项式、单项式系数及次数的定义进行解答即可. 【详解】解:①单项式a 的系数为1,次数为1,故原说法错误;②12ab - 多项式,故原说法错误; ③ xyz -的系数为-1,次数是3,故原说法错误;④ π是单项式,2也是单项式,故原说法错误; 正确的个数是0,故选A.【点睛】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键. 11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个 B. 2个 C. 3个 D. 4个【答案】B 【解析】分析:根据倒数、相反数、平方的定义及性质和有理数的分类进行判断即可. 详解:①的说法是错误的,其中-1的倒数也是等于它本身的; ②相反数等于本身的数只有0,故②正确; ③平方等于本身的数是0和1,故③错误; ④有理数不是整数就是分数,④正确; ⑤有理数分为正数就是负数和0,⑤错误. 所以正确的结论为②④两个, ①、③、⑤错误. 故选B.点睛:本题主要考查了倒数、相反数、平方的定义及性质和有理数的分类等相关知识,熟记概念与性质是解题的关键..12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个 B. 2个C. 1个D. 0个【答案】C 【解析】 【分析】根据单项式、多项式、整式以及多项式次数和项数的定义求解.【详解】解:①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和,正确; ②7x是分式,原说法错误; ③ 2143a b + 和2326x y -+都是多项式,正确; ④ 32429x y -+ 是三次三项式,正确,错误的有1个,故选C.【点睛】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和.13.若a <c <0<b ,则abc 与0的大小关系是( )A. abc <0B. abc=0C. abc >0D. 无法确定 【答案】C【解析】【详解】∵a <c <0<b ,∴abc >0.故选C .14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A. 3B. 9C. 7D. 1【答案】C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3=,末位数字为7,3274=,末位数字为1,3815=,末位数字为3,324363729=,末位数字为9,7=,末位数字为7,321878=,末位数字1,36561故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.15.某月的月历上连续三天的日期之和不可能是( )A. 87B. 52C. 18D. 9【答案】B【解析】【分析】根据题意设中间一天为x日,则前一天的日期为x-1,后一天的日期为x+1日,然后列出代数式对选项进行分析,即可求出答案.【详解】设中间一天为x日,则前一天日期为:x-1,后一天的日期为x+1日,根据题意得:连续三天的日期之和是:(x-1)+x+(x+1)=3x,所以连续三天的日期之和是3的倍数,52不是3的倍数,故选B.【点睛】本题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.16.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A. 11B. 12C. 13D. 20【答案】C【解析】【分析】当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.【详解】根据题目已知条件,A1表示的数,1﹣3=﹣2;A2表示的数为﹣2+6=4;A3表示的数为4﹣9=﹣5;A4表示的数为﹣5+12=7;A5表示的数为7﹣15=﹣8;A6表示的数为7+3=10,A7表示的数为﹣8﹣3=﹣11,A8表示的数为10+3=13,A9表示的数为﹣11﹣3=﹣14,A10表示的数为13+3=16,A11表示的数为﹣14﹣3=﹣17,A12表示的数为16+3=19,A13表示的数为﹣17﹣3=﹣20.所以点A n与原点的距离不小于20,那么n的最小值是13.故选C.【点睛】本题考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a与1互为相反数,则|a+2|=_________.【答案】1【解析】∵a与1互为相反数,∴1a=-,∴21211a+=-+==.18.“比a 的123多4”用代数式表示为_____【答案】54 3a+【解析】【分析】根据题意即可列出代数式.【详解】比 a 的123多 4”用代数式表示为543a + 故填:543a +. 【点睛】此题主要考查列代数式,解题的关键是根据题意写出代数式.19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______.【答案】-1【解析】【分析】根据绝对值和平方的非负性求出m 和n 的值,代入后面的式子计算即可得出答案.【详解】根据题意可得:m+2=0,n-1=0解得:m=-2,n=1∴()()20192019211m n +=-+=-故答案为-1.【点睛】本题考查的是绝对值的非负性,难度不大,一个数的绝对值一定是一个大于等于0的数.20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.【答案】 (1). 2 (2). 3【解析】【分析】根据对数的定义即可得出答案.【详解】∵239=∴392log =∵3464=∴4643log =故答案为2,3.【点睛】本题考查的是新定义,认真审题,弄懂对数的定义是解决本题的关键.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 【答案】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【解析】【分析】根据整数的分类即可进行求解.【详解】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【点睛】考查了有理数,认真掌握正数、负数、整数、分数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.计算(1)﹣28﹣(﹣19)+(﹣24);(2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.【答案】(1)-33;(2)-3.7;(3)-25;(4)1 22 -.【解析】【分析】(1)根据有理数的加减运算法则计算即可得出答案;(2)先去绝对值,再根据有理数的加减运算法则计算即可得出答案;(3)根据乘法分配律去括号,再利用有理数的混合运算法则计算即可得出答案;(4)先算括号和绝对值,再利用有理数的混合运算法则计算即可得出答案.【详解】解:(1)原式=281924-+-=33-(2)原式=4.3 1.7 6.3--= 3.7-(3)原式=283033--+=25-(4)原式=11326-+⨯-=1 22 -【点睛】本题考查的是有理数的混合运算,比较简单,需要熟练掌握有理数的混合运算法则.23.定义一种新运算“※”,即m※n=(m+2)×3-n,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗?【答案】(1)27;(2)不相等,理由见解析【解析】【分析】(1)利用题中的新定义计算即可得到结果;(2)分别计算出两式的值,即可做出判断.【详解】(1)6※(−3)=(6+2)×3−(−3)=24+3=27;(2)(−3) ※6=(−3+2)×3−6=−3−6=−9,所以6※(−3)与(−3) ※6值不相等.【点睛】此题考查有理数的混合运算,解题关键在于利用新定义计算法则进行计算.24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合;操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______;操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.【答案】(1)2;(2)-3,-3.5,5.5;(3)±2.【解析】【分析】(1)先求出折痕点,再根据到折痕点的距离相等计算即可得出答案;(2)先求出折痕点,再根据到折痕点的距离相等计算即可答案;先求出点A 和点B 到折痕点的距离,再根据距离公式计算即可得出答案;(3)分两种情况进行讨论:①往左移动,②往右移动,再利用相反数的性质计算即可得出答案.【详解】解:(1)∵折叠纸面,点1和点-1表示的点重合∴折痕点为0∴-2表示的点与2表示的点重合(2)∵-1表示的点与3表示的点重合∴折痕点为1∴5表示的点与-3表示的点重合∵AB 之间的距离为9∴AB 两点与中心点的距离为9÷2=4.5∴点A 表示的点为-3.5,点B 表示的点为5.5(3)①若点A 往左移动4个单位长度则可得:a-4+a=0解得:a=2②若点A 往右移动4个单位长度则可得:a+4+a=0解得:a=-2综上所述a=±2【点睛】本题考查的是数轴上两点间的距离,难度适中,需要理解并记忆两点之间的距离公式.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【答案】(1)213;(2)1409;(3)26;(4)85215;【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据有理数的加法,可得答案;(4)根据基本工资加奖金,可得答案.【详解】(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2) 根据题意5−2−4+13−10+16−9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216−190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=(7×200+9)×60+9×15=85215元,故该厂工人这一周的工资总额是85215元.【点睛】此题考查正数和负数,解题关键在于根据题意列出式子进行计算.26.从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=____________.(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【答案】(1)72.(2)n(n+1).(3)1021110.【解析】【分析】设加数的个数为n时,它们的和为S n(n为正整数),根据给定的部分S n的值找出变化规律“S n=2+4+6+…+2n=n(n+1)”.(1)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=8即可得出结论;(2)依照规律“S n=2+4+6+…+2n=n(n+1)”即可得出结论;(3)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=1010即可得出结论.【详解】解:设加数的个数为n时,它们的和为S n(n为正整数),观察,发现规律:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,…,∴S n=2+4+6+…+2n=n(n+1).(1)当n=8时,S8=8×9=72.故答案为72.(2)S n=2+4+6+…+2n=n(n+1).故答案为n(n+1).(3)∵2+4+6+8+10+…+2018+2020中有1010个数,∴S1010=2+4+6+8+10+…+2018+2020=1010×1011=1021110.【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“S n=2+4+6+…+2n=n(n +1)”.本题属于基础题,难度不大,根据给定的部分S n的值,找出变化规律是关键.。
2024年全新七年级数学上册期中试卷及答案(人教版)
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。
()2. 0是偶数。
()3. 1是等差数列的首项。
()4. 平行四边形的对边相等。
()5. 所有的无理数都是开方开不尽的数。
()三、填空题(每题1分,共5分)1. 100的平方根是______。
2. 一个等差数列的公差是3,第5项是17,那么首项是______。
3. 下列图形中,______是轴对称图形。
4. 下列数中,______是立方数。
5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述平行四边形的性质。
3. 请简述无理数的概念。
4. 请简述勾股定理的内容。
5. 请简述一次函数的图像特点。
五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。
2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。
3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。
5. 请画出一个一次函数y=2x+1的图像。
六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。
2. 请用直尺和圆规画出一个半径为3厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。
七年级数学上册期中模拟卷人教版2024
七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上册1.1-3.2。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
〖数学〗2024—2025学年人教版七年级上册数学期中考试模拟试卷
人教版2024—2025学年七年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、实数3的相反数是()A.3B.﹣3C.D.﹣2、下列各数:﹣2,+3.5,0,,﹣0.7,11中,负数有()A.2个B.3个C.4个D.5个3、我国的北斗卫星导航系统星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.21.5×107D.2.15×1064、下列运算中,正确的是()A.8x+5y=13xy B.2a2+a2=3a4C.5x﹣3x=2D.7x2y﹣2yx2=5x2y5、用四舍五入法按要求对0.05095分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.051(精确到千分位)D.0.0510(精确到0.001)6、下列说法中正确的是()A.是单项式B.﹣3不是单项式C.﹣πx的系数为﹣1D.﹣5a2b的次数是37、下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.3x2﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣28、如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣b C.﹣b>a>b>﹣a D.b>a>﹣b>﹣a 9、数轴上,点A表示3,从点A出发沿数轴移动3个单位长度到达B点,则B点表示的数是()A.0B.﹣3或1C.0或6D.610、设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a二、填空题(每小题3分,满分18分)11、化简|π﹣4|+|3﹣π|=.12、比较大小:﹣﹣(填“<”或“>”或“=”).13、在一次数学智力大比拼的竞赛中全班平均分为90分,小红得了85分,记作﹣5分,则小明得了92分,可记作.14、若单项式与﹣2x n y3的和仍为单项式,则其和为.15、一个多项式减去x2+14x﹣6,结果得到2x2﹣x+3,则这个多项式是.16、将一些扑克牌分成左、中、右相同的三份.第一步:从左边取两张扑克牌,放在中间,右边不变;第二步:从右边取一张扑克牌,放在中间,左边不变;第三步:从中间取与左边相同张数的扑克牌,放在左边,右边不变.则此时中间有张扑克牌.考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、(1)﹣23+[(﹣4)2﹣(1﹣32)×3];(2);18、已知a、b互为相反数,m、n互为倒数,x是立方等于本身的正数,求:的值.19、先化简,再求值:(3x2+2xy)﹣3(x2﹣2xy)﹣10xy,其中,y=﹣1.20、在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(Ⅰ)填空:①B地位于A地的方向,距离A地千米;②救灾过程中,冲锋舟距离A地最远处为千米;(Ⅱ)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?21、已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣1.(1)当x=2,y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.22、用火柴棒按图中的方式摆图形:按图示规律填空:图形标号①②③④⑤火柴棒的根数5913a b(1)a=,b=;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为;(用含n的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求搭第2024个图形需要的火柴棒的根数.23、数轴上有理数a、b、c的大小关系如图所示,则(1)比较大小:b﹣c0;c﹣a0;a+b0;(2)计算:|a+b|+|c﹣a|=;(3)化简:|a+b|﹣2|b﹣c|.24、相传,大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)如图2所示,在(1)的条件下,若b=2,c=5,求a的值;(3)如图3所示:①若A=a,B=2a﹣1,C=9a+7,求整式F;②若A=2a+1,B=a﹣2,D=﹣ka﹣1,是否存在k的值使得三阶幻方中九个整式的和为定值,若存在,求出k的值及定值,若不存在,说明理由.25、在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式﹣2x2﹣4x+1的二次项系数,b是最大的负整数,单项式的次数为c.(1)a=,b=,c=;(2)若将数轴在点B处折叠,则点A与点C重合;(填“能”或“不能”)(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,t秒过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB,BC=(用含t的代数式表示);(4)在(3)的条件下,AB+BC值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求其值.。
2024年最新人教版初一数学(上册)期中考卷及答案(各版本)
2024年最新人教版初一数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式正确的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. 2 + 3 × 4 5B. 2 × 3 + 4 ÷ 2C. (2 + 3) × 4 ÷ 2D. 2 ÷ 3 × 4 + 55. 已知等差数列的前5项和为25,公差为2,则第3项是()A. 3B. 4C. 5D. 6二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是最小的自然数。
()4. 任何数乘以0都等于0。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为3,另一个数为______。
2. 两个数的差为5,被减数为10,减数为______。
3. 两个数的积为24,其中一个数为6,另一个数为______。
4. 两个数的商为3,被除数为9,除数为______。
5. 1千克等于______克。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述等差数列的定义。
3. 请简述实数的分类。
4. 请简述方程的定义。
5. 请简述不等式的定义。
五、应用题:5道(每题2分,共10分)1. 小明买了3本书,每本书的价格为8元,请计算小明一共花了多少钱。
2. 小红买了4个苹果,每个苹果的价格为2元,请计算小红一共花了多少钱。
3. 一个长方形的长为5厘米,宽为3厘米,请计算这个长方形的面积。
2024年全新七年级数学上册期中试卷及答案(人教版)
2024年全新七年级数学上册期中试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 11B. 12C. 13D. 142. 下列哪个数是合数?A. 15B. 16C. 17D. 183. 下列哪个数是偶数?A. 19B. 20C. 21D. 224. 下列哪个数是奇数?A. 23B. 24C. 25D. 265. 下列哪个数是整数?A. 27B. 28C. 29D. 306. 下列哪个数是分数?A. 31B. 32C. 33D. 347. 下列哪个数是无理数?A. 35B. 36C. 37D. 388. 下列哪个数是有理数?A. 39B. 40C. 41D. 429. 下列哪个数是正数?A. 43B. 44C. 45D. 4610. 下列哪个数是负数?A. 47B. 48C. 49D. 50二、填空题(每题2分,共20分)1. 一个正方形的边长是4厘米,它的面积是_________平方厘米。
2. 一个长方形的长是8厘米,宽是5厘米,它的周长是_________厘米。
3. 一个圆的半径是6厘米,它的周长是_________厘米。
4. 一个圆柱的底面半径是3厘米,高是5厘米,它的体积是_________立方厘米。
5. 一个圆锥的底面半径是4厘米,高是9厘米,它的体积是_________立方厘米。
6. 一个三角形的底是6厘米,高是8厘米,它的面积是_________平方厘米。
7. 一个梯形的上底是5厘米,下底是10厘米,高是6厘米,它的面积是_________平方厘米。
8. 一个平行四边形的底是7厘米,高是8厘米,它的面积是_________平方厘米。
9. 一个正六边形的边长是6厘米,它的周长是_________厘米。
10. 一个等腰三角形的底是8厘米,腰是5厘米,它的面积是_________平方厘米。
三、解答题(每题10分,共50分)1. 已知一个三角形的两边长分别是5厘米和8厘米,求第三边的长度。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
2024年人教版初一上学期期中数学试卷及答案指导
2024年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?选项:A、13厘米B、23厘米C、30厘米D、40厘米2、一个数加上它的两倍,再减去3,结果是7,这个数是多少?选项:A、1B、2C、3D、43、题目:一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?选项:A. 15厘米B. 25厘米C. 30厘米D. 50厘米4、题目:一个数的2倍是12,这个数是多少?选项:A. 2B. 4C. 6D. 85、下列各数中,有理数是()A、√2B、πC、3.14D、-1/36、下列各数中,属于无理数的是()A、1.414B、-2/3C、3/5D、π7、下列各数中,是正数的是:A、-1/2B、-2C、0D、1/28、下列各数中,是负数的是:A、-1/2B、-2C、0D、1/29、选择题:一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是多少平方厘米?A. 18cm²B. 15cm²C. 18cmD. 15cm² 10、选择题:一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?(取π≈3.14)A. 50.24cm²B. 78.5cm²C. 25.12cm²D. 12.56cm²二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为______cm。
2、在直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。
那么线段AB的中点坐标为 ______ 。
3、若一个数的3倍减去12等于18,则这个数是 ______ 。
4、一个长方形的长是宽的3倍,若长方形的周长是48厘米,则这个长方形的面积是 ______ 平方厘米。
5、在等差数列{an}中,若a1=3,d=2,则前n项和Sn=______ 。
人教版七年级上册《数学》期中考试卷及答案【可打印】
人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。
A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。
A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。
A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。
A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。
A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。
()2. 任何两个整数的积一定是整数。
()3. 0 是最小的自然数。
()4. 任何数乘以0都等于0。
()5. 1 是最小的正整数。
()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。
2. 已知 |x 3| = 4,那么 x 的值是______或______。
3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。
4. 如果 a = 2,b = 3,那么 a 2b 的值是______。
5. 下列式子中,同类项是______和______。
四、简答题:每题2分,共10分1. 解释有理数的概念。
2. 举例说明同类项的概念。
3. 解释绝对值的概念。
4. 解释相反数的概念。
5. 解释整除的概念。
五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。
期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册
人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。
2024年人教版初一数学上册期中考试卷(附答案)
2024年人教版初一数学上册期中考试卷(附答案)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. ()下列哪个数是有理数?A. √3B. 5C. 1/2D. π2. ()一个正方形的边长为2,那么它的对角线长度为?A. 2B. 2√2C. 4D. √53. ()一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 324. ()下列哪个数是素数?A. 21B. 29C. 35D. 395. ()一个圆的半径为3,那么它的面积是多少?A. 9πB. 9C. 27πD. 27二、判断题(每题1分,共20分)1. ()所有的偶数都是2的倍数。
2. ()如果一个数是4的倍数,那么它一定是偶数。
3. ()等差数列的任意两项之差是相等的。
4. ()等边三角形的三个角都相等。
5. ()平行四边形的对角线互相平分。
三、填空题(每空1分,共10分)1. ()一个正方形的面积是16,那么它的边长是______。
2. ()一个等差数列的第1项是3,公差是2,那么第5项是______。
3. ()一个圆的直径是10,那么它的半径是______。
4. ()一个等边三角形的周长是18,那么它的边长是______。
5. ()如果一个数的平方是36,那么这个数可能是______或______。
四、简答题(每题10分,共10分)1. 请简述等差数列的定义和性质。
2. 请简述平行四边形的性质和判定方法。
五、综合题(1和2两题7分,3和4两题8分,共30分)1. ()一个长方形的长是10,宽是5,求它的面积和周长。
2. ()一个等差数列的第1项是2,公差是3,求前5项的和。
3. ()一个圆的半径是7,求它的面积和周长。
4. ()一个等边三角形的边长是12,求它的面积。
三、填空题(每空1分,共10分)6. ()若一个正方形的对角线长为6√2 cm,则其边长为______cm。
2024年人教版初一数学上册期中考试卷(附答案)
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 12B. 15C. 17D. 212. 如果一个数的因数只有1和它本身,那么这个数被称为()。
A. 合数B. 质数C. 分数D. 整数3. 下列哪个数是偶数?A. 3B. 5C. 8D. 94. 如果一个数的个位是0,那么这个数一定是()。
A. 奇数B. 偶数C. 质数D. 合数5. 下列哪个数是整数?A. 3.5B. 4.6C. 5.2D. 6.8二、判断题(每题1分,共5分)1. 任何数乘以0都等于0。
()2. 任何数除以1都等于它本身。
()3. 任何数除以0都是没有意义的。
()4. 任何数的平方都是正数。
()5. 任何数的立方都是正数。
()三、填空题(每题1分,共5分)1. 7的因数有:______、______、______。
2. 8的倍数有:______、______、______。
3. 9的平方是:______。
4. 10的立方是:______。
5. 11的因数有:______、______、______。
四、简答题(每题2分,共10分)1. 请简述什么是质数和合数。
2. 请简述什么是偶数和奇数。
3. 请简述什么是整数和分数。
4. 请简述什么是平方和立方。
5. 请简述什么是因数和倍数。
五、应用题(每题2分,共10分)1. 一个班级有30名学生,请计算这个班级学生的平均年龄。
2. 一本书有200页,小明每天读20页,请计算小明读完这本书需要多少天。
3. 一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的面积。
4. 一个正方形的边长是8厘米,请计算这个正方形的面积。
5. 一个圆柱的底面半径是5厘米,高是10厘米,请计算这个圆柱的体积。
六、分析题(每题5分,共10分)1. 请分析一下什么是比例,并举例说明。
2. 请分析一下什么是百分数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请画出一个长方形,并标注出它的长和宽。
2024—2025学年人教版数学七年级上册期中考试
2024秋季学期七年级数学人教上册期中试卷(全卷三个大题,满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分)×1.中国是最早采用正负数表示相反意义的量的国家,如果将“存入1000元”记作“+1000元”,那么双“取出2000元”记作为()A.+1000元B.−1000元C.+2000元D.−2000元2. 2024年4月25日,“神舟十八号”载人飞船发射取得圆满成功.在发射过程中,“神舟十八号”载人飞船的飞行速度约为468000米/分,数据“468000”用科学记数法表示应是()()A.4.68×105B. 4.68×106C. 46.8×104D. 0.468×1063.下列运算结果正确的是()A.2ab+3ab=5abB.2ab×3ab=5a2b2C.−3a−6a=−3aD.6a−(−4a)=2a4.两个有理数M、N在数轴的位置如图所示,下列说法正确的有几个()①M+N<0; ②M×N>0; ③|M| > |N|; ④M-N<0;A.0B.1C.2D.35.若|a-3| + |b+7| = 0,则a+b=()A.10B.−10C.4D.−46.关于多项式−xy3+5xy+7,下列说法错误的是()A.是四次三项式B.最高次项的系数是1C.不含三次项D.常数项是77.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……通过仔细观察, 32024的末尾数字是 ()A.3B.9C.7D.18.已知x−2y=5,xy=18,则3x+2xy−6y+7是()A.56B.58C.66D.689.超市出售的三种品牌的面包袋上,分别标有的质量如下表所示,从中任拿出两袋,它们的质量最多相差 ()品牌①②③质量/g200±10200±5200±15A.10g B15g C.20g D.25g10.按如图所示的操作步骤,若输出y的值为15,则输入x的值为()A.2B.3C.4D.5二、填空题(本大题共5个小题,每小题3分,共15分)11. 某种零件表明要求是Φ20 ± 0.02(Φ表示直径,单位:mm),有一个零件的直径为20.02mm,则这个零件质量________(填“合格”或“不合格”).12.下表中x和y两个量成反比例关系,则“?”处应填________.x35y?413.用四舍五入法将2.174精确到百分位的结果是________.14.某单项式的系数为-1,只含字母x,y,且次数是5次,写出一个符合条件的单项式________.×21=________.15.计算−1001721三、解答题(本大题共8个小题,共75分)16. 计算:(1)8.8−(−6.6)+(−8.8)+(−5.6)−|−3|+−(−3).(2)327×|-6-1|×923÷(−6)17.邮票员骑车从邮局出发,沿着一条南北向的笔直公路骑行,他先向北骑行3km 到达A 村,继续向北骑行4km 到达B 村,然后向南骑行11km 到达C 村,最后回到邮局. (1)C 村与邮局的距离是多少千米? (2)邮票员一共骑行了多少千米?18.在一次数学测试中,若以90分为标准,超过或不足的成绩分别用正、负数来表示,某校的成绩统计结果如下表:人数 10 20 11 14 15 6 成绩 +10 +5 +3 +2 +1 0 人数 9 10 15 8 6 4 成绩-1-5-18-10-12-15(1) 若此次考试85分为优秀,该校优秀的人数有多少? (2) 求该班的平均成绩(保留一位小数).19.已知a与b互为相反数,c与d互为倒数,m的绝对值为2,求2(a+b)−4cd+m3的值为20.在−1,2,−3,4,−5,6中任取两个数字相乘,最大的积是a,最小的积是b.(1)求a+b的值;(2)若|x−a| + |y+b|= 0,求(x+y)(x−y)的值×21.已知10×102=1000=103,102×102=10000=104,102×103=100000=105.(1)猜想108×1010=________.10m×10n=________.(m,n为正整数)(2)运用上述结论计算:(1.25×104)×(2.4×106)22.某地气象资料显示,高度每增加1000m,气温大约降低大学6℃.现在地面气温为t℃,则h m 的高空的温度为n摄氏度.(1)用h和t的代数式来表示n;(2)若h=2500,求此时的温度n.23观察下列各式:①11×3=12×(1−13); ②:13×5=12×(13−15);③:15×7=12×(15−17); ④:17×9=12×(17−19);(1)按上述规律写出第五个等式: ________.(2)写出第n个等式: ________.(3)根据上述规律,计算:11×3+13×5+15×7+17×9+⋯+12023×2025。
人教版七年级上册《数学》期中考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 一个等边三角形的每个内角是多少度?A. 30°B. 45°C. 60°D. 90°2. 一个正方形的对角线长是边长的多少倍?A. 1B. √2C. 2D. √33. 一个圆的半径是5cm,它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 25π4. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 50B. 25C. 20D. 155. 一个立方体的体积是27cm³,它的边长是多少厘米?A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 一个等腰三角形的底角和顶角相等。
()2. 一个圆的直径等于它的半径的两倍。
()3. 一个正方形的对角线等于它的边长的√2倍。
()4. 一个长方形的面积等于它的长乘以宽。
()5. 一个立方体的体积等于它的边长的三次方。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的半径是5cm,它的面积是______平方厘米。
4. 一个长方形的长是10cm,宽是5cm,它的面积是______平方厘米。
5. 一个立方体的体积是27cm³,它的边长是______厘米。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方形的性质。
5. 简述立方体的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长是6cm,求它的面积。
2. 一个正方形的对角线长是10cm,求它的面积。
3. 一个圆的半径是4cm,求它的面积。
4. 一个长方形的长是8cm,宽是4cm,求它的面积。
5. 一个立方体的边长是3cm,求它的体积。
六、分析题(每题5分,共10分)1. 分析等边三角形、正方形、圆、长方形、立方体之间的区别和联系。
人教版数学2024-2025学年七年级上册期中学情评估卷(含答案)
人教版数学2024-2025学年七年级上册期中学情评估卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.锂电池是电动汽车的关键部件,我国的锂电池正突破重围,势不可挡.规定电动汽车充电时长为正,耗电时长为负,若电动汽车快充充电0.5小时记作+0.5小时,那么电动汽车连续耗电8小时记作( )A .+0.5小时B .-0.5小时C .+8小时D .-8小时2.自然资源部发布数据显示,2023年我国海洋生产总值达99 097亿元,同比增长6.0%.其中数据“99 097亿”用科学记数法可表示为( )A .9.909 7×1012B .9.909 7×1011C .0.990 97×1013D .99 097×1083.下列对代数式的解释中错误的是( )A . a 2-2ab +b 2表示a ,b 两数的平方和减去它们乘积的2倍B . m +2n 表示m 与n 的2倍的和C . a 2+b 2表示a 与b 的平方的和D .(a +b )(a -b )表示a ,b 两数的和与差的乘积4.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是( )A .0-6+3=9B .0-6-3=-3C .0-6+3=-3D .0-6+3=35.下列说法正确的是( )A .单项式-23πa 2b 的系数是-23B .单项式-12ah 2的次数是3C .2x 2+3xy -1是四次三项式D .25与x 5是同类项6.在算式3-|-5□2|中的“□”内填入下列运算符号,使得算式的值最大的是( )A .+B .-C .×D .÷7.下列去括号正确的是( )A . a 2-(2a -b +c )=a 2-2a -b +c B .-(x -y )+(xy -1)=-x -y +xy -1C . a 2-2(a +b +c )=a 2-2a +b -cD . x -[y -(z +1)]=x -y +z +18.小明、小红在手机上互相给对方发红包.小明先给小红发2元,小红给小明发回4元,小明再给小红发6元,小红又给小明发回8元,…….按照这个规律,两人一直互相发红包,直到小明第9次给小红发红包后,小红突然不发回了.若在整个过程中,两人都及时领取了对方的红包,则最终小红( )A .赚了18元B .赚了16元C .亏了18元D .亏了16元9.某种细菌每分钟可由1个分裂成2个,将1个细菌放在培养瓶中经过64分钟就能分裂满一瓶.若将4个这种细菌放入同一个培养瓶中,分裂满一瓶的时间是( )A .16分钟B .32分钟C .52分钟D .62分钟10.小文在做多项式加减运算时,将减去2a 2+3a -5误认为是加上2a 2+3a -5,求得的答案是a 2+a -4,那么正确的结果是( )A .-a 2-2a +1B .3a 2+4a -9C . a 2+a -4D .-3a 2-5a +611.在数轴上表示有理数a ,b ,c 的点如图所示,若a +b <0,ac <0,则下面四个结论:①abc <0;②b +c <0;③|a |-|b |>0;④|a -c |<|a |.其中一定成立的结论的个数为( )A .1B .2C .3D .412.已知A =ax 2-3x +by -1,B =3-2y -32x +x 2,若无论x ,y 为何值,A -2B 的值始终不变,则b a 的值为( )A .16B .-16C .-4D .4二、填空题(本大题共4小题,每小题3分,共12分)13.-|-23|的相反数是 .14.比较大小:-|-213| -(-213)(填“<”“>”或“=”).15.已知A =3x 3+2x 2-5x +7m +2,B =2x 2+mx -3,若关于x 的多项式A +B 中不含一次项,则A +B 的常数项是 .16.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为n2k (其中k 是使n 2k为奇数的正整数),并且运算可以重复进行,例如,取n =25,运算过程如图.若n =34,则第2 024次“F ”运算的结果是 .三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)4×(-1)2 024-13+(-12)-|-43|; (2)-14-(1-0.5)×13×[3-(-3)2].18.(7分)某仓库5月份前6天,每天粮食(单位:袋)相对于前一天的变化如图,增加粮食记作“+”,减少粮食记作“-”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化情况的一半,求7号这天仓库粮食的变化情况.x2-x,当x为最大的负整数,y为最小19.(8分)已知两个多项式A和B,A=x2+y,B=12的正整数时,求A-2B的值.20.(9分)在数学活动课上,三位同学各拿出一张卡片,卡片上分别写上A,B,C三个代数式,已知A=-2x2-(k-1)x+1,B=-2(x2-x+2).(1)当x=3时,试求出B的值;(2)当k=-1,C=B-A时,试求出代数式C;(3)若代数式C是二次单项式,2A-B+C的结果为常数,试求出k的值和代数式C.21.(9分)数轴上有两点A,B,点A在点B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.点A,B表示的数分别是a,b,点P为数轴上的一动点,其表示的数为x.(1)a= ,b= .(2)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.22.(9分)如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度向右运动,设运动的时间为t秒.(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时,求点Q到原点O的距离;(3)当点Q到点A的距离为4个单位长度时,求点P到点Q的距离.23.(10分)“整体思想”是数学解题中一种重要的思想方法,它在多项式的化简与求值中应用较为广泛.如图所示是老师安排的作业题.代数式x2+x+3的值为7,则代数式2x2+2x-3的值为 .【阅读理解】小明在做作业时采用的方法如下:因为x2+x+3=7,所以x2+x=4,所以2x2+2x-3=2(x2+x)-3=2×4-3=5,所以代数式2x2+2x-3的值为5.【方法运用】(1)若代数式x2+x+1的值为15,求代数式-2x2-2x+3的值;(2)当x=2时,代数式ax3+bx+4的值为11,求当x=-2时,代数式ax3+bx+3的值;【拓展应用】(3)若3m-4n=-3,mn=1,求6(m-n)-2(n-mn)的值.24.(12分)阅读下面方框内的材料,解答相应的问题:对称式:一个含有多个字母的式子中,任意交换两个字母的位置,当字母的取值均不相等,且都不为0时,式子的值不变,这样的式子叫作对称式.例如:式子abc中任意两个字母交换位置,可得到式子bac,acb,cba,因为abc=bac=acb=cba,所以abc是对称式.而式子a-b(a≠b)中字母a,b交换位置,得到式子b-a,因为a-b≠b-a,所以a-b不是对称式.问题:(1)给出下列式子:①a+b+c,②a2b,③a2+b2,④b,其中是对称式的是 (填序a号);(2)①写出一个系数为-2,只含有字母a,b且次数为8的单项式,使该单项式是对称式;②写出一个只含有字母a,b的三次三项式,使该多项式是对称式;(3)已知A=a2b-2b2c+2ac2,B=a2b-4b2c,求5A-3B,并直接判断所得结果是否是对称5式.参考答案123456789101112答案速查DACCBDDADDAA13.23 14.< 15.34 16.417.解:(1)原式=4×1-13-12-64=4-13-12-64=-7312.(2)原式=-1-12×13×(3-9)=-1-16×(-6)=-1+1=0.18.解:(1)-4+2-6+5+3-7=-7(袋).答:前6天,仓库粮食总共减少了7袋.(2)(-4+2-6+5)×2-(-7+3)=-2(袋).答:7号这天仓库粮食比前一天减少2袋.19.解:A -2B =x 2+y -2(12x 2-x )=x 2+y -x 2+2x =2x +y .因为x 为最大的负整数,y 为最小的正整数,所以x =-1,y =1.所以A -2B =2x +y =-2+1=-1.20.解:(1)当x =3时,B =-2×(32-3+2)=-2×8=-16.(2)因为k =-1,所以C =B -A =-2(x 2-x +2)-[-2x 2-(-1-1)x +1]=-2x 2+2x -4+2x 2-2x -1=-5.(3)2A -B =2[-2x 2-(k -1)x +1]-[-2(x 2-x +2)]=-4x 2-2(k -1)x +2+2(x 2-x +2)=-4x 2-2(k -1)x +2+2x 2-2x +4=-2x 2-2kx +6.因为代数式C 是二次单项式,2A -B +C 的结果为常数,所以k =0,C =2x 2.21.解:(1)-1;3 点拨:因为点O 在线段AB 上,OB =3OA ,且AB =4,所以OA =1,OB =3.又因为点A 在点B 左边,所以a =-1,b =3.(2)在运动过程中,3PB -PA 的值不随着时间t 的变化而改变.运动t 秒后,A 点表示的数为-1-t ,P 点表示的数为2t ,B 点表示的数为3+3t ,所以3PB -PA =3(3+3t -2t )-[2t -(-1-t )]=9+3t -(2t +1+t )=9+3t -3t -1=8.22.解:(1)当t =0.5时,点Q 运动的距离为4t =4×0.5=2,8-2=6,所以当t=0.5时,点Q到原点O的距离为6个单位长度.(2)当t=2.5时,点Q运动的距离为4t=4×2.5=10,10-8=2,所以当t=2.5时,点Q到原点O的距离为2个单位长度.(3)点Q到点A的距离为4个单位长度时,分三种情况讨论:①点Q向左运动4个单位长度,此时运动时间为4÷4=1(秒),此时点P表示的数是-2,点Q表示的数是4,则点P到点Q的距离是6个单位长度.②点Q向左运动8个单位长度到原点O,再向右运动4个单位长度,则点Q运动的距离为8+4=12,运动时间为12÷4=3(秒),此时点P表示的数是-6,点Q表示的数是4,则点P到点Q的距离是10个单位长度.③点Q向左运动8个单位长度到原点O,再向右运动12个单位长度,则点Q运动的距离为8+12=20,运动时间为20÷4=5(秒),此时点P表示的数是-10,点Q表示的数是12,则点P到点Q的距离是22个单位长度.综上,点P到点Q的距离为6或10或22个单位长度.23.解:(1)因为x2+x+1=15,所以x2+x=14,所以-2x2-2x+3=-2(x2+x)+3=-2×14+3=-25.(2)当x=2时,ax3+bx+4=8a+2b+4=11,所以8a+2b=7,所以当x=-2时,ax3+bx+3=-8a-2b+3=-(8a+2b)+3=-7+3=-4.(3)因为3m-4n=-3,mn=1,所以6(m-n)-2(n-mn)=6m-6n-2n+2mn=6m-8n+2mn=2(3m-4n)+2mn=2×(-3)+2×1=-4.24.解:(1)①③ 点拨:根据对称式的定义判断:①a+b+c=b+a+c=c+b+a=a+c+b,故①是对称式;②a2b≠b2a,故②不是对称式;③a2+b2=b2+a2,故③是对称式;④ba ≠ab,故④不是对称式.(2)①根据题意可写出对称式为-2a4b4.②根据题意可写出对称式为a3+b3+1(答案不唯一).(3)5A-3B=5(a2b-2b2c+25ac2)-3(a2b-4b2c)=5a2b-10b2c+2ac2-3a2b+12b2c=5a2b-3a2b-10b2c+12b2c+2ac2=2a2b+2b2c+2ac2.根据对称式的定义,可知2a2b+2b2c+2ac2不是对称式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册期中考试数学试卷
一、选择题。
(每小题3分,共24分,每题只有一个正确答案)
1.一天中午长沙的气温是7 ℃,哈尔滨的气温是-12℃,这天长沙中午的气温比哈尔滨的气温高( ) A 、-4℃ B 、4℃ C 、-19℃ D 、19℃ 2.如图: 下列结论正确的是:( )
A 、a 比b 大
B 、b 比a 大
C 、a,b 一样大
D 、a,b 大小无法确定 3.下列结论正确的是( )
A 、1-=1-
B 、3-=-(-3)
C 、2- <1-
D 、-3-=+3- 4.小明做了以下四道题,有几道正确:( ) ①2009(1)-=2009 ②0-(-1)=1 ③111236
-
+=-
④1112
2
-
÷
=-
A 、1题
B 、2题
C 、3题
D 、4题 5.下列各式中,计算正确的是( )
A 、12322=-a a
B 、a a a =-2223
C 、2223a a a =-
D 、22223a a a =- 6.下列说法正确的是:( )
A 、0是最小的数
B 、数轴上距离原点3个单位的点表示数是3±
C 、最大的负有理数是-1 D.任何有理数的绝对值都是正数。
7、某种商品原价每件m 元,第一次降价打八折,第二次再次降价每件减10元,第二次降价后的售价是( ) A 、0.8m 元 B 、(0.8m-10)元 C 、0.8(m-10)元 D 、(m-10)元 8..一种计算游戏规则
12,142334
a b ad bc c d
=-⨯⨯如
=-,请你来计算
3542
--=
( )
A 、26
B 、-26
C 、14
D 、-14 二.填空题(每小题3分,共24分)
1、2-= , 3的相反数是 , 的倒数是-2。
2、如果水位上升2米记作+2米,则-2表示水位 。
3、多项式972
2
2
3
--+-xy
y x y x 的次数是 ,有 项,常数项是 。
4、据报道:明年我国粮食产量将达到541000000000千克用科学记数法表示这个产量为___________千克。
5. 任写一个与b a 2
2
1-
c 是同类项的单项式:_______________.
6.某公司的四月份营业额比3月份增加了-2.9万元,实际情况是_________ ______.
7.用符号“<,=,>”填空:59
-
35
-
.
8.若2
4(1)0a b -++=,那么a b += .
· · · b 0 a
三、计算题:(每题4分,共16分)
1、(85)(25)(4)-⨯-⨯-
2、75(1)(24)12
6
-
-⨯-
3、2
725.0)431(218
)5
22
(5
2⨯÷--⨯-
-÷ 4、24
63(1)(4)5-+⨯---⨯
五:解答题。
1、(8分)化简求值:2(34)(35)a a b a b +---,其中1,22
a b =-=。
2、(8分)某校团支部组织全校植树活动,七年级植a 棵,八年级比七年级植的2倍少4棵,九年级比八
年级植的一半多8棵,试问你全校共植树多少棵?
3、(10分)小明在实践课做了一个长方形模型,模型一边长为4a+2,另一边长比它短2a-b,则长方形的
周长是多少?
4. 已知a,b 互为相反数,c,d 互为倒数,求代数式2009
12009
)(22
+
-+-cd b a
5.(8分)画出一条数轴并在数轴上表示出-1,2
3 ,3,-3,2
5
,0,并把这些数按由小到大的
顺序排列起来.
六:(10分)某公园采用持卡消费和不持卡消费两种方式,其主要参考数据如下:
(1) 一个月内某人在该公园消费x 次,请你用含x 的式子分别表示出两种消费方式下该用户支付的费
用。
(2) 若某用户一个月内在该公司消费10次,你认为采用哪种方式较为合算?
七:(10分)按下列程序计算,把答案写在表格里,观察有什么规律。
(1) 填写表内空格
(2) 发现的规律是:输入数据x ,则输出的答案是__________ (3) 为什么有这个规律,请你说明理由。
八. 已知222271,34,5105A x x B x x C x x =-+=--=+-
①求A B C -+②当1-=x 时,A B C -+的值是多少
九.计算)2010642()200953(a a a a a a a a ++++-++++
十.(10分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为
r 米,广场长为a 米,宽为b 米.
1)请列式表示广场空地的面积;
2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).。