2013年高考真题——理科数学(北京卷)Word版含答案

合集下载

2013年全国高考理科数学试题分类汇编7:立体几何

2013年全国高考理科数学试题分类汇编7:立体几何

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm π【答案】A2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D3 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .13【答案】A5 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A6 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C7 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B C .2D .2【答案】C8 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【答案】B9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .240正视图俯视图侧视图第5题图【答案】C12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A .2B .C .132D .【答案】C13.(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11【答案】A14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A15.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A 16.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A 17.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题18.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.19.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____.【答案】3π 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K 是球O的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60 ,则球O 的表面积等于______.【答案】16π21.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E上,点P 到直线CC 1的距离的最小值为__________.【答案】522.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2423.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2424.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为2. 【答案】①②③⑤A BCAD EF BC25.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-26.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π27.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A BC D -中,异面直线1A B 与1B C 所成角的大小为_______【答案】3π三、解答题28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB【答案】(I )证明:由AB 是圆O 的直径,得BC AC ⊥。

2013高考理科数学真题(新课标纯WORD版)

2013高考理科数学真题(新课标纯WORD版)

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N=(A ){0,1,2} (B){-1,0,1,2}(C ){-1,0,2,3} (D){0,1,2,3}(2)设复数z 满足(1-i )z=2 i ,则z=(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=(A ) 13 (B )- 13 (C ) 19 (D )- 19(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,l ⊄α内,l ⊄β内,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ax )(1+x)5的展开式中x 2的系数为5,则a=(A )-4 (B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ 12+ 13+…+ 110(B )1+ 12!+ 13!+…+ 110!(C )1+ 12+ 13+…+ 111(D )1+ 12!+ 13!+…+ 111!(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) 14 (B) 12 (C)1 (D)2(10)已知函数f(x)=x 3+ax 2+bx+,下列结论中错误的是(A )∃x α∈R,f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x B 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,3),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0),将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-√22,1/2)( C)(1-√22,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考真题——理科数学(山东卷)Word版无答案

2013年高考真题——理科数学(山东卷)Word版无答案

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ( )(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为 ,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)理科数学试题第1页共4页(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

2013年高考真题——理科数学(湖北卷) Word版含答案

2013年高考真题——理科数学(湖北卷) Word版含答案

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号码条粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选凃其它答案标号。

答在试卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定位置用统一提供的2B 铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z=i1i2+(i 为虚数单位)的共轭复数对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知全集为R ,集合A=⎭⎬⎫⎩⎨⎧≤1)21(2x ,B={}0862≤+-x x x ,则A ∩R ∂B=A.{}0x ≤xB. {}42x ≤≤x C. {0≤x x <2或x >}4 D. {0x <x ≤2或x ≥}43.再一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.(-p )∨(-q ) B. p ∨(-q ) C. (-p )∧(-q ) D.p ∨q4.将函数y=3cosx+sinx (x ∈R )的图像向左平移m (m >0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是A.12π B. 6π C. 3πD 65π5.已知0<θ<4π,则双曲线C 1:1sin cos 2222=-θθy x 与C 2: 1tan sin sin 22222=-θθθx y 的 A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量在方向上的投影为 A.223 B. 2153 C. -223D .- 21537.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+t125+(t 的单位:s ,v 的单位:m/s )行驶至停止。

2013年全国高考理科数学试题分类汇编4:数列

2013年全国高考理科数学试题分类汇编4:数列

2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n nn nn n n n c a b a a a b c +++++===,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2mq D.数列{}n c 为等比数列,公比为mmq【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31-(C)91 (D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得 ()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________. 【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2nn n nS a n N *=--∈则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32-15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=-两边同时积分得:1111122222211.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n -18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=-2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n1--32-1121-n 222+=+++n n n ()( ____.【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n ∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明: (Ⅰ)对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f nx y x n n n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一xxx xxxx x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n nnn n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nx x x x x x f x x nn n n n n n n p n n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x nx x x x x nx x x x x pn pn n pn np n p n p n p n p n nn n n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnnp n np n np n np n p n n +++++++++=+++++++++ nx x npn np n n 1-111<⇒<+-=+.法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=, 3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意;若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k kk k n -+<≤()()()k N +∈时,11k nak -=(-),记12n n S a a a =++ ()n N+∈,对于l N+∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m )32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)( 故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d dd dd a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105ma a a +++=-或,不存在这样的正整数m ;若3q =,12111919110310mma a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}na的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}n c 的前n项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n n n R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414nnn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和∴d n n na S n 2)1(-+=(1)∵0=c ∴d n a nS b n n 21-+==∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-dad ∴0)21(21=-d a d ∵0≠d ∴d a 21=∴a d 2=∴a n a n n na d n n na S n 222)1(2)1(=-+=-+=∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222= ∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得:11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d由①式得:d d 211=∵ 0≠d ∴ 01≠d由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn ad n n cn nS b n n ++-=+=22222)1(,cn ad n ca d n cad n n ++--+-++-=2222)1(22)1(22)1(cn ad n c ad n ++--+-=222)1(22)1(. (※)若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-ad n c,而22)1(ad n +-≠0,故0=c .经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1nn nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦. 由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =. (2)证明:由于2212,(2)n n nn a n b n a +==+.则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (2222)11111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n+=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174na a a +++<.【答案】.(1) 解:2121233n n S a n n n+=---,n N *∈.∴ 当1n =时,112212221233a S a a ==---=-又11a =,24a ∴= (2)解:2121233n n S a n n n+=---,n N *∈.∴ ()()321112122333n n n n n n S na n n n na ++++=---=-①∴当2n ≥时,()()()111213n n n n n S n a =-+=--②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+ 111n na a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥当1n =时,上式显然成立. 2*,n a n n N ∴=∈ (3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立.②当2n =时,121117144a a +=+<,∴原不等式亦成立.③当3n ≥时, ()()()()221111,11n n n nn n >-⋅+∴<-⋅+()()()2221211111111111121324211na a a nn n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭ 1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174na a a +++<.35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列. (Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}na +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减: .)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- (qq a qqa a S nnn -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q qq a q na S n n(Ⅱ) 使用反证法.设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n nn n qa q a a a1,0111111=≠⇒+=+⇒-q a qa q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}na +不是等比数列.。

圆锥曲线2013

圆锥曲线2013

2013年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y=A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++B.C. D.【答案】B2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45 CD【答案】C3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.214x =B .22145x y -= C .22125x y -=D.212x -=【答案】B4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D【答案】B7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =( )A .1B .32C .2D .3【答案】C9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( )A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,【答案】B10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12BCD .2【答案】D11.(2013年高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x =±【答案】B12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )ABCD【答案】D13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =【答案】C15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线【答案】C16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A .4B 1C .6-D【答案】A 二、填空题17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.【答案】x y 43±= 18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________【答案】619.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___.【答案】320.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________【答案】. 21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ _____.【答案】),1[+∞22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.【答案】⎥⎦⎤⎢⎣⎡-21,223.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.【答案】24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________【答案】1-25.(2013年高考陕西卷(理))双曲线22116x y m -=的离心率为54, 则m 等于___9_____. 【答案】9 26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5727.(2013年上海市春季高考数学试卷(含答案))抛物线28yx =的准线方程是_______________【答案】2x =-28.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为_______.【答案】1-或1029.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.【答案】1± 三、解答题30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程. [解](1) (2)【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=.(2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P FQ ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+, 解得217k =,即k =故直线l的方程为10x +-=或10x -=.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:2+=所以,a =又由已知,1c =, 所以椭圆C的离心率c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,2⎛ ⎝ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ .又0,2⎛-⎝满足()22102318y x --=,故x ⎛∈ ⎝. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈ ⎝. 所以点Q 的轨迹方程是()22102318y x --=,其中,x ⎛∈ ⎝,1,22y ⎛∈ ⎝32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =±由题意知221b a =,即22a b = 又ce a == 所以2a =,1b = 所以椭圆方程为2214x y +=204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为204x ≠,12118kk kk +=-=-为定值.33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【答案】:(1)C 1的左焦点为(F ,过F 的直线x =与C 1交于(,与C 2交于(1))±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =;(2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)显然过圆2212x y +=内一点的直线l 若与曲线C 1有交点,则斜率必存在; 根据对称性,不妨设直线l 斜率存在且与曲线C 2交于点(,1)(0)t t t +≥,则:(1)()(1)0l y t k x t kx y t kt =+=-⇒-++-=直线l 与圆2212x y +=内部有交点,<化简得,221(1)(1)2t tk k +-<+............① 若直线l 与曲线C 1有交点,则2222211()2(1)(1)10212y kx kt t k x k t kt x t kt x y =-++⎧⎪⇒-++-++-+=⎨-=⎪⎩ 22222214(1)4()[(1)1]0(1)2(1)2k t kt k t kt t kt k ∆=+---+-+≥⇒+-≥-化简得,22(1)2(1)t kt k +-≥-.....②由①②得,222212(1)(1)(1)12k t tk k k -≤+-<+⇒< 但此时,因为2210,[1(1)]1,(1)12t t k k ≥+-≥+<,即①式不成立;当212k =时,①式也不成立综上,直线l 若与圆2212x y +=内有交点,则不可能同时与曲线C 1和C 2有交点,即圆2212x y +=内的点都不是“C 1-C 2型点” .34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)iP i N i ∈≤≤. (1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i Ni 且与x 轴垂直的直线方程为=x i (10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x 分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 35.(2013年高考湖南卷(理))过抛物线2:2(0)E xpy p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P < ;(II)若点M 到直线l,求抛物线E 的方程. 【答案】解: (Ⅰ),设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++-+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k FM p p k y p k x x x p x x p k x x -=⇒+==+=⇒=-=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x -=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM222121221212121212)11(1)1(,122,,0,0p p k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>> 所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =-+-的方程分别为、, 的方程为:,直线l r y y x x 22234234)()(=-+-0-)(2)(2222123421223421212341234=+-+-+-+-r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++--+--+-+-⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212++-+++-+-+-+-⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++--+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+-+-⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为.36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k=--⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||4D P k x x DP k +=-∴==+所以(第21题图)11||||22ABDS AB DP ∆==⨯====≤=当252k k =⇒=⇒=时等号成立,此时直线1:1l y x =- 37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a+=-的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 【答案】解:(Ⅰ)13858851,12,122222222=+=⇒+-==->x x a c a a c a a ,椭圆方程为: .(Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x P F m Q y x P c F c F -=-=-(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>-y x a a .⎩⎨⎧=++=-⊥=+=0)()(,//).,(),,(112211my c x c ycx c m Q F P F QF P F m c Q F y c x P F 得:由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 所以动点P 过定直线01=-+y x .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-.(Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =±当k时,将y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12||x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|= 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.【答案】解:(1)由3(1,)2P 在椭圆上得,221914a b+= ① 依题设知2a c =,则223b c = ② ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=, 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==--. 所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 1212122322()1x x k x x x x +-=-⋅-++ ⑤④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++, 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意.方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--, 令4x =,求得003(4,)1y M x -, 从而直线PM 的斜率为0030212(1)y x k x -+=-,联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,故存在常数2λ=符合题意.42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24xcy =,0c >,解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++ 联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】44.(2013年高考湖北卷(理))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.【答案】解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:1λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n+=,直线l :ky x =22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,B y =又 BDM ∆和ABN ∆的的高相等12B D B A A B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,第21题图即:()()222222222211a n k a n k λλλλ-+=++,解得()()2222232114a k n λλλλ--+=∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .45.(2013年高考北京卷(理))已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【答案】解:(I)椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m +=,即m =. 所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=. (II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++-=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⋅+=+. 所以AC 的中点为M(2414km k -+,214mk+). 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.【答案】解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ)点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为【答案】48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的. (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF ,证明:22AF AB BF 、、成等比数列.【答案】49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,, 因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax x y y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.(2)设点Q 的坐标为( 0)t ,.点Q 关于直线2y x =的对称点为( )Q x y ',,则122yx t y x t ⎧=-⎪⎪-⎨⎪=+⎪⎩ 解得3545x t y t⎧=-⎪⎪⎨⎪=⎪⎩若Q '在C 上,将Q '的坐标代入24y x =,得24150t t +=,即0t =或154t =-. 所以存在满足题意的点Q ,其坐标为(0 0),和15( 0)4-,.。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

最新新课标2013年全国高考理科数学试题分类汇编5:平面向量

最新新课标2013年全国高考理科数学试题分类汇编5:平面向量

最新新课标2013年全国高考理科数学试题分类汇编5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d.若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<【答案】D .2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00∙≥∙.则 ( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))在四边形ABCD中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A B .C .5D .10【答案】C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在平面直角坐标系中,O 是坐标原点,两定点,A B满足2,OA OB OA OB ===则点集{}|,1,,P O PO A O B R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D .【答案】D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是 ( )A .⎛ ⎝⎦B .⎝⎦C .⎝D .⎝ 【答案】D7 .(2013年高考湖南卷(理))已知,a b 是单位向量,0a b = .若向量c 满足1,c a b c --=则的取值范围是 ( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】A8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-1【答案】B9 .(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD方向上的投影为 ( )A B C .D . 【答案】A [ 二、填空题[10.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______.【答案】211.(2013年上海市春季高考数学试卷(含答案))已知向量(1 )a k =,,(9 6)b k =- ,.若//a b ,则实数 k = __________【答案】34-12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知向量AB与AC的夹角为120°,且3AB = ,2AC = ,若AP AB AC λ=+ ,且AP BC ⊥,则实数λ的值为__________.【答案】71213.(2013年高考新课标1(理))已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.[【答案】t =2.14.(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.【答案】415.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设21,e e 为单位向量,非零向量R y x e y e x ∈+=,,21,若21,e e 的夹角为6π,的最大值等于________. 【答案】216.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1217.(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】218.(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5219.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.【答案】12。

2013年全国高考理科数学试题分类汇编11:概率与统计 Word版含答案

2013年全国高考理科数学试题分类汇编11:概率与统计 Word版含答案

2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题错误!未指定书签。

.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数20,40,40,60,[)[)是()A.45B.50C.55D.60【答案】B错误!未指定书签。

.(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B错误!未指定书签。

.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C错误!未指定书签。

.(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D错误!未指定书签。

.(2013年高考陕西卷(理))如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A错误!未指定书签。

2013年江西省高考数学(理科)真题试卷(word版)

2013年江西省高考数学(理科)真题试卷(word版)

绝密★启用前2013年江西省高考数学(理科)真题试卷(word版)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用0.5毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。

4. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A. -2iB. 2iC. -4iD.4i2.函数y=错误!未找到引用源。

ln(1-x)的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]3.等比数列x,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.244.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4934 8200 3623 4869 6938 7481A.08B.07C.02D.015.(x 2-错误!未找到引用源。

)5展开式中的常数项为 ( )A .80 B.-80 C.40D.-40若 ,则s 1,s 2,s 3的大小关系为6.<s 2<s 3 B. s 2<s 1<s 3A. s 1C. s 2<s 3<s 1 D. s 3<s 2<s 17.阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为A.S=2﹡i-2B.S=2﹡i-1C.S=2﹡ID.S=2﹡i+48.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=A.8B.9C.10D.119.过点(错误!未找到引用源。

2013年全国高考理科数学试题分类汇编7:平面向量

2013年全国高考理科数学试题分类汇编7:平面向量
【答案】B 9 . (2013 年高考湖北卷(理) )已知点 A 1,1 .







( D. -1

B. 3
C. 2
B 1, 2 . C 2, 1 . D 3, 4 ,则向量

AB 在 CD 方向上的投影为
A.

C.
5 , 2 2
D.
7 , 2 2
【答案】D
b 0 .若向量 7 . ( 2013 年 高 考 湖 南 卷 ( 理 ) ) 已 知 a , b 是 单 位 向 量 , a
c 满足

c a b 1, 则 c 的取值范围是
, 2+1 A. 2-1, , 2+1 C. 1,



P | OP OA OB, 1, , R 所表示的区域的面积是
A. 2 2
【答案】D





B. 2 3
C. 4 2
D. 4 3
6 ( .2013 年普通高等学校招生统一考试重庆数学 (理) 试题 (含答案) ) 在平面上,
1 AB , 且 对 于 边 AB 上 任 一 点 P , 恒 有 4

0
PB PC P0 B P0C .则
A. ABC 90
【答案】D 4 . (2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD 版) )在四边形 ABCD
0

B. BAC 90
C. AB AC
3 2 2
[
B.
3 15 2

(2014年高考必备)2013年全国各地高考理科数学:数列

(2014年高考必备)2013年全国各地高考理科数学:数列

2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )[来源:学_科_网Z_X_X_K]A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n nn n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212n n n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()( 20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n ∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- [来源:学_科_网Z_X_X_K]23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕) (Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnnp n np n np n np n p n n +++++++++=+++++++++ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++ ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)( 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=- 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}na的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d =因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n nT λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()414n nn -=--- 整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记c n nS b n n +=2,*N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c . 【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< . 【答案】.(1) 解: 2121233n n S a n n n +=---,n N *∈. ∴ 当1n =时,112212221233a S a a ==---=- 又11a =,24a ∴=(2)解: 2121233n n S a n n n +=---,n N *∈. ∴ ()()321112122333n n n n n n S na n n n na ++++=---=- ① ∴当2n ≥时,()()()111213n n n n n S n a =-+=-- ②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥ 当1n =时,上式显然成立. 2*,n a n n N ∴=∈(3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立. ②当2n =时, 121117144a a +=+<,∴原不等式亦成立. ③当3n ≥时, ()()()()221111,11n n n n n n >-⋅+∴<-⋅+ ()()()2221211111111111121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+ 111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a a a +++< . 35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列;(III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列. (III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列.(Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论. ①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减:.)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- ( qq a q qa a S n n n -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法. 设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n n n n q a q a a a 1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾. ③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}n a +不是等比数列.。

北京市门头沟区2013年高三年级抽样测试理科数学(一模)word版含答案

北京市门头沟区2013年高三年级抽样测试理科数学(一模)word版含答案

门头沟区2013年高三年级抽样测试数学(理工类)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并回交.第Ⅰ卷 (选择题 40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U = R ,集合A {}24x x =≤,B {}1x x =<,则集合A B 等于(A) {}2x x ≥-(B) {}12x x ≤≤(C) {}1x x ≥(D) R2. “1a>”是“函数()2(01)x f x a a a =->≠且在区间(0,)+∞上存在零点”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件(D) 既不充分也不必要条件3.下列直线中,平行于极轴且与圆2cos ρθ=相切的是 (A) cos 1ρθ=(B) sin 1ρθ=(C) cos 2ρθ=(D) sin 2ρθ=4.有4名优秀学生A 、B 、C 、D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,且A 生不去甲校,则不同的保送方案有 (A) 24种(B) 30种(C) 36种(D) 48种5.如图:圆O 的割线P AB 经过圆心O ,C 是圆上一点,P A =AC =12AB ,则以下结论不正确...的是 (A) CB =CP(B) PC ⋅AC =P A ⋅BC(C)PC 是圆O 的切线 (D) BC 2=BA ⋅BP6.已知P (,)x y 是中心在原点,焦距为10的双曲线上一点,且y x的取值范围为(,)44-,则该双曲线方程是 (A)221916x y -= (B)221916y x -=2013.3U(C)221169x y -= (D)221169y x -=7.一个几何体的三视图如右图所示,则该几何体的体积是(A) 21(B) 13(C) 65(D) 18.定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+的图象关于点(2,0)-成中心对称,若,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是(A) [3,4] (B) [3,9] (C) [4,6](D) [4,9]第Ⅱ卷(非选择题110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数11iz i-=+,则z = . 10.在等差数列{}n a 中,13a =,42a =,则4731n a a a ++++ 等于 . 11.在∆ABC 中,若2a =,3c =,tan B =,则b = . 12.执行如右图所示的程序框图,输出的S 值为 .13.在边长为1的正方形ABCD 中,E 、F 分别为BC 、DC 的中点,则向量AE AF ⋅=.14.定义在(,0)(0,)-∞+∞ 上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“等比函数”。

2013北京市海淀区高三二模理科数学Word版含答案

2013北京市海淀区高三二模理科数学Word版含答案

海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0Ax x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞ 2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q+的值为A .3B .2C .3或2-D .3或3- 3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为 A.m a nB.n a mC.2m a nD.2n a m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形A B C D 中,“λ∃∈R ,使得,A B D C A D B Cλλ==”是“四边形A B C D为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为 A.32 B. 36 C. 42 D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x=的焦点,设双曲线C 与该抛物线的一个交点为A ,若12A F F ∆是以1A F 为底边的等腰三角形,则双曲线C 的离心率为B.1+1+D.2+俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n Tna a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值B.若m={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线c o s 2ρθ=的距离为_______. 10.已知1211ln,sin,222ab c -===,则,,a b c 按照从.大到小...排列为______. 11.直线1l 过点(2,0)-且倾斜角为30 ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____. 12.在A B C ∆中,30,45,A B a ∠=∠==,则_____;b=C _____.A B S ∆=13.正方体1111A B C D A B C D -的棱长为1,若动点P 在线段1B D 上运动,则DC A P⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W .(I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数c o s 2()1π()4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形A B C D 中,90A B CD A B ∠=∠=,30C A B∠=,2B C =,4AD =. 把D A C∆沿对角线A C 折起到P A C ∆的位置,如图2所示,使得点P 在平面A B C 上的正投影H 恰好落在线段A C 上,连接P B ,点,E F 分别为线段,P A A B 的中点. (I) 求证:平面//E F H 平面P B C ; (II)求直线H E 与平面P H B 所成角的正弦值;(III)在棱P A 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218.(本小题满分13分)已知函数()exf x =,点(,0)A a 为一定点,直线()xt t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记A M N ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b ab+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段A B 的垂直平分线经过点1(0,)2-,求A O B ∆(O 为原点)面积的最大值.20.(本小题满分13分) 设A 是由mn⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值; (Ⅲ)对由mn⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2 和与每列的各数之和均为非负整数?请说明理由.22221212a a a a aaa a------海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )因为πsin ()04x-≠所以ππ,4xk -≠Zk ∈ ……………………2分所以函数的定义域为π{|π+,4xx k ≠Z }k ∈ ……………………4分(II )因为22c o s sin ()1sin c o s x x f x x x-=-- ……………………6分= 1+(c os sin )x x +π= 1()4x ++……………………8分又sin y x=的单调递增区间为ππ(2π,2π)22k k -+,Z k ∈令 πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ……………………11分又注意到ππ+,4xk ≠9. 2 10.c b a >>11.12.2213.[0,1]14.②③;2-所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p pξ=⨯+⨯--+-⨯+-⨯2.590%145p =-- …………………11分所以当 1.61450p ->时,即8725p<…………………12分所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面A B C 上的正投影H 恰好落在线段A C 上所以P H ⊥平面A B C ,所以P H ⊥A C …………………1分因为在直角梯形A B C D 中,90A B CD A B ∠=∠=,30C A B∠=,2B C =,4AD =所以4A C =,60C A B ∠=,所以A D C ∆是等边三角形,所以H 是A C 中点, …………………2分所以//H E P C …………………3分 同理可证//E F P B 又,H EE F E C P P B P==所以//E F H P B C 平面P B C …………………5分 (II )在平面A B C 内过H 作A C 的垂线如图建立空间直角坐标系,则(0,2,0)A -,(0,0,P ,0)B …………………6分因为(0,E -,(0,H E =-设平面P H B 的法向量为(,,)nx y z =因为0)H B =,(0,0,H P =所以有00H Bn H Pn ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以3,0)n =-…………………8分c o s ,4||||n H E n H E n H E ⋅<>===⋅…………………10分所以直线H E与平面P H所成角的正弦值为4…………………11分(III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形P H A 中,122E H P E E A P A ====, (13)分在直角三角形P H B 中,点4,P B =122E F P B ==所以点E到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e2tS t t a =-,其中t a ≠ …………………2分当0a =,1()||e 2tS t t =,其中0t ≠ 当0t >时,1()e2tS t t =,1'()(1)e2tS t t =+, 所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e2tS t t =-,1'()(1)e2tS t t =-+,令1'()(1)e 02tS t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02tS t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞- ()S t 的单调递增区间为(1,0)-(II )因为1()||e2tS t t a =-,其中t a ≠当2a >,[0,2]t ∈时,1()()e2tS t a t =-因为0[0,2]t ∃∈,使得0()eS t ≥,所以()S t 在[0,2]上的最大值一定大于等于e 1'()[(1)]e2tS t t a =---,令'S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02tS t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e2S a =-令21(2)e e2a -≥ ,解得22ea ≥+ ,所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02tS t t a =--->对(0,1)t a ∈-成立,()S t 单调递增 1'()[(1)]e 02t S t t a =---<对(1,2)t a∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e2a S a --=令11(1)ee2a S a --=≥ ,解得ln 22a ≥+所以la+≤…………………12分综上所述,ln 22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b ab+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M的方程为2213xy+= …………………4分(II)设1122(,),(,),A x y B x y 因为A B 的垂直平分线通过点1(0,)2-, 显然直线A B有斜率,当直线A B 的斜率为0时,则A B 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2|||||||||2A OB S x y x y x ∆====2211(3)322x x +-≤=,所以2A OB S ∆≤1||2x =时,A O B S ∆2………………6分当直线A B 的斜率不为0时,则设A B 的方程为y k x t=+所以2213y k x t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x k t t +++-=当224(933)0kt ∆=+->, 即2231k t +>①方程有两个不同的解 又122631k t x x k-+=+,1223231x x k t k+-=+ …………………9分所以122231y y t k+=+,又1212112202y y x x k ++=-+-,化简得到2314k t+=②代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||A B x x =-=所以1=||||2A OB S A B d ∆=化简得到=A OB S ∆…………………12分因为04t <<,所以当2t =时,即k =A O B S ∆2综上,A O B∆面积的最大值为2…………………14分20.(I )解:法1:42123712371237211211211-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237211211211--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237211211211----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a aaaa-----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数,所以12a ≤或52a≥当12a≤时,则接下来只能操作第一行,22221212a a a a aaaa------此时每列之和分别为2222,22,22,2a a a a---必有2220a-≥,解得0,1a =-当52a≥时,则接下来操作第二行22221212a a a a a a a a------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a aaa a-----则每一列之和分别为22a -,222a-,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数, 所以此时必须有2220a-≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求 综上:0a =-…………………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

【纯Word版含答案】2013年普通高等学校招生统一考试——理科数学(江西卷)

【纯Word版含答案】2013年普通高等学校招生统一考试——理科数学(江西卷)

绝密★启用前2013年普通高等学校招生全国统一考试(江西卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用0.5毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。

4. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z= ()A. -2iB. 2iC. -4iD.4i2.函数(1-x)的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]3.等比数列x,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.244.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为(D.015.(x2-)5展开式中的常数项为()A.80 B.-80 C.40D.-406.若,则s1,s2,s3的大小关系为A. s1<s2<s3 B. s2<s1<s3s2<s3<s1 D. s3<s2<s1C.7.阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为A.S=2*i-2B.S=2*i-1C.S=2*ID.S=2*i+48.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=A.8B.9C.10D.11 9.过点(,0)引直线ι的曲线 ,O 为坐标原点,当△AOB的面积取最大值时,直线ι的斜率等于A. B.-C.D-10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线ι1,ι2之间,ι//ι1,ι与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013北京高考理科数学试题
第一部分 (选择题 共40分)
一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤x <1},则A ∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}
2.在复平面内,复数(2-i)2对应的点位于( ) A.第一象限 B. 第二象限 C.第三象限 D. 第四象限
3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为 A.1 B.
23 C.1321
D.610987
5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1
e
x + B. 1
e
x - C. 1
e
x -+ D. 1
e
x --
6.若双曲线22
221x y a b
-=
A.y =±2x
B.y =
C.12y x =±
D.2
y x =± 7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于
A.
43 B.2 C.83
8.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪
+<⎨⎪->⎩
表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求
得m 的取值范围是 A.4,3⎛⎫
-∞-
⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.
2,3⎛
⎫-∞- ⎪⎝⎭ D.
5,3⎛
⎫-∞- ⎪⎝⎭
第二部分(非选择题 共110分)
二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,
6
π
)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .
11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,PA=3,9
16
PD DB =,则PD= ,AB=
.
12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .
13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ) ,则
λμ
=
14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .
三、解答题共6小题,共80分。

解答应写出文字说明,演2013年普通高等学校招生统一考试算步骤或证明过程
15. (本小题共13分)
在△ABC 中,a =3,b
B =2∠A . (I)求cos A 的值, (II)求c 的值
16.( 本小题共13分)
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天
(Ⅰ)求此人到达当日空气重度污染的概率
(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望。

(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 17. (本小题共14分)
如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面AB C ⊥平面AA 1C 1C ,AB=3,BC=5.
(Ⅰ)求证:AA 1⊥平面ABC ;
(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;
(Ⅲ)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1
BD
BC 的值.
18. (本小题共13分) 设l 为曲线C :ln x
y x
在点(1,0)处的切线. (I)求l 的方程;
(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方
19. (本小题共14分)
已知A 、B 、C 是椭圆W :2
214
x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积.
(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 20. (本小题共13分)
已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,
2n a +…的最小值记为B n ,d n =A n -B n
(I)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;
(II)设d 为非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1
要使可行域存在,必有m<-2m+1,要求可行域内
包含直线
1
1
2
y x
=-上的点,只要边界点(-m,1-2m)在直线
1
1
2
y x
=-上方,且(-m,m)在
直线
1
1
2
y x
=-下方,解不等式组
12
1
121
2
1
1
2
m m
m m
m m

⎪<-


->--



<--
⎪⎩
得m<
2
3
-。

相关文档
最新文档