考研数学二必背公式及知识点(自己精心总结整理)
考研数学二必背公式及知识点(自己精心总结整理)

[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) ( n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0, 则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sin α+sin β=2(sin α+β2)(cosα−β2) sin αcos β=12(sinα+β2+cosα−β2)sin α-sin β=2(cosα+β2)(sinα−β2) cos αcos β=12(cos α+β2+cosα−β2)cos α+cos β=2(cos α+β2)(co sα−β2) sin αsin β=-12(cosα+β2-cosα−β2)cos α-cos β=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan β cot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x) csc(x) cot(x)arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]函数极限x→•:(6)limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x) =A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设lim x→x 0f(x)=A(∃),lim x→x 0f(x)=B(∃),则○1lim x→x 0 [f (x )±g (x )]=A±B. ○2lim x→x 0[f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小(9)sin x 1−cos x ~12x 2 arc sin x a x −1~lna ⋅xtan x (1+x )α−1~αx ~xarctan xln (1+x )e x −1lim n→∞√n n =1 , lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn =max {a i }i =1,2,…,m;a i >0洛必达法则:“00”型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞”型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)及h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)在 (x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }(x n ≠x 0),极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。
考研-高等数学必看知识点

考研高等数学必看知识点不能因为提分不显著,就在最后关头放弃数学的复习,11月死磕这些知识点,你的数学也许会让你惊喜!一起看看高数部分应该跟哪些知识点“较劲”到底吧!第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。
考研数学二必背公式及知识点(自己精心总结整理)

[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) ( n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0, 则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sin α+sin β=2(sin α+β2)(cosα−β2) sin αcos β=12(sinα+β2+cosα−β2)sin α-sin β=2(cosα+β2)(sinα−β2) cos αcos β=12(cos α+β2+cosα−β2)cos α+cos β=2(cos α+β2)(co sα−β2) sin αsin β=-12(cosα+β2-cosα−β2)cos α-cos β=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan β cot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x) csc(x) cot(x)arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]函数极限x→•:(6)limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x) =A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设lim x→x 0f(x)=A(∃),lim x→x 0f(x)=B(∃),则○1lim x→x 0 [f (x )±g (x )]=A±B. ○2lim x→x 0[f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小(9)sin x 1−cos x ~12x 2 arc sin x a x −1~lna ⋅xtan x (1+x )α−1~αx ~xarctan xln (1+x )e x −1lim n→∞√n n =1 , lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn =max {a i }i =1,2,…,m;a i >0洛必达法则:“00”型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞”型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)及h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)在 (x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }(x n ≠x 0),极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。
考研数学复习有些概率计算的公式

考研数学复习有些概率计算的公式在考研数学三中,参数估计占数理统计的一多半内容,所以参数估计是重点。
为大家精心准备了考研数学复习概率计算的公式指导,欢送大家前来阅读。
五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。
1、减法公式,P(A-B)=P(A)-P(AB)。
此公式事件关系中的差事件,再结合概率的可列可加性总结出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。
此公式于事件关系中的和事件,同样结合概率的可列可加性总结出来。
学生还应掌握三个事件相加的加法公式。
以上两个公式,在应用当中,有时要结合文氏图来解释会更清楚明白,同时这两个公式在考试中,更多的会出现在填空题当中。
所以记住公式的形式是根本要求。
3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。
在复习过程中,局部分不清楚时候用条件概率来求,什么时候用积事件概率来求。
比方“第一次抽到红球,第二次抽到黑球”时,因为第一次抽到红球也是事件,所以要考虑它的概率,这时候用积事件概率来求;如果“在第一次抽到红球的情况下,第二次抽到黑球的概率”,这时候因为抽到了红球,它已经是一个确定的事实,所以这时候不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。
4、全概率公式5、贝叶斯公式以上两个公式是五大公式极为重要的两个公式。
结合起来比拟容易理解。
首先,这两个公式首先背景是相同的,即,完成一件事情在逻辑或时间上是需要两个步骤的,通常把第一个步骤称为原因。
其次,如果是“由因求果”的问题用全概率公式;是“由果求因”的问题用贝叶斯公式。
例如;买零件,一个零件是由A、B、C三个厂家生产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要用全概率公式;假设买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。
这样我们首先分清楚了什么时候用这两个公式。
那么,在应用过程中,我们要注意的问题就是,如何划分完备事件组。
考研数学二知识点总结3篇

考研数学二知识点总结3篇考研数学二知识点总结3篇学习需要具备逆境和挑战的锻炼精神,能够从困难和挫折中成长和进步。
学习需要立足当下,同时注重长远规划和发展,具备未来感和战略眼光。
下面就让小编给大家带来考研数学二知识点总结,希望大家喜欢!考研数学二知识点总结1高数第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵考研数学二知识点总结2一、高等数学同济六版高等数学中除了第七章微分方程考带号的伯努利方程外,其余带号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的同学来说,需要做大量的试题。
考研数学二公式完整版(免费版,考研必备)

考研数学公式完整版高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x Cx dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec seccscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxC ctgx x xdx C tgx x xdx Cx ctgxdxC x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
研究生入学考试之302数学二从入门到精通

研究生入学考试之302数学二从入门到精通本文为金翅掠影原创,转载请注明考研大纲的发布日期日益临近,论坛也有很多传闻要修改考研大纲。
不论大纲怎么改,复习的思路和套路是以不变应万变的。
考研数学,考察的是数学基本功和举一反三的能力,而难题仅仅是一小部分。
所以大家也对于数学也不要太紧张。
本篇文章系统的介绍了考研数学二的概况及复习方案。
无论你是从四月份开始复习,还是从九月份开始复习,都能让你有所收获。
针对不同的复习人群,制定不同的复习对策,让你笑傲数学考场。
写在正文之前的话从幼儿园上学那天起,就开始学数学。
从1+1=2开始,我们学会了加减乘除,学会了代数几何,到了大学,学会了微积分、线性代数、概率论。
到了研究生甚至会学到小波变化等一些列的高深数学理论,人类对于数学的追求是无止境的。
纵观每个数学家的成长都是经历过一段枯燥而乏味的努力过程。
有人说,数学家耐得住寂寞,整天和公式打交道,一遍遍的推算演算公式,没有一定的定力是完不成的。
我觉得考研也是如此,考研数学复习到最后就是体力活,而不是脑力活。
如果能达到此境界的同学考研复习就到家了。
至于数学应试,一是靠数学的基本功,二是靠解题的技巧与方法。
这也应运而生出来两派数学复习思路,一类是中规中矩的学院派,做题严谨,环环相扣。
另一类是技巧灵动,鬼斧神工,俯仰之间以把题目迅速解出。
这也是李永乐老师的系列辅导书和陈文灯老师的系列辅导书所贯彻思想的最大不同。
前者立足学院派,而后者则把技巧应运到炉火纯青。
对于两位大师级的书,后文有详细的介绍和评价,在此不多赘述。
在前边罗嗦了这么多,想表达的意思就是,数学是一个很有意思的学科,是人类与科学的一道纽带。
每一个公式和定义都蕴含着无穷的哲理。
遇到公式和概念符号的时候想,符号是人创造,为人服务的。
有时候在学数学的过程中多想想这句话,好多问题就迎刃而解了。
数学二概况数二比数学一、三有天生的优势。
其考察的范围仅仅为线性代数和高等数学的部分内容。