2018年考研联考初数数学公式汇总
2018年考研数学(高数、线代、概率论)最全公式手册
dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的
2018年全国硕士研究生招生考试数学考试大纲(数学一)
2018年全国硕士研究生招生考试数学考试大纲(数学一)高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间()b a ,内,设函数()x f 具有二阶导数.当()0>''x f 时,()x f 的图形是凹的;当()0<''x f 时,()x f 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[]l l ,-上的傅里叶级数函数在[]l ,0上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握()()αx x x x e x ++1,1ln ,cos ,sin ,的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[]l l ,-上的函数展开为傅里叶级数,会将定义在[]l ,0上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()()()()y y f y y x f y x f y n '='''=''=,,,和5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数{}()()F x P x x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()λE 的概率密度为()⎩⎨⎧≤>=-0,00,x x e f x 若若λλλ 5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(,,,;)N p μμσσ的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理 考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 ()21211∑=--=n i i X X n S 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。
考研数学公式大全(考研同学必备)
考研数学公式(全) ·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tan α)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
2018考研数一大纲完整版
2018考研数一大纲完整版2018年考研数学一大纲完整版一、数理统计与概率论1. 集合论和事件(1)集合,包含比较基本的集合概念和运算,A,B,A∩B,A∪B,Ac,Bc,A-B。
(2)事件,事件以及事件运算,全集和空集,和事件的差与补,事件之间的包含关系和等价关系。
2. sigma域和随机事件(1)sigma域,虽然很多人对此并不是很熟悉,但是它却是和概率密切相关的,必须掌握。
(2)随机事件,随机事件是和概率密切相关的,必须掌握。
3. 条件概率和全概率公式(1)条件概率,条件概率是概率论研究的核心内容之一,其应用范围非常广。
(2)全概率公式,全概率公式是求解某些事件的概率时非常重要的方法。
4. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,应用范围十分广泛,所以必须掌握。
5. 随机变量和概率密度函数(1)随机变量,随机变量的概念、离散型和连续型变量。
(2)概率密度函数,概率密度函数是随机变量的重要概念,因为它可以用来计算随机变量取特定值的概率,所以必须掌握。
6. 分布函数和矩(1)分布函数,分布函数又称为累积分布函数,它是随机变量的重要概念之一,因为它可以用来计算随机变量取特定值的概率。
(2)矩,矩是随机变量的重要概念之一,它不仅可以用来计算随机变量的期望值,还可以计算随机变量的各种特征,比如方差和偏度等。
7. 常见分布(1)离散型分布,包括0-1分布、二项分布、泊松分布等。
(2)连续型分布,包括均匀分布、正态分布、指数分布等。
二、高等代数1. 线性代数初步(1)向量、线性方程组,以及它们的基本性质和运算法则。
(2)矩阵、行列式,它们的基本性质和运算法则。
2. 矩阵初等变换矩阵初等变换是将一个矩阵通过一系列基本变换变成标准型的过程,是线性代数中重要的概念,必须掌握。
3. 线性空间的基本概念和性质线性空间是线性代数研究的重要对象,其中包括向量空间、矩阵空间等多种空间,所以必须掌握其基本概念和性质。
【干货】2018考研数学可能考的公式及定理的证明
【干货】2018考研数学可能考的公式及定理的证明
1.叙述并证明函数极限的局部保号性定理。
2.叙述并证明函数极限的局部有界性定理。
3.叙述并证明有界函数与无穷小的乘积是无穷小。
4.叙述并证明数列的夹逼准则。
5.叙述并证明等价无穷小的充要条件。
6.叙述并证明费马定理。
7.判别极值的第一和第二充分条件。
8.叙述并证明罗尔定理。
9.叙述并证明柯西中值定理。
10.叙述并证明牛顿-莱布尼茨公式。
11.叙述二元函数在一点可微的必要条件并证明,同时写出全微分形式。
12.叙述若二元函数在一点可偏导,其取得极值的必要条件并证明。
13.证明一阶线性微分方程的通解公式。
14.证明正项级数收敛的充要条件是其部分和数列有界(仅数一、三)
15.叙述并证明幂级数绝对收敛的阿贝尔定理(仅数一、三)
16.叙述并证明格林公式(仅数一)
证明过程如下:
【注】。
考研常用数学公式
考研常用数学公式2.积分公式:$int_a^bf(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
3. 泰勒级数公式:$f(x)=sumlimits_{n=0}^inftyfrac{f^{(n)}(a)}{n!}(x-a)^n$,其中$f^{(n)}(a)$表示$f(x)$在$a$处的$n$阶导数。
4. 极限公式:$limlimits_{x to a}f(x)=L$表示$f(x)$当$x$接近$a$时趋近于$L$。
5. 矩阵公式:$AcdotB=begin{bmatrix}a_{11}&a_{12}&cdots&a_{1n}a_{21}&a_{22}&cdo ts&a_{2n}vdots&vdots&ddots&vdotsa_{m1}&a_{m2}&cdots&a_{mn}e nd{bmatrix}cdotbegin{bmatrix}b_{11}&b_{12}&cdots&b_{1k}b_{2 1}&b_{22}&cdots&b_{2k}vdots&vdots&ddots&vdotsb_{n1}&b_{n2}& cdots&b_{nk}end{bmatrix}$。
6. 微积分基本定理:$int_a^b f'(x)dx=f(b)-f(a)$。
7. 高斯-约旦消元法则:通过矩阵变形把线性方程组化为阶梯形式,进一步求解方程组。
8. 傅里叶级数公式:$f(x)=frac{a_0}{2}+sumlimits_{n=1}^infty(a_ncos nx+b_nsin nx)$。
9. 三角函数公式:$sin^2x+cos^2x=1$,$sin(xpm y)=sin xcos ypmcos xsin y$,$cos(xpm y)=cos xcos ympsin xsin y$。
考研数学公式大全(考研必备)
(sin (tan (cot x )x )x )cos xsec 2 x(ln x )x(arcsin x )1(sec x ) (csc x ) ( a x )cscsec x2 xtan x1(arccos x )x121 x 2a xa x )csc xln a1x ln acot x(arctan x )11 x 21(log ( arc cot x )1 x 2kdx kx C x a dx11 dx x ln x C e x d xae x1x a 1 C, (a 1)Ca x dx a xln aC ( a 0, a 1) sin xdx cosx Ccosxdx sin x C1 tanxdx ln cosx C 1x 2dxdx arctanx Csec2 xdx tan x Ccot xdx ln sin x C secxdx ln secx tan x C cos2 xdxsin 2 xcsc2 xdx cot x Ccscxdxdx ln cscx cot x C secx tanxdx secx Ccscx cot xdx cscx Ca 2 x 2 1 arctan adx xaaaxxCa x dxx 2 a 21lnx2a x1lnaCshxdxa xln achxCCdxa2 x 2dx 2a aCa2 x 2 arcsinxaCchxdxdxx 2shx Ca 2ln(x 2x 2 a ) C导数公式:基本积分表:高等数学公式篇( C ) 0 (cos x )( e x ) e xsin x( X a ) aX a 1 1xa cos x bsin x dx AxB ln c cos xd sin x Cc cos xd sin x其中, a cos xb sin x A (c cos xd sin x) B(c cos x d sin x )AcBd aAd Bc bA ,B三角函数的有理式积分:2u1 u 2x2du sin x1 u 2,cos x 1 u 2, u tan , dx 21 u 2一些初等函数:两个重要极限:双曲正弦 : shxe e lim sin x 1 2 e x e x x 0x 1 x双曲余弦双曲正切 : chx: thx2shx e x e xchx e x e xlim (1 ) xxe 2.718281828459045... arshx archxarthx ln( x ln( x1 ln 1 x2 1) x 2 1)x2 1 x三角函数公式: ·诱导公式:函数 sincostancot角 A-α-sin α cos α -tan α -cot α90 °-α cos α sin α cot α tan α 90 °+α cos α -sin α -cot α -tan α 180 °-α sin α -cos α -tan α -cot α 180 °+α -sin α -cos α tan α cot α 270 °-α -cos α -sin α cot α tan α 270 °+α -cos α sin α -cot α -tan α 360 °-α -sin α cos α -tan α -cot α 360 °+αsin α cos α tan α cot αxn·和差角公式:·和差化积公式:sin( cos() ) sin cos cos cos cos sin sin sinsin sin 2 s in2 cos2tan() tan 1 tan tan tansin sin 2 cos2 sin2cot(·倍角公式:)cot cotcot 1cotcos coscos cos2 c os 2 2 sin2cos 2 sin2sin 2 cos22sin 2cos cos 1 1 2sincossinsin 33 s in 34 sin 3cot 2tan 2cot2 12 cot 2 tan2cos3 tan34 cos 3 tan1 3 c os 3tan3 tan 21 tan·半角公式:sin1 2 tan121 cos2 cos cos1 cos sinsin 1 coscos2cot21 cos21 cos 1 cos1 cos sinsin 1 cos·正弦定理:a sin Ab sin B c2Rsin C ·余弦定理:c 2a 2b 22 a b cosC·反三角函数性质:arcsin xarccos x2arctan xarc cot x 2高阶导数公式——莱布尼兹( Leibniz )公式:n(uv)( n)C k u( n k 0k) v( k )u ( n )v nu ( n 1) vn(n 2!1) u( n2)vn( n 1)nk k!1) u(nk ) v ( k )uv(n)2222中值定理与导数应用:拉格朗日中值定理:f (b)f (a)f ( )( b a)柯西中值定理: f (b) f (a)f ( ) F (b) F (a)F ( )当F( x) 曲率:x 时,柯西中值定理就是 拉格朗日中值定理。
考研数学常用公式总结
考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。
在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。
本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。
1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。
- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。
(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。
考研数学公式大全-数学公式
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
2018考研数学之数一、数二、数三考试题型及知识点
向量组的线性相关性
实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法
有关实对称矩阵的问题
两个随机变量函数的分布
二维随机变量函数的分布
随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征
微分中值定理及其应用
积分ห้องสมุดไป่ตู้限的函数及其导数
变限积分求导问题
二重积分的概念、性质及计算
二重积分的计算及应用
一阶线性微分方程、齐次方程,微分方程的简单应用
用微分方程解决一些应用问题
矩阵的初等变换、初等矩阵
与初等变换有关的命题
向量组的线性相关及无关的有关性质及判别法
向量组的线性相关性
实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法
2018考研数学:数一、数二、数三考试题型及知识点
数一:
知识点
题型
等价无穷小代换、洛必达法则、泰勒展开式
求函数的极限
闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理
微分中值定理及其应用
积分上限的函数及其导数
变限积分求导问题
二重积分的概念、性质及计算
二重积分的计算及应用
一阶线性微分方程、齐次方程,微分方程的简单应用
闭区间上连续函数的性质罗尔定理拉格朗日中值定理柯西中值定理和泰勒定理
2018考研数学之数一、数二、数三考试题型及知识点
2018考研数学之数一、数二、数三考试题型及知识点
考研数学具体分数一、数二、数三,考试的侧重点不尽相同,复习的话要抓哪些重点?小编整理了数一、数二、数三必看知识点及题型,希望对考生的复习有所帮助!
有关实对称矩阵的问题
数三:
考研数学公式总结
考研数学公式总结考研数学是考研数学专业课中的重要一科,掌握好数学公式是考研数学的关键。
下面是考研数学常用的一些公式总结。
1.代数与数论1.1二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 +...+ C(n,n-1)ab^(n-1) + C(n,n)b^n1.2二次方程求根公式:x = (-b ± sqrt(b^2 - 4ac)) / 2a1.3勾股定理:a^2+b^2=c^21.4平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^21.5一元二次不等式求解方法:ax^2 + bx + c > 0 或 < 0当a>0,则解集为(-∞,x1)∪(x2,+∞)当a<0,则解集为(x1,x2)1.6等差数列求和公式:S = n(a1 + an) / 21.7等比数列求和公式:S = (a1 - an*q) / (1 - q),当,q, < 12.数学分析2.1极限相关公式:x,<1时,1/(1-x)的幂级数展开为1+x+x^2+x^3+..sin(x) 的幂级数展开为 x - x^3/3! + x^5/5! - ...cos(x) 的幂级数展开为 1 - x^2/2! + x^4/4! - ...e^x的幂级数展开为1+x+x^2/2!+x^3/3!+...2.2微积分相关公式:微分公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)积分公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx 2.3泰勒展开公式:函数f(x)在x=a处的泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n3.概率论与数理统计3.1排列组合:排列公式:P(n,m)=n!/(n-m)!组合公式:C(n,m)=n!/[(n-m)!*m!]3.2二项分布:P(X=k)=C(n,k)*p^k*q^(n-k),其中q=1-p3.3正态分布:P(a < X < b) = ∫[a, b] (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) dx3.4样本均值:样本均值的期望:E(¯X)=μ样本均值的方差:Var(¯X) = σ^2 / n3.5方差:总体方差的估计量:s^2 = Σ(xi - x_bar)^2 / (n - 1)以上是考研数学中较为常见的一些公式总结,这些公式涵盖了代数与数论、数学分析、概率论与数理统计等知识点。
考研数学必备公式总结
考研数学必备公式总结随着考研大军的不断壮大,考研数学作为其中最重要的一门科目,备考的重要性不言而喻。
在备考数学的过程中,熟练掌握并运用各种数学公式无疑是提高解题效率和成绩的重要途径。
下面将对考研数学中的必备公式进行总结,以供同学们参考。
一、微积分公式1.导数运算法则:(uv)' = uv' + u'v,(u/v)' = (u'v - uv')/v²,(u^n)' = nu^(n-1)u',(e^u)' = u'e^u,(lnu)' = u'/u,带入法则等。
2.积分运算法则:∫udv = uv - ∫vdu,∫x^n dx = (x^(n+1)) / (n+1),∫du/u = ln|u| + C,∫e^u du = e^u + C,∫(1 / (a² + x²)) dx = (1/a)arctan(x/a) + C,等。
3.泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + (f''(a))/2!(x-a)² + ... + (fⁿ(a))/n!(x-a)ⁿ +Rⁿ₊₁,其中Rⁿ₊₁是拉格朗日余项。
二、线性代数公式1.向量及矩阵:·向量点乘:A·B = |A||B|cosθ·向量叉乘:A×B = |A||B|sinθ·向量长度:|A| = √(x1² + x2² + ... + xn²)·平面向量:平移、旋转、缩放等基本变换·矩阵乘法:(AB)C = A(BC),(AB)⁻¹ = B⁻¹A⁻¹,(A⁻¹)⁻¹ = A·矩阵的行列式计算公式2.线性方程组:·克拉默法则·矩阵求逆法·高斯消元法三、概率统计公式1.概率公式:·全概率公式:P(A) = P(A|B₁)P(B₁) + P(A|B₂)P(B₂) + ... + P(A|Bn)P(Bn)·贝叶斯公式:P(Bi|A) = P(A|Bi)P(Bi) / (ΣP(A|Bj)P(Bj))2.数理统计公式:·样本均值:x = (x₁ + x₂ + ... + xn) / n·样本方差:s² = (Σ(xi - x)²) / (n-1)·样本标准差:s = √s²·样本协方差:sxy = (Σ(xi - x)(yi - ȳ)) / (n-1)·样本相关系数:r = sxy / (sx·sy)四、复变函数公式1.欧拉公式:e^(ix) = cosx + isinx2.柯西-黎曼方程:·设 f(z) = u(x,y) + iv(x,y) 是一个复变函数,则 u 和 v 的一阶偏导数存在且连续,且满足如下方程:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x3.柯西积分公式:·设 f(z) 是闭区域 G 内的单值解析函数,C 是 G 内的一简单逐段光滑曲线,则有:∮C f(z) dz = 0综上所述,以上是考研数学中的一些必备公式的总结。
考研数学定理公式汇总
考研数学定理公式汇总考研数学是考生们备考中必不可少的一科,其中要掌握的定理和公式也是非常重要的内容。
下面将为大家总结一些考研数学中常见的定理和公式,帮助大家更好地备考。
1.极限与连续部分:(1)极限的四则运算:-两个函数的和、差的极限等于函数分别取极限再求和、差;-两个函数的积的极限等于函数分别取极限再求积;-两个函数的商的极限等于函数分别取极限再求商,其中除数不能为0;-常数与函数的极限等于常数与函数分别取极限再求和。
(2)函数的连续性:-如果函数在特定点连续,那么在该点的左右极限存在;-如果函数在特定点的左右极限都存在且相等,那么函数在该点连续;-复合函数的连续性:如果两个函数都在特定点连续,那么它们的复合函数在该点也连续。
2.导数与微分部分:(1)导数的四则运算:-两个函数的和、差的导数等于函数分别求导再求和、差;-两个函数的积的导数等于函数分别求导再求积再求和、差;-两个函数的商的导数等于函数分别求导再求商再求和、差,其中除数不能为0;-常数与函数的导数等于常数与函数求导再求和。
(2)常用的导数公式:-幂函数的导数公式:(x^n)'=n*x^(n-1),其中n为常数;-指数函数的导数公式:(e^x)'=e^x;- 对数函数的导数公式:(ln x)' = 1/x;- 三角函数的导数公式:(sin x)' = cos x,(cos x)' = -sin x,(tan x)' = sec^2 x,(cot x)' = -csc^2 x。
3.积分部分:(1)常用的积分公式:- 幂函数的积分公式:∫x^n dx = 1/(n+1)*x^(n+1),其中n不等于-1;- 指数函数的积分公式:∫e^x dx = e^x;- 对数函数的积分公式:∫1/x dx = ln,x;- 三角函数的积分公式:∫sin x dx = -cos x,∫cos x dx = sin x,∫sec^2 x dx = tan x,∫csc^2 x dx = -cot x。
考研数学需要死记硬背的全部数学公式
考研数学需要识记的基本公式高教考研整理了考研数学中不需要理解而直接应用的全部公式如下,除此以外,其它涉及到的公式都需要依赖于理解和日常的题目训练来达到熟练的状态,如果达不到,只能说明你的理解或者题目的训练量存在问题,请重新检视复习安排!经常用到的初等数学公式(3),a c a a c c b d b b d d+<<<+设则(4)非负数的算术平均值不小于其几何平均值,即12323n a a a a a b a b c n++++++≥≥≥4.绝对值不等式1)2)3)a b a ba b a ba b a b+≤+-≤+-≥-(6)m ma a -=8.对数log ,(0,1,0)a N a a N >≠>(1)对数恒等式log ,a N lnNN a N e ==更常用(2)log ()log log a a a MN M N=+12312)11(1)11n n n a a q a q n S q q--==--前项和(3)常用的几种数列的和1)1123(1)2n n n ++++=+ 2)22221123(1)(21)6n n n n ++++=++ 3245(平行四边形sin S bh ab ϕ==(2)梯形S=中位线X 高21122rl r θ=(3)扇形S=2.旋转体(1)圆柱设R ……底圆半径,H……柱高,则1)=2S RHπ侧侧面积2)=2()R H R π+全面积S 11平面三角1.三角函数间的关系(1)sin csc 1a a ==(4)cos cos 2sin sin 22a a a βββ+--=-[]1(5)sin cos sin()sin()2a a a βββ=++-[][][]1(6)cos cos cos()cos()21(7)cos sin sin()sin()21(8)sin sin cos()cos()2a a a a a a a a a βββββββββ=++-=+--=+--4.边角关系(1)正弦定理2,sin sin sin a b c R R A B C===为外接圆半径(2)余弦定理2222222222cos 2cos 2cos a b c bc Ab c a ca Bc a b ab C=+-=+-=+-5.反三角函数恒等式22(1)arcsin arcsin arcsin(11)x y x y y x ±=+±-()()()()2222(1)arcsin arcsinarcsin 11(2)arccos arccos arccos 11(3)arctan arctan arctan 1(4)arcsin arccos 2(5)arctan cot 2m x y x y y x x y xy x y x y x y xy x x x arc x ππ±+±-±=--⎛⎫±±= ⎪⎝⎭+=+= 三角函数的有理式积分2222212sin ,cos ,,1121u u x du x x u tg dx u u u -====+++倍角公式222232sin 22sin cos cos 22cos 112sin cos sin sin 33sin 4sin 122a a aa a a a aa a actg a ctg a ctga==-=-=-=--=高等数学导数与微分的计算用公式求导数分为三步:第一步按导数四则运算法则展开;第二步计算导数(注意,导数基本公式中没有的,一律按复合函数求导数处理);第三步整理化简。
考研数学公式定理整理
+
32
+ +
n2
=n(n
+ 1)(2n 6
+ 1)
④13
+
23
+
33
+ +
n3
= n(n2+1)
2
5、排列组合
①
Pnm
=
(n
n! − m)
!
,
Cnm
=
Pnm m!
② 0!, (2n)!, (2n +1)!
1
初等数学
二、 三角函数
1、倍角公式与半角公式 ① sin 2x = 2sin x cos x ② cos 2x = cos2 x − sin2 x = 2 cos2 x −1 = 1− 2 sin2 x
b2 − 4ac 2a
②
x1
+
x2
=− b a
x1x2
=
c a
4、数列
①等差: an
=
a1
+
(n
−1)d
,
sn
=
n(a1 + 2
an )
,=b
( ) ②等比: an = a1= qn−1 , sn
a= 1 1− qn 1− q
a1 − anq 1− q
1 (a + c) (等差中项) 2
③12
+
22
−
y2 b2
= 1
2、圆 x2 + y2 = R2
S = π R2 , C = 2π R
2
3、椭圆
x2 a2
+
y2 b2
= 1
S = π ab 4、球
考研数学公式总结
考研数学公式总结考研数学是众多考生面临的一大挑战,而熟练掌握各种公式是取得好成绩的关键。
以下为大家总结了考研数学中一些重要的公式。
一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · lim g(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 +1/x)^x = e (x → ∞)(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。
2、导数与微分(1)基本导数公式:(C)'= 0 (C 为常数);(x^n)'= nx^(n 1) ;(sin x)'= cos x ;(cos x)'= sin x ;(e^x)'= e^x ;(ln x)'= 1 / x ;(log_a x)'= 1 /(x ln a)(2)导数的四则运算法则:u(x) ± v(x)'= u'(x) ± v'(x) ;u(x) · v(x)'= u'(x) · v(x) + u(x) · v'(x) ;u(x) / v(x)'= u'(x) · v(x) u(x) · v'(x) / v(x)^2 (v(x) ≠ 0)(3)复合函数求导法则:设 y = fg(x),则 y' = f'g(x) · g'(x)(4)隐函数求导法则:方程 F(x, y) = 0 确定 y 是 x 的隐函数,两边对 x 求导,解出 y' 。
2018年考研数学公式大全之高等数学(打印出来,放在自己的考研桌子上,每天看看)
直线: K 0; 1 半径为 a的圆: K . a
定积分的近似计算:
b
矩形法: f ( x)
a
ba ( y0 y1 y n1 ) n ba 1 [ ( y0 y n ) y1 y n1 ] n 2 ba [( y0 y n ) 2( y 2 y 4 y n2 ) 4( y1 y3 y n1 )] 3n
多元函数微分法及应用
第 5 页 共 15 页
高等数学复习公式
全微分: dz z z u u u dx dy du dx dy dz x y x y z
全微分的近似计算: z dz f x ( x, y )x f y ( x, y )y 多元复合函数的求导法 : dz z u z v z f [u (t ), v(t )] dt u t v t z z u z v z f [u ( x, y ), v( x, y )] x u x v x 当u u ( x, y ),v v( x, y )时, u u v v du dx dy dv dx dy x y x y 隐函数的求导公式: F F F dy dy d2y 隐函数 F ( x, y ) 0, x , 2 ( x )+ ( x ) dx Fy x Fy y Fy dx dx Fy F z z 隐函数 F ( x, y, z ) 0, x , x Fz y Fz
梯形法: f ( x)
a b
b
抛物线法: f ( x)
a
定积分应用相关公式:
功:W F s 水压力: F p A mm 引力: F k 1 2 2 , k为引力系数 r b 1 函数的平均值: y f ( x)dx ba a 1 均方根: f 2 (t )dt ba a
考研数学必背公式
[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) (n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0,则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sinα+sinβ=2(sin α+β2)(cosα−β2) sinαcosβ=12(sinα+β2+cos α−β2)sinα-sinβ=2(cosα+β2)(sinα−β2)cosαcosβ=12(cosα+β2+cosα−β2) cosα+cosβ=2(cos α+β2)(co sα−β2)sinαsinβ=-12(cosα+β2-cosα−β2)cosα-cosβ=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan βcot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x)csc(x)cot(x)arcsin(x)arccos(x)arctan(x) arccot(x)[极限]定义函数极限x→•:〔6〕limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x)=A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设limx→x0f(x)=A(∃),limx→x0f(x)=B(∃),则○1limx→x0[f(x)±g(x)]=A±B.○2lim x→x 0 [f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小〔9〕sin x 1−cos x ~12x 2arc sin x a x−1~lna ⋅xtan x (1+x )α−1~αx~xarctan xln (1+x )e x −1lim n→∞√n n =1,lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn=max {a i }i =1,2,…,m;a i >0洛必达法则:“00〞型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞〞型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=lim x→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)与h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理〔归结原则〕:设f(x)在(x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }〔x n ≠x 0〕,极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]定义导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。