晶体结构与性质
晶体的结构和性质课件
晶体的化学性质
晶体在特定条件下可以发 生化学反应,参与催化和 合成等重要化学过程。
晶体的力学性质
晶体的力学性质决定了晶 体的强度和变形特性,在 工程领域有重要应用。
晶体的应用
1
半导体材料
晶体在半导体领域有广泛应用,包
晶体管和集成电路
2
括集成电路和太阳能电池。
晶体管和集成电路的发明使得电子
技术得以飞速发展。
晶体的结构和性质
本课件介绍了晶体的结构和性质。包括晶体的概念和分类,晶体的周期性结 构和晶胞,晶体的点阵和空间群,晶体的物理、化学和力学性质,以及晶体 的应用。
晶体的概念和分类
Hale Waihona Puke 晶体的定义晶体是具有周期性结构的固体材料,由原 子、离子或分子按照一定规律排列而成。
晶体的分类
晶体可以根据化学成分、晶体形态和晶体 结构等特征进行分类。
3
晶体振荡器和滤波器
晶体振荡器和滤波器是电子设备中
医用晶体材料
4
关键的频率控制元件。
晶体材料在医学领域用于制作医疗 设备,如X光片和超声传感器。
结束语
晶体在现代科技中扮演着重要的角色,推动了许多领域的发展。展望未来,晶体的应用前景仍然 广阔。
晶体的结构
晶体的周期性结构
晶体具有高度有序的周期性 结构,使其具有特定的物理 和化学性质。
晶体的晶胞和晶格
晶体的结构是由晶胞和晶格 组成的,晶胞是最小重复单 元。
晶体的点阵和空间群
晶体的点阵和空间群描述了 晶体的几何特征和对称性。
晶体的性质
晶体的物理性质
晶体具有独特的光学、热 学和电学性质,可以应用 于光学器件、导热材料和 电子元件。
高中化学知识点:晶体结构与性质
高中化学知识点:晶体结构与性质晶体结构与性质是高中化学中重要的知识点之一。
晶体是由原子、分子或离子等微观粒子沿着空间做周期性重复排列所形成的固体物质,具有规则的几何外形和固定的熔点。
晶体结构与其性质有着密切的关系,了解晶体结构可以帮助我们更好地理解晶体的性质和特征。
一、晶体结构晶体结构是指晶体中原子或离子的排列方式以及它们之间的相互作用。
根据晶体中微观粒子的种类和排列方式,可以将晶体分为离子晶体、分子晶体、原子晶体等不同类型。
其中,离子晶体是最常见的晶体之一,其基本结构单元是正负离子,这些离子通过离子键相互结合。
分子晶体则是由分子通过范德华力相互结合形成的,而原子晶体则是原子通过共价键相互结合形成的。
在晶体结构中,晶胞是最基本的结构单元,它是一个重复单位,可以代表整个晶体结构。
晶胞具有规则的几何外形,并且具有对称性。
晶胞中的原子或离子的排列方式以及它们之间的相互作用,决定了晶体的物理和化学性质。
二、晶体的性质1、晶体的导电性晶体的导电性是指晶体在电场的作用下能够导电的能力。
离子晶体具有较好的导电性,因为离子晶体中存在可以自由移动的离子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其导电性相对较差。
2、晶体的热稳定性晶体的热稳定性是指晶体在温度变化时保持其结构的稳定性和物理性质的能力。
离子晶体具有较高的热稳定性,因为离子键的键能较大,而分子晶体和原子晶体由于分子或原子之间的相互作用比较弱,其热稳定性相对较差。
3、晶体的还原性晶体的还原性是指晶体在化学反应中失去电子的能力。
离子晶体具有较强的还原性,因为离子晶体中的离子容易失去电子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其还原性相对较差。
此外,晶体的光学性质、磁性、机械性质等也是晶体性质的重要组成部分。
不同的晶体结构对应不同的物理和化学性质,理解和掌握晶体结构和性质之间的关系对于我们更好地认识化学世界具有重要的意义。
三、晶体结构与性质的关系晶体结构和性质之间存在着密切的关系。
晶体的结构与性质
晶体的结构与性质晶体是由原子、分子或离子有序排列组成的固体物质。
它们具有高度的周期性和对称性,这导致了晶体与其他非晶体固体在性质上的差异。
晶体的结构决定了它们的物理和化学性质。
本文将探讨晶体的结构与性质之间的关系,并介绍一些常见的晶体结构。
一、晶体的结构晶体的结构是指晶体中原子、分子或离子的排列方式。
晶体的结构可以通过X射线衍射等实验方法进行研究和确定。
根据晶体结构的不同,可以将晶体分为正交晶系、立方晶系、六方晶系、四方晶系、三斜晶系和三角晶系等几个主要类别。
在晶体的结构中,原子、分子或离子按照一定的规则排列,形成周期性的空间网络。
这个空间网络由晶格点和晶胞构成。
晶格点是晶体结构中最小的重复单元,晶胞则是由一个或多个晶格点组成的空间区域。
不同的晶体结构具有不同的特点。
例如,立方晶系的晶体结构具有最高的对称性,晶格点位于立方体的顶点、中心和边心位置等规则位置。
而六方晶系的晶体结构则具有六角形晶胞和六方柱的对称性。
二、晶体的性质晶体在许多性质上与非晶体有明显的区别。
晶体的周期性结构导致了许多特殊的物理和化学性质。
1. 光学性质:由于晶体结构的周期性,晶体对光的传播和吸收具有特殊的规律性。
晶体可以表现出各种各样的光学效应,如散射、折射、吸收和双折射等。
这些光学性质常常用于晶体的识别和应用。
2. 热性质:晶体的热导性和热膨胀性与其结构有密切关系。
晶体的周期性结构使得热能在其中传导时受到阻碍,导致晶体具有较低的热导率。
此外,晶体的热膨胀性也因结构的周期性而呈现出特殊的规律性。
3. 电学性质:晶体中的离子或电子在结构的作用下呈现出特定的电学性质。
晶体可以表现出正电介质、负电介质、半导体和导体等不同的电导特性。
这些性质与晶体中离子或电子的移动、相互作用以及能带结构等因素密切相关。
4. 力学性质:晶体的结构对其力学性质也有显著的影响。
晶体的硬度、断裂韧性、弹性模量等力学特性与晶体结构的紧密程度、原子排列的方式等因素有关。
晶体结构与性质
第三章晶体结构与性质一、晶体与非晶体第一节晶体的常识1.晶体的特征常见的物质聚集态有三种:固态、液态和气态。
固态物质(即固体)有晶体与非晶体之分。
晶体主要有以下四个特征:(1)晶体的构成粒子在三维空间呈周期性有序排列,因而外观上表现出规则的几何外形。
而非晶体却无规则的外形。
(2)自范性:晶体能自发呈现多面体外形,即熔融态物质在冷却凝固时,速率适当,能自法形成晶体。
这是晶体的本质特征,直接决定了其他性质。
(3)晶体有固定的熔,加热晶体.到达熔点时即开始熔化,在未完全熔化前,持续加热,温度不上升,此时供给的热都用来使晶体熔化,直到完全熔化,温度才开始上升。
(4)各向异性:同一晶格中在不同方向上质点排列一般不同,因此晶体的性质也随着方向的不同而有所差异.如强度、导热性、导电性、光学性质等。
此外在分析和实验过程中.我们还发现晶体的某些特点,如均一性:指晶体的化学组成、密度等性质在晶体中各部分都相同对称性:晶体的外形和内部结构都具有特有的对称性。
最小内能:在相同的热力学条件下,晶体与同种物质的非晶体固体、液体、气体相比较内能最小。
稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
能使X射线产生衍射:当入射光的波长与光栅缝隙大小相当时.能产生光的衍射现象。
X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅。
它能使X射线产生t衍射。
利用这种性质,人们建立了测定晶体结构的主要实验方法。
非晶态物质没有周期性结构,不能使X射线产生衍射,只有散射效应。
生活中常用上述性质上差异的可行方面,来间接地区分晶体与非晶体,但最可靠的科学方法是对固体X射线衍射实验,常朋X射线衍射仪。
单一波长的X射线通过晶体时,会在记录仪上看到分离的斑点或谱线而在同一条件下摄取的非晶体图谱中却看不到分离的斑点或明显的谱线。
3.得到晶体的三条途径(1)熔融态物质凝固。
(2)气态物质凝华。
(3)溶质从溶液中析出。
二、晶胞1.晶胞是从晶体中“截取"出来具有代表性的最小结构单元从微观上讲,晶体是由构成粒子(分子、原子、离子)按一定几何规则构成的基本结构单元(晶胞),无间隙,并在立体空间里重复排列而成,正是这种排列的有序性和规则性决定了方向不同,排列不同,从而表现出各向异性。
晶体结构与性质知识总结
晶体结构与性质知识总结晶体是由原子、离子或分子组成的固体,它们按照一定的规则排列而形成的,在空间上具有周期性的结构。
晶体的结构与性质密切相关,下面对晶体的结构和性质进行总结。
一、晶体的结构:1.晶体的基本单位:晶体的基本单位是晶胞,它是晶格的最小重复单位。
晶胞可以是点状(原子)、离子状(离子)或分子状(分子)。
2.晶格:晶格是一种理想的周期性无限延伸的结构,它由晶胞重复堆积而成。
晶格可以通过指标来描述,如立方晶系的简单立方晶格用(100)、(010)和(001)来表示。
3.晶系:晶体按照对称性的不同可以分为立方系、四方系、正交系、单斜系、菱面系、三斜系和六角系等七个晶系。
4.点阵:点阵是晶胞中原子、离子或分子的空间排列方式。
常用的点阵有简单立方点阵、体心立方点阵和面心立方点阵。
5.晶体的常见缺陷:晶体中常见的缺陷有点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子等;线缺陷包括晶体的位错和附加平面等;面缺陷包括晶体的晶界、孪晶和堆垛疏松等。
二、晶体的性质:1.晶体的光学性质:晶体对光有吸收、透射和反射等作用,这取决于晶格结构和晶胞的对称性。
晶体在光学显微镜下观察时,有明亮的晶体颗粒。
2.晶体的热学性质:晶体的热学性质主要包括热容、热传导和热膨胀等。
晶体的热传导性能与晶胞的结构和相互作用有关,不同晶体的热传导性能差异很大。
3.晶体的电学性质:晶体的导电能力与晶体的结构和化学成分密切相关。
一些晶体可以具有金属导电性,例如铜、银和金等;而其他晶体可以具有半导体或绝缘体导电性。
4.晶体的力学性质:晶体的力学性质涉及到晶体的刚性、弹性和塑性等。
晶体在受力作用下可能发生形变,这取决于晶格的结构和原子、离子或分子之间的相互作用力。
5.晶体的化学性质:晶体的化学性质取决于晶体的成分和结构。
晶体可能与其他物质发生化学反应,形成新的物质。
晶体的化学性质对其功能和应用具有重要影响。
综上所述,晶体的结构与性质密切相关。
晶体的结构及性质
我国的南珠
晶体性质和应用
晶体结构的周期性:
晶体是由原子或分子在空间按一定规律、周期重复地排 列所构成的固体物质。晶体内部原子或分子按周期性规 律排列的结构,是晶体结构最基本的特征,
使晶体具有下列共同特性:
⑴均匀性 ⑵各向异性 ⑶自发地形成多面体外形 ⑷有明显确定的熔点 ⑸有特定的对称性 ⑹使X射线产生衍射
旋转轴和旋转操作
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转依据的的对称元素 为旋转轴。n次旋转轴用记号Cn表示。使物体复 原的最小旋转角(0度除外)称为基转角(α)Cn
轴的基转角α=360/n,旋转角度按逆时针方向计算。
分子常见的Cn轴有:C2,C3,C4,C5,C6,C∞等。 如:H2O中有C2轴,NH3,HCCl3有C3轴等。
镜面和反映操作
镜面是平分分子的平面,在分子中除位于经面上的原 子外,其他成对地排在镜面两侧,它们通过反映操作 可以复原。反映操作是使分子中的每一点都反映到该 点到镜面垂线的延长线上,在镜面另一侧等距离处。
分子中常用σ表示,而晶体中常用m表示。
E, n为偶数
σn σ ,n为奇数
对称中心和反演操作
当分子有对称中心时,从分子中人一原子至对 称中心连一直线,将次线延长,必可在和对称 中心等距离的另一侧找到另一相同原子。和对 称中心相对应的对称操作叫反演。 分子中常用i表示:
晶体中原子的坐标参数是以晶胞的3个轴作为坐标轴, 以3个轴的轴长作为坐标轴单位的。
原子在晶胞中的坐标参数(x,y,z)的意义是指由晶胞原 点指向原子得矢量
r xa yb zc
晶体的缺陷
实际的晶体都是近似的空间点阵式的结构。实际晶体有一定的尺 寸,晶体中多少都存在一定的缺陷。晶体的缺陷按几何形式划分 为点缺陷、线缺陷、面缺陷和体缺陷等。 点缺陷:包括空位、杂质原子、间隙原子、错位原子和变价原子 等。原子在晶体内移动造成的正离子空位和间隙原子称为Frenkel 缺陷;正负离子空位并存的缺陷称为Schottky缺陷。 线缺陷:最重要的是位错,位错是使晶体出现镶嵌结构的根源。 面缺陷:反映在晶面、堆积层错、晶粒和双晶的界面、晶畴的界 面等。 体缺陷:反映在晶体中出现空洞、气泡、包裹物、沉积物等。 晶体的缺陷影响晶体的性质,可使晶体的某些优良性能降低,但 是从缺陷可以改变晶体的性质角度看,在晶体中造成种种缺陷, 就可以使晶体的性质有着各种各样的变化,晶体的许多重要性能 由缺陷产生。改变晶体缺陷的形式和数量,就可制得所需性能的 晶体。
13.3晶体的结构与性质
6. 分子晶体结构特征
(1)只有范德华力,无分子间氢键-分子密堆 积(如:C60、干冰 、I2、O2)
干冰的晶体结构图
分子的密堆积
(与CO2分子距离最近的 CO2分子共有12个 )
碘
氯
的
化
晶
钠
体
晶
结
体
构
结
图
构
示
意
图
每个I2周围有12个碘分子 每个Na+周围有 6 个Cl每个Cl- 周围有 6 个Na+
Mg原子的数目: 12×1/6+2×1/2=3 B原子的数目:6 故化学式可表示为
MgB2
2.分子晶体与原子晶体
一、分子晶体
1、概念:只含分子的晶体称为分子晶体。 2、组成微粒:分子 3、微粒间作用力:
在分子晶体中,分子内的原子间以共价键结合;相 邻分子靠分子间作用力或氢键相互吸引。
4、分子晶体的一般宏观性质
(4)晶体中每个碳原子为 1___2_个环所共用。
Si
O
180º
109º28´
共价键
金刚石的结构
SiO2 平 面 结构
白球表示 硅原子
1、SiO2最小的环有(12 )原子组成
Si O
2、Si周围紧邻的O( 4)个
3、 O 周围紧邻的Si(2)个
4、SiO2中Si、O个数比为(1:2)个 5、1molSiO2含有( 4 )molSi-O
(2)有分子间氢键-不具有分子密堆积特 征(如:HF 、冰、NH3 )
分子的非密堆积
冰的结构
CO2和SiO2的一些物理性质如下表所示,通过比较 试判断SiO2晶体是否属于分子晶体。
二、原子晶体
1、概念:原子间以共价键相结合而形成的空间网状结 构的晶体。
晶体的结构和性质
晶体的结构和性质晶体,是由原子、离子或分子有序排列而成的固态物质。
其独特的结构和性质使得晶体在科学研究和工业应用中占据重要地位。
本文将着重探讨晶体的结构和性质,并对其应用领域进行简要介绍。
一、晶体的结构晶体的结构可以分为两个层次来讨论:微观结构和宏观结构。
微观结构是指晶体中原子、离子或分子的排列方式。
晶体的微观结构可以由X射线衍射、电子显微镜等高分辨率实验手段进行研究。
例如,石英晶体的微观结构是由硅氧簇构成的,这些硅氧簇按照一定的规则排列形成晶体的三维结构。
宏观结构是指晶体的晶体形状,也就是晶体表面的外部几何形态。
晶体的宏观结构与其内部微观结构密切相关。
例如,钻石晶体的宏观结构呈现为八面体的形状,与其微观结构中碳原子之间的强共价键有关。
晶体的结构对于其性质具有重要的影响,下面将对晶体的一些性质进行探讨。
二、晶体的性质1. 光学性质晶体的不同结构决定了它们不同的折射率、吸收特性和透明度等光学性质。
例如,石英晶体具有较高的透明度,可以广泛用于光学仪器和光学器件制造。
而金刚石晶体在适当条件下具有高折射率和强光散射能力,使其成为用于研究光学行为的重要晶体。
2. 电学性质晶体的结构和电子排布方式影响着它们的电学性质。
不同的晶体可以表现出不同的电导率、介电常数和电荷迁移速率等。
这些性质使得晶体在电子学领域具有重要应用,如半导体材料和光电器件。
3. 热学性质晶体的结构也会对其热学性质产生影响。
晶体的热导率、热膨胀系数和热稳定性等热学性质对于材料的热管理和稳定性至关重要。
例如,硅晶体由于其较高的热导率和稳定性,是制造集成电路中必不可少的材料之一。
三、晶体的应用由于晶体独特的结构和性质,它们广泛应用于多个领域:1. 材料科学领域晶体结构研究对于新材料的开发具有重要意义。
通过对晶体结构的深入理解,科学家能够设计出具有特定性能的新材料,如高强度陶瓷、高温超导材料等。
2. 光电子学领域晶体的光学和电学性质使其成为光电子学领域的核心材料。
物质的晶体结构和晶体的性质
物质的晶体结构和晶体的性质晶体是物质的一种特殊的形态,具有有序排列的原子、离子或分子结构。
物质的晶体结构决定了晶体的性质和行为。
本文将探讨物质的晶体结构对晶体性质的影响。
一、晶体的结构类型不同的物质可以形成不同类型的晶体结构。
常见的晶体结构类型有离子晶体结构、共价晶体结构和金属晶体结构。
1.离子晶体结构离子晶体由带正电荷和带负电荷的离子组成,它们通过离子键相互连接。
在离子晶体结构中,离子根据它们的尺寸和电荷排列在特定的位置上。
典型的例子是氯化钠晶体,其中钠离子和氯离子以离子键相互连接。
2.共价晶体结构共价晶体由共用电子对相互连接的原子组成。
在共价晶体结构中,原子通过共价键连接在一起。
典型的例子是碳化硅晶体,其中碳原子和硅原子通过共价键相互连接。
3.金属晶体结构金属晶体由金属原子组成,原子之间通过金属键相互连接形成金属结构。
金属晶体结构中的原子呈现紧密堆积的球形排列,典型的例子是金属铜。
二、晶体的性质晶体的结构类型决定了其独特的性质。
以下介绍几种与晶体结构相关的晶体性质。
1.透明性晶体的有序结构可以使光线通过,使其具有透明性。
透明的晶体如水晶和钻石,能让光线穿透并发生折射和反射。
2.硬度晶体的有序结构通常使其具有较高的硬度。
由于晶体结构的稳定性,物质的晶体形态往往比非晶体更坚固。
例如,石英晶体是一种非常硬的物质。
3.熔点和沸点晶体的结构类型也会对物质的熔点和沸点产生影响。
由于晶体结构的稳定性,晶体的熔点和沸点通常较高。
与之相反,非晶体的熔点和沸点较低。
4.电导性晶体中的离子或电子可以通过晶体结构的导电性使电流通过。
离子晶体具有较好的导电性,而共价晶体和典型的金属晶体则具有较差的导电性。
三、晶体结构与物质性质的关系物质的晶体结构决定了它的性质和行为。
晶体结构的稳定性使得晶体具有较高的硬度和稳定的几何形状。
晶体结构的有序性使晶体表面产生平整的晶面,使得晶体呈现出色彩斑斓的光学效果。
此外,晶体结构还决定了物质的热导性、电导性等物理性质。
晶体的结构与性质
晶体的结构与性质晶体是由原子、分子或离子结构规则地排列而成的物质。
晶体的结构与性质密切相关,本文将就这两方面进行探讨。
一、晶体的结构晶体的结构由周期性的、有序的结构单元构成。
晶格是指晶体中原子、分子或离子的空间排列方式。
晶格是重复的,且具有平移对称性。
晶体的结构构成有三个要素:结构单元、晶体晶格和晶体对称性。
1.结构单元结构单元是指晶体中以晶格为单位所重复出现的最小结构单元,通常由几个原子、离子或分子构成。
例如,金刚石晶体中的结构单元是一个碳原子与四个相邻的碳原子方向而成的四面体。
2.晶体晶格晶体晶格是指结构单元通过平移而得到的三维有序排列方式。
晶体中的晶格具有特殊的对称性,可以被描述为点阵、面阵或空间群。
点阵是晶体中已知单胞的基本单位,它在三维空间中重复排列构成晶体。
面阵是晶体中由重出现排列的单胞面所构成的排列,通常用于描述平面电声晶体。
空间群则是晶体中单胞的空间重复排列方式,具有丰富的对称性和分子结构信息。
3.晶体对称性晶体对称性包括点群对称性、平面群对称性和空间群对称性。
点群对称性是指晶体中一个晶格单元的一系列对称操作所具有的对称性。
平面群是指晶体中具有一定晶面对称性的平面所对应的对称操作,通常用于描述平面电声晶体。
空间群则是晶体中单胞的空间重复排列方式所具有的对称性。
二、晶体的性质晶体的性质受到晶体结构、原子、分子或离子的排列方式以及化学键的强度等因素的影响。
晶体的性质表现为热学性质、光学性质、电学性质、磁学性质等。
1.热学性质晶体的热学性质随温度变化而变化,包括热膨胀系数、热传导率、热导率、热容等。
晶体的热膨胀系数与晶体的结构紧密相关,晶体结构相对稳定的晶体热膨胀系数较低。
2.光学性质晶体的光学性质是晶体中分子或离子吸收、散射、透过或折射光线的方式和规律。
光学性质包括吸收谱、荧光谱、紫外线谱等。
每一种晶体的光学性质都有独特的特点,其差异体现在某些颜色或光谱信息上。
3.电学性质电学性质与晶体的结构、化学键的特点等密切相关。
晶体的结构与性质
高二化学——晶体结构与性质一.晶体常识1.晶体与非晶体比较(1)概念:晶体:由原子、分子、离子等微粒在三维空间按一定的规律呈周期性有序排列而形成的固体。
非晶体:内部粒子在三维空间排列呈相对无序状态而形成的固体。
(2)晶体和非晶体在性质上的差异相关解释(1)自范性:晶体能自发的实现多面体外形的性质。
①实现自范性的条件:晶体生长的速率适当。
②晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表现。
(2)做x射线衍射实验、出现峰值,而非晶体没有。
这是二者最可靠的区别手段。
2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞(1)概念:晶胞是描述晶体结构的基本单元。
(2)晶胞特点:①晶胞一般都是平行六面体。
②整块晶体由晶胞“无隙并置”而成③同种晶体晶胞中原子种类完全相同晶体结构的堆积方式:原理:组成晶体的原子、离子或分子在无其他因素(如共价键的方向性)影响时,在空间的排列大都服从紧密堆积原理。
这是因为分别借助没有方向性的金属键、离子键和分子间作用力形成的金属晶体、离子晶体和分子晶体的结构中,都趋向于使原子或分子吸引尽可能多的原子或分子分布与周围,并以密堆积的方式降低体系的能量,使晶体变得比较稳定。
类型:①等径圆球密堆积:同种分子或原子,大小相同。
适用于分子晶体、金属晶体。
②非等径圆球密堆积:阴、阳离子,大小不同。
适用于离子晶体。
③原子晶体不遵循密堆积。
5.晶胞中微粒数的计算方法——均摊法。
如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:【注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
若晶胞是六棱柱,则顶点上粒子占1/6,侧棱上粒子占1/3,上下面上棱占1/4。
6.晶胞密度公式M(摩尔质量)=【晶体配位数:配位数反映了晶体空间构型的紧密程度,配位数越大,排列程度越紧密。
晶体结构与晶体的性质
晶体结构与晶体的性质晶体是由具有周期性、有序排列的原子、离子或分子构成的固体物质。
晶体结构与晶体的性质密切相关,本文将探讨晶体结构对晶体性质的影响。
一、晶体结构的分类晶体结构可以分为离子晶体结构、共价晶体结构和金属晶体结构三种类型。
1. 离子晶体结构离子晶体结构是由正负离子相互排列而成。
离子晶体结构的特点是阵列有序、结构稳定、点阵规则,并且具有高熔点和脆性。
典型的离子晶体有氯化钠(NaCl)、氧化镁(MgO)等。
2. 共价晶体结构共价晶体结构是由共价键相连的原子构成。
共价晶体结构的特点是强度高、硬度大、熔点高,且导电性能差。
经典的共价晶体有金刚石、硅等。
3. 金属晶体结构金属晶体结构是由金属离子组成。
它具有电子云海模型,金属结构中电子自由流动,因此具有良好的导电性和导热性。
典型的金属晶体有铜、铁等。
二、晶体结构对晶体性质的影响晶体结构对晶体的物理、化学性质产生重要影响。
1. 物理性质晶体的物理性质与其晶体结构紧密相关。
晶体结构的不同决定着晶体的硬度、电导率、光学性质等。
以硬度为例,离子晶体结构由于离子之间的强烈静电吸引力,使得晶体的结构相对稳定,因而具有较高的硬度。
金属晶体结构中由于存在金属键,金属之间的层状排列可以很容易滑动,故金属具有较低的硬度。
而共价晶体结构由于共用电子对,原子之间更加紧密结合,具有更高的硬度。
另外,晶体的电导率与晶体结构也有关。
金属晶体由于自由电子的存在,具有良好的导电性。
而离子晶体和共价晶体由于存在离子或共价键的束缚,电子不易流动,因此具有较差的导电性。
2. 化学性质晶体结构也会影响晶体的化学性质。
晶体结构中原子、离子或分子之间的距离和排列方式决定了晶体的化学反应活性。
以溶解性为例,离子晶体结构中离子间的静电吸引力较大,导致离子结构比较稳定,难于溶解。
而共价晶体结构中,原子之间的共价键相对较强,其溶解性较差。
金属晶体由于金属之间的自由电子,容易与外界发生化学反应。
此外,晶体结构对晶体的光学性质也有重要影响。
第一章第1节--晶体结构与性质
第一章晶体结构与性质第一节晶体的常识一、知识框架1晶体非晶体结构特征结构微粒周期性有序排列结构微粒无序排列性质特征自范性有无熔点固定不固定异同表现各向异性各向同性二者区别方法间接方法看是否有固定的熔点科学方法对固体进行X-射线衍射实验2(1)熔融态物质凝固。
(2)气态物质冷却不经液态直接凝固(凝华)。
(3)溶质从溶液中析出。
3.晶胞(1)概念:描述晶体结构的基本单元。
(2)晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何空隙。
②并置:所有晶胞平行排列、取向相同。
4.晶胞中微粒的计算方法——均摊法二、典型例题例题1.最近发现,只含镁、镍和碳三种元素的晶体竟然也具有超导性,因这三种元素都是常见元素,从而引起广泛关注。
该新型超导晶体的一个晶胞如图所示,则该晶体的化学式为( )A .Mg 2CNi 3B .MgCNi 3C .MgCNi 2D .MgC 2Ni解析:利用均摊法确定晶胞的化学式,位于顶点的一个原子被8个晶胞占有,位于面心上的原子被2个晶胞占有,位于体心上的一个原子被一个晶胞占有,据此计算晶胞的化学式。
根据晶胞结构可知,碳原子位于该晶胞的体心上,所以该晶胞中含有一个碳原子;镁原子个数=8×1/8=1,所以该晶胞中含有一个镁于原子;镍原子位于面心上,因此镍原子个数=6×1/2=3,该晶胞中含有3个镍原子,所以该晶胞的化学式为MgBNi 3,因此答案选B 。
【答案】B例题2. (2014·高考全国卷Ⅰ,37)早期发现的一种天然二十面体准晶颗粒由Al 、Cu 、Fe 三种金属元素组成,回答下列问题:(1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过________方法区分晶体、准晶体和非晶体。
(2)基态Fe 原子有________个未成对电子。
Fe 3+的电子排布式为________。
可用硫氰化钾检验Fe 3+,形成的配合物的颜色为________。
高中化学选修三_晶体结构及性质
晶体构造与性质一、晶体的常识1.晶体与非晶体晶体与非晶体的本质差异自性微观构造晶体有〔能自发呈现多面体外形〕原子在三维空间里呈周期性有序排列非晶体无〔不能自发呈现多面体外形〕原子排列相对无序晶体呈现自性的条件:晶体生长的速率适当得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自性;②各向异性〔强度、导热性、光学性质等〕③固定的熔点;④能使X-射线产生衍射〔区分晶体和非晶体最可靠的科学方法〕2.晶胞--描述晶体构造的根本单元.即晶体中无限重复的局部一个晶胞平均占有的原子数=×晶胞顶角上的原子数+×晶胞棱上的原子+×晶胞面上的粒子数+1×晶胞体心的原子数思考:以下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子.eg:1.晶体具有各向异性。
如蓝晶〔Al2O3·SiO2〕在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。
晶体的各向异性主要表现在〔〕①硬度②导热性③导电性④光学性质A.①③B.②④C.①②③D.①②③④2.以下关于晶体与非晶体的说确的是〔〕A.晶体一定比非晶体的熔点高B.晶体一定是无色透明的固体C.非晶体无自性而且排列无序D.固体SiO2一定是晶体3.以下图是CO2分子晶体的晶胞构造示意图.其中有多少个原子.二、分子晶体与原子晶体1.分子晶体--分子间以分子间作用力〔德华力、氢键〕相结合的晶体注意:a.构成分子晶体的粒子是分子b.分子晶体中.分子的原子间以共价键结合.相邻分子间以分子间作用力结合①物理性质a.较低的熔、沸点b.较小的硬度c.一般都是绝缘体.熔融状态也不导电d.“相似相溶原理〞:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂②典型的分子晶体a.非金属氢化物:H2O、H2S、NH3、CH4、HX等b.酸:H2SO4、HNO3、H3PO4等c.局部非金属单质::X2、O2、H2、S8、P4、C60d.局部非金属氧化物:CO2、SO2、NO2、N2O4、P4O6、P4O10等f.大多数有机物:乙醇.冰醋酸.蔗糖等③构造特征a.只有德华力--分子密堆积〔每个分子周围有12个紧邻的分子〕CO2晶体构造图b.有分子间氢键--分子的非密堆积以冰的构造为例.可说明氢键具有方向性④笼状化合物--天然气水合物2.原子晶体--相邻原子间以共价键相结合而形成空间立体网状构造的晶体注意:a.构成原子晶体的粒子是原子 b.原子间以较强的共价键相结合①物理性质a.熔点和沸点高b.硬度大c.一般不导电d.且难溶于一些常见的溶剂②常见的原子晶体a.某些非金属单质:金刚石〔C〕、晶体硅(Si)、晶体硼〔B〕、晶体锗(Ge)等b.某些非金属化合物:碳化硅〔SiC〕晶体、氮化硼〔BN〕晶体c.某些氧化物:二氧化硅〔SiO2〕晶体、Al2O3金刚石的晶体构造示意图二氧化硅的晶体构造示意图思考:1.怎样从原子构造角度理解金刚石、硅和锗的熔点和硬度依次下降2.“具有共价键的晶体叫做原子晶体〞.这种说法对吗.eg:1.在解释以下物质性质的变化规律与物质构造间的因果关系时.与键能无关的变化规律是〔〕A.HF、HCI、HBr、HI的热稳定性依次减弱B.金刚石、硅和锗的熔点和硬度依次下降C.F2、C12、Br2、I2的熔、沸点逐渐升高D.N2可用做保护气2.氮化硼是一种新合成的无机材料.它是一种超硬耐磨、耐高温、抗腐蚀的物质。
材料科学中的晶体结构与性质
材料科学中的晶体结构与性质材料科学是研究固体材料的构成、结构、性质和制备方法的一个领域。
在材料科学中,晶体结构是一个非常重要的概念。
晶体结构指的是固体材料中,原子、分子、离子等微观粒子按照一定规律排列形成的空间结构。
晶体结构的性质与材料的物理、化学性质密切相关。
以下将介绍晶体结构的基本知识、晶体中常见的结构类型以及晶体结构与性质的关系。
一、晶体结构的基本知识晶体结构是固体材料中的原子、分子、离子等微观粒子按照一定的空间规律排列而成的结构。
晶体结构具有周期性,即在整个结构中重复出现某一单元的结构,这个单元称为晶胞。
晶胞是晶体结构的基本单位,在晶体内不断重复,最终形成整个晶体。
晶体中的晶胞是唯一的。
晶体结构的周期性和唯一性赋予了晶体一些特殊的性质,如晶体具有明显的各向同性、划分明确的晶面和晶向、有固定的比重和熔点等。
二、晶体中常见的结构类型根据晶体中原子或分子排列方式的不同,晶体可分为离子晶体、共价晶体、分子晶体和金属晶体等。
下面分别介绍这几种晶体的结构特点:1、离子晶体离子晶体的晶胞由阳离子和阴离子构成。
常见的离子晶体有氯化钠结构、立方密堆积结构和六方最密堆积结构。
氯化钠结构中,钠离子和氯离子按照1:1的比例排列在构成立方体的点上。
立方密堆积结构中,阳离子和阴离子在每层密堆积,相邻层的离子排列顺序相反。
六方最密堆积结构中,阴离子构成一个六角形密堆积的层,阳离子沿着六边形的间隙排列,分别在两个六角形层之间和一层之上。
2、共价晶体共价晶体主要由非金属元素构成,它们共用电子在晶体中形成化学键。
共价晶体常见的结构有钻石结构和石墨结构。
钻石结构中,每个碳原子与四个相邻的碳原子形成正四面体结构。
石墨结构中,每个碳原子与三个相邻的碳原子在同一平面形成六边形的环,多层六边形环堆叠而成。
3、分子晶体分子晶体是由分子构成的晶体,分子之间是通过分子间的Van der Waals力或氢键相互作用而结合在一起的。
分子晶体通常呈透明或半透明的颗粒状或柱状晶体。
晶体的结构与性质
(4)区别晶体和非晶体的方法
①熔点法: 晶体 的熔点较固定,而 非晶体 没有固定的熔点。 ② X射线衍射法 :当单一波长的X射线通过晶体时,会在记
录仪上看到 分立的斑点或谱线,而非晶体则没有。
2.晶胞
(1)概念:描述晶体结构的 基本单元 。 (2)晶体中晶胞的排列—— 无隙并置
价电子 ①该理论把金属键描述为金属原子脱落下来的
形
成遍布 所有原子 的“电子气”,被 所有的金属原子所
共用,从而把 整块晶体 维系在一起。
2.金属晶体
(1)构成微粒:金属阳离子和自由电子 (2)微粒间作用力:金属键
3、金属键
(1)特点:无饱和性和方向性 (2)强弱比较:金属阳离子的半径越小,所带电荷越多,金
分子晶体物理特性
低熔、沸点 ; 硬度小 固态、熔融状态不导电
2.原子晶体
(1)结构特点 ①晶体中只含原子。 ②原子间均以 共价键 结合。 ③ 三维空间立体网状 结构。
金刚石的晶体结构示意图
109º28´
共价键
(2)典型的原子晶体——金刚石
①碳原子取 sp3 杂化轨道形成共价键,碳碳
键之间夹角为 109°28′。
体系的排列方式 ,而
弥漫在金属原子间的电 子气可以起到类似轴承 中滚珠之间
润滑剂 的作用
2. 金属晶体的原子堆积模型 (1)二维空间模型
①非密置层,配位数为 4 。 ②密置层,配位数为 6 。
(2)三维空间模型
①简单立方堆积
6 相邻非密置层原子的原子核在同一直线上,配位数为 。
只有Po 采取这种堆积方式。空间利用率___5_2_%__. 这种属于金属非密堆积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章晶体结构与性质复习
学习目标:
1.理解四种晶体的结构与性质的关系,能根据有关的理论解释晶体的物理性质。
2.知道四种晶体的结构粒子、粒子间作用力的区别以及粒子间作用对晶体性质的影响。
重点、难点:几种晶体的结构及其对性质的影响
复习过程
一、四类晶体的比较
晶体类型离子晶体分子晶体原子晶体金属晶体
结构
构成粒子
粒子间相互作用
性质
硬度
熔沸点
导电性
溶解性典型实例
例1、判断下列晶体的类型:
(1)熔点2600 ℃,导电性好,延展性强
(2)熔点2300℃,沸点2550℃,硬度大
(3)溴化铝,无色晶体,熔点98℃,固态或熔融状态下不导电
(4)熔点710℃,沸点1400℃,熔融状态下导电
形成规律:判断晶体类型的方法
①根据各类晶体物理性质的差异:熔沸点、硬度、导电性等。
1.熔沸点很高、硬度很大的晶体为;
2.熔沸点较高、硬而脆的晶体为;
3.熔沸点较低,硬度较小的晶体为;
4.熔沸点较高,延展性、导电性好的晶体为。
②根据构成晶体的粒子及粒子间作用力。
变式:氮化硼(BN)是一种新型结构材料,具有超硬、耐磨、耐高温等优良特性,下列各组物质熔化时,所克服的微粒间作用与氮化硼熔化时克服的微粒间作用都相同的是()
A.硝酸钠和金刚石B.晶体硅和水晶C.冰和干冰D.苯和萘
二、晶体熔沸点的比较
例2、下列各物质中,按熔点由高到低的顺序排列的是()
A.H2O> H2Te > H2Se > H2S
B.KCl>NaCl>LiCl>HCl
C.Rb>K>Na>Li
D.金刚石>晶体硅>干冰>NaF
形成规律:熔、沸点的比较
不同类型:
一般,原子晶体离子晶体分子晶体
同种类型:
原子晶体→共价键强弱→键长、键能
离子晶体→→
金属晶体→→
分子晶体→
①不含氢键,相对分子质量越大,范德华力越大,熔沸点越。
②含氢键,熔沸点反常。
分子间存在氢键的比不存在氢键的熔沸点。
物质在相同条件下的不同状态:固态> 液态> 气态
练习:下列物质的熔沸点高低顺序正确的是()
A.金刚石> 晶体硅> 碳化硅B.CI4 > CBr4 > CCl4 > CF4
C.MgO > H2 > O2 > N2D.生铁> 纯铁> 钠
三、几种典型晶体空间结构
1、氯化钠晶体
每个Na+(或Cl—)周围与之最接近且距离相等的Cl—(或
Na+)共有个,这些Cl—(或Na+)在空间构成的几何构
型为;每个Na+与个Na+等距离相邻;
平均每个氯化钠晶胞含有个Na+和个Cl—。
2、氯化铯晶体
每个Cl—(或Cs+)周围与之最接近且距离相等的Cs+(或
Cl-)共有个,这些Cs+(或Cl—)在空间构成的
几何构型为;每个Cs+周围距离相等且
最近的Cs+共有个,这些Cs+(或Cl—)在空间构
成的几何构型为;平均每个氯化铯晶胞
含有个Cs+和个Cl—。
3、干冰晶体
与每个二氧化碳分子等距离且最近的二氧化碳分子有
个。
金刚石中每个C 原子与 个C 原子形成 个 共价键,形成 结构,C 原子的杂式 。
晶体中C 原子数与C-C 键数之比为 。
由共价键构成的最小环有 个C 原子。
5、二氧化硅
每个Si 与 个O 原子形成共价键,每个O 与 个Si 原子形成共价键。
在二氧化硅晶体中Si 与O 原子个数比为 ,平均每1 mol SiO 2晶体中含有Si-O 键______ mol 。
最小的环上有 个原子。
6、石墨
是 状结构, C 原子呈 杂化;晶体中每个C 原子被 个六边形共用,平均每个环拥有 个碳原子。
晶体中碳环数、碳原子数和碳碳键数之比为 。
例3.下列各项所述的数字不是6的是 ( ) A .在 NaCl 晶体中,与一个Na +最近的且距离相等的Cl -的个数 B .在金刚石晶体中,最小的环上的碳原子个数
C .在干冰晶体中,与一个CO 2分子最近且距离相等的CO 2分子的个数
D .在石墨晶体的片层结构中,最小的环上的碳原子个数
小结
A组
1. 下列叙述正确的是()
A.离子晶体中肯定不含非极性共价键
B.原子晶体的熔点肯定高于其他晶体
C.由分子组成的物质其熔点一般较低
D.原子晶体中除去极性共价键不可能存在其他类型共价键
2.据报道:用激光可将置于铁室中的石墨靶上的碳原子“炸松”,再用一个射频电火花喷射出氮气,可使碳、氮原子结合成碳氮化合物(C3N4)的薄膜,该碳氮化合物比金刚石还坚硬,则下列说法正确的是()
A.该碳氮化合物呈片层状结构
B.该碳氮化合物呈立体网状结构
C.该碳氮化合物中C—N键键长大于金刚石中C—C键键长
D.相邻主族非金属元素形成的化合物的硬度比单质小
3.下列物质固态时熔点的比较正确的是()
A.F2>C12>Br2B.金刚石>NaCl>02
C.S>NaBr>金刚石D.Na>CH4>冰
4.根据下表给出的几种物质的熔点、沸点数据判断说法中错误的是()
A.SiCl4是分子晶体B.MgCl2中键的强度比NaCl中键的强度小C.单质R可能是原子晶体D.AlCl3为离子晶体
B组
5.下列有关晶体的叙述中,错误的是()
A.金刚石的网状结构中,由共价键形成的最小碳环上有6个碳原子
B.白磷分子晶体中,微粒之间通过共价键结合,键角为60°
C.在NaCl晶体中每个Na+(或C1-)周围都紧邻6个Cl- (或Na+)
D.离子晶体在熔化时,离于键被破坏,而分子晶体熔化时,化学键不被破坏。