AM27ID08
DiGiCo SD7数字调音台产品介绍中文
香港葵涌梨木道73-77号海晖中心五楼505室大中华区总代理華匯DiGiCo SD7,一步跨过两个时代。
DiGiCo D系列调音台邀您步入一个全新的数字调音世界。
使用全新的SD7数字调音台,我们将带您穿越两个时代。
结合了Stealth Digital Processing 技术与壮观的用户界面,再一次为世界各地的调音师解除了许多使用障碍。
目录2 一步跨过两个时代2 目录3 介绍5 创建12年,领先12年8 受启发的工程学9 Stealth音频处理能力11 一些调音台使人想起模拟的根源…13 20/20视觉:从一开始就非常直观15 SD7的工作界面:让您一目了然18 谁是我们最优先考虑的人?您!19 F.0.H的首选21 监听调音师们的梦想23 世界级剧场缩混25 从现场到转播:提供稳固的工作状态27 真正灵活的操作伙伴30 高达192KHz的纯正音质:耳听为实31 12输入通道为一组,仅仅是符合操作逻辑吗?33 4段均衡,也同样的4段动态均衡器34 “多段压缩”,不正是您想要的吗?36 不仅是音频桌面设置,也是您个性的体现!37 IDM:动态交互电平表桥40 诱人的效果Tiger SHARC®41 MADI,光纤,备份,AES,D-Tube,一应俱全42 调音台I/043 双备份44 12年传承45 技术信息当专业音频领域第一次将目光投向DiGiCo D5 Live时,它提供了在数字音频环境可以提供的最好的模拟工作实用性与音频通用性,以及丰富的功能。
许多年过去了,D系列调音台一直是标准的制定者,并且其精美的用户界面从来没有被其他调音台击败过。
对于大多数调音师来说,D系列调音台也继续提供了模拟平滑度和数字清晰度的最佳结合。
但人们的期待一直在增加。
当今世界,无论对音响工程师还是调音台生厂商而言,竞争都非常激烈。
您希望得到可以依赖的最好的工具;您同时也希望调音台考虑到每个主要应用,并且为艺术和音响工程科学而设计。
IR公司_大功率MOS管选型
I DContinuous Drain Current(A)70°Micro3Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPartNumberPD Max.PowerDissipation (W)N-ChannelLogic LevelIRLML2402*912570.54200.25 1.20.95230H1IRLML2803912580.54300.251.20.93230P-ChannelLogic LevelIRLML6302*912590.54-200.6-0.62-4.8230H1IRLML5103912600.54-300.6-0.61-4.8230* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)70°Micro6Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPartNumberPD Max.PowerDissipation (W)N-ChannelLogic LevelIRLMS1902915401.7200.10 3.2 2.675H2IRLMS1503915081.7300.103.22.675P-ChannelLogic LevelIRLMS6702*914141.7-200.20-2.3-1.975H2IRLMS5703914131.7-300.20-2.3-1.975* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)70°Micro8Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart NumberP D Max.PowerDissipation (W)N-Channel Logic LevelIRF7601* 912611.820 0.035 5.7 4.6 70 H3IRF7603 912621.830 0.035 5.6 4.5 70Dual N-Channel Logic LevelIRF7501* 912651.220 0.135 2.4 1.9 100 H3IRF7503 912661.2530 0.135 2.4 1.9 100P-Channel Logic LevelIRF7604* 912631.8-20 0.09 -3.6 -2.9 70 H3IRF7606 912641.8-30 0.09 -3.6 -2.9 70Dual P-Channel Logic LevelIRF7504* 912671.25-20 0.27 -1.7 -1.4 100 H3IRF7506 912681.25-30 0.27 -1.7 -1.4 100Dual N- and P-Channel Logic LevelIRF7507* 912691.2520 0.1352.4 1.9 100 H3-20 0.27 -1.7 -1.4IRF7509 912701.2530 0.135 2.4 1.9 100-30 0.27 -1.7 -1.4* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-Pak D -PakSOT-227Micro6SOT-223Micro8 2 Illustrations not to scaleI DContinuous Drain Current(A)70°SO-8Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRF7413913302.5300.011139.250H4IRF7413A 916132.5300.0135128.450IRF9410915622.5300.0375.850Dual N-ChannelIRF7311914352.0200.029 6.6 5.362.5H4IRF7313914802.0300.029 6.5 5.262.5IRF7333917002.0300.10 3.5 2.862.5917002.0300.050 4.9 3.962.5IRF9956915592.0300.103.52.862.5Dual P-ChannelIRF7314914352.0-200.058-5.3-4.362.5H4IRF7316915052.0-300.058-4.9-3.962.5IRF9953915602.0-300.25-2.3-1.862.5* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)70°SO-8Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)RΘMax.ThermalResistance(°C/W)1FaxonDemand Number Case Outline KeyPart NumberP D Max.PowerDissipation (W)Dual N- and P-ChannelIRF7317 915682.020 0.029 6.6 5.3 62.5 H42.0-20 0.058 -5.3 -4.3 62.5IRF9952 915622.030 0.103.5 2.8 62.5915622.0-30 0.25 -2.3 -1.8 62.5IRF7319 916062.030 0.029 6.5 5.2 62.52.0-30 0.058 -4.9 -3.9 62.5* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-Pak D -PakSOT-227Micro6SOT-223Micro8 2 Illustrations not to scaleI DContinuous Drain Current(A)70°SO-8Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelLogic LevelIRF7401912442.5200.0228.77.050H4IRF7201911002.5300.0307.0 5.650IRF7403912452.5300.0228.55.450Dual N-ChannelLogic LevelIRF7101908712.0200.10 3.5 2.362.5H4IRF7301912382.0200.050 5.2 4.162.5IRF7303912392.0300.050 4.9 3.962.5IRF7103910952.0500.1303.02.362.5P-ChannelLogic LevelIRF7204911032.5-200.060-5.3-4.250H4IRF7404912462.5-200.040-6.7-5.450IRF7205911042.5-300.070-4.6-3.750IRF7406912472.5-300.045-5.8-3.750IRF7416913562.5-300.02-10-7.150* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)70°SO-8Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)Dual P-ChannelLogic LevelIRF7104910962.0-200.250-2.3-1.862.5H4IRF7304912402.0-200.090-4.3-3.462.5IRF7306912412.0-300.10-3.6-2.962.5Dual N- and P-Channe Logic LevelIRF7307912421.4200.050 4.3 3.490H4-200.090-3.6-2.9IRF7105910972.0250.1093.5 2.862.52-250.25-2.3-1.862IRF7309912432.0300.050 4.9 3.962.5-300.10-3.6-2.9* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)70°SOT-223Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFL4105913812.1550.045 3.7 3.060H6IRFL110908612.01000.54 1.50.9660IRFL4310913682.11000.20 1.6 1.360IRFL21090868 2.02001.50.960.660IRFL214908622.02502.00.790.560P-ChannelIRFL9110908642.0-1001.2-1.1-0.6960H6N-ChannelLogic LevelIRLL3303913792.1300.031 4.6 3.760H6IRLL014N 914992.1550.14 2.0 1.660IRLL2705913802.1550.043.83.060* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)100°D-PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFR33039164257300.0313321 2.2H7IRFR024N9133638550.0751610 3.3IRFR41059130248550.0452516 2.7IRFR12059131869550.0273723 1.8IRFR11090524251000.54 4.3 2.75IRFR120N 91365391000.219.1 5.8 3.2IRFR391091364521000.11159.5 2.4IRFR2109052625200 1.5 2.6 1.75IRFR22090525422000.8 4.833IRFR21490703252502 2.2 1.45IRFR2249060042250 1.1 3.8 2.43IRFR3109059725400 3.6 1.7 1.15IRFR3209059842400 1.8 3.123IRFR42090599425003 2.4 1.53IRFRC2090637426004.421.33* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)100°D-PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)P-ChannelIRFR55059161057-550.11-18-11 2.2H7IRFR53059140289-550.065-28-18 1.4IRFR90149065425-600.5-5.1-3.25IRFR90249065542-600.28-8.8-5.63IRFR91109051925-100 1.2-3.1-25IRFR91209052042-1000.6-5.6-3.63IRFR9120N 9150739-1000.48-6.5-4.1 3.2IRFR92109052125-2003-1.9-1.25IRFR92209052242-200 1.5-3.6-2.33IRFR92149165850-250 3.0-2.7-1.7 2.5IRFR93109166350-4007.0-1.8-1.12.5* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)100°D-PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelLogic LevelIRLR27039133538300.0452214 3.3H7IRLR33039131657300.0313321 2.2IRLR31039133369300.0194629 1.8IRLR024N 9136338550.0651711 3.3IRLR27059131746550.042415 2.7IRLR29059133469550.0273623 1.8IRLR120N 91541391000.18511 6.9 3.2IRLR341091607521000.10159.52.4* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)100°D 2PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart NumberP D Max.PowerDissipation (W)N-ChannelIRFZ24NS 913554555 0.07 17 12 3.3 H10IRFZ34NS 913116855 0.04 29 20 2.2IRFZ44NS 9131511055 0.022 49 35 1.4IRFZ46NS 9130512055 0.020 53 37 1.3IRFZ48NS 9140814055 0.016 64 45 1.1IRF1010NS 913723.855 0.011 84 60 40IRF3205S 9130420055 0.008 110 80 0.75IRFZ44ES 9171411060 0.023 48 34 1.4IRF1010ES 9172017060 0.012 83 59 0.90IRF2807S 9151815075 0.013 71 50 1.0IRF520NS 9134047100 0.2 9.5 6.7 3.2IRF530NS 9135263100 0.11 15 11 2.4IRF540NS 91342110100 0.052 27 19 1.6IRF1310NS 91514120100 0.036 36 25 1.3IRF3710S 91310150100 0.028 46 33 1.0IRF3315S 9161794150 0.082 21 15 1.6IRF3415S 91509150150 0.042 37 26 1.0IRFBC20S 9.101450600 4.4 2.2 1.4 2.5IRFBC30S 9101574600 2.2 3.6 2.3 1.7IRFBC40S 91016130600 1.2 6.2 3.9 1.0* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-Pak D -PakSOT-227Micro6SOT-223Micro8 2 Illustrations not to scaleI DContinuous Drain Current(A)100°D 2PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemandNumberCase Outline KeyPart NumberP D Max.PowerDissipation (W)IRFBF20S 9166554900 8.0 1.7 1.1 2.3 H10P-ChannelIRF5305S 91386110-55 0.06 -31 -22 1.4 H10IRF4905S 914783.8-55 0.02 -74 -52 40IRF9520NS 9152247-100 0.48 -6.7 -4.8 3.2IRF9530NS 9152375-100 0.20 -14 -9.9 2.0IRF9540NS 9148394-100 0.117 -19 -13 1.6IRF5210S 91405150-100 0.06 -35 -25 1.0* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-Pak D -PakSOT-227Micro6SOT-223Micro8 2 Illustrations not to scaleI DContinuous Drain Current(A)100°D 2PakSurface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart NumberP D Max.PowerDissipation (W)N-Channel Logic LevelIRL3302S 916925720 0.020 39 25 2.2 H10IRL3202S916756920 0.016 48 30 1.8IRL3102S 916918920 0.013 61 39 1.4IRL3402S 9169311020 0.01 85 54 1.1IRL3502S 9167614020 0.007 110 67 0.89IRL2703S 913604530 0.04 24 17 3.3IRL3303S 913236830 0.026 38 27 2.2IRL3103S 9133811030 0.014 64 45 1.4IRL2203NS 9136717030 0.007 116 82 0.90IRL3803S 9131920030 0.006 140 98 0.75IRLZ24NS 913584555 0.06 18 13 3.3IRLZ34NS 913086855 0.035 30 21 2.2IRLZ44NS 9134711055 0.022 47 33 1.4IRL3705NS 9150217055 0.01 89 63 0.90IRL2505S 9132620055 0.008 104 74 0.75IRLZ44S 9090615060 0.028 50 36 1.0IRL530NS 9134963100 0.1 15 11 2.4IRL2910S 91376150100 0.026 48 34 1.0* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-Pak D -PakSOT-227Micro6SOT-223Micro8 2 Illustrations not to scaleI DContinuous Drain Current(A)100°SOT-227Surface Mount PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous DrainCurrent 25°C(A)RΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelFully Isolated Low ChargeFA38SA50LC 916155005000.1338240.25H21FA57SA50LC916506255000.0857360.20* Indicates low VGS(th), which can operate at VGS = 2.7VMeasured at ambient for Micro3, Micro6, Micro8, SO-8, and SOT-223 package styles. All others measured at case.1Micro3SO-8D-PakD -PakSOT-227Micro6SOT-223Micro82 Illustrations not to scaleI DContinuous Drain Current(A)100°I-PakThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFU33039164257300.0313321 2.2H8IRFU024N 9133638550.0751610 3.3IRFU41059130248550.0452519 2.7IRFU12059131869550.0273723 1.8IRFU11090524251000.54 4.3 2.7 5.0IRFU120N 91365391000.219.1 5.8 3.2IRFU391091364521000.11159.5 2.4IRFU2109052625200 1.5 2.6 1.7 5.0IRFU22090525422000.80 4.8 3.0 3.0IRFU2149070325250 2.0 2.2 1.4 5.0IRFU2249060042250 1.1 3.8 2.4 3.0IRFU3109059725400 3.6 1.7 1.1 5.0IRFU3209059842400 1.8 3.1 2.0 3.0IRFU4209059942500 3.0 2.4 1.5 3.0IRFUC2090637426004.42.01.33.0I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°I-PakThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)P-ChannelIRFU55059161057-550.11-18-11 2.2H8IRFU53059140289-550.065-28-18 1.4IRFU90149065425-600.50-5.1-3.2 5.0IRFU90249065542-600.28-8.8-5.6 3.0IRFU91109051925-100 1.2-3.1-2.0 5.0IRFU91209052042-1000.60-5.6-3.6 3.0IRFU9120N 9150739-1000.48-6.5-4.1 3.2IRFU92109052125-200 3.0-1.9-1.2 5.0IRFU92209052242-200 1.5-3.6-2.3 3.0IRFU92149165850-2503.0-2.7-1.7 2.5IRFU93109166350-4007.0-1.8-1.12.5N-ChannelLogic LevelIRLU27039133538300.0452214 3.3H8IRLU33039131657300.0313321 2.2IRLU31039133369300.0194629 1.8IRLU024N 9136338550.0651711 3.3IRLU27059131746550.04241715IRLU29059133469550.0273623 1.8IRLU120N 91541391000.18511 6.9 3.2IRLU341091607521000.10159.52.4I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°HEXDIPThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFD014907001.3600.2 1.7 1.2120H9IRFD024906991.3600.1 2.5 1.8120IRFD110903281.31000.54 1.00.71120IRFD120903851.31000.27 1.30.94120IRFD210903861.3200 1.50.60.38120IRFD220904171.32000.80.80.50120IRFD214912711.3250 2.00.570.32120IRFD224912721.3250 1.10.760.43120IRFD310912251.3400 3.60.420.23120IRFD320912261.3400 1.80.600.33120IRFD420912271.3500 3.00.460.26120IRFDC20912281.36004.40.320.21120I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI D Continuous Drain Current (A)100°TO-220Qg TotalGate Charge(nC)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C (A)R ΘMax.Thermal Resistance(°C/W)1Faxon Demand Number Case OutlineKeyPart Number P D Max.Power Dissipation (W)N-ChannelLow ChargeIRF737LC91314743000.75 6.1** 1.7 3.9H11IRF740LC 910681254000.5510** 1.039IRF840LC 910691255000.858.0** 1.039IRFBC40LC910701256001.26.2**1.039I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220ABThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFZ24N 9135445550.071712 3.3H12IRFZ34N9127656550.042618 2.7IRFZ44N 9130383550.0244129 1.8IRFZ46N 9127788550.024633 1.7IRFZ48N 9140694550.0165337 1.6IRF1010N 91278130550.0127251 1.2IRF320591279150550.0089869 1.0IRFZ34E 9167268600.0422820 2.2IRFZ44E 91671110600.0234834 1.4IRF1010E 91670170600.01281570.90IRF280791517150750.0137150 1.0IRF520N 91339471000.209.5 6.79.5IRF530N 91351601000.111511 2.4IRF540N 91341941000.0522719 1.6IRF1310N 916111201000.0363625 1.3IRF3710913091501000.0284633 1.0IRF331591623941500.0822115 1.6IRF3415914771501500.0423726 1.0IRFBC209062350600 4.4 2.2 1.4 2.5IRFBC309048274600 2.2 3.6 2.3 1.7IRFBC4090506125600 1.2 6.2 3.9 1.0IRFBE2090610548006.51.81.22.3I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220ABThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)IRFBE3090613125800 3.0 4.1 2.6 2.0H12IRFBF3090616125900 3.7 3.6 2.3 1.0IRFBG209060454100011 1.40.86 2.3IRFBG309062012510005.03.12.01.0P-ChannelIRF9Z24N 9148445-550.175-12-8.53.3H12IRF9Z34N 9148556-550.10-17-12 2.7IRF530591385110-550.06-31-22 1.4IRF490591280150-550.02-64-45 1.0IRF9530N 9148275-1000.20-13-9.2 2.0IRF9540N 9143794-1000.117-19-13 1.6IRF521091434150-1000.06-35-25 1.0IRF62159147983-1500.29-11-7.81.8I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220ABThrough-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart NumberP D Max.PowerDissipation (W)N-Channel Logic LevelIRL3302 916965720 0.020 39 25 2.2 H12IRL3202 916956920 0.016 48 30 1.8IRL3102 916948920 0.013 61 39 1.4IRL3402 9169711020 0.01 85 54 1.1IRL3502 9169814020 0.007 110 67 0.89IRL2703 913594530 0.04 24 17 3.3IRL3303 913225630 0.026 34 24 2.7IRL3103 913378330 0.014 56 40 1.8IRL2203N 9136613030 0.007 100 71 1.230 0.007 61 43 3.2IRL3803 9130115030 0.006 120 83 1.0IRLZ24N 913574555 0.06 18 13 3.3IRLZ34N 913075655 0.035 27 19 2.7IRLZ44N 913468355 0.022 41 29 1.8IRL3705N 9137013055 0.01 77 54 1.2IRL2505 9132520055 0.008 104 74 0.75IRL520N 9149447100 0.18 10 7.1 3.2IRL530N 9134863100 0.10 15 11 2.4IRL540N 9149594100 0.044 30 21 1.6IRL2910 91375150100 0.026 48 34 1.0I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI D Continuous Drain Current (A)100°TO-220 FullPak (Fully Isolated)Qg TotalGate Charge(nC)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous DrainCurrent 25°C(A)R ΘMax.Thermal Resistance (°C/W)1Fax on Demand Number Case OutlineKeyPart Number P D Max.Power Dissipation (W)N-ChannelLow ChargeIRFI740GLC91209404000.55 6.0** 3.139H13IRFI840GLC 91208405000.85 4.8** 3.139IRFIBC40GLC91211406001.24.0**3.139I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220 FullPak (Fully Isolated)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelIRFIZ24N 9150126550.07139.2 5.8H14IRFIZ34N9148931550.041913 4.8IRFIZ44N 9140338550.02428200.024IRFIZ46N 9130640550.023122 3.8IRFIZ48N 9140742550.0163625 3.6IRFI1010N 9137347550.0124431 3.2IRFI32059137448550.0085640 3.1IRFIZ24E 9167329600.071149.6 5.2IRFIZ34E 9167437600.0422115 4.1IRFI510G 90829271000.54 4.5 3.2 5.5IRFI520N 91362271000.207.2 5.1 5.5IRFI530N 91353331000.11117.8 4.5IRFI540N 91361421000.0521813 3.6IRFI1310N 91611451000.0362216 3.3IRFI371091387481000.0252820 3.1IRFI620G 90832302000.8 4.1 2.6 4.1IRFI630G 90652322000.4 5.9 3.7 3.6IRFI640G 90649402000.189.8 6.2 3.1IRFI614G 9083123250 2.0 2.1 1.3 5.5IRFI624G 9083330250 1.1 3.4 2.2 4.1IRFI634G 90738322500.45 5.6 3.5 3.6IRFI644G 90739402500.287.953.1I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220 FullPak (Fully Isolated)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)IRFI720G 9083430400 1.8 2.6 1.7 4.1H14IRFI730G 9065032400 1.0 3.7 2.3 3.6IRFI740G 90651404000.55 5.4 3.4 3.1IRFI734G 9100135450 1.2 3.4 2.1 3.6IRFI744G 91002404500.63 4.9 3.1 3.1IRFI820G 9064130500 3.0 2.1 1.3 4.1IRFI830G 9064632500 1.5 3.12 3.6IRFI840G 90642405000.85 4.6 2.9 3.1IRFIBC20G 90850306004.41.71.1 4.1IRFIBC30G 90851356002.2 2.5 1.63.6IRFIBC40G 9085240600 1.2 3.5 2.2 3.1IRFIBE20G 9085330800 6.5 1.4.86 4.1IRFIBE30G 9085435800 3.0 2.1 1.4 3.6IRFIBF20G 90855309008.0 1.2.79 4.1IRFIBF30G90856359003.71.91.23.6P-ChannelIRFI9Z24N 9152929-550.175-9.5-6.7 5.2H14IRFI9Z34N 9153037-550.10-14-10 4.1IRFI49059152663-550.02-41-29 2.4IRFI9540G 9083742-1000.117-13-9.2 3.6IRFI9540N 9148742-1000.117-13-9.2 3.6IRFI52109140448-1000.06-20-14 3.1IRFI9634G 9148835-2501.0-4.1-2.63.6I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI DContinuous Drain Current(A)100°TO-220 FullPak (Fully Isolated)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C(A)R ΘMax.Thermal Resistance (°C/W)1FaxonDemand Number Case Outline KeyPart Number P D Max.PowerDissipation (W)N-ChannelLogic LevelIRLI2203N 9137847300.0076143 3.2H14IRLI38039132048300.0066747 3.1IRLIZ24N 9134426550.06149.9 5.8IRLIZ34N 9132931550.0352014 4.8IRLIZ44N 9149838550.0222820 4.0IRLI3705N 9136947550.014733 3.2IRLI25059132763550.00858412.4IRLI520N 91496271000.187.7 5.4 5.5IRLI530N 91350331000.10117.8 4.5IRLI540N 91497421000.04420143.6IRLI291091384481000.02627193.1P-ChannelLogic LevelIRFI9520G 9083537-1000.6-5.2-3.6 4.1H14IRFI9530G 9083638-1000.03-7.7-5.4 3.6IRFI9620G 9087430-200 1.5-3.0-1.9 4.1IRFI9630G 9083840-2000.8-4.3-2.7 3.6IRFI9640G9083940-2000.5-6.1-3.93.1I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not ratedI D Continuous Drain Current (A)100°TO-247Qg TotalGate Charge(nC)Through-Hole PackagesV (BR)DSSDrain-to-Source Breakdown Voltage (V)R DS(on)On-State Resistance ()ΩI D Continuous Drain Current 25°C (A)R ΘMax.Thermal Resistance (°C/W)1Fax on Demand Number Case OutlineKeyPart Number P D Max.Power Dissipation (W)1N-ChannelLow ChargeIRFP350LC912291904000.3018**0.6570H16IRFP360LC 912302804000.2023**0.4598IRFP450LC 912311905000.4016**0.6570IRFP460LC 912322805000.2720**0.4598IRFPC50LC 912331906000.6013**0.6570IRFPC60LC912342806000.4016**0.4598I-PakTO-220 FullPakTO-262TO-247HEXDIPTO-220AB Illustrations not to scale** Not rated。
NTE7208 集成电路常电流单输出LED驱动器说明书
NTE7208Integrated CircuitConstant Current Single Output LED DriverDescription:The NTE7208 is a step-down constant current source designed for driving high power white LEDs.A standard output current of 350mA makes this driver compatible with a wide range of LEDs from many different manufacturers without the need for any external components. Despite its compact size, the NTE7208 is fully featured with very high efficiency, wide input voltage range, high ambient operating temperature and two means of LED dimming: PWM/digital control and analog voltage dim‐ming. Both dimming controls are independent and can be combined. The driver is also designed to be as reliable as the LEDs it is driving, even at the full operating temperature of +85°C.Features:D Constant Current OutputD Power LED DriverD Wide Input Voltage RangeD PWM/Digital Dimming and Analog Voltage DimmingD Short Circuit ProtectedD96% EfficiencyElectrical Specifications:(Typical at T A = +25°C, nominal input voltage, rated output current unlessotherwise specified.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Voltage (Absolute Maximum)36V Recommended Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Minimum5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Typical24V Maximum36V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Filter Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output Voltage Range (V in= 36V)2V to 32V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Current Range (V in - V out> 1.5V to 4V)350mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Output Current Accuracy (I O = 350mA)±2%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Power Dissipation, (Load of 5 LEDs)700mW. . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Output Current Stability (V in = 36V, V out =2V to 32V)±1%. . . . . Maximum Output Ripple and Noise, (20MHz limited, V in = 36V, V out = 2V to 32V)120mV p-p. . . . . . . . . . . . . . . . . . . . . . . . .Maximum Temperature Coefficient (T A = -40° to +85°C)±0.015%/ °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Capacitive Load,100μF Operating Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Minimum210kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Typical260kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Maximum300kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Effieciency at Full Load96%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Short Circuit Protection Regulated at Rated Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Operating Temperature Range, T A-40° to +85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage Temperature Range, T stg-55° to +125°CElectrical Specifications (Cont'd):(Typical at T A = +25°C, nominal input voltage, rated output currentunless otherwise specified.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Case Tempeature, T C+100°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Thermal Impedance (Nature Convection)+55°C/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Case Material Non Conductive Black Plastic Potting Material Epoxy (UL94-V0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Wave Soldering Profile (10 seconds)+235°C PWM Dimming and ON/OFF Control (Leave Open if Not Used):Remote ON/OFFDC/DC ON,Open or 0V < V r < 0.6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DC/DC OFF (Standby)0.6 < V r < 2.9V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DC/DC OFF (Shutdown), 2.9 < V r < 6V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Remote Pin Drive Current (V r = 5V)1mA Maximum Quiescent Input Current in Shutdown Mode (V in = 36V, V r > 2.9V)200μA. . . . . . . . . . . .. . . . . . . Maximum PWM Frequency for Linear Operation (measured 10% to 90% Dimming)200Hz Analog Dimming Control (Leave Open if Not Used):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Voltage Range0 to 15V Control Voltage Range Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Full On0.13V ± 50mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Full Off 4.5V ± 50mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Analog Pin Drive Current (V c = 5V)0.2mA Environmental:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Relative Humidity (See Note)5% to 95% RH, non-condensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Conducted Emissions EN55022, Class B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Radiated Emissions EN55022, Class B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ESD EN61000-4-2, Class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Radiated Immunity EN61000-4-3, Class A Fast Transient EN61000-4-4, Class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Conducted Immunity EN61000-4-6, Class A MTBF (RCD-24-0.70, Nominal V in, Full Load)+25°C605 x 103 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using MIL-HDBK 217F, +71°C516 x 103 hoursNote: Requires an input filter to meet EN55022 Class B conducted emissions, see below.。
IC 规格书
TDA8927
• High efficiency (>94%) • Operating voltage from ±15 to ±30 V • Very low quiescent current • High output power • Short-circuit proof across the load, only in combination with controller TDA8929T • Diagnostic output • Usable as a stereo Single-Ended (SE) amplifier or as a mono amplifier in Bridge-Tied Load (BTL) • Electrostatic discharge protection (pin to pin) • Thermally protected, only in combination with controller TDA8929T. 2 APPLICATIONS
2001 Dec 11
2
Philips Semiconductors
Objective specification
Power stage 2 × 80 W class-D audio amplifier
1 FEATURES • Multimedia systems • All mains fed audio systems • Car audio (boosters). 3 GENERAL DESCRIPTION
MGW138
TDA8927J TDA8927ST
EN1 SW1 REL1 STAB DIAG POWERUP 4 1 2 9 3 15 CONTROL AND HANDSHAKE
派克液压密封件说明书
派克汉尼汾公司版权所有未经许可不能摘录,翻印。
保留修改权利2021年6月警告销售条件本样本中产品和/或系统或相关产品出现故障,选型不当或使用不当,均可能导致人身伤亡和财产损失。
本文档以及由派克·汉尼汾公司及其子公司和授权经销商提供的其他资料,为具有技术知识的用户提供进一步研究所需的产品和/或系统选项。
重要的是,用户必须对您的应用进行全面的分析,并对当前产品样本中与产品或系统相关的资料进行评估。
由于工作条件以及产品或系统的多样性,用户必须自行分析和测试,并独自承担一切后果,包括:产品和系统的最终选型以及确保满足应用的所有性能、安全和警告等方面的要求。
派克·汉尼汾及其子公司可能会随时对本样本中的产品,包括但不限于:产品的特性、产品的规格、产品的结构、产品的有效性以及产品的价格作出变更而不另行通知.本样本中的所有产品均由派克·汉尼汾公司及其子公司和援权经销商销售。
与派克签订的任何销售合同均按照派克标准条件和销售条件中规定的条款执行(提供复印件备索)。
本公司的密封件,只能在本公司的文件资料述及的应用参数范围与接触介质、压力、温度和存放时间相一致的情况下才能使用。
在规定的应用参数范围外使用以及错误选用不同的材料都可能导致密封件寿命的缩短以及设备的损坏,甚至更严重的后果(如生命安全,环境污染等)。
样本中所列出的工作压力、温度范围、运动速度是极限值,它们之间相互关联、相互影响;在极端的工况下,建议不要同时把各个参数都同时用到极限值。
对于特殊的要求(压力、温度、速度、介质等),请联系派克汉尼汾公司以咨询合适的密封结构、材料、配置、安装建议等。
由于诸多工作参数会影响到流体传动系统及密封元件,这些设备的制造商必须在实际工作条件下测试、验证并批准密封系统的功能与可靠性。
此外,对于不断出现的新的介质(液压油、润滑脂、清洗剂等),用户特别注意它们与目前所用的密封件弹性体材料的兼容性。
我们建议用户在大批量应用之前,在厂内或现场先做密封材料的兼容性能测试,作为密封产品与系统供应商,我们建议用户遵循我们的这些建议。
番茄SlNAM1_参与调节植物花青素累积
2023 ,43(3) : 001J.SHANXI AGRIC, UNIV . ( N atural Science Edition )学报(自然科学版)04189番茄SlNAM1参与调节植物花青素累积柳芳艳,张苹,郭慧敏,宋倩倩,孙亮亮*,徐进*(山西农业大学 园艺学院,山西 晋中 030801)摘要:[目的]探究番茄SlNAM1参与调节花青素累积的分子机理,深入理解植物花青素积累的调控机制。
[方法]通过酵母双杂交实验,检测番茄SlNAM1和SlMYB75、拟南芥NAC32与MYB75/PAP1蛋白相互作用;构建系统发育树,进行SlNAM1序列分析;通过烟草叶片瞬时表达分析,初步探明SlNAM1在调节植物花青素积累中的作用;在拟南芥pap1⁃D 突变体中过表达SlNAM1,研究SlNAM1在调节植物花青素积累中的作用;通过对拟南芥pap1⁃D NAC32OX (OX32)双突变体表型分析,进一步证明SlNAM1的拟南芥同源基因NAC32参与调控花青素积累。
[结果]酵母双杂交结果显示,SlNAM1与SlMYB75蛋白存在相互作用,其在拟南芥中的同源基因NAC32与MYB75/PAP1也存在相互作用;瞬时表达分析表明,SlNAM1通过与SlMYB75的相互作用,抑制了花青素积累;在拟南芥pap1⁃D 突变体中过表达SlNAM1可抑制花青素累积;拟南芥pap1⁃D OX32双突变体表型分析结果表明,NAC32过表达抑制了花青素积累。
[结论]综上所述,SlNAM1是花青素合成的负调节因子。
关键词:番茄; SlNAM1; SlMYB75; NAC32; 花青素中图分类号:S641.2 文献标识码:A 文章编号:1671-8151(2023)03-0001-08NAC 转录因子家族是植物体内特有的、最大的转录因子家族之一,它是以最早发现的基因成员矮牵牛无根分生组织(NAM )、拟南芥ATAF1、ATAF2及杯状子叶2(CUC2)的首字母来命名的[1]。
罗克韦尔自动化-2080-um002_-zh-e.pdf-Micro830、Micro850 和 M
Micro830、Micro850 和 Micro870可编程控制器Micro810 控制器产品目录号 2080-LC10-12AWA、2080-LC10-12QWB、2080-LC10-12DWD、2080-LC10-12QBBMicro820 控制器产品目录号 2080-LC20-20AWB、2080-LC20-20AWBR、2080-LC20-20QWB、2080-LC20-20QWBR、2080-LC20-20QBB、2080-LC20-20QBBRMicro830 控制器产品目录号 2080-LC30-10QWB、2080-LC30-10QVB、2080-LC30-16AWB、2080-LC30-16QWB、2080-LC30-16QVB、2080-LC30-24QWB、2080-LC30-24QVB、2080-LC30-24QBB、2080-LC30-48AWB、2080-LC30-48QWB、2080-LC30-48QVB、2080-LC30-48QBBMicro850 控制器产品目录号 2080-LC50-24AWB、2080-L50E-24AWB、2080-LC50-24QWB、2080-L50E-24QWB、2080-LC50-24QVB、2080-L50E-24QVB、2080-LC50-24QBB、2080-L50E-24QBB、2080-LC50-48AWB、2080-L50E-48AWB、2080-LC50-48QWB、2080-L50E-48QWB、2080-LC50-48QWBK、2080-L50E-48QWBK、2080-LC50-48QVB、2080-L50E-48QVB、2080-LC50-48QBB、2080-L50E-48QBBMicro870 控制器产品目录号 2080-LC70-24AWB、2080-L70E-24AWB、2080-LC70-24QWB、2080-L70E-24QWB、2080-LC70-24QWBK、2080-L70E-24QWBK、2080-L70E-24QWBN、2080-LC70-24QBB、2080-L70E-24QBB、2080-LC70-24QBBK、2080-L70E-24QBBK、2080-L70E-24QBBN2罗克⻙尔⾃动化出版物2080-UM002M-ZH-E - 2022 年4 月Micro830、Micro850 和 Micro870 可编程控制器⽤⼾⼿册重要⽤⼾须知在安装、配置、操作或维护本产品之前,请阅读本文档以及“其他资源”章节所列的文档,了解关于安装、配置和操作该设备的信息。
2008年Ford自动变速箱组件目录说明书
1622008 AUTOMATIC TRANSMISSION KIT & COMPONENTS CATALOG ©2008 PARKER HANNIFIN CORP. ALL RIGHTS RESERVED3790103008397797405R55N / 5R55S / 5R55WRWD 5 SpeedA544510034070670Input ShaftO.Dr. Ring GearO.Dr. CenterShaft783Center SupportInterm. BandDirect DrumForward ClutchForward PlanetReverse BandReverse DrumLow Sprag310037179520036178530311914363912911913910896904896437490996V.B.Parts741E414494765-6370Case313321320Valve Body917747765746322420002OHK Kit004Master L/Steels Kit 006Master 030External Seal Kit1632008 AUTOMATIC TRANSMISSION KIT & COMPONENTS CATALOG ©2008 PARKER HANNIFIN CORP . ALL RIGHTS RESERVEDRWD 5 Speed5R55N / 5R55S / 5R55W862981971961560961971985879565126106146861*229964974877564285872962972104124552894Intermediate Sprag690074266Park Gear264847Park Pawl Assy995-1995-2995-3995916-2916-3919922915916-2916-3919922916263EDA181554770Ext. Hsg.781493305678Output ShaftO.Dr. Band StrutInterm. Band Strut268841Internal Linkage991-2991-3994799991-4761P-4991072410992Yoke1642008 AUTOMATIC TRANSMISSION KIT & COMPONENTS CATALOG©2008 PARKER HANNIFIN CORP. ALL RIGHTS RESERVED*Prefix Letter ‘T’ denotes Toledo-Trans Kit (TTK) Brand Transmission Kits *Prefix Letter ‘B’ denotes Bryco Brand Transmission Kits002.............T16002AP......Overhaul Kit, 5R55N (With Bonded Pistons) 1999-Up ..............................................................1..........002.............T16002GP......Overhaul Kit, 5R55S/5R55W (With Bonded Pistons) 2002-Up..................................................1..........004.............T16004AP......Master L/Steels Kit, 5R55N (With Bonded Pistons) 1999-Up ....................................................1..........004.............T16004GP......Master L/Steels Kit, 5R55S/5R55W (With Bonded Pistons) 2002-Up .......................................1..........006.............T16006AP......Master W/Steels Kit, 5R55N (With Bonded Pistons) 1999-Up...................................................1..........006.............T16006GP......Master W/Steels Kit, 5R55S/5R55W (With Bonded Pistons) 2002-Up ......................................1..........E300...........45019............Gasket, 5R55N Bottom Pan (Plastic With Silicon Bead) OE Style (With Large Holes) 1999-Up 1..........XW4Z-7A191CA D305...........45097668......Gasket, 5R55N/5R55S/5R55W Extension Housing To Case 1999-Up......................................1..........XW4Z-7086-AA A309..........41217............Gasket, 5R55N/5R55S/5R55W Pump Bolt Washer...................................................................AR ........A310..........45097667......Gasket, 5R55N/5R55S/5R55W Pump 1999-Up..........................................................................1..........XW4Z-7A136AB A311...........1988096........O-Ring, 5R55N/5R55S/5R55W Pump Cover 1999-Up ...............................................................1..........XW4Z-7A248AA A313..........1994747........O-Ring, 5R55N Inner Pump Gear 1999-Up.................................................................................1..........F77Z-7L323AA E320...........45097692......Gasket, 5R55N Valve Body Separator Plate To Case 1999-Up ................................................1..........XW4Z-7D100-BF E320...........45097738......Gasket, 5R55S/5R55W Valve Body Separator Plate To Case (Upper) 2002-Up......................1..........1L2Z-7Z490AB-1A070..........70243V..........Seal, 5R55N/5R55S/5R55W Front (No Flange) (Rubber Coated) 1999-Up ..............................1..........F77Z-7A248AA D072...........70083............Seal, 5R55N Linkage 1999-Up ..................................................................................................1..........D5AZ-7B498A D074...........70283............Seal, 5R55N Rear 2WD 2000-Up ...............................................................................................1..........XW4Z-7052AA D074...........70205............Seal, 5R55S/5R55W Rear (W/Long Boot) 2WD 2002-Up .........................................................1..........F6UZ-7052A D074...........70282............Seal, 5R55S/5R55W Extension Housing 4X4 2002-Up .............................................................1..........1L2Z-7052BA175.............6358..............Ring Kit, 5R55N/5R55S/5R55W (2 Metal 4PTFE 2 Torlon Rings) 1999-Up ...............................1..........A178..........45060279......Ring, 5R55N, 5R55W, 5R55S Pump Support (Lock-Up) 1999-Up .............................................1..........B181...........TAW- 2212....Ring, 5R55N, 5R55W, 5R55S Forward Clutch Cylinder 1999-Up .............................................2..........D184...........45060265......Ring, 5R55N, 5R55W, 5R55S Output Shaft 1999-Up.................................................................1..........A179..........30308............Ring, 5R55N, 5R55W, 5R55S Overdrive Brake Drum 1999-Up.................................................2..........B179...........30308P ..........Ring, 5R55N, 5R55W, 5R55S Direct Clutch (Center Support) 1999-Up Torlon .........................2..........119.............45082NR........Friction Module, 5R55N 1999-Up................................................................................................1..........119.............45082LR........Friction Module, 5R55S/5R55W 2002-Up...................................................................................1..........E010...........45040N ..........Filter, 5R55N (3/8” Tall Pick-up Tube) 1999-Up ..........................................................................1..........XW4Z-7A098BB E010...........F-340.............Filter, 5R55S/5R55W (2 1/4” Tall Pick-Up Tube) 2002-Up..........................................................1..........1L2Z-7A098AC5R55N / 5R55S / 5R55WRWD 5 Speed1652008 AUTOMATIC TRANSMISSION KIT & COMPONENTS CATALOG ©2008 PARKER HANNIFIN CORP. ALL RIGHTS RESERVEDB022...........45090............Band, 5R55N Overdrive/Intermediate (Hi-Energy) 1999-Up......................................................2..........XW4Z-7D034BA 030.............45030G..........Bushing Kit, 5R55N/5R55S/5R55W 1999-Up.............................................................................1..........A034..........31530............Bushing, 5R55N/5R55S/5R55W Pump Cover 1999-Up .............................................................1..........A036..........31531............Bushing, 5R55N/5R55S/5R55W Overdrive Sun Gear 1999-Up................................................1..........A036..........45039............Bushing, 5R55N/5R55S/5R55W Stator (Front) 1999-Up ...........................................................1..........A037..........31532............Bushing, 5R55N/5R55S/5R55W Stator (Rear) 1999-Up............................................................1..........A046..........31533............Bushing, 5R55N/5R55S/5R55W Coast Clutch Drum e 56036A................................................................................................................................1..........B211...........45176A..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .063" (Plastic) 1999-Up.............1..........F7TZ-7D014TA B211...........45176B ..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .071" (Plastic) 1999-Up.............1..........F7TZ-7D014MA B211...........45176C ..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .075" (Plastic) 1999-Up.............1..........F7TZ-7D014NA B211...........45176D ..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .079" (Plastic) 1999-Up.............1..........F7TZ-7D014PA B211...........45176E ..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .083" (Plastic) 1999-Up.............1..........F7TZ-7D014RA B211...........45176F ..........Washer, 5R55N/5R55S/5R55W Pump To Coast Clutch Drum .087" (Plastic) 1999-Up.............1..........F7TZ-7D014SA C232...........45145............Washer, 5R55N/5R55S/5R55W Bearing to Forward Hub (Solid Bronze) 1999-Up .................1..........FOTZ-7D090A D263...........45077............Washer, 5R55N/5R55S/5R55W Parking Gear To Case 1999-Up ..............................................1..........D4ZZ-7B368-AD410...........D56955J ........Switch, 5R55N Neutral Safety (12 Prong Connector) 1999-Up ...............................................1..........XW4Z-7F293AA E922...........33991............Nut, 5R55N/S/W Band 1999-Up .................................................................................................2..........380850-SRWD 5 Speed5R55N / 5R55S / 5R55W。
dfn8封装的e-marker芯片规格书
尊敬的读者:感谢您阅读本文。
本文将为您详细介绍dfn8封装的e-marker芯片规格书,帮助您更好地了解该产品的性能和特点。
1. 产品概述dfn8封装的e-marker芯片是一款集成了电子标识功能的芯片,可用于USB Type-C和Thunderbolt接口的连接线缆中。
该芯片具有高精度的识别和通信能力,能够实现连接线缆与主机设备之间的智能通信和识别,确保连接线缆在不同设备之间的兼容性。
2. 技术规格- 封装类型:dfn8- 工作温度范围:-40℃ 到85℃- 工作电压范围:3.3V- 通信协议:I2C- 识别标识:唯一ID- 支持接口:USB Type-C、Thunderbolt3. 主要特点- 高精度识别:通过内置的唯一ID,可以准确识别连接线缆的型号和特性,确保设备间的匹配和兼容性。
- 智能通信:支持I2C通信协议,可实现连接线缆与主机设备之间的智能通信,实现功能扩展和优化。
- 稳定可靠:经过严格的质量控制和测试,确保产品的稳定性和可靠性。
4. 应用领域dfn8封装的e-marker芯片广泛应用于USB Type-C和Thunderbolt 接口的连接线缆中,可用于笔记本电脑、平板电脑、显示器、移动硬盘等设备,提升设备之间的连接稳定性和兼容性。
通过以上详细介绍,相信您对dfn8封装的e-marker芯片有了更深入的了解。
该产品以其高精度的识别能力、智能的通信功能和稳定可靠的性能,在USB Type-C和Thunderbolt接口领域具有广阔的应用前景。
如果您对该产品还有其他疑问或需求,欢迎随时与我们通联,我们将竭诚为您提供服务。
谨代表XX公司,对您的阅读表示衷心的感谢!此致敬礼尊敬的读者:在上文中,我们对dfn8封装的e-marker芯片进行了详细的介绍,包括产品概述、技术规格、主要特点和应用领域。
接下来,将进一步对该产品的性能和特点进行深入探讨,以便让您更全面地了解这款先进的芯片产品。
5. 技术优势dfn8封装的e-marker芯片具有以下几项技术优势,使其在连接线缆中起到关键作用:- 高精度识别技术:e-marker芯片采用了先进的识别算法和独特的ID 编码技术,能够精准识别连接线缆的型号、版本和性能特点。
AFUWIN
AFUWINAMIBIOS8 ROM Utility User GuideAFUWINDocument Revision 1.0.1 – Aug 28, 2009NDA REQUIREDCopyright (c) 2008 American Megatrends, Inc.All Rights Reserved.American Megatrends, Inc.5555 Oakbrook ParkwaySuite 200Norcross, GA 30093This publication contains proprietary information which is protected by copyright. No part of this publication may be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language, or transmitted in any form whatsoever without the prior written consent of the publisher, American Megatrends, Inc. American Megatrends, Inc. retains the right to update, change, modify this publication at any time, without notice. For Additional InformationCall American Megatrends BIOS Sales Department at 1-800-828-9264 for additional information.Limitations of LiabilityIn no event shall American Megatrends be held liable for any loss, expenses, or damages of any kind whatsoever, whether direct, indirect, incidental, or consequential, arising from the design or use of this product or the support materials provided with the product.Limited WarrantyNo warranties are made, either express or implied, with regard to the contents of this work, its merchantability, or fitness for a particular use. American Megatrends assumes no responsibility for errors and omissions or for the uses made of the material contained herein or reader decisions based on such use.Trademark and Copyright AcknowledgmentsAll product names used in this publication are for identification purposes only and are trademarks of their respective Companies.DisclaimerThis manual describes the operation of the AMIBIOS8 ROM Utilities. Although efforts have been made to insure the accuracy of the information contained here, American Megatrends expressly disclaims liability for any error in this information, and for damages, whether direct, indirect, special, exemplary, consequential or otherwise, that may result from such error, including but not limited to the loss of profits resulting from the use or misuse of the manual or information contained therein (even if American Megatrends has been advised of the possibility of such damages). Any questions or comments regarding this document or its contents should be addressed to American Megatrends at the address shown on the cover.American Megatrends provides this publication “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability or fitness for a specific purpose.Some states do not allow disclaimer of express or implied warranties or the limitation or exclusion of liability for indirect, special, exemplary, incidental or consequential damages in certain transactions; therefore, this statement may not apply to you. Also, you may have other rights which vary from jurisdiction to jurisdiction.This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. American Megatrends may make improvements and/or revisions in the product(s) and/or the program(s) described in this publication at any time. Requests for technical information about American Megatrends products should be made to your American Megatrends authorized reseller or marketing representative.Revision InformationOverviewAFUWIN is an updating system BIOS utility with command line and GUI interface. It has same parameters and behavior as AFUWIN, and further, GUI feature starting from v4.10can provide you a friendly environment to visualize BIOS update procedure. By the way, do not forget that target board MUST be AMIBIOS system while using this utility. FeaturesThis utility offers the following features:Small executable file sizeQuickly updateClear updating information and statusFully compatible with previous version (See Appendix B AFUWIN v3.xx Commands)RequirementsSupported Operating SystemAFUWIN Utility is supported in following operating system:Microsoft Windows 98Microsoft Windows MEMicrosoft Windows 2000Microsoft Windows NT 4.0Microsoft Windows XP/XP64Microsoft Windows PEMicrosoft Windows Vista 32/64Microsoft Windows PE 2.0 x64 (AFUWINx64.EXE)Microsoft Windows 7 32/64BIOS RequirementsSystem BIOS should have the followings:AMIBIOS CORE version 8.xx.xx.SMIFlash eModule with “8.00.00_SMIFlash-1.00.07” label or later.Token: SDSMGR_IN_RUNTIME = ON.Token: SMI_INTERFACE_FOR_SDSMGR_FUNC = ON.Operating System Driver RequirementsFollowing drivers for different operation system are required by this utility:UCOREVXD.VXD Driver for Microsoft Windows 98/MEUCORESYS.SYS Driver for Microsoft Windows NT/2000/XP/PEUCOREW64.SYS Driver for Microsoft Windows XP64 Getting Started InstallationCopies AFUWIN.EXE, AFUWINx64.EXE (for Microsoft Windows PE 2.0 x64), UCOREVXD.VXD, UCORESYS.SYS and UCOREW64.SYS to any storage location accessible by the host system and then run AFUWIN in command prompt. Remember that three files MUST be in same directory. For launching GUI mode, you can just double-click on the icon.UsageFor previous usage, see Appendix B AFUWIN v3.xx Commands to know details. AFUWIN [Option 1] [Option 2]……….OrAFUWINOrAFUWIN /MOrAFUWIN /MAIBIOS ROM File NameThe mandatory field is used to specify path/filename of the BIOS ROM filewith extension.CommandsThe mandatory field is used to select an operation mode:/O Save current ROM image to file/U Get and display ROM ID from ROM file/Ln Refer to option: /Ln/M Refer to option: /M/MAI Display current system and ROM file's MA/HOLE Update specific ROM hole by given name/HOLEOUT Save specific ROM holedata by given name/D Verification test of given ROM file withoutflashing/EC Flash EC firmware BIOS (Refer to OFBDspec)Path: $BIOS/Corebin/800/ROMUtils/On FlashBlock Description Specification.PDF.Sample Code Module Path:$BIOS/Examples/On Flash Block Description ?/NCB Flash NCB data by given name/NCBOUT Output NCB data by given name/C Destroy CMOS checksumOptionsThe optional field used to supply more information for flashing BIOS ROM.Following lists the supported optional parameters and format:?/P Program main bios image /B Program Boot Block/N Program NVRAM/C Destroy CMOS after update BIOS done/E Program Embedded Controller block if present /K Program all non-critical blocks/Kn Program n’th non-critical block only (n=0 – 7)/Q Quiet mode enable/REBOOT Reboot after update BIOS done/X Do not check ROM ID/S Display current system’s BIOS ROM ID/Ln Load CMOS default (n=0 - 1)L0: Load current CMOS optimal settingsL1: Load current CMOS failsafe settingsL2: Load CMOS optimal settings from ROMfileL3: Load CMOS failsafe settings from ROMfile/MUpdate BootBlock MAC address if exists/R Preserve all SMBIOS structures duringNVRAM programming/Rn Preserve specific SMBIOS structure duringNVRAM programming/ECUF Update EC BIOS when newer version isdetected./ShutDown Shutdown system after programming./clnevnlog Clean Event Log./DeDftCfg Delete all default settings from BIOS./-Command Name Delete certain command’s default setting.[OEM Uses Only.]/MEUF Update Intel ME ignition firmware./ME Update entire Intel ME region.(WinPE only)Note : Running AFUWIN under command prompt directly will display help message. ExamplesExamples on how to update BIOS using the command prompt are shown infollowing:Save current BIOS ROM to fileAFUWIN /OGet and display ROM ID from BIOS ROM fileAFUWIN /UUpdate main BIOS image onlyAFUWINOrAFUWIN /pUpdate Boot Block onlyAFUWIN /BUpdate NVRAM onlyAFUWIN /NUpdate Embedded Controller Block onlyAFUWIN /EUpdate Embedded Controller Block if newer version is detected AFUWIN /ECUFUpdate 2nd non-critical block onlyAFUWIN /K2Update main BIOS image, Boot Block and NVRAM at onceAFUWIN /P /B /NUpdate whole BIOS ROMAFUWIN /P /B /N /C /E /KUpdate whole BIOS ROM and load current CMOS optimal settings AFUWIN /P /B /N /C /E /K /L0 Update whole BIOS without checking ROM IDAFUWIN /P /B /N /C /E /K /XUpdate whole BIOS with quiet executionAFUWIN /P /B /N /C /E /K /QUpdate whole BIOS in quiet mode and REBOOT quietlyAFUWIN /P /B /N /C /E /K /Q /REBOOTUpdate BootBlock MAC addressAFUWIN /MUpdate whole BIOS and BootBlock MAC addressAFUWIN /P /B /N /C /E /K /M?Update whole BIOS except existing SMBIOS structuresAFUWIN /P /B /N /C /E /K /RUpdate whole BIOS but preserve SMBIOS type 0 and 11AFUWIN /P /B /N /C /E /K /R0 /R11Update dedicate ROM Hole AreaAFUWIN /Hole:NameUpdate dedicate NCB AreaAFUWIN /NCB:NameOutput dedicate ROM Hole FileAFUWIN /HOLEOUTt:NameOutput dedicate NCB FileAFUWIN /NCBOUT:NameCancel Embedded AFU default commands- Below sample cancels B & P commands if BIOS has embedded B & P commands in OFBD.AFUWIN /-B /-PNotice: if /p & /b are set as default command only and /-B /-P commands are issued then P command will still be issued because if none of command is issued then /p will still issue as AFU default.Cancel ALL Embedded AFU default commandsAFUWIN /DeDftCfgMain WindowButtonsClick this button to search for BIOS ROM file from any disk drive.Click this button to starting update BIOS.Click this button to save BIOS ROM image to disk drive.Click this button to exit this program.Function FrameInformation TabThis tab displays system BIOS information for your reference before flashingBIOS.FieldSetup TabThis tab allows you to change the settings for flashing BIOS.FieldFailsafe BIOS after flashing.Select to destroy CMOS checksum after flashing.Destroy CMOSThis is default setting in CMOS Option block.CheksumThis tab displays the updating status.FieldFunctionsTo launch into AFUWIN with GUI mode, you can double-click the executable file icon to open the operating window:Usually, system BIOS information will be displayed first, but you may see a pop-up dialog if the system does not support AMIBIOS update function. After open this program successfully, you can refer to following steps to finish the operation what you need: Saving system BIOS ROM image to file1.Press button to open file dialog box.2.Select path and input a file name.3.Click on OK button to save system BIOS ROM image into specific file.4.Press button to exit this program.Flashing system BIOS with given file1.Press button to search for BIOS ROM image file from any disk driver andload it into memory.2.Switch to Setup Tab to check and change necessary settings.3.Press button to start the operation.4.Progess Tab will be switched automatically and display the programming status.5.After BIOS updated, you can press button to exit this program or systemwill restart automatically if the Restart After Programming option enabled. Error Code ListAppendix B : AFUDOS v3.xx CommandsUsage : AFUDOS /i [/o] [/n] [/p[b][n][c][e]] [/s] [kN] [/c[N]] [/q] [/h] [/t] [/u[ROM File Name]]Following table lists the description of previous version of AFUDOS commands.。
am08模块参数
am08模块参数随着科技的发展,电子元器件的性能与功能越来越强大,而模块作为其中的重要组成部分,其参数设置对于整体性能的影响不容忽视。
本文将针对AM08模块参数进行深入探讨,以期为相关领域的从业者提供有价值的参考。
一、AM08模块简介AM08模块是一款由知名制造商开发的多功能模块,广泛应用于各种电子设备中。
该模块具有高度的集成度和稳定性,可满足多种复杂应用的需求。
了解AM08模块的参数,有助于更好地发挥其性能,提高设备的整体表现。
二、AM08模块参数详解1.工作电压与电流AM08模块的工作电压范围为9V-36V,而工作电流则根据不同型号有所差异。
在实际使用过程中,应确保模块的工作电压与电流在合理范围内,以避免对模块造成损坏。
2.输入与输出接口AM08模块支持多种类型的输入与输出接口,如I2C、SPI、UART 等。
这些接口可实现与其他模块或设备的无缝连接,提高系统的整体性能。
3.工作温度AM08模块的工作温度范围为-40℃-85℃。
在高温环境下使用时,应注意散热问题,以保证模块的正常运行。
4.尺寸与重量AM08模块的尺寸与重量根据不同型号有所差异。
在选择模块时,应充分考虑其安装空间及设备重量限制。
5.保护功能AM08模块具备过流、过压、欠压等保护功能,可在异常情况下自动切断电源,保护设备免受损坏。
三、参数配置注意事项1.正确配置电压与电流:根据设备需求选择合适的电压与电流范围,避免对AM08模块造成过载或欠载。
2.选择合适的接口类型:根据与其他模块或设备的连接需求,选择合适的输入与输出接口类型。
3.注意工作温度范围:在高或低温度环境下使用时,应确保设备散热良好,避免因过热而导致性能下降或损坏。
4.考虑尺寸与重量因素:在满足性能需求的前提下,尽量选择尺寸较小、重量较轻的模块,以便于设备的集成与搬运。
5.利用保护功能:熟悉并充分利用AM08模块的保护功能,确保设备在异常情况下能够得到及时保护。
四、总结通过对AM08模块参数的深入探讨,我们对其性能特点有了更全面的了解。
恩智浦半导体i.MX 8M Mini应用处理器数据手册说明书
恩智浦半导体数据手册:技术数据文件编号:IMXBMMCEC第0.2版,2019年4月MIMX8MM6DVTLZAAMIMX8MM4DVTLZAAMIMX8MM2DVTLZAAMIMX8MM5DVTLZAAMIMX8MM3DVTLZAAMIMX8MM1DVTLZAA适用于消费电子产品的i.MX 8M Mini应用处理器数据手册封装信息塑料封装FCBGA 14 x 14 mm,0.5 mm间距订购信息参见第6页的表21 i.MX 8M Mini简介i.MX 8M Mini应用处理器是能够带来最新视频和音频体验的恩智浦产品,具有最先进的特定媒体功能,采用高性能处理技术,同时优化了功耗。
i.MX 8M Mini系列处理器采用先进的四核Arm® Cortex®-A53内核,运行速度高达1.8 GHz。
一个通用型Cortex®-M4 400 MHz内核处理器用于低功耗处理。
DRAM控制器支持32位/16位LPDDR4、DDR4和DDR3L存储器。
可提供多种音频接口,包括I2S、AC97、TDM和S/PDIF。
提供许多其他接口用于连接外围设备,如USB、PCIe和以太网。
1. i.MX 8M Mini简介 (1)1.1. 功能框图 (5)1.2. 订购信息 (6)2. 模块列表 (8)2.1. 未使用的输入/输出的推荐连接 (12)i.MX 8M Mini简介表1. 特性i.MX 8M Mini简介表1. 特性(续)i.MX 8M Mini简介表1. 特性(续)注意实际功能集取决于产品型号(如表2所述)。
某些特定产品型号可能并未启用某些功能,如显示器和摄像头接口以及连接接口。
i.MX 8M Mini简介1.1 功能框图图1显示了i.MX 8M Mini应用处理器系统的功能模块。
图1. i.MX 8M Mini系统功能框图i.MX 8M Mini简介1.2 订购信息表2所示为本数据手册中包含的可订购样品型号的示例。
HY27US08281A资料
Rev 0.6 / Nov. 2005 1128Mbit (16Mx8bit / 8Mx16bit) NAND FlashDocument Title128Mbit (16Mx8bit / 8Mx16bit) NAND Flash Memory Revision HistoryRevision No.History Draft DateRemark0.0Initial Draft.Sep. 2004Preliminary0.11) Correct Summary description & page.7- The Cache feature is deleted in summary description.- Note.3 is deleted. (page.7)2) Correct table.5 & Table.123) Correct TSOp1, WSOP1 Pin description - 38th pin has been changed Lockpre4) Add Bad Block Management & System Interface using CE don’t care 5) Change TSOP1, WSOP1, FBGA package dimension & figures.- Change TSOP1, WSOP1, FBGA package mechanical data - Change TSOP1, WSOP1 package figures Nov. 29. 2004Preliminary0.21) LOCKPRE is changed to PRE.- Texts, Tables and figures are changed.2) Change Command Set- READ A and B are changed to READ 1.- READ C is changed to READ 2.3) Change AC, DC characterics- tRB, tCRY , tCEH and tOH are added.4) Correct Program time (max)- before : 700us - after : 500us 5) Edit figures- Address names are changed.6) Change AC charactericsMar . 03. 2005PreliminarytRPtREA Before 3035After2530Rev 0.6 / Nov. 2005 2128Mbit (16Mx8bit / 8Mx16bit) NAND FlashRevision History - Continued -Revision No.HistoryDraft Date Remark0.31) Change AC Characteristics (1.8V device)2) Change AC Parameter3) Add Read ID Table4) Edit Automatic Read at Power On & Power On/Off Timing - Texts & Figure are Changed.5) Insert the Marking Information.6) Change 128Mb Package Type.- FBGA package is deleted.- WSOP package is changed to USOP package.- Figure & dimension are changed.Jun. 13. 2005Preliminary0.41) Delete the 1.8V device’s features.2) Change AC Conditions table3) Add tWW parameter ( tWW = 100ns, min)- Texts & Figures are added.- tWW is added in AC timing characteristics table.4) Edit Copy Back Program operation step5) Edit System Interface Using CE don’t care Figures.6) Correct Address Cycle Map.Jul. 26. 20050.51) Correct PKG dimension (TSOP , USOP PKG)Sep. 02. 20050.61) Correct USOP figure.Nov. 07. 2005tRCtRP tREH tWC tWP tWH tREA Before 50251550251530After60402060402040tCRY(3.3V)tCRY(1.8V)tOH Before 50+tr(R/B#)50+tr(R/B#)15After60+tr(R/B#)60+tr(R/B#)10CPBefore 0.050After0.100Rev 0.6 / Nov. 2005 3128Mbit (16Mx8bit / 8Mx16bit) NAND FlashFEATURES SUMMARYHIGH DENSITY NAND FLASH MEMORIES- Cost effective solutions for mass storage applications NAND INTERFACE - x8 or x16 bus width.- Multiplexed Address/ Data- Pinout compatibility for all densitiesSUPPLY VOLTAGE- 3.3V device: VCC = 2.7 to 3.6V : HY27USXX281A Memory Cell Array= (512+16) Bytes x 32 Pages x 1,024 Blocks = (256+8) Words x 32 pages x 1,024 BlocksPAGE SIZE- x8 device : (512 + 16 spare) Bytes : HY27US08281A - x16 device: (256 + 8 spare) Words : HY27US16281ABLOCK SIZE- x8 device: (16K + 512 spare) Bytes - x16 device: (8K + 256 spare) Words PAGE READ / PROGRAM - Random access: 10us (max.)- Sequential access: 3.3V device: 50ns (min.) - Page program time: 200us (typ.)COPY BACK PROGRAM MODE- Fast page copy without external bufferingFAST BLOCK ERASE- Block erase time: 2ms (Typ.)STATUS REGISTER ELECTRONIC SIGNATURE - Manufacturer Code - Device CodeCHIP ENABLE DON'T CARE OPTION - Simple interface with microcontrollerAUTOMATIC PAGE 0 READ AT POWER-UP OPTION - Boot from NAND support - Automatic Memory Download SERIAL NUMBER OPTION HARDWARE DATA PROTECTION- Program/Erase locked during Power transitionsDATA INTEGRITY- 100,000 Program/Erase cycles - 10 years Data RetentionPACKAGE- HY27US(08/16)281A-T(P): 48-Pin TSOP1 (12 x 20 x 1.2 mm)- HY27US(08/16)281A-T (Lead)- HY27US(08/16)281A-TP (Lead Free) - HY27US(08/16)281A-S(P): 48-Pin USOP1 (12 x 17 x 0.65 mm)- HY27US(08/16)281A-S (Lead)- HY27US(08/16)281A-SP (Lead Free)Rev 0.6 / Nov. 2005 4128Mbit (16Mx8bit / 8Mx16bit) NAND Flash1. SUMMARY DESCRIPTIONThe HYNIX HY27US(08/16)281A series is a 16Mx8bit with spare 4G bit capacity. The device is offered in 1.8V Vcc Power Supply and in 3.3V Vcc Power Supply.Its NAND cell provides the most cost-effective solution for the solid state mass storage market.The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased.The device contains 1024 blocks, composed by 32 pages consisting in two NAND structures of 16 series connected Flash cells.A program operation allows to write the 512-byte page in typical 200us and an erase operation can be performed in typical 2ms on a 16K-byte(X8 device) block.Data in the page mode can be read out at 50ns cycle time per byte. The I/O pins serve as the ports for address and data input/output as well as command input. This interface allows a reduced pin count and easy migration towards dif-ferent densities, without any rearrangement of footprint.Commands, Data and Addresses are synchronously introduced using CE#, WE#, ALE and CLE input pin.The on-chip Program/Erase Controller automates all program and erase functions including pulse repetition, where required, and internal verification and margining of data. The modifying can be locked using the WP# input pin.The output pin RB# (open drain buffer) signals the status of the device during each operation. In a system with mul-tiple memories the RB# pins can be connected all together to provide a global status signal.Even the write-intensive systems can take advantage of the HY27US(08/16)281A extended reliability of 100K program/erase cycles by providing ECC (Error Correcting Code) with real time mapping-out algorithm.Optionally the chip could be offered with the CE# don’t care function. This option allows the direct download of the code from the NAND Flash memory device by a microcontroller , since the CE# transitions do not stop the read opera-tion.The copy back function allows the optimization of defective blocks management: when a page program operation fails the data can be directly programmed in another page inside the same array section without the time consuming serial data insertion phase.This device includes also extra features like OTP/Unique ID area, Block Lock mechanism, Automatic Read at Power Up, Read ID2 extension.The Hynix HY27US(08/16)281A series is available in 48 - TSOP1 12 x 20 mm, 48 - USOP1 12 x 17 mm.1.1 Product ListPART NUMBER ORIZATIONVCC RANGE PACKAGE HY27US08281A x8 2.7V - 3.6 Volt48TSOP1/48USOP1HY27US16281Ax16Rev 0.6 / Nov. 2005 5128Mbit (16Mx8bit / 8Mx16bit) NAND FlashIO15 - IO8Data Input / Outputs (x16 Only)IO7 - IO0Data Input / Outputs CLE Command latch enable ALE Address latch enable CE#Chip Enable RE#Read Enable WE#Write Enable WP#Write Protect RB#Ready / Busy Vcc Power Supply Vss Ground NC No ConnectionPREPower-On Read Enable, Lock UnlockTable 1: Signal NamesRev 0.6 / Nov. 2005 6128Mbit (16Mx8bit / 8Mx16bit) NAND FlashFigure 2. 48TSOP1 Contactions, x8 and x16 DeviceFigure 3. 48USOP1 Contactions, x8 and x16 DeviceRev 0.6 / Nov. 20057128Mbit (16Mx8bit / 8Mx16bit) NAND Flash1.2 PIN DESCRIPTIONPin Name DescriptionIO0-IO7IO8-IO15(1)DATA INPUTS/OUTPUTSThe IO pins allow to input command, address and data and to output data during read / program operations. The inputs are latched on the rising edge of Write Enable (WE#). The I/O buffer float to High-Z when the device is deselected or the outputs are disabled.CLECOMMAND LATCH ENABLEThis input activates the latching of the IO inputs inside the Address Register on the Rising edge of Write Enable (WE#).ALEADDRESS LATCH ENABLEThis input activates the latching of the IO inputs inside the Command Register on the Rising edge of Write Enable (WE#).CE#CHIP ENABLEThis input controls the selection of the device. When the device is busy CE# low does not deselect the memory.WE#WRITE ENABLEThis input acts as clock to latch Command, Address and Data. The IO inputs are latched on the rise edge of WE#.RE#READ ENABLEThe RE# input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid tREA after the falling edge of RE# which also increments the internal column address counter by one.WP#WRITE PROTECTThe WP# pin, when Low, provides an Hardware protection against undesired modify (program /erase) operations.RB#READY BUSYThe Ready/Busy output is an Open Drain pin that signals the state of the memory.VCC SUPPLY VOLTAGEThe VCC supplies the power for all the operations (Read, Write, Erase).VSS GROUNDNCNO CONNECTIONPRETo Enable and disable the Lock mechanism and Power On Auto Read. When PRE is a logic high,Block Lock mode and Power-On Auto-Read mode are enabled, and when PRE is a logic low, Block Lock mode and Power-On Auto-Read mode are disabled. Power-On Auto-Read mode is available only on 3.3V device.Not using LOCK MECHANISM & POWER-ON AUTO-READ, connect it Vss or leave it N.C.Table 2: Pin DescriptionNOTE:1. For x16 version only2. A 0.1uF capacitor should be connected between the Vcc Supply Voltage pin and the Vss Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.Rev 0.6 / Nov. 20058128Mbit (16Mx8bit / 8Mx16bit) NAND FlashIO0IO1IO2IO3IO4IO5IO6IO71st Cycle A0A1A2A3A4A5A6A72nd Cycle A9A10A11A12A13A14A15A163rd CycleA17A18A19A20A21A22A23L (1)Table 3: Address Cycle Map(x8)NOTE:1. L must be set to Low.2. A8 is set to LOW or High by the 00h or 01h Command.IO0IO1IO2IO3IO4IO5IO6IO7IO8-IO151st Cycle A0A1A2A3A4A5A6A7L (1)2nd Cycle A9A10A11A12A13A14A15A16L (1)3rd CycleA17A18A19A20A21A22A23L (1)L (1)NOTE:1. L must be set to Low.FUNCTION1st CYCLE 2nd CYCLE3rd CYCLE4th CYCLEAcceptable commandduring busyREAD 100h/01h --READ 250h --READ ID 90h --RESETFFh --YesPAGE PROGRAM 80h 10h -COPY BACK PGM 00h 8Ah (10h)BLOCK ERASE60h D0h -READ STATUS REGISTER 70h --YesEXTRA AREA EXIT 06h LOCK BLOCK 2Ah LOCK TIGHT2Ch UNLOCK (start area)23h UNLOCK (end area)24h READ LOCK STATUS7AhTable 5: Command SetRev 0.6 / Nov. 20059128Mbit (16Mx8bit / 8Mx16bit) NAND FlashCLE ALE CE#WE#RE#WP#MODE H L L Rising H X Read Mode Command Input L H L Rising H X Address Input(3 cycles)H L L Rising H H Write Mode Command Input L H L Rising H H Address Input(3 cycles)L L L Rising H H DataInputL L L (1)H Falling X Sequential Read and Data Output L L L H H X During Read (Busy)X X X X X H During Program(Busy)X X X X X H During Erase(Busy)X X X X X L WriteProtect XXHXX0V/VccStandByTable 6: Mode Selection NOTE:1. With the CE# don’t care option CE# high during latency time does not stop the read operationRev 0.6 / Nov. 200510128Mbit (16Mx8bit / 8Mx16bit) NAND Flash2. BUS OPERATIONThere are six standard bus operations that control the device. These are Command Input, Address Input, Data Input, Data Output, Write Protect, and Standby.Typically glitches less than 5 ns on Chip Enable, Write Enable and Read Enable are ignored by the memory and do not affect bus operations.2.1 Command Input.Command Input bus operation is used to give a command to the memory device. Command are accepted with Chip Enable low, Command Latch Enable High, Address Latch Enable low and Read Enable High and latched on the rising edge of Write Enable. Moreover for commands that starts a modifying operation (write/erase) the Write Protect pin must be high. See figure 5 and table 12 for details of the timings requirements. Command codes are always applied on IO7:0, disregarding the bus configuration (X8/X16).2.2 Address Input.Address Input bus operation allows the insertion of the memory address. Three cycles are required to input the addresses for the 128Mbit devices. Addresses are accepted with Chip Enable low, Address Latch Enable High, Com-mand Latch Enable low and Read Enable high and latched on the rising edge of Write Enable. Moreover for commands that starts a modify operation (write/erase) the Write Protect pin must be high. See figure 6 and table 10 for details of the timings requirements. Addresses are always applied on IO7:0, disregarding the bus configuration (X8/X16).In addition, addresses over the addressable space (A23 for 128Mbit) are disregarded even if the user sets them during command insertion.2.3 Data Input.Data Input bus operation allows to feed to the device the data to be programmed. The data insertion is serially and timed by the Write Enable cycles. Data are accepted only with Chip Enable low, Address Latch Enable low, Command Latch Enable low, Read Enable High, and Write Protect High and latched on the rising edge of Write Enable. See figure 7 and table 12 for details of the timings requirements.2.4 Data Output.Data Output bus operation allows to read data from the memory array and to check the status register content, the lock status and the ID data. Data can be serially shifted out toggling the Read Enable pin with Chip Enable low, Write Enable High, Address Latch Enable low, and Command Latch Enable low. See figures 8 to 12 and table 12 for details of the timings requirements.2.5 Write Protect.Hardware Write Protection is activated when the Write Protect pin is low. In this condition modify operation do not start and the content of the memory is not altered. Write Protect pin is not latched by Write Enable to ensure the pro-tection even during the power up.2.6 Standby.In Standby mode the device is deselected, outputs are disabled and Power Consumption is reduced.Rev 0.6 / Nov. 200511128Mbit (16Mx8bit / 8Mx16bit) NAND Flash3. DEVICE OPERATION3.1 Page Read.Upon initial device power up, the device defaults to Read1 mode. This operation is also initiated by writing 00h to the command register along with followed by the three address input cycles. Once the command is latched, it does not need to be written for the following page read operation.Three types of operations are available: random read, serial page read and sequential row read.The random read mode is enabled when the page address is changed. The 528 bytes (x8 device) or 264 word (x16 device) of data within the selected page are transferred to the data registers in less than access random read time tR (10us). The system controller can detect the completion of this data transfer tR (10us) by analyzing the output of RB# pin. Once the data in a page is loaded into the registers, they may be read out in 50ns cycle time by sequentially puls-ing RE#. High to low transitions of the RE# clock output the data stating from the selected column address up to the last column address.After the data of last column address is clocked out, the next page is automatically selected for sequential row read.Waiting tR again allows reading the selected page. The sequential row read operation is terminated by bringing CE# high.The way the Read1 and Read2 commands work is like a pointer set to either the main area or the spare area. Writing the Read2 command user may selectively access the spare area of bytes 512 to 527. Addresses A0 to A3 set the start-ing address of the spare area while addresses A4 to A7 are ignored. Unless the operation is aborted, the page address is automatically incremented for sequential rowRead as in Read1 operation and spare sixteen bytes of each page may be sequentially read. The Read1 command (00h/01h) is needed to move the pointer back to the main area. Figure_10 to 13 show typical sequence and timings for each read operation.Devices with automatic read of page0 at power up can be provided on request.3.2 Page Program.The device is programmed basically on a page basis, but it does allow multiple partial page programming of a byte or consecutive bytes up to 528 (x8 device), in a single page program cycle. The number of consecutive partial page pro-gramming operations within the same page without an intervening erase operation must not exceed 1 for main array and 2 for spare array. The addressing may be done in any random order in a block. A page program cycle consists of a serial data loading period in which up to 528 bytes (x8 device) or 264 word (x16 device) of data may be loaded into the page register , followed by a non-volatile programming period where the loaded data is programmed into theappropriate cell. Serial data loading can be started from 2nd half array by moving pointer . About the pointer operation, please refer to Figure_27.The data-loading sequence begins by inputting the Serial Data Input command (80h), followed by the three address input cycles and then serial data loading. The Page Program confirm command (10h) starts the programming process. Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal Program Erase Controller automatically executes the algorithms and timings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the Read Status Register command may be entered, with RE# and CE# low, to read the status register . The system controller can detect the completion of a program cycle by monitoring the RB# output, or the Status bit (I/O 6) of the Status Register . Only the Read Status command and Reset command are valid while programming is in progress. When the Page Program is complete, the Write Status Bit (I/O 0) may be checked Figure_14.The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command reg-ister remains in Read Status command mode until another valid command is written to the command register .Rev 0.6 / Nov. 200512128Mbit (16Mx8bit / 8Mx16bit) NAND Flash3.3 Block Erase.The Erase operation is done on a block (16K Byte) basis. It consists of an Erase Setup command (60h), a Block address loading and an Erase Confirm Command (D0h). The Erase Confirm command (D0h) following the block address loading initiates the internal erasing process. This two-step sequence of setup followed by execution com-mand ensures that memory contents are not accidentally erased due to external noise conditions.The block address loading is accomplished in two to three cycles depending on the device density. Only block addresses (A14 to A23) are needed while A9 to A13 is ignored.At the rising edge of WE# after the erase confirm command input, the internal Program Erase Controller handles erase and erase-verify. When the erase operation is completed, the Write Status Bit (I/O 0) may be checked. Figure_16 details the sequence.3.4 Copy-Back Program.The copy-back program is provided to quickly and efficiently rewrite data stored in one page within the plane to another page within the same plane without using an external memory. Since the time-consuming sequential-reading and its reloading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned free block. The operation for performing a copy-back program is a sequential execution of page-read without burst-reading cycle and copying-program with the address of destination page. A normal read operation with "00h" command and the address of the source page moves the whole 528byte data into the internal buffer . As soon as the device returns to Ready state, Page-Copy Data-input command (8Ah) with the address cycles of destination page followed may be written. The Program Confirm command (10h) is not needed to actually begin the programming operation. For backward-compati-bility, issuing Program Confirm command during copy-back does not affect correct device operation.Copy-Back Program operation is allowed only within the same memory plane. Once the Copy-Back Program is finished, any additional partial page programming into the copied pages is prohibited before erase. Plane address must be the same between source and target page"When there is a program-failure at Copy-Back operation, error is reported by pass/fail status. But, if Copy-Back operations are accumulated over time, bit error due to charge loss is not checked by external error detection/correction scheme. For this reason, two bit error correction is recommended for the use of Copy-Back operation."Figure 15 shows the command sequence for the copy-back operation.The Copy Back Program operation requires three steps:- 1. The source page must be read using the Read A command (one bus write cycle to setup the command and then 3 bus cycles to input the cource page address.) This operation copies all 264 Words/ 528 Bytes from the page into the page Buffer .- 2. When the device reutrns to the ready state (Ready/Busy High), the second bus write cycle of the command is given with the 3cycles to input the target page address. A23 must be the same for the Source and Target Pages.- 3. Then the confirm command is issued to start the P/E/R Controller .Rev 0.6 / Nov. 200513128Mbit (16Mx8bit / 8Mx16bit) NAND Flash3.5 Read Status Register.The device contains a Status Register which may be read to find out whether read, program or erase operation is com-pleted, and whether the program or erase operation is completed successfully. After writing 70h command to the com-mand register , a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of CE# or RE#, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when RB# pins are common-wired. RE# or CE# does not need to be toggled for updated status. Refer to table 13 for specific Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read cycle, a read command (00h or 50h) should be given before sequential page read cycle.3.6 Read ID.The device contains a product identification mode, initiated by writing 90h to the command register , followed by an address input of 00h. Two read cycles sequentially output the manufacturer code (ADh), the device code. The com-mand register remains in Read ID mode until further commands are issued to it. Figure 17 shows the operation sequence, while tables 17 explain the byte meaning.3.7 Reset.The device offers a reset feature, executed by writing FFh to the command register . When the device is in Busy state during random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value E0h when WP# is high. Refer to table 12 for device status after reset operation. If the device is already in reset state a new reset command will not be accepted by the command register . The RB# pin transitions to low for tRST after the Reset command is written. Refer to figure 23.Rev 0.6 / Nov. 200514128Mbit (16Mx8bit / 8Mx16bit) NAND Flash4. OTHER FEATURES4.1 Data Protection & Power On/Off SequenceThe device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 2.0V (3.3V device). WP# pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down. A recovery time of minimum 10us is required before internal circuit gets ready for any command sequences as shown in Figure 24. The two-step com-mand sequence for program/erase provides additional software protection.4.2 Ready/Busy.The device has a Ready/Busy output that provides method of indicating the completion of a page program, erase, copy-back, cache program and random read completion. The RB# pin is normally high and goes to low when the device is busy (after a reset, read, program, erase operation). It returns to high when the internal controller has fin-ished the operation. The pin is an open-drain driver thereby allowing two or more RB# outputs to be Or-tied. Because pull-up resistor value is related to tr(RB#) and current drain during busy (Ibusy), an appropriate value can be obtained with the following reference chart (Fig 25). Its value can be determined by the following guidance.4.3 Lock Block FeatureIn high state of PRE pin, Block lock mode and Power on Auto read are enabled, otherwise it is regarded as NAND Flash without PRE pin.Block Lock mode is enabled while PRE pin state is high, which is to offer protection features for NAND Flash data. The Block Lock mode is divided into Unlock, Lock, Lock-tight operation. Consecutive blocks protects data allows those blocks to be locked or lock-tighten with no latency. This block lock scheme offers two levels of protection. The first allows software control (command input method) of block locking that is useful for frequently changed data blocks, while the second requires hardware control (WP# low pulse input method) before locking can be changed that is use-ful for protecting infrequently changed code blocks. The followings summarized the locking functionality. - All blocks are in a locked state on power-up. Unlock sequence can unlock the locked blocks.- The Lock-tight command locks blocks and prevents from being unlocked. Lock-tight state can be returned to lock state only by Hardware control(WP low pulse input).1. Block lock operation 1) Lock- Command Sequence: Lock block Command (2Ah). See Fig. 18.- All blocks default to locked by power-up and Hardware control (WP# low pulse input) - Partial block lock is not available; Lock block operation is based on all block unit- Unlocked blocks can be locked by using the Lock block command, and a lock block’s status can be changed to unlock or lock-tight using the appropriate commands- On the program or erase operation in Locked or Lock-tighten block, Busy state holds 1~10us(tLBSY)Rev 0.6 / Nov. 200515128Mbit (16Mx8bit / 8Mx16bit) NAND Flash2) Unlock- Command Sequence: Unlock block Command (23h) + Start block address + Command (24h) + End block address. See Fig. 19.- Unlocked blocks can be programmed or erased.- An unlocked block’s status can be changed to the locked or lock-tighten state using the appropriate sequence of commands.- Only one consecutive area can be released to unlock state from lock state; Unlocking multi area is not available. - Start block address must be nearer to the logical LSB (Least Significant Bit) than End block address. - One block is selected for unlocking block when Start block address is same as End block address.3) Lock-tight- Command Sequence: Lock-tight block Command (2Ch). See Fig. 20.- Lock-tighten blocks offer the user an additional level of write protection beyond that of a regular lock block. A block that is lock-tighten can’t have its state changed by software control, only by hardware control (WP# low pulse input); Unlocking multi area is not available- Only locked blocks can be lock-tighten by lock-tight command.- On the program or erase operation in Locked or Lock-tighten block, Busy state holds 1~10us(tLBSY)4) Lock Block Boundaries after Unlock Command issuing- If Start Block address = 0000h and End Block Address = FFFFh , the device is all unlocked- If Start Block address = End Block Address = FFFFh , the device is all locked except for the last Block - If Start Block address = End Block Address = 0000h , the device is all locked except for the first Block2. Block lock Status ReadBlock Lock Status can be read on a block basis to find out whether designated block is available to be programmed or erased. After writing 7Ah command to the command register and block address to be checked, a read cycle outputs the content of the Block Lock Status Register to the I/O pins on the falling edge of CE# or RE#, whichever occurs last. RE# or CE# does not need to be toggled for updated status. Block Lock Status Read is prohibited while the device is busy state.Refer to table 16 for specific Status Register definitions. The command register remains in Block Lock Status Read mode until further commands are issued to it.In high state of PRE pin, write protection status can be checked by Block Lock Status Read (7Ah) while in low state by Status Read (70h).4.4 Power-On Auto-ReadThe device is designed to offer automatic reading of the first page without command and address input sequence dur-ing power-on.An internal voltage detector enables auto-page read functions when Vcc reaches about 1.8V . PRE pin controls activa-tion of auto- page read function. Auto-page read function is enabled only when PRE pin is logic high state. Serial access may be done after power-on without latency. Power-On Auto Read mode is available only on 3.3V device.。
AM804电子调音台使用手册
AM804࢟ᔇࢯፒგUser Manual Ver 1.0.0AM804 电子调音台目 录综合介绍功能特性 1特性参数 2工业标准 3 产品说明结构与联接 4注意事项 6技术支持 6 通讯协议协议结构7控制指令8指令详解16例子24 凯图技术文档 目录 ⅠAM804 电子调音台页码 1 凯图技术文档AM804 电子调音台凯图技术文档 页码 2AM804 电子调音台综合介绍: 工业标准AM804 电子调音台,就其整体设计,包括线路板,电子元件等,并经过耐久性,高温环境,震荡,过载等多项实验室严格测试,完全符合CE和3C工业电子设备要求,AM804 电子调音台也符合工业电路安装安全规范。
页码 3 凯图技术文档AM804 电子调音台凯图技术文档 页码 4AM804 电子调音台页码 5 凯图技术文档AM804 电子调音台凯图技术文档 页码 6AM804 电子调音台页码 7 凯图技术文档AM804 电子调音台凯图技术文档 页码 8AM804 电子调音台页码 9 凯图技术文档AM804 电子调音台凯图技术文档 页码 10AM804 电子调音台页码 11 凯图技术文档AM804 电子调音台凯图技术文档 页码 12AM804 电子调音台页码 13 凯图技术文档AM804 电子调音台凯图技术文档 页码 14AM804 电子调音台页码 15 凯图技术文档AM804 电子调音台凯图技术文档 页码 16AM804 电子调音台页码 17 凯图技术文档AM804 电子调音台页码 18 凯图技术文档AM804 电子调音台页码 19 凯图技术文档AM804 电子调音台页码 20 凯图技术文档AM804 电子调音台页码 21 凯图技术文档AM804 电子调音台页码 22 凯图技术文档AM804 电子调音台页码 23 凯图技术文档AM804 电子调音台页码 24 凯图技术文档AM804 电子调音台页码 25 凯图技术文档AM804 电子调音台页码 26 凯图技术文档这份文档是由广州凯图电子科技有限公司技术部编写并行使拥有权和最终解析权All brand names, product names and trademarks are the property of their respective owners.○C2005 EastCato Electronic,Inc.。
精益知识竞赛题库整理
健威人性家具精益生产知识竞赛参考题库——李涛一,选择题1、5S运动是一项什么样的工作?A、暂时性B、流行的C、持久性D、时尚的2、5S活动是谁的责任?A、总经理B、推行小组C、中层干部们D、公司全体3、整理最主要是针对什么不被浪费?A、时间B、空间C、工具D、包装物4、公司需要整顿的地方是什么?A、工作现场B、办公室C、全公司的每个地方D、仓库5、我们对5S的态度是什么?A、口里应付,做做形式B、积极参与行动C、事不关已D、看别人如何行动再说6、公司的5S应如何做?A、随时随地都得做,靠大家持续做下去B、第一次靠有计划地大家做,以后靠干部做C、做三个月就可以了D、车间来做就行了7、5S中哪个最重要,即理想的目标是什么?A、人人有素养B、地、物干净C、工厂有制度D、产量高8、整理是根据物品的什么来决定取舍?( )A、购买价值;B、使用价值;C、是否占空间;D、是否能卖好价钱。
9、公司5S活动开展谁来完成 ( )A、5S推行委员会;B、部门主管;C、公司全体员工D、清洁工10、整顿中的“3定”是指:( )A、定点、定方法、定标示;B、定点、定品、定量;C、定容、定方法、定量D、定点、定人、定方法。
11、请问区分工作场所内的物品为“要的”和“不要的”是属于5S中的哪一项范围?A:清洁 B:整顿 C:整理 D:节约12、物品乱摆放属于5S中的哪一项要处理的范围?A:清洁 B:整顿 C:整理 D:安全13.为每一个零部件或工具规划固定的放置地点,属于5S中哪项()。
A.整理B.整顿C.清扫D.清洁14.下面不属于八大浪费的是()。
A.等待浪费B.动作浪费C.时间浪费D.加工浪费15.长距离搬运在制品,缺乏效率的运输,进出仓库或在流程之间搬运原材料、零部件或最终产品,此种浪费称为()。
A.不必要的运输B.搬运浪费C.运输浪费D.等待浪费16.以下那一项不是小批量的好处()。
A.在制品库存量低B.每种产品的生产频数低C.维持库存费低D.检查和返工的成本低17 .JIT系统以何为出发点?()A.准时生产B.适量生产C.大量生产D.质量第一18.JIT是按照什么方式组织生产的?()A.推动式B.拉动式C.移动式D.流动式19.实现生产过程同步化的基础是什么?()A.大量生产B.批量生产C.安全生产D.均衡生产20.实现JIT生产的重要工具是()。
卫星列表
Western HemisphereLocation Satellite SatellitebusSourceOperator TypeCoverageLaunchdate/rocket(GMT)AlllocationsRemarksAs of148.0°W EchoStar-1LockheedMartinAS-7000USEchostar/DISHNetworkDirectBroadcasting28December1995, LongMarch 2E119°W(1996-1999),148.0°W(1999—)Scheduled to moveto 77°Wsoon2009-02-06139.0°W Americom-8LockheedMartinA2100AUSSES Americom& AT&TAlascomTelevisionand radiobroadcasting24 Cband(Canada,Caribbean,mainlandUSA)19December2000,Ariane 5GPreviouslyGE-8 forGEAmericom; alsoknown asAurora III;replacedSatcomC-5 inMarch20012008-11-20137.0°W Americom-7LockheedMartinUS SES AmericomTelevisionand radioMainlandUSA,14SeptemberPreviouslyGE-7 for2008-11-20A2100A broadcasting Canada,Mexico2000,Ariane 5GGEAmericom135.0°W Americom-10LockheedMartinA2100AUS SES AmericomTelevisionand RadioBroadcastingMainlandUSA,Canada,Caribbean, Mexico5 February2004, AtlasII AS2008-11-20133.0°W Galaxy-12 OrbitalSciencesCorporationStar-2US IntelsatTelevision/RadioBroadcasting9 April2003,Ariane 5G123.0°WreplacedfailedGalaxy 15131.0°W Americom-11LockheedMartinA2100AUS SES AmericomTelevisionand RadioBroadcasting24C-BandTranspondersMainlandUSA,Canada,Caribbean, Mexico19 May2005, AtlasII AS2008-11-20129.0°W Galaxy-27SpaceSystems/Loral FS-1300US IntelsatTelevisionbroadcasting & SatelliteInternetAccess25September1999,Ariane 44LPFormerlyknown asIA-7 andTelstar-72008-11-20Ciel-2ThalesAlenia SpaceSpacebus4000 C4CanadaCiel SatelliteGroupDirectBroadcasting10December2008,Proton-MLeased toEchostar/DishNetwork2009-02-06127.0°W Galaxy-13BoeingBSS-601US Intelsat24C-Bandtransponders1 October2003,Zenit-3SLSamesatelliteasHorizons-12008-11-20Horizons-1BoeingBSS-601USJapan SatelliteSystems24Ku-Bandtransponders1 October2003,Zenit-3SLSamesatelliteasGalaxy-132008-11-20125.0°W Galaxy-14 OrbitalSciencesCorporationStar-2US Intelsat24C-Bandtransponders -NorthAmerica13 August2005,Soyuz-FG/Fregat2008-11-20123.0°W Galaxy-18 SpaceSystems/Loral LS-1300US IntelsatTelevisionand radiobroadcastingNorthAmerica21 May2008,Zenit-3SLHybridC/Ku-band satellite2008-11-19121.0°W Galaxy-23SpaceSystems/LorUS IntelsatDirectBroadcastinNorthAmerica7 August2003,HybridC/Ku/Ka-b2008-11-26al FS-1300 g Zenit-3SL andsatellite;C-bandpayloadreferred toasGalaxy-23EchoStar-9 SpaceSystems/Loral FS-1300USEchostar/DISHNetworkDirectBroadcastingNorthAmerica7 August2003,Zenit-3SLHybridC/Ku/Ka-bandsatellite;Ku/Ka-bandpayloadreferred toasEchoStar-92008-11-26119.0°W DirecTV-7SSpaceSystems/Loral LS-1300US DirecTVDirectBroadcasting54Ku-bandtransponders4 May 2004,Zenit-3SL8 activetransponders at thistime2008-11-26EchoStar-7LockheedMartinA2100AXUSEchostar/DISHNetworkDirectBroadcasting32Ku-bandtranspond21 February2002, AtlasIII B21 activetransponders at this2008-11-26ers time118.8°W Anik F3EADSAstriumEurostar-3000SCanada Telesat CanadaDirectBroadcasting24C-bandtransponders, 32Ku-bandtransponders, 2Ka-bandtransponders11 April2007,ProtonKu-Bandleased toEchostar/DishNetwork2008-11-26116.8°W SatMex-5HughesHS-601HPMexico Satmex24C-bandtransponders, 24Ku-bandtransponders5 December1998,Ariane 42L2008-11-26115.0°W XM-Blues US30 October2006,Zenit-3SL Solidaridad-2Mexico Satmex8 October1994,Ariane 44L113.0°W Satmex-6Mexico Satmex27 May2006, Ariane 5-ECA111.1°W Anik F2Boeing 702 Canada Telesat Canada DirectBroadcasting17 July2004,Ariane 5GHybridC/Ku/Ka-bandsatellite110.0°W EchoStar-11SpaceSystems/Loral LS-1300USEchostar/DISHNetworkDirectBroadcasting17 July2008,Zenit-3SL2008-11-19EchoStar-10A2100AXS USEchostar/DISHNetworkDirectBroadcasting15 February2006,Zenit-3SLDirecTV-5LS-1300US DirecTVDirectBroadcasting7 May 2002,Proton32Ku-bandtransponders107.3°W Anik F1Boeing 702 Canada Telesat CanadaDirectBroadcasting21November2000,Ariane 44LHybridC/Ku-band satellite;will bereplacedby AnikF1RAnik F1R Eurostar-300Canada Telesat Canada Direct 8 Hybrid0Broadcasting, WAASPRN #138 September2005,ProtonC/Ku-band satellite;willreplaceAnik F1105.0°W AMC-18A2100A US SES AmericomDirectBroadcastingMainlandUSA,Canada,Caribbean, Mexico8 December2006,Ariane 5Americom-15A2100AXS US SES AmericomDirectBroadcastingCONUS,Alaska,Hawaii15 October2004,Proton-MHybridKu/Ka-bandsatellite;twin ofAmericom-16103.0°W Americom-1A2100A US SES AmericomMainlandUSA,Canada,Mexico,Caribbean8September1996, AtlasII AHybridC/Ku-band satellite102.8°W SPACEWAY-1Boeing 702 US DirecTVDirectBroadcastin26 April2005,g Zenit-3SL101.2°W DirecTV-4SBoeing 601 US DirecTVDirectBroadcasting27November2001,Ariane 44LP48Ku-bandtransponders101.1°W DirecTV-9SLS-1300US DirecTVDirectBroadcasting13 October2006,Ariane5-ECA101.0°W AMC-4A2100AX US SES Americom MainlandUSA,Canada,Mexico,Caribbean, CentralAmerica13November1999,Ariane 44LPHybridC/Ku-band satellite100.8°W DirecTV-8LS-1300US DirecTV DirectBroadcasting22 May2005,ProtonHybridKu/Ka-bandsatellite99.2°W SPACEWAY-2US16November 2005,Ariane5-ECA99.0°W Galaxy-16FS-1300Intelsat 18 June 2006, Zenit-3SL97.0°W Galaxy-19SpaceSystems/Loral FS-1300US IntelsatTelevisionand RadioBroadcasting24 C- and28Ku-bandtransponders NorthAmerica24September2008,Zenit-3SL2008-11-2095.0°W Galaxy 3C US 15 June 2002, Zenit-3SL93.0°W Galaxy-26SSLFS-1300US15 February1999,Proton-K91.0°W Nimiq 1A2100AX Canada Telesat CanadaDirectBroadcasting20 May1999,Proton32Ku-bandtranspondersGalaxy 17Spacebus-3000B3US IntelsatTelevisionand radiobroadcastingNorthAmerica4 May 2007,Ariane5-ECA74°WJuly 2007to March2008HybridC/Ku-band satellite2008-06-1389.0°W Galaxy-28FS-1300ITSO Intelsat TheAmericas23 June2005,HybridC/Ku/Ka-bZenit-3SL andsatellite;launchedasTelstar 887.0°W AMC 3A2100A US SES Americom MainlandUSA,Canada,Mexico,Caribbean4September1997, AtlasII AHybridC/Ku-band satellite85.0°W XM-RhythmBoeing 702 USXM SatellieRadio HoldingsRadioBroadcastingCONUS28 February2005,Zenit-3SLAmericom-2A2100A US SES AmericomDirectBroadcastingMainlandUSA,Canada,Mexico30 January1997,Ariane 44LAmericom-16A2100AXS US SES AmericomDirectBroadcastingCONUS,Alaska,Hawaii17December2004, AtlasV (521)HybridKu/Ka-bandsatellite;twin ofAmericom-1584.0°W Brasilsat-B3Brazil4 February1998,Ariane 44LP83.0°W Americom-93000B3US SES AmericomDirectBroadcastingCONUS,Canada,Mexico,CentralAmerica,Caribbean7 June2003,ProtonHybridC/Ku-band satellite82.0°W Nimiq 2A2100AX Canada Telesat CanadaDirectBroadcasting29December2002,ProtonHybridKu/Ka-bandsatellite Nimiq 3HS-601Telesat CanadaDirectBroadcasting9 June1995,Ariane 42PPreviouslyDirecTV-3forDirecTV80.9°W SBS-6HS-393 US Intelsat Televisionand RadioBroadcasting12 October1990,Ariane 44L74°WNov 1995to Jan2008Beyondexpectedend of life.ServesArgentinanow2008-06-1379.0°W Americom Spacebus-20US SES Americom CONUS, 28 October-500 Canada,Mexico 1998, Ariane 44LSatcom C3US10September1992,Ariane 44LPInclinedorbit77.0°W EchoStar-4A2100AX USEchostar/DISHNetworkDirectBroadcasting8 May 1998,ProtonspareEchoStar-8FS-1300USEchostar/DISHNetworkDirectBroadcasting21 August2002,Proton110°W2008-11-1976.8°W Galaxy 4R US 19 April2000,Ariane 42LInclinedorbit75.0°W Brasilsat-B1Brazil10 August1994,Ariane 44LP74.9°W Galaxy-9US 24 May1996, DeltaII (7925)spare74.0°W Horizons-2STAR Bus US Intelsat JSATTelevisionand RadioBroadcastingCONUSCanadaCaribbean21December2007,Ariane 5GS20 KuXpndrs2008-06-1372.7°W EchoStar-6FS-1300USEchostar/DISHNetworkDirectBroadcasting14 July2000, AtlasII AS2008-11-1972.5°W Directv-1R US 10 October 1999, Zenit-3SL72.0°W AMC-6A2100AX US SES Americom CONUS,Canada,Mexico,Caribbean, CentralAmerica22 October2000,Proton-MHybridC/Ku-band satellite;a portionof theKu-bandpayload isdedicatedto SouthAmerica71.0°W Nahuel-1A Argentina30 January1997,Ariane 44L70.0°W Brasilsat-B4Brazil17 August2000,Ariane 44LP65.0°W Brasilsat-B2Brazil28 March1995,Ariane44LP+63.0°W Estrela doSul 1Brazil11 January2004,Zenit-3SL61.5°W EchoStar-12A2100AXS US17 July2003, AtlasV (521)FormerlyRainbow-1,purchased fromVOOM EchoStar-3A2100AX USEchostar/DISHNetworkDirectBroadcasting5 October1997, AtlasII AS61.0ºW HispasatAmazonasSpain4 August2004,Proton-M58.0°W Intelsat-9HS601HP US 28 July2000,Zenit-3SLformerlyPAS-955.5°W Intelsat-805ITSO18 June1998, AtlasII AS53.0°W Intelsat-707ITSO14 March1996,Ariane 450.0°W Intelsat-705ITSO22 March1995, AtlasII AS45.0°W Intelsat-1RHS702 US16November2000,Ariane 5GformerlyPAS-1R43.1°W Intelsat-3RHS601 US12 January1996,Ariane 44LformerlyPAS-3R43.0°W Intelsat-6BHS601HP22December1998,Ariane 42LformerlyPAS-6B40.5°W NSS-806LM AS-7000 Netherlands28 February1998, AtlasII AS37.5°W NSS-10Spacebus4000C33 February2005,ProtonTelstar-11USInclinedorbit34.5°W Intelsat-903ITSO30 March2002,Proton-K31.5°W Intelsat-801ITSO1 March1997,Ariane 44P30.0°W Hispasat-1CSpain3 February2000, AtlasII ASHispasat-1DSpain18September2002, AtlasII AS27.5°W Intelsat-907ITSO15 February2003,Ariane 44L24.5°W Intelsat-905ITSO5 June2002,Ariane 44L24.0°W Cosmos2379RussiaInclinedorbit22.0°W NSS-7LM A2100AX Netherlands16 April2002,Ariane 44L20.0°W Intelsat-603ITSO14 March1990,CommercialTitan IIIInclinedorbit18.0°W Intelsat-901ITSO9 June2001,Ariane 44L15.5°W Inmarsat 3F2IMSOEGNOSPRN #1206September1996,Proton-K15.0°W Telstar 12SSL US 19 October 1999, Ariane 44LP14.0°W Gorizont32RussiaInclinedorbit Express-A4Russia12.5°W AtlanticBird 1EUMETSAT28 August2002,Ariane 5G11.0°W Express-A3Russia24 June2000,Proton-K8.0°W AtlanticBird 2Eutelsat25September2001,Ariane 44PTelecom 2D France8 August1996,Ariane 44LInclinedorbit7.0°W Nilesat101Egypt28 April1998,Ariane 44P Nilesat102Egypt17 August2000,Ariane 44LP Nilesat103Egypt27 February1998,Ariane 42P AtlanticBird 4Eutelsat27 February1998,Ariane 42P5.0°W AtlanticBird 3Eutelsat4.0°W AMOS 1Israel16 May1996,Ariane 44L AMOS 2Israel27December2003,Soyuz-FG/Fregat3.4°W Meteosat828 August2002,Ariane 5G1.0°W Intelsat10-02ITSO16 June2004,Proton-M0.8°W Thor 2Norway20 May1997, DeltaIIThor 3Norway10 June1998, DeltaII (7925-9.5)[edit] Eastern HemisphereLocation Satellite SatellitebusSource Operator TypeCoverageLaunchdate/rocket(GMT)AlllocationsRemarks As of0.5°E Meteosat7ESAWeathersatellite2September1997,Ariane 44LPInclinedorbit3.0°E Telecom2A16December1991,Ariane 44L4.0°E Eurobird 4Eutelsat 2 September 1997, Ariane 44LP4.8°E Sirius 4A2100AX Sweden SES Sirius Comsat52Ku-bandcoveringEurope2Ka-bandcoveringScandinavia17November2007,Proton M2007-11-18 Astra 1CLuxembourg12 May1993,Ariane 42L0.9°inclinedorbit5.0°E Sirius 3Sweden 5 October 1998, Ariane 44L5.2°E Astra 1A GE 4000 11 December 1988, Ariane 44LP6.0°E Skynet 4F Militarycommunica7 February2001,Inclinedorbittions Ariane 44L7.0°E EutelsatW3AEutelsat15 March2004,Proton-M9.0°E Eurobird 9Eutelsat 21November1996, AtlasII AformerlyHot Bird 29.5°E Meteosat6ESAWeathersatellite20November1993,Ariane 44LPInclinedorbit10.0°E EutelsatW1Eutelsat6September2000,Ariane 44P12.5°E Raduga29RussiaInclinedorbit13.0°E Hot Bird 6Eutelsat21 August2002, AtlasV (401)Hot Bird7AEutelsat11 March2006,Ariane5-ECAHot Bird 8Eutelsat 4 August 2006, Proton16.0°E EutelsatW2Eutelsat5 October1998,Ariane 44L19.2°E Astra 1ELuxembourg19 October1995,Ariane 42L Astra 1FLuxembourg8 April1996,Proton-K Astra 1GLuxembourg12November1997,Proton-K Astra 1HLuxembourg18 June1999,Proton-K Astra 1KRLuxembourg20 April2006, AtlasV (411) Astra 1LLuxembourg4 May 2007,Ariane5-ECA20.0°E Arabsat2A9 July 1996,Ariane 44LInclinedorbit21.0°E AfriStar US 28 October 1998, Ariane 44L21.5°E EutelsatW6Artemis ESAEGNOSPRN #12412 July2001,Ariane 5GInclinedorbit.23.5°E Astra 3A Luxembourg29 March2002,Ariane 44L25.0°E Inmarsat 3F5IMSOEGNOSPRN #1264 February1998,Ariane 44LP25.5ºE Eurobird 2Eutelsat25.8°E Badr 226.0°E Badr 326.2°E Badr C28.2°E Astra 2A HS601HPLuxembourgAstra 2BLuxembourg14September2000, Ariane 5GAstra 2C Luxembourg16 June2001,Proton-KAstra 2D Luxembourg20December2000,Ariane 5G28.5°E Eurobird 1Spacebus3000Eutelsat8 March2001,Ariane 5G30.5°E Arabsat2BArabsat13November1996,Ariane 44L31.3°E Astra 1D HS-601LuxembourgSES Astra Comsat24Ku-band1 November1994,Ariane 419.2°E(1994–1998)28.2°E(1998)19.2°E(1998–1999)28.2°E2007-11-14(1999–2001)24.2°E(2001–2003)23.0°E(2003–2004)23.5°E(2004–2007)30.0°E(2007—) 31.5°E Sirius 2Sweden33.0°E Eurobird 3Eutelsat27September2003,Ariane 5G Intelsat802LM-3000 ITSO25 June1997,Ariane 44P36.0°E EutelsatSesat 1Eutelsat17 April2000,Proton-K Eutelsat Eutelsat24 May。
HY27UA081G1M资料
This document is a general product description and is subject to change without notice. Hynix does not assume any responsibility for use of circuits described. No patent licenses are implied.Rev 0.5 / Oct. 2004 11Gbit (128Mx8bit / 64Mx16bit) NAND FlashDocument Title1Gbit (128Mx8bit / 64Mx16bit) NAND Flash Memory Revision HistoryNo.History Draft DateRemark0.01) Initial DraftNov. 28. 2003Preliminary 0.11) Add 1.8V Operation Product to Data sheetMar . 11. 2004Preliminary0.21) Change AC Characteristics- tWP(25ns->40ns), tWC(50ns->60ns), - tRP(30ns->40ns), tRC(50ns->60ns), - tREADID(35ns->45ns)Apr . 29. 2004Preliminary0.31) Add Errata (3V Product)2) Add Applicaiton NoteReset command must be issued when the controller writes data to another 512Mb.(i.e. When A26 is changed during program.)3) Modify the description of Device Operations- /CE Don’t Care Enabled(Disabled) -> Sequential Row Read Disabled (Enabled) (Page22)4) Add the description of System Interface Using /CE don’t care (Page37)May. 14. 2004Preliminary0.41) Delete Errata2) Change Characteristics3) Delete Cache ProgramJun. 01. 2004Preliminary0.51) Change TSOP1, WSOP1, FBGA package dimension 2) Edit TSOP1, WSOP1 package figures 3) Change FBGA package figureOct. 20. 2004tWHtREH Specification 1515Relaxed value2020tCRYtREA@ID ReadBefore 60 + tr 35After70 + tr45This document is a general product description and is subject to change without notice. Hynix does not assume any responsibility for use of circuits described. No patent licenses are implied.Rev 0.5 / Oct. 2004 21Gbit (128Mx8bit / 64Mx16bit) NAND FlashFEATURES SUMMARYHIGH DENSITY NAND FLASH MEMORIES - Cost effective solutions for mass storage applications NAND INTERFACE - x8 or x16 bus width.- Multiplexed Address/ Data- Pinout compatibility for all densitiesSUPPLY VOLTAGE- 3.3V device: VCC = 2.7 to 3.6V : HY27UAXX1G1M - 1.8V device: VCC = 1.7 to 1.95V : HY27SAXX1G1M1.8V Operation Product : TBDMemory Cell Array- 1056Mbit = 528 Bytes x 32 Pages x 8,192 BlocksPAGE SIZE- x8 device: (512 + 16 spare) Bytes : HY27(U/S)A081G1M - x16 device: (256 + 8 spare) Words : HY27(U/S)A161G1MBLOCK SIZE- x8 device: (16K + 512 spare) Bytes : HY27(U/S)A081G1M - x16 device: (8K + 256 spare) Words : HY27(U/S)A161G1MPAGE READ / PROGRAM - Random access: 12us (max) - Sequential access: 50ns (min) - Page program time: 200us (typ)COPY BACK PROGRAM MODE- Fast page copy without external bufferingFAST BLOCK ERASE- Block erase time: 2ms (Typ)STATUS REGISTER ELECTRONIC SIGNATURESequential Row Read OptionAUTOMATIC PAGE 0 READ AT POWER-UP OPTION- Boot from NAND support- Automatic Memory DownloadSERIAL NUMBER OPTIONHARDWARE DATA PROTECTION- Program/Erase locked during Power transitionsDATA INTEGRITY- 100,000 Program/Erase cycles - 10 years Data RetentionPACKAGE- HY27(U/S)A(08/16)1G1M-T(P): 48-Pin TSOP1 (12 x 20 x 1.2 mm)- HY27(U/S)A(08/16)1G1M-T (Lead)- HY27(U/S)A(08/16)1G1M-TP (Lead Free) - HY27(U/S)A08121A-V(P): 48-Pin WSOP1 (12 x 17 x 0.7 mm)- HY27(U/S)A081G1M-V (Lead)- HY27(U/S)A081G1M-VP (Lead Free) - HY27(U/S)A(08/16)121M-F(P): 63-Ball FBGA (8.5 x 15 x 1.2 mm)- HY27(U/S)A(08/16)1G1M-F (Lead)- HY27(U/S)A(08/16)1G1M-FP (Lead Free)Rev 0.5 / Oct. 2004 31Gbit (128Mx8bit / 64Mx16bit) NAND FlashDESCRIPTIONThe HYNIX HY27(U/S)A(08/16)1G1M series is a family of non-volatile Flash memories that use NAND cell technology. The devices operate 3.3V and 1.8V voltage supply. The size of a Page is either 528 Bytes (512 + 16 spare) or 264 Words (256 + 8 spare) depending on whether the device has a x8 or x16 bus width.The address lines are multiplexed with the Data Input/ Output signals on a multiplexed x8 or x16 Input/ Output bus. This interface reduces the pin count and makes it possible to migrate to other densities without changing the footprint.Each block can be programmed and erased over 100,000 cycles. To extend the lifetime of NAND Flash devices it is strongly recommended to implement an Error Correction Code (ECC). A Write Protect pin is available to give a hard-ware protection against program and erase operations.The devices feature an open-drain Ready/Busy output that can be used to identify if the Program/ Erase/Read (PER) Controller is currently active. The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor .A Copy Back command is available to optimize the management of defective blocks. When a Page Program operation fails, the data can be programmed in another page without having to resend the data to be programmed.The devices are available in the following packages: - 48-TSOP1 (12 x 20 x 1.2 mm) - 48-WSOP1 (12 x 17 x 0.7 mm)- 63-FBGA (8.5 x 15 x 1.2 mm, 6 x 8 ball array, 0.8mm pitch)Three options are available for the NAND Flash family:- Automatic Page 0 Read after Power-up, which allows the microcontroller to directly download the boot code from page 0.- Chip Enable Dont Care, which allows code to be directly downloaded by a microcontroller , as Chip Enable transitions during the latency time do not stop the read operation.- A Serial Number , which allows each device to be uniquely identified. The Serial Number options is subject to an NDA (Non Disclosure Agreement) and so not described in the datasheet. For more details of this option contact your near-est HYNIX Sales office.Devices are shipped from the factory with Block 0 always valid and the memory content bits, in valid blocks, erased to '1'.Rev 0.5 / Oct. 200441Gbit (128Mx8bit / 64Mx16bit) NAND FlashI/O 8-15Data Input/Outputs for x16 Device I/O 0-7Data Input/Output, Address Inputs, or Com-mand Inputs for x8 and x16 deviceALE Address Latch Enable CLE Command Latch EnableCEChip Enable RE Read EnableRBRead/Busy (open-drain output)WE Write Enable WP Write Protect VCCSupply VoltageVSS GroundNC Not Connected InternallyDUDo Not UseTable 1: Signal NameFigure 1: Logic DiagramFigure 2. LOGIC BLOCK DIAGRAMRev 0.5 / Oct. 2004 51Gbit (128Mx8bit / 64Mx16bit) NAND FlashFigure 3. 48-TSOP1 Contactions, x8(x16) DeviceFigure 4. 48-WSOP1 Contactions, x8 DeviceRev 0.5 / Oct. 200461Gbit (128Mx8bit / 64Mx16bit) NAND FlashFigure 5. 63-FBGA Contactions, x8 Device (Top view through package)Figure 6. 63-FBGA Contactions, x16 Device (Top view through package)Rev 0.5 / Oct. 200471Gbit (128Mx8bit / 64Mx16bit) NAND FlashMEMORY ARRAY ORGANIZATIONThe memory array is made up of NAND structures where 16 cells are connected in series.The memory array is organized in blocks where each block contains 32 pages. The array is split into two areas, the main area and the spare area. The main area of the array is used to store data whereas the spare area is typically used to store Error Correction Codes, software flags or Bad Block identification.In x8 devices the pages are split into a main area with two half pages of 256 Bytes each and a spare area of 16 Bytes. In the x16 devices the pages are split into a 256 Word main area and an 8 Word spare area. Refer to Figure 8, Memory Array Organization.Bad BlocksThe NAND Flash 528 Byte/ 264 Word Page devices may contain Bad Blocks, that is blocks that contain one or more invalid bits whose reliability is not guaranteed. Additional Bad Blocks may develop during the lifetime of the device.The Bad Block Information is written prior to shipping (refer to Bad Block Management section for more details). The values shown include both the Bad Blocks that are present when the device is shipped and the Bad Blocks that could develop later on.These blocks need to be managed using Bad Blocks Management, Block Replacement or Error Correction Codes.Figure 7. Memory Array OrganizationRev 0.5 / Oct. 200481Gbit (128Mx8bit / 64Mx16bit) NAND FlashSIGNAL DESCRIPTIONSSee Figure 1, Logic Diagram and Table 1, Signal Names, for a brief overview of the signals connected to this device.Inputs/Outputs (I/O 0-I/O 7)Input/Outputs 0 to 7 are used to input the selected address, output the data during a Read opertion or input a com-mand or data during a Write operation. The inputs are latched on the rising edge of Write Enable. I/O 0-I/O 7 can be left floating when the device is deselected or the outputs are disabled.Inputs/Outputs (I/O 8-I/O 15)Input/Outputs 8 to 15 are only available in x16 devices. They are used to output the data during a Read operation or input data during a Write operation. Command and Address Inputs only require I/O 0 to I/O 7.The inputs are latched on the rising edge of Write Enable. I/O 8-I/O 15 can be left floating when the device is deselected or the outputs are disabled.Address Latch Enable (ALE)The Address Latch Enable activates the latching of the Address inputs in the Command Interface. When ALE is high, the inputs are latched on the rising edge of Write Enable.Command Latch Enable (CLE)The Command Latch Enable activates the latching of the Command inputs in the Command Interface. When CLE is high, the inputs are latched on the rising edge of Write Enable.Chip Enable (CE)The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip En-able is low, V IL , the device is selected. If Chip Enable goes high, V IH , while the device is busy, the device remains se-lected and does not go into standby mode.When the device is executing a Sequential Row Read operation, Chip Enable must be held low (from the second page read onwards) during the time that the device is busy (t BLBH1). If Chip Enable goes high during t BLBH1 the operation is aborted.The Read Enable, RE, controls the sequential data output during Read operations. Data is valid t RLQV after the falling edge of RE. The falling edge of RE also increments the internal column address counter by one.The Write Enable input, WE, controls writing to the Command Interface, Input Address and Data latches. Both addresses and data are latched on the rising edge of Write Enable.During power-up and power-down a recovery time of 1us (min) is required before the Command Interface is ready to accept a command. It is recommended to keep Write Enable high during the recovery time.Write Protect (WP).The Write Protect pin is an input that gives a hardware protection against unwanted program or erase operations. When Write Protect is Low, V IL , the device does not accept any program or erase operations. It is recommended to keep the Write Protect pin Low, V IL , during power-up and power-down.Rev 0.5 / Oct. 200491Gbit (128Mx8bit / 64Mx16bit) NAND FlashReady/Busy (RB)The Ready/Busy output, RB, is an open-drain output that can be used to identify if the Program/ Erase/ Read (PER) Controller is currently active.When Ready/Busy is Low, V OL , a read, program or erase operation is in progress. When the operation completes Ready/Busy goes High, V OH .The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor . A Low will then indicate that one, or more, of the memories is busy.Refer to the Ready/Busy Signal Electrical Characteristics section for details on how to calculate the value of the pull-up resistor .V CC Supply VoltageV CC provides the power supply to the internal core of the memory device. It is the main power supply for all operations (read,program and erase).An internal voltage detector disables all functions whenever V CC is below 2.5V (for 3V devices) or 1.5V (for 1.8V devices) to protect the device from any involuntary program/erase during power-transitions.Each device in a system should have V CC decoupled with a 0.1uF capacitor . The PCB track widths should be sufficient to carry the required program and erase currents V SS GroundGround, V SS , is the reference for the power supply. It must be connected to the system ground.BUS OPERATIONSThere are six standard bus operations that control the memory. Each of these is described in this section, see Tables 2, Bus Operations, for a summary.Command InputCommand Input bus operations are used to give commands to the memory. Command are accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable is Low and Read Enable is High. They are latched on the rising edge of the Write Enable signal.Only I/O 0 to I/O 7 are used to input commands. See Figure 21 and Table 14 for details of the timings requirements.Address InputAddress Input bus operations are used to input the memory address. Four bus cycles are required to input theaddresses for the 512Mb devices (refer to Tables 3 and 4, Address Insertion). The addresses are accepted when Chip Enable is Low, Address Latch Enable is High, Command Latch Enable is Low and Read Enable is High. They are latched on the rising edge of the Write Enable signal. Only I/O 0 to I/O 7 are used to input addresses. See Figure 22 and Table 14 for details of the timings requirements. Data InputData Input bus operations are used to input the data to be programmed.Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the Write Enable signal. The data is input sequentially using the Write Enable signal.See Figure 23 and Tables 14 and 15 for details of the timings requirements.Rev 0.5 / Oct. 2004101Gbit (128Mx8bit / 64Mx16bit) NAND FlashData OutputData Output bus operations are used to read: the data in the memory array, the Status Register , the Electronic Signa-ture and the Serial Number . Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low, and Command Latch Enable is Low. The data is output sequentially using the Read Enable signal. See Figure 24 and Table 15 for details of the timings requirements.Write ProtectWrite Protect bus operations are used to protect the memory against program or erase operations. When the Write Protect signal is Low the device will not accept program or erase operations and so the contents of the memory array cannot be altered. The Write Protect signal is not latched by Write Enable to ensure protection even during power-up.StandbyWhen Chip Enable is High the memory enters Standby mode, the device is deselected, outputs are disabled and power consumption is reduced.Rev 0.5 / Oct. 2004111Gbit (128Mx8bit / 64Mx16bit) NAND FlashTable 2. Bus OperationNote : (1) Only for x16 devices.(2) WP must be V IH when issuing a program or erase command.Table 3: Address Insertion, x8 DevicesNote: (1). A8 is set Low or High by the 00h or 01h Command, see Pointer Operations section. (2). Any additional address input cycles will be ignored with tALS > 0ns.Table4: Address Insertion, x16 DevicesNote: (1). A8 is Don 't Care in x16 devices.(2). Any additional address input cycles will be ignored with tALS > 0ns. (3). A1 is the Least Significant Address for x16 devices. (4). The 01h Command is not used in x16 devices.BUS Operation CE ALE CLE RE WE WP I/O 0 - I/O 7I/O 8 - I/O 15(1)Command Input V IL V IL V IH V IH Rising X (2)Command X Address Input V IL V IH V IL V IH Rising X Address X Data Input V IL V IL V IL V IH Rising X Data Input Data Input Data Output V IL V IL V IL Falling V IH X Data OutputData OutputWrite Protect X X X X X V IL X X StandbyV IHXXXXXXXBus Cycle I/O 7I/O 6I/O 5I/O 4I/O 3I/O 2I/O 1I/O 0 1st Cycle A7A6A5A4A3A2A1A0 2nd Cycle A16A15A14A13A12A11A10A9 3rd Cycle A24A23A22A21A20A19A18A17 4th CycleV ILV ILV ILV ILV ILV ILA26A25Bus Cycle I/O 8-I/O 15I/O 7I/O 6I/O 5I/O 4I/O 3I/O 2I/O 1I/O 0 1st Cycle X A7A6A5A4A3A2A1A0 2nd Cycle X A16A15A14A13A12A11A10A9 3rd Cycle X A24A23A22A21A20A19A18A17 4th CycleV ILV ILV ILV ILV ILV ILV ILA26A25Rev 0.5 / Oct. 2004121Gbit (128Mx8bit / 64Mx16bit) NAND FlashCOMMAND SETAll bus write operations to the device are interpreted by the Command Interface. The Commands are input on I/O 0-I/O 7 and are latched on the rising edge of Write Enable when the Command Latch Enable signal is high. Device opera-tions are selected by writing specific commands to the Command Register . The two-step command sequences for pro-gram and erase operations are imposed to maximize data security.The Commands are summarized in Table 5, Commands.Table 5: Command SetNote: (1). Any undefined command sequence will be ignored by the device.(2). Bus Write Operation(1st , 2nd and 3rd Cycle) : The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or input/output data are not shown.DEVICE OPERATIONSPointer OperationsAs the NAND Flash memories contain two different areas for x16 devices and three different areas for x8 devices (see Figure 8) the read command codes (00h, 01h, 50h) are used to act as pointers to the different areas of the memory array (they select the most significant column address).The Read A and Read B commands act as pointers to the main memory area. Their use depends on the bus width of the device.- In x16 devices the Read A command (00h) sets the pointer to Area A (the whole of the main area) that is Words 0 to 255.- In x8 devices the Read A command (00h) sets the pointer to Area A (the first half of the main area) that is Bytes 0 to 255, and the Read B command (01h) sets the pointer to Area B (the second half of the main area) that is Bytes 256 to 511.In both the x8 and x16 devices the Read C command (50h), acts as a pointer to Area C (the spare memory area) that is Bytes 512 to 527 or Words 256 to 263.FUNCTION1st CYCLE2nd CYCLE3rd CYCLECommand accepted during busyREAD A 00h -- READ B 01h -- READ C50h -- READ ELECTRINIC SIGNATURE 90h -- READ STATUS REGISTER 70h --YesPAGE PROGRAM 80h 10h - COPY BACK PROGRAM 00h 8Ah 10h BLOCK ERASE 60h D0h - RESETFFh--YesRev 0.5 / Oct. 2004131Gbit (128Mx8bit / 64Mx16bit) NAND FlashOnce the Read A and Read C commands have been issued the pointer remains in the respective areas until another pointer code is issued. However , the Read B command is effective for only one operation, once an operation has been executed in Area B the pointer returns automatically to Area A.The pointer operations can also be used before a program operation, that is the appropriate code (00h, 01h or 50h) can be issued before the program command 80h is issued (see Figure 9).Figure 8. Pointer OperationFigure 9. Pointer Operations for ProgrammingRev 0.5 / Oct. 2004141Gbit (128Mx8bit / 64Mx16bit) NAND FlashRead Memory ArrayEach operation to read the memory area starts with a pointer operation as shown in the Pointer Operations section. Once the area (main or spare) has been selected using the Read A, Read B or Read C commands four bus cycles. The device defaults to Read A mode after powerup or a Reset operation. Devices, where page0 is read automatically at power-up, are available on request.When reading the spare area addresses: - A0 to A3 (x8 devices) - A0 to A2 (x16 devices)are used to set the start address of the spare area while addresses: - A4 to A7 (x8 devices) - A3 to A7 (x16 devices)are ignored.Once the Read A or Read C commands have been issued they do not need to be reissued for subsequent read opera-tions as the pointer remains in the respective area. However , the Read B command is effective for only one operation, once an operation has been executed in Area B the pointer returns automatically to Area A and so another Read B command is required to start another read operation in Area B.Once a read command is issued three types of operations are available: Random Read, Page Read and Sequential Row Read.Random ReadEach time the command is issued the first read is Random Read.Page ReadAfter the Random Read access the page data is transferred to the Page Buffer in a time of t WHBH (refer to Table 15 for value). Once the transfer is complete the Ready/Busy signal goes High. The data can then be read out sequentially (from selected column address to last column address) by pulsing the Read Enable signal.Sequential Row ReadAfter the data in last column of the page is output, if the Read Enable signal is pulsed and Chip Enable remains Low then the next page is automatically loaded into the Page Buffer and the read operation continues. A Sequential Row Read operation can only be used to read within a block. If the block changes a new read command must be issued. Refer to Figures 12 and 13 for details of Sequential Row Read operations. To terminate a Sequential Row Read opera-tion set the Chip Enable signal to High for more than t EHEL . Sequential Row Read is not available when the Chip Enable Don't Care option is enabled.Rev 0.5 / Oct. 2004151Gbit (128Mx8bit / 64Mx16bit) NAND FlashNote: 1. If t ELWL is less than 10ns, t WLWH must be minimum 35ns, otherwise, t WLWH may be minimum 25ns.Note: 1. Highest address depends on device density.Figure 10. Read (A, B, C) OperationFigure 11. Read Block DiagramsRev 0.5 / Oct. 2004161Gbit (128Mx8bit / 64Mx16bit) NAND FlashFigure 12. Sequential Row Read OperationFigure 13. Sequential Row Read Block DiagramsRev 0.5 / Oct. 2004171Gbit (128Mx8bit / 64Mx16bit) NAND FlashPage ProgramThe Page Program operation is the standard operation to program data to the memory array. The main area of the memory array is programmed by page, however partial page programming is allowed where any number of bytes (1 to 528) or words (1 to 264) can be programmed.The max number of consecutive partial page program operations allowed in the same page is one in the main area and two in the spare area. After exceeding this a Block Erase command must be issued before any further program opera-tions can take place in that page.Before starting a Page Program operation a Pointer operation can be performed to point to the area to be pro-grammed. Refer to the Pointer Operations section and Figure 9 for details. Each Page Program operation consists of five steps (see Figure 14):1. one bus cycle is required to setup the Page Program command2. four bus cycles are then required to input the program address (refer to Table 3)3. the data is then input (up to 528 Bytes/ 264 Words) and loaded into the Page Buffer4. one bus cycle is required to issue the confirm command to start the Program/ Erase/Read Controller .5. The Program/ Erase/Read Controller then programs the data into the array.Once the program operation has started the Status Register can be read using the Read Status Register command. During program operations the Status Register will only flag errors for bits set to '1' that have not been successfully programmed to '0'.During the program operation, only the Read Status Register and Reset commands will be accepted, all other com-mands will be ignored.Once the program operation has completed the Program/ Erase/Read Controller bit SR6 is set to '1' and the Ready/Busy signal goes High.The device remains in Read Status Register mode until another valid command is written to the Command Interface.Note: Before starting a Page Program operation a Pointer operation can be performed. Refer to Pointer section for details.Figure 14. Page Program OperationRev 0.5 / Oct. 2004181Gbit (128Mx8bit / 64Mx16bit) NAND FlashCopy Back ProgramThe Copy Back Program operation is used to copy the data stored in one page and reprogram it in another page.The Copy Back Program operation does not require external memory and so the operation is faster and more efficient because the reading and loading cycles are not required. The operation is particularly useful when a portion of a block is updated and the rest of the block needs to be copied to the newly assigned block.If the Copy Back Program operation fails an error is signalled in the Status Register . However as the standard external ECC cannot be used with the Copy Back operation bit error due to charge loss cannot be detected. For this reason it is recommended to limit the number of Copy Back operations on the same data and/or to improve the performance of the ECC.The Copy Back Program operation requires three steps:- 1. The source page must be read using the Read A command (one bus write cycle to setup the command and then 4 bus write cycles to input the source page address). This operation copies all 264 Words/ 528 Bytes from the page into the Page Buffer .- 2. When the device returns to the ready state (Ready/Busy High), the second bus write cycle of the command is given with the 4 bus cycles to input the target page address. A25 & A26 must be the same for the Source and Target Pages.- 3. Then the confirm command is issued to start the P/E/R Controller .After a Copy Back Program operation, a partial page program is not allowed in the target page until the block has been erased.See Figure 15 for an example of the Copy Back operation.Block EraseErase operations are done one block at a time. An erase operation sets all of the bits in the addressed block to '1'. All previous data in the block is lost. An erase operation consists of three steps (refer to Figure 17):1. One bus cycle is required to setup the Block Erase command.2. Only three bus cycles for the devices are required to input the block address. The first cycle (A0 to A7) is notrequired as only addresses A14 to A26 (highest address depends on device density) are valid, A9 to A13 are ignored. In the last address cycle I/O 0 to I/O 7 must be set to V IL .3. One bus cycle is required to issue the confirm command to start the P/E/R Controller .Figure 15. Copy Back OperationRev 0.5 / Oct. 2004191Gbit (128Mx8bit / 64Mx16bit) NAND FlashOnce the erase operation has completed the Status Register can be checked for errors.ResetThe Reset command is used to reset the Command Interface and Status Register . If the Reset command is issued dur-ing any operation, the operation will be aborted. If it was a program or erase operation that was aborted, the contents of the memory locations being modified will no longer be valid as the data will be partially programmed or erased.If the device has already been reset then the new Reset command will not be accepted. The Ready/Busy signal goes Low for t BLBH4 after the Reset command is issued. The value of t BLBH4 depends on the operation that the device was performing when the command was issued, refer to Table 15 for the values.Read Status RegisterThe device contains a Status Register which provides information on the current or previous Program or Erase opera-tion. The various bits in the Status Register convey information and errors on the operation.The Status Register is read by issuing the Read Status Register command. The Status Register information is present on the output data bus (I/O 0- I/O 7) on the falling edge of Chip Enable or Read Enable, whichever occurs last. When several memories are connected in a system, the use of Chip Enable and Read Enable signals allows the system to poll each device separately, even when the Ready/Busy pins are common-wired. It is not necessary to toggle the Chip Enable or Read Enable signals to update the contents of the Status Register .After the Read Status Register command has been issued, the device remains in Read Status Register mode until another command is issued. Therefore if a Read Status Register command is issued during a Random Read cycle a new read command must be issued to continue with a Page Read or Sequential Row Read operation.The Status Register bits are summarized in Table 6, Status Register Bits. Refer to Table 6 in conjunction with the fol-lowing text descriptions.Write Protection Bit (SR7)The Write Protection bit can be used to identify if the device is protected or not. If the Write Protection bit is set to '1' the device is not protected and program or erase operations are allowed. If the Write Protection bit is set to '0' the device is protected and program or erase operations are not allowed.Figure 17. Block Erase Operation。
Ammeraal型号统计表格
571990 513839 575233 500225 575703 572862 511835 572620 573880 510583 579801 572060 525005 514024 577951 525026 575101 579640 579900 577970 575411 570802 578121 577001 577952 500523 510563 510679 513259 575151 578372 510821 578171 577391 513055 510340 511013 572302 576350 513715 573650 574680 510835 510656 573030 570950 570180 576942 576690 500228 574300 575760 575761 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
881890 881573 881410 881590 881980 881860 884582 881560 881604 886111 570660 570970 575190 575230 575231 578840 579800 579801 574001 577980 577981 577950 577951 577952 579890 577190 579922 578511 571440 Φ 6 PU 80A Φ 6 PU 80A PU 75A 585031 581140 577980 UC2102 511022 576070 526311 500514 573630 511367 575040 511736 514384 570970 573300 576050 570060 573500 570940 576110 575700 575730
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Description
The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.
AM27ID08HIGH EFFICIENCY RED
Package Dimensions
SUBMINIATURE SOLID STATE LAMP
Features O SUBMINIATURE PACKAGE.O WIDE VIEWING ANGLE.O YOKE LEAD.
O LONG LIFE-SOLID STATE RELIABILITY.
O LOW PACKAGE PROFILE.O PACKAGE : 1000PCS / REEL.
O RoHS COMPLIANT.
Notes:
1. All dimensions are in millimeters (inches).
2. Tolerance is ±0.25(0.01") unless otherwise noted.
3. Lead spacing is measured where the lead emerge from the package.
4. Specifications are subject to change without notice.
洸子其科技是一家从事发光二极管产品研发、生产及销售公司,致力于为国内国际市场提供高品质,低成本的各类发光管。
主营产品有:SMD LED 0402、0603、0802、0805、1204、1206、3528、5050、3020、3014、2835、3535、335、020、正面发光及
侧面发光,红、绿、蓝、白、黄、橙、粉红、紫、单色双色及三色等…
主要应用:照明灯具、灯光亮化装饰工程、玩具礼品、背光显示、荧光验证防伪、手机、家电、MP3、手电筒、汽车、圣诞树、霓虹灯等…
点击进入洸子其科技
Selection Guide
Note:
1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
Electrical / Optical Characteristics at T A =25°C
Absolute Maximum Ratings at T A =25°C
Notes:
1. 1/10 Duty Cycle, 0.1ms Pulse Width.
Part No.
Dice
Lens Type
Iv (mcd) @ 20mA Viewing Angle Min.
Typ.2θ1/2AM27ID08
HIGH EFFICIENCY RED (GaAsP/GaP)
RED DIFFUSED
7
30
40°
Symbol Parameter Device Typ.Max.
Units Test Conditions
λpeak Peak Wavelength High Efficiency Red 627nm I F =20mA λD Dominant Wavelength High Efficiency Red 625nm I F =20mA ∆λ1/2Spectral Line Half-width
High Efficiency Red 45nm I F =20mA C Capacitance High Efficiency Red 15pF V F =0V;f=1MHz V F Forward Voltage High Efficiency Red 2.0
2.5V I F =20mA I R
Reverse Current
High Efficiency Red
10uA
V R = 5V
Parameter High Efficiency Red
Units Power dissipation 105mW DC Forward Current 30mA Peak Forward Current [1]160mA Reverse Voltage
5
V
Operating / storage Temperature
-40°C To +85°C
High Efficiency Red AM27ID08
AM27ID08
Recommended Soldering Pattern
(Units : mm)
Tape Specifications
(Units : mm)
Remarks:
If there is sorting requirement (eg. forward voltage, luminous intensity or wavelength), the condition as follows:
1.Wavelength: +/-1nm (Test condition is based on the sorting standard).
2.Luminous intensity: +/-15% (Test condition is based on the sorting standard).
3.Forward voltage: +/-0.1V (Test condition is based on the sorting standard).。