常见换热器结构及优缺点
换热器的结构原理和特点
七:管式换热器
管式换热器结构图
18
八:热管式换热器
热管式换热器构造原理、特点
热管是一种高效传热元 件,其导热能力比金属高几 百倍至数千倍。热管还具有 均温特性好、热流密度可调、 传热方向可逆等特性。用它 组成热管换热器不仅具有热 管固有的传热量大、温差小、 重量轻体积小、热响应迅速 等特点,而且还具有安装方 便、维修简单、使用寿命长、 阻力损失小、进、排风流道 便于分隔、互不渗漏等特点。
19
八:热管式换热器
热管式换热器构造原理、特点
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最 佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A 中温热管换热器、GRSC-B高温热管换热器。热管一端受热时管内工质汽化,从热源吸收汽 化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。冷凝液借毛细力和重力的 作用回流,继续受热汽化,这样往复循环将大量热量从加热区传递到散热区。热管内热量 传递是通过工质的相变过程进行的。将热管元件按一定行列间距布置,成束装在框架的壳 体内,用中间隔板将热管的加热段和散热段隔开,构成热管换热器。
14
六:浮头式换热器
浮头式换热器构造原理、特点
浮头式换热器其一端管板与壳 体固定,而另一端的管板可以在壳 体内自由浮动。壳体和管束对热膨 胀是自由的,故当两种介质的温差 较大时,管束与壳体之间不会产生 温差应力。浮头端设计成可拆结构, 使管束可以容易地插入或抽出,这 样为检修和清洗提供了方便。这种 形式的换热器特别适用于壳体与换 热管温差应力较大,而且要求壳程 与管程都要进行清洗的工况。
2
一:板式换热器
板式换热器结构图
3
一:板式换热器
四种换热器的结构特点及优缺点
四种换热器的结构特点及优缺点3、四种换热器的结构特点及优缺点。
(1)固定管板式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。
结构特点:管板与壳体之间采用焊接连接。
两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。
优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。
缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。
(2)浮头式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。
结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。
只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。
优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。
缺点:结构较复杂,操作时浮头盖的密封情况检查困难。
(3)U形管式换热器组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。
结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。
只能为多管程,管板不能兼作法兰,一般有管束滑道。
总重轻于固定管板式换热器。
优点:结构简单,造价较低,不会产生温差应力,外层管清洗方便。
缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。
(4)填料函式换热器组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。
结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。
管束可抽出,管板不兼作法兰。
优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。
缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。
各种类型换热器结构原理及特点(图文并茂)
各种类型换热器结构原理及特点(图文并茂)板式换热器的构造原理、特点板式换热器是由许多波纹形的传热板片,按一定的间隔,通过橡胶垫片压紧组成的可拆卸的换热设备。
板片组装时,两组交替排列,板与板之间用粘结剂把橡胶密封板条固定好,其作用是防止流体泄漏并使两板之间形成狭窄的网形流道,换热板片压成各种波纹形,以增加换热板片面积和刚性,并能使流体在低流速成下形成湍流,以达到强化传热的效果。
板上的四个角孔,形成了流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。
板式换热器结构图螺旋板式换热器的构造原理、特点“螺旋板式换热器是用薄金属板压制成具有一定波纹形状的换热板片,然后叠装,用夹板、螺栓紧固而成的一种换热器。
工作流体在两块板片间形成的窄小而曲折的通道中流过。
冷热流体依次通过流道,中间有一隔层板片将流体分开,并通过此板片进行换热。
螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
”结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图列管式换热器的构造原理、特点列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图管壳式换热器的构造原理、特点管壳式换热器(shell and tube heat exchanger)又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构简单、造价低、流通截面较宽、易于清洗水垢;但传热系数低、占地面积大。
可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是应用最广的类型。
管壳式换热器有固定管板式汽-水换热器、带膨胀节管壳式汽-水换热器、浮头式汽-水换热器、U形管壳式汽-水换热器、波节型管壳式汽-水换热器、分段式水-水换热器等几种类型。
换热器基本结构及性能特点
shell-and tube heat exchangers
(管壳式换热器)
封头shell cover 固定管法兰stationary head flange-channel
放气接口vent connection
膨胀节expansion joint
壳体shell
管程tube(side)pass
壳体接管
换热器的基本结构 和性能特点
换热器的基本结构和性能特点
在工业生产中,要实现热量的传递,须采用一定 的设备,此种传递热量的设备,称换热器或热交换 器。
换热器广泛应用于各种工业生产过程中,其主要 用途适用于加热、冷却、蒸发、冷凝、干燥等方面, 因其使用的条件不同,其容量、压力、温度等变动 范围较大,为了适应不同的用途,存在各种形式及 结构的换热器。
正三角形排列:
优点:管子较多,传热系数较大; 缺点:管外机械清洗较为困难,管外流体的流动阻力较大。
正方形排列:
(1)在相同的管板面积上可配置的传热管最少 (2)易于用机械清洗管外壁
同心圆排列:
(1)靠近壳体的地方管子分布比较均匀; (2)在壳体直径很小的换热器中可排列的管子数目比正三角形多。
换热器的基本结构和性能特点
主要由壳体、管束、管板、折流挡板和封头等组成。一 种流体在管内流动,其行程称为管程;另一种流体在管外流动, 其行程称为壳程。管束的壁面即为传热面。
目前工业生产中采用的主要有固定管板式,浮头式和U型 管式三类。其主要构造都是在一圆筒形壳体内设置许多平行管 组成的管束构成的。 换热器的基本结构和性能特点
换热器的基本结构和性能特点
按换热器传热面形状和结构分类
(1)管式换热器:管式换热器通过管子壁面进行传热,按传热管 的结构不同,可分为列管式换热管、套管式换热器、蛇管式换 热器和翅片管式换热器等几种。管式换热器应用最广。 (2)板式换热器:板式换热器通过板面进行传热,按传热板的结 构形式,可分为平板式换热器、螺旋板式换热器、板翅式换热 器和热板式换热器。 (3)特殊形式换热器:这类换热器是指根据工艺特殊的要求而设 计的具有特殊结构的换热器。如回转式换热器、热管式换热器、 空气冷却器等。
十一种换热器工作原理和特点图文讲解
十一种换热器工作原理和特点图文讲解一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了消除热应力。
性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点是管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。
根据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点这是一种古老的换热设备。
它结构简单,制造、安装、清洗和维修方便,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。
为提高传热系数,容器内可安装搅拌器。
3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
四种管壳式换热器的结构特点
四种管壳式换热器的结构特点管壳式换热器是一种常见的换热设备,广泛应用于工业生产和能源领域。
根据不同的结构特点,可以将管壳式换热器分为四种类型:固定管板式、浮动管板式、固定管束式和浮动管束式。
固定管板式换热器是最常见的一种结构类型。
它由一个壳体和多个平行排列的管板组成。
管板上开有管孔,通过这些管孔将管子固定在板上。
流体通过管子流动,进行换热。
固定管板式换热器的主要优点是结构简单、制造成本较低,适用于一般的换热任务。
然而,由于管子固定在板上,清洗和维修时比较困难。
浮动管板式换热器是在固定管板式换热器的基础上改进而来的。
它的管板不再固定,而是可以上下浮动。
这样,在清洗和维修时,可以通过松开法兰螺栓,将管板抬起,方便清理管道内部。
浮动管板式换热器的结构稍复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
固定管束式换热器是将管子固定在壳体内部的一个管束上的换热器。
管束通常由多个平行排列的管子组成,管束两端通过管板与壳体连接。
流体在管束内流动,进行换热。
固定管束式换热器的优点是结构紧凑,热效率高,适用于对换热效果要求较高的场合。
然而,由于管束固定在壳体内部,清洗和维修时比较困难。
浮动管束式换热器是在固定管束式换热器的基础上改进而来的。
它的管束可以上下浮动,方便清洗和维修。
浮动管束式换热器的结构复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
四种管壳式换热器的结构特点分别是:固定管板式换热器结构简单、制造成本低;浮动管板式换热器清洗和维修方便;固定管束式换热器热效率高;浮动管束式换热器清洗和维修方便。
每种结构类型都有其适用的场合,选择合适的换热器结构可以提高换热效率,降低维护成本,确保设备的正常运行。
换热器的种类及特点
换热器的种类及特点
固定管板式换热器由管箱、壳体、管板、钢管等部分组成,它具有结构紧凑,多排管,相同直径下更大的面积以及易于制造的特点。
其结构特征是管束固定在壳体中,管束的两端被焊接或扩张以将管固定在管板上。
两端的管板直接焊接到壳体,壳体侧的进出口管直接焊接。
在外壳上,管板的外圆周和头部的法兰通过螺栓固定,管道的入口和出口管直接焊接到头部。
根据换热管的长度,在管束中布置几个挡板,该热交换器的管道通道可以通过隔板分为任意数量的通道。
固定式管板式换热器结构简单,制造成本低,管道清洗方便。
管程可以分成多程,壳程也可以分成双程,规格范围很广,因此在工程中被广泛使用,很难清洁外壳侧面,因此不适用于脏污或腐蚀介质。
当膨胀差大时,可以在壳体上设置膨胀接头以减小由管和壳体侧之间的温度差引起的热应力。
与浮头式换热器相比,它具有旁路渗漏小、锻件少、成本低、无内部泄漏,传热面积大的优点。
固定管板式换热器在固定管板式换热器的管侧和壳侧,通过热交换,不同温度的流体流过。
当两种流体之间的温差较大时,避免产生高的温差应力。
通常在壳侧的适当位置添加补偿环(伸缩缝),当壳体和管束的热膨胀不同时,补偿环经历缓慢的弹性变形,因温差应力引起的热膨胀。
常见一般换热器结构、优缺点及适用范围
能更换管束,维修成本较高。
适用范围:壳程侧介质清洁不易结垢,不 能进行清洗,管程与壳程两侧温差不大或 温差较大但壳侧压力不高的场合。
管壳式换热器的管子是换热器的基本构件, 它为在管内流过一种流体和穿越管外的另 一种流体之间提供传热面。根据两侧流体 的性质决定管子材料,将具有腐蚀性,水 质差的海水放在管内流动,水质较好的除 盐水放在管子外壳侧,这样管子只需采用
管壳式换热器主要由三个组合部分构成: 前端管箱,包括分隔板、接管、连接法兰 等。
分类:按管板和壳体及其配合部分的形 式可分为固定管板式、浮头式钢、铜管及其它特殊材质。
技术性能:最高使用温度:350℃ 最高 工作压力:35Mpa
管壳式换热器应用范围:化工、石油、 电力、轻工、冶金、原子能、造船、航空、 供热等工业部门中。特别是在石油炼制和 化学加工装置中,占有极其重要的地位。
套管式换热器主要用于热泵、空调等方面。 近年来套管式换热器在国内发展迅速,部
分得益于热泵行业的突飞猛进。2008年冰 冻灾害让板式换热器易冰堵的缺点暴露无 遗,这也间接促进了套管式换热器市场的 大发展。“套管式换热器在热泵方面应用 的越来越多,我们公司每年的市场都是成 100%增长。”杭州沈氏的方彦说道。
管壳式换热器是基本部件 ·壳体 ·外头盖 ·换热管 ·管箱 ·管箱盖板 ·管板 ·折流板 ·接管
其他零部件还有;拉杆和定距管、分隔板、 防冲板、纵向隔板、密封条和支座等。
固定管板换热器,其管子两端与管板牢固 连接,管板焊在壳体上。这种结构有可拆 卸的管箱盖板、封头式管箱以及整体管板 等几种形式。
固定管板换热器因其结构简单,故具有造 价低的优点。实际上,只要不在壳体上设 置膨胀节,它就是造价最低的一种结构形 式。还有一些其他优点,如把管箱盖板拆
换热器种类及原理
换热器种类及原理?各种换热器优缺点、原理图及适用场合一、换热器种类及原理:、表面式换热器1表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
、蓄热式换热器2蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器优缺点、原理图及适用场合1、表面式换热器:(间壁式换热器)(1)、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用于温差小、单行程、压力不高以及结垢不严重的场合。
.(2)、容积式换热器:优点:供水平稳、安全,易于清除污垢。
主要用于热水供应系统。
但其传热系数比壳管式换热器低得多。
(3)、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉积,都容易堵塞。
在我国城镇集中供热系统中开始得到广泛应用。
(4)、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞。
缺点:不能拆卸清洗、2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换。
如回转式空气预热器。
局限:若两种流体不允许混合,不能采用蓄热式换热器。
.3、流体连接间接式换热器:4、直接接触式热交换器(混合式换热器):优点:传热效率高、单位容积传热面积大、设备结构简单、价格便宜等。
换热器结构介绍
换热器结构介绍一、引言换热器是一种常见的热交换设备,广泛应用于工业生产和能源领域。
它的主要作用是通过将热量从一个流体传递到另一个流体,实现能量的转移和利用。
换热器的结构是实现这一功能的关键,下面将对换热器的结构进行详细介绍。
二、换热器的基本结构换热器通常由壳体、管束和管板等部分组成。
1. 壳体:壳体是换热器的外壳,通常由金属材料制成,如碳钢、不锈钢等。
壳体的结构形式有多种,常见的有管壳式、板壳式和管室式等。
壳体内部通常分为两个流体通道,分别为热介质的进出口通道。
2. 管束:管束是换热器的核心部分,由一组平行排列的管子组成。
管束可以是直管束、U型管束或螺旋管束等形式,根据不同的使用要求选择不同的类型。
管束的材料通常为金属,如铜、铝、不锈钢等,具有良好的导热性能和机械强度。
3. 管板:管板用于连接和固定管束,通常由金属材料制成。
管板上开有与管束相对应的孔洞,以确保管子与壳体之间的密封性。
管板的结构形式有单管板和双管板两种,根据具体的换热要求选择适合的结构。
三、换热器的工作原理换热器的工作原理是通过壳体内外两个流体之间的传热来实现能量的转移。
其中,一个流体在管束内流动,称为管侧流体;另一个流体在壳体内流动,称为壳侧流体。
在换热过程中,壳侧流体和管侧流体的热量通过管壁传递,实现热量的交换。
壳侧流体流经壳体,将热量传递给管侧流体,使管侧流体的温度升高,壳侧流体的温度降低。
换热器的工作过程可以分为对流传热和传导传热两个过程。
对流传热是指流体通过壳体和管束时产生的传热,而传导传热是指热量在管壁内部传递的过程。
四、换热器的应用领域换热器广泛应用于各个行业,包括化工、石油、电力、制药、冶金等领域。
具体应用包括以下几个方面:1. 工业生产:在化工、石油和制药等行业,换热器用于热媒的加热、冷却和回收利用,提高能源利用效率。
2. 电力行业:在发电厂中,换热器用于锅炉的燃烧热量回收、蒸汽凝结和冷却水循环等工艺。
3. 食品加工:在食品加工工业中,换热器常用于蒸汽蒸煮、热水加热和冷却等过程。
各种换热器工作原理和特点
各种换热器工作原理和特点一、U型管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了消除热应力。
性能特点:此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
其缺点是管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
】二、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。
根据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
优点:这是一种古老的换热设备。
它结构简单,制造、安装、清洗和维修方便,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
缺点:由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。
为提高传热系数,容器内可安装搅拌器。
三、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
九种换热器的工作原理、优缺点及注意事项(动图详解)
九种换热器的工作原理、优缺点及注意事项(动图详解)按照换热器的传热方式,换热器可分为三大类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。
通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。
对于供热企业而言,间壁式换热器的应用最为广泛。
根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。
01管壳式换热器管壳式换热器又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
▲管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。
02固定管板式换热器固定管板式换热器是管壳式换热器的一种。
固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。
▲固定管板式换热器固定管板式换热器的优点是:◆结构简单;◆在相同的壳体直径内,排管数最多,旁路最少;◆每根换热管都可以进行更换,且管内清洗方便。
固定管板式换热器的缺点是:◆壳程不能进行机械清洗;◆当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;◆只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。
03浮头式换热器浮头换热器是管壳式换热器的一种,它有一端管板不与外壳相连,可以沿轴向进行自由浮动,也称为浮头。
浮头由浮动管板、钩圈和浮头端盖组成,是可拆连接,管束可从壳体内抽出。
常见换热器结构及优缺点
6.7 换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进行热量交换。
在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。
直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。
当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。
这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。
其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。
6.7.3 间壁式这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。
由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。
优点:结构简单,加工方便。
缺点:传热面积A小,传热效率低。
用途:广泛用于反应器的加热和冷却。
为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。
优点:结构简单,便于防腐,能承受高压。
缺点:传热面积不大,蛇管外对流传热系数小,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
十三种类型换热器结构原理及特点(图文并茂)
十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
换热器的结构和分类
换热器的结构与分类换热器的分类➢按用途分类:加热器、冷却器、冷凝器、蒸发器与再沸器➢按冷热流体热量交换方式分类:混合式、蓄热式与间壁式➢主要内容:1、根据工艺要求,选择适当的换热器类型;2、通过计算选择合适的换热器规格。
间壁式换热器的类型一、夹套换热器➢结构:夹套式换热器主要用于反应过程的加热或冷却,就是在容器外壁安装夹套制成。
➢优点:结构简单。
➢缺点:传热面受容器壁面限制,传热系数小。
为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。
也可在釜内安装蛇管。
二、沉浸式蛇管换热器➢结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。
➢优点:结构简单,便于防腐,能承受高压。
➢缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。
三、喷淋式换热器➢结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
在下流过程中,冷却水可收集再进行重新分配。
➢优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好➢缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。
➢用途:用于冷却或冷凝管内液体。
四、套管式换热器➢结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。
➢优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。
➢缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。
➢用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。
五、列管式换热器列管式换热器又称为管壳式换热器,就是最典型的间壁式换热器,历史悠久,占据主导作用。
➢优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。
换热器类型、结构及特点.
常见换热器结构及优缺点
常见换热器结构及优缺点6.7 换热器换热器是化⼯、⽯油、⾷品及其他许多⼯业部门的通⽤设备,在⽣产中占有重要地位。
化⼯⽣产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应⽤甚为⼴泛。
由于⽣产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和⽅式基本上可分为三⼤类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进⾏热量交换。
在⼯艺上允许两种流体相互混合的情况下,这是⽐较⽅便和有效的,且其结构⽐较简单。
直接接触式换热器常⽤于⽓体的冷却或⽔蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器⼜称为蓄热器,它主要由热容量较⼤的蓄热室构成,室中可填耐⽕砖或⾦属带等作为填料。
当冷、热两种流体交替地通过同⼀蓄热室时,即可通过填料将得⾃热流体的热量,传递给冷流体,达到换热的⽬的。
这类换热器的结构简单,且可耐⾼温,常⽤于⽓体的余热及其冷量的利⽤。
其缺点是设备体积较⼤,⽽且两种流体交替时难免有⼀定程度的混合。
6.7.3 间壁式这⼀类换热器的特点是在冷热两种流体之间⽤⼀⾦属壁(或⽯墨等导热性好的⾮⾦属)隔开,以使两种流体在不相混合的情况下进⾏热量交换。
由于在三类换热器中,间壁式换热器应⽤最多,因此下⾯重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为⼀种流体的通道。
优点:结构简单,加⼯⽅便。
缺点:传热⾯积A⼩,传热效率低。
⽤途:⼴泛⽤于反应器的加热和冷却。
为了提⾼传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管⼀般由⾦属管⼦弯绕⽽制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进⾏换热。
优点:结构简单,便于防腐,能承受⾼压。
缺点:传热⾯积不⼤,蛇管外对流传热系数⼩,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却⽔从最上⾯的管⼦的喷淋装置中淋下来,沿管表⾯流下来,被冷却的流体从最上⾯的管⼦流⼊,从最下⾯的管⼦流出,与外⾯的冷却⽔进⾏换热。
换热器形式和优缺点
固定管板换热器先进行壳程试压,同时检查换热管与管板连接接头,然后进行管程试压;
U形管式换热器、釜式重沸器(U形管束)及填料函式换热器先用试验压环进行壳程试压,同时检查接头,然后进行管程试压;
浮头式换热器、釜式重沸器(浮头式管束)先用试验压环和浮头专用工具进行管头试压,对于釜式重沸器尚应配备管头试压专用壳体,然后进行管程试压,最后进行壳程试压;
备料--划线--切割--边缘加工(探伤)--成型--组对--焊接--焊接质量检验--组装焊接--压力试验
2质量检验
化工设备不仅在制造之前对原材料进行检验,而且在制造过程中要随时进行检查。
3质量检验内容和方法
设备制造过程中的检验,包括原材料的检验、工序间的检验及压力试验,具体内容如下:
(1)原材料和设备零件尺寸和几何形状的检验;
产部门中。
按照用途的不同,可将混合式热交换器分成以下几种不同的类型:
(1)冷却塔(或称冷水塔)
在这种设备中,用自然通风或机械通风的方法,将生产中已经提高了温度的水进行冷却降温之后循环使用,以提高系统的经济效益。例如热力发电厂或核电站的循环水、合成氨生产中的冷却水等,经过水冷却塔降温之后再循环使用,这种方法在实际工程中得到了广泛的使用。
蓄热式换热器一般用于对介质混合要求比较低的场合。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求:
(1) 合理地实现所规定的工艺条件;
(2) 结构安全可靠;
(3)可在高温、高压下工作,一般温度小可用于结垢比较严重的场合;
换热器的结构与性能特点
(1)沉浸式蛇管换热器
多以金属管弯绕而成,制成适应容器的形状,沉浸在容器内的液体中。两种 流体分别在管内、管外进行换热。
.
蛇管的形状主要取决于容器的形 状和生产队要求。如化工生产中 的反应器内的加热或冷却管,多 做成圆盘形或螺旋形的;氨冷的 冷冻盐水槽中的换热管,则多用 长的蛇形管构成。实际上,蛇管 可以制成任意需要的形状。如图 所示。 蛇管可以由钢管,铜管,银管或 其它有色金属和非金属材料如玻 璃,陶瓷,石墨和塑料等制成。
.
一、夹套式换热器
夹套式换热器是最简单的板式换热器, 它是在容器外壁安装夹套制成,夹套 与容器之间形成的空间为加热介质或 冷却介质的通路。这种换热器主要用 于反应过程的加热或冷却。在用蒸汽 进行加热时,蒸汽由上部接管进入夹 套,冷凝水由下部接管流出。作为冷 却器时,冷却介质(如冷却水)由夹 套下部接管进入,由上部接管流出。 特点:
几种常用的蛇管形状
沉浸式蛇管换热器的优点:结构简单、价格低廉、便于防腐蚀、能承受高压。 缺点:由于容器的体积较蛇管的体积大得多,管外流体的传热膜系数较小, 故常需加搅拌装置,以提高其传热效率. 。 多应用于小型容器内的液体换热。
(2)喷淋式蛇管换热器
喷淋式换热器也为蛇管式换热器,多用作冷却 器。这种换热器是将蛇管成行地固定在钢架上, 热流体在管内流动,自最下管进入,由最上管 流出。冷水由最上面的淋水管流下,均匀地分 布在蛇管上,并沿其两侧逐排流经下面的管子 表面,最后流入水槽而排出,冷水在各排管表 面上流过时,与管内流体进行热交换。这种换 热器的管外形成一层湍动程度较高的液膜,因 而管外对流传热系数较大。另外,喷淋式换热 器常放置在室外空气流通处,冷却水在空气中 汽化时也带走一部分热量,提高了冷却效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.7 换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进行热量交换。
在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。
直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。
当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。
这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。
其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。
6.7.3 间壁式这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。
由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。
优点:结构简单,加工方便。
缺点:传热面积A小,传热效率低。
用途:广泛用于反应器的加热和冷却。
为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。
优点:结构简单,便于防腐,能承受高压。
缺点:传热面积不大,蛇管外对流传热系数小,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
在下流过程中,冷却水可收集再进行重新分配。
优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好。
缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。
用途:用于冷却或冷凝管内液体。
(4)套管式换热器结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。
优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。
缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。
用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。
(5)列管式换热器(管壳式换热器)列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。
主要由壳体、管束、管板、折流挡板和封头等组成。
一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面即为传热面。
优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。
常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。
壳体内装有管束,管束两端固定在管板上。
由于冷热流体温度不同,壳体和管束受热不同,其膨胀程度也不同,如两者温差较大,管子会扭弯,从管板上脱落,甚至毁坏换热器。
所以,列管式换热器必须从结构上考虑热膨胀的影响,采取各种补偿的办法,消除或减小热应力。
根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。
(1)固定管板式壳体与传热管壁温度之差大于50 C,加补偿圈,也称膨胀节,当壳体和管束之间有温差时,依靠补偿圈的弹性变形来适应它们之间的不同的热膨胀。
特点:结构简单,成本低,壳程检修和清洗困难,壳程必须是清洁、不易产生垢层和腐蚀的介质。
(2)浮头式两端的管板,一端不与壳体相连,可自由沿管长方向浮动。
当壳体与管束因温度不同而引起热膨胀时,管束连同浮头可在壳体内沿轴向自由伸缩,可完全消除热应力。
特点:结构较为复杂,成本高,消除了温差应力,是应用较多的一种结构形式。
(3)U型管式把每根管子都弯成U形,两端固定在同一管板上,每根管子可自由伸缩,来解决热补偿问题。
特点:结构较简单,管程不易清洗,常为洁净流体,适用于高压气体的换热。
6.7.4 管壳式换热器的设计和选用(1)设计和选用时应考虑的问题除了前面讲过流体的流向,流速和流体出口温度的选择外,还应考虑:① 冷热流体流动通道的选择a 、不洁净或易结垢的液体宜在管程,因管内清洗方便,但U 形管式的不宜走管程;b 、腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀;c 、压力高的流体宜在管内,以免壳体承受压力;d 、饱和蒸汽宜走壳程,饱和蒸汽比较清洁,而且冷凝液容易排出;e 、被冷却的流体宜走壳程,便于散热;f 、若两流体温差大,对于刚性结构的换热器,宜将给热系数大的流体通入壳程,以减小热应力;g 、流量小而粘度大的流体一般以壳程为宜,因在壳程100>Re 即可达到湍流。
但这不是绝对的,如果流动阻力损失允许,将这种流体通入管内并采用多管程结构,反而会得到更高的给热系数。
以上各点常常不可能同时满足,而且有时还会相互矛盾,故应根据具体情况,抓住主要方面,作出适宜的决定。
② 流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。
当流量一定时,管程或壳程越多,对流传热系数越大,对传热过程越有利。
但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。
因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。
当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正。
③ 换热管规格和排列选择换热管直径越小,换热器单位容积的传热面积越大。
因此对于洁净的流体管径可取得小些。
但对于不洁净或易结垢的流体,管径应取的大些,以免堵塞。
为了制造和维修的方便,我国目前试行的系列标准规定采用φ19×2mm 和φ25×2.5mm 两种规格,管长有1.5、2.0、3.0、6.0m ,排列方式:正三角形、正方形直列和错列排列。
各种排列方式的优点: ⎪⎩⎪⎨⎧,给热系数大,管外流体湍流程度高等边三角形:排列紧凑热系数正方形错列:可提高给但给热效果较差正方形排列:易清洗, ④ 折流挡板安装折流挡板的目的是为提高壳程对流传热系数,为取得良好的效果,挡板的形状和间距必须适当。
对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。
由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。
挡板的间距对壳体的流动亦有重要的影响。
间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。
一般取挡板间距为壳体内径的0.2~1.0倍。
a.切除过少b.切除适当c.切除过多挡板切除对流动的影响 (2)管壳式换热器的给热系数给热系数包括管内流动的给热系数和壳程给热系数,管内流体的给热系数前面已经学过,而壳程的给热系数与折流挡板的形状、板间距,管子的排列方式、管径及管中心距等因素有关。
壳程中由于设有折流挡板,流体在壳程中横向穿过管束,流向不断变化,湍动增强,当100>Re 即可达到湍流状态。
(3)流体通过换热器的阻力损失① 管程阻力损失包括各程直管阻力损失1f h 、回弯阻力损失2f h 及换热器进出口阻力损失3f h 构成,其中3f h 可忽略不计。
p 21)(N f h h h t f f ft +=式中 t f —— 管程结垢校正系数,对三角形排列取1.5,正方形排列取1.4;p N ——管程数;221i i f u d l h λ= 式中 l ——换热管长度,m ; 2322i f u h = (2f h 包括回弯和进出口局部阻力及封头内流体转向的局部阻力之和,取阻力系数为3)管程阻力损失也可写成232p i t i t u N f d l p ρλ⎪⎪⎭⎫ ⎝⎛+=∆由于p N u i ∝,所以3P N p t ∝∆。
对同一换热器,若单程改为双程,阻力损失剧增为原来的8倍,而给热系数只增为原来的1.74倍,因此在选择换热器管程数时,应该兼顾传热与流体压降两方面的得失。
② 壳程阻力损失壳程由于流动状态比较复杂,结构参数较多,提出的公式较多,但可归结为22o u h fs ζ= 不同的计算公式,决定ζ和o u 的方法不同,计算结果往往不一致。
(4)对数平均温差的修正前面学过的对数平均温差m t ∆仅适用于纯并流或纯逆流的情况,当采用多管程或多壳程时,由于其内流动形式复杂,平均推动力m t ∆的计算式相当复杂。
为了方便,可将这些复杂流型的平均推动力的计算结果与进出口温度相同的纯逆流相比较,求出修正系数ψ,即逆m m t t ∆=∆ψ其中ψ的求法为:冷流体温升热流体温降=两流体最初温差冷流体温升=--=--==12211112),(t t T T R t T t t P R P f ψ 根据P ,R 值由图查出各种情况的ψ值。
在设计时注意应使ψ>0.8,为什么?因为①经济上不合理;②操作温度略有变动,则ψ下降很快,使操作不稳定。
(5)管壳式换热器的设计和选用步骤① 由已知条件计算传热量及逆流平均温差逆m t ∆逆m m t KA t KA Q ∆=∆=ψ由上式可知,要求A ,必须知道K ,ψ;而K 和ψ则是由传热面积A 的大小和换热器结构决定的。
因此,在冷、热流体的流量及进出口温度已知的条件下,选用或设计换热器必须通过试差计算。
② 初选换热器的尺寸规格a 、初步选定流体流动方式,由冷热流体的进出口温度计算温差修正系数ψ,应使ψ>0.8,否则应改变流动方式,重新计算;b 、依据经验估计总传热系数估K ,估算传热面积估A ;c 、根据估A ,根据系列标准选定换热管的直径、长度及排列;如果是选用,可根据估A 在系列标准中选用适当的换热器型号;③ 计算管程的压降和给热系数;a 、根据经验选定流速,确定管程数目,并计算管程压降t p ∆,若t p ∆>允t p ∆,必须调整管程数目重新计算。
b 、计算管内给热系数2α,若2α<估K ,则应改变管程数重新计算;若改变管程数使t p ∆>允t p ∆,则应重新估计估K ,另选一换热器型号进行试算。