电磁场与电磁波考试资料
专升本《电磁场与电磁波》
一、单选 (共16题,每题1分,共16分)1.根据亥姆霍兹定理,一个矢量位由它的()唯一确定。
A.旋度和散度B.梯度和散度C.旋度和梯度D.旋度2.时变电场是______,静电场是______。
A.无旋场;有旋场B.无旋场;无旋场C.有旋场;有旋场D.有旋场;无旋场3.由N 个导体组成的系统中,导体两两间都存在电容。
这些电容与()有关A.各导体的相对位置B.同时选择A 和BC.各导体的电位D.各导体所带电量4.下面的说法不正确的是()A.群速是指信号包络上恒定相位点的移动速度B.相速是指信号恒定相位点的移动速度C.相速代表信号的能量传播的速度D.在导电媒质中,相速与频率有关5.在恒定电场中,分界面两边电流密度矢量的法向方向是()A.不连续的B.不确定的C.等于零D.连续的6.两个点电荷对试验电荷的作用力可表示为两个力的()。
A.算术和B.代数和C.矢量和D.平方和7.关于良导体中的平面波,下列描述中错误的是()A.是衰减波。
频率越高,电导率越大,衰减越快B.磁场能量密度小于电场能量密度C.是TEM 波D.电场强度、磁场强度和传播方向两两垂直,且满足右手定则8.给定两个矢量,,则()。
A.见图B.见图C.见图D.见图9.已知某区域V 中电场强度满足,则一定有()A.V 中电荷均匀分布B.V 中电荷处处为0C.为静电场D.为时变场10.在分界面上电场强度的切向分量总是()A.连续的B.不确定的C.等于零D.不连续的11.下述描述中,错误的是()A.在分界面上磁感应强度的法向分量是不连续的B.若分界面上没有自由电荷,则电位移矢量的法向分量是连续的C.空间任意一点的能流密度由该点处的电场强度和磁场强度确定D.理想导体内部不存在时变的电磁场zy x e e e A 32-+=zy e e B +-=4=⨯B AE E 0∇=E E12.关于理想导体表面上的垂直入射,下列描述不正确的是()A.合成波的相位沿传播方向是连续变化的B.分界面上有表面电流存在C.在理想导体表面上,垂直入射波发生全反射现象D.合成波的电场和磁场均为驻波13.平行板电容器之间的电流属于()A.线电流B.位移电流C.运流电流D.传导电流14.静电场中的介质产生极化现象,与外加电场相比,介质内电场()A.不变B.变大C.不确定D.变小15.静电场的旋度等于()A.电荷密度与介电常数之比B.零C.电荷密度D.电位16.下面关于复数形式的麦克斯韦方程的描述中,有错误的是()A.磁场强度的旋度不等于零。
电磁场与电磁波总复习
一、 填空题(10)——已写入的答案——力佐提供1.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 垂直 。
2.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互 平行 。
3.矢量z y x e e e A ˆˆˆ++=的大小为 3 。
4.矢量场)(r A穿过闭合曲面S 的通量的表达式为:()sA r d s ∙⎰⎰ 。
5.磁感应强度沿任一曲面S 的积分称为穿过曲面S 的 磁能量 。
6.从场角度来讲,电流是电流密度矢量场的 通量 。
7.矢量场)(r A在闭合曲线C 上环量的表达式为:C()d r A r ∙⎰ 。
8.如果一个矢量场的旋度等于零,则称此矢量场为 无旋场 。
9.如果一个矢量场的散度等于零,则称此矢量场为 无散场 。
10.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于0 。
11.恒定磁场是无散场,故磁感应强度沿任一闭合曲面的积分等于 0 。
12.一个标量场的性质,完全可以由它的 梯度 来表征。
13. 亥姆霍兹定理告诉我们,研究任何一个矢量场应该从矢量的 散度与旋度 两个角度去研究。
14.从矢量场的整体而言,无散场的 旋度 不能处处为零。
15.从矢量场的整体而言,无旋场的 散度 不能处处为零。
16.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 静电场 。
17.由恒定电流所产生的磁场称为 恒磁场 。
18.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: =B H μ .19. 在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E满足的方程为: =D E ε . 20. 麦克斯韦 方程是经典电磁理论的核心。
21.所谓矢量线,乃是这样一些曲线,在曲线上的每一点上,该点的切线方向与矢量场的方向 相同 。
22.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 矢位(矢势) 函数的旋度来表示。
电磁场与电磁波考试题答案参考资料
第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
《电磁场与电磁波》试题含答案
E
;
E x 分量
� ˆ x + ye ˆ y + xe ˆz A = − x 2e
,试求
�
(2)若在 xy 平面上有一边长为 2 的正方形,且正方形的中心在坐标原点,试求该矢量 A 穿 过此正方形的通量。 17.已知某二维标量场 u ( x, y ) = x + y ,求 (1)标量函数的梯度; (2)求出通过点 (1,0) 处梯度的大小。
三、计算题
15.矢量函数
(每小题 10 分,共 30 分) � ˆ x + yze ˆz A = − yx 2 e
,试求
� ∇ ⋅ A (1) � (2) ∇ × A � � ˆx − e ˆy ˆ x − 2e ˆz B = e A = 2 e 16.矢量 , ,求
(1 ) A − B (2)求出两矢量的夹角 17.方程 u ( x, y, z ) = x + y + z 给出一球族,求 (1)求该标量场的梯度; (2)求出通过点 (1,2,0) 处的单位法向矢量。
。
等于零,则此两个矢量必然相互垂直。 关系。 函
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 数的旋度来表示。
二、简述题
(每小题 5 分,共 20 分) � � ∂B ∇×E = − ∂t ,试说明其物理意义,并写出方程的积分形式。 11.已知麦克斯韦第二方程为
(1) 求出入射波磁场表达式; (2) 画出区域 1 中反射波电、磁场的方向。
�
区域 1 图3
区域 2《电磁场与电磁波》试题2一、填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的介电常数为 ε ,则电位移矢量 D 和电场 E 满足的 方程为: 。
电磁场与电磁波考试内容
电磁场与电磁波考试内容极化电荷:q 分布球体内;集中在球心13()4rqr E e r a a πε=<,220()4rqE e r a r πε=>101200233()3()1 ()()44P P E q d qrr r dr a a ρεεεεεεπεπε=-?=--?-=--=-r a = 01012()|()|4Pa r a r r a qn P e E aεερεεπε==-==-=电荷q 集中在球心时12()4rq E e r a rπε=<,220()4rq E e r a rπε=>0r ≠时2010122()11()()04P q d P E r r dr rεερεεπε-=-?=--?=-=0r =时为电场1E 的奇异点,该处应有一极化点电荷。
设此极化点电荷为P q ,根据高斯定理,有E dS q q ε=+?取S 为以介质球心为中心、()r r a <为半径的球面,20244P q r q q r εππε=+;0Pq q εεε-=- 在r a = 01012()|()|4Pa r a r r a qn P e E aεερεεπε==-==-=磁化电流:求感应强度B1和B2;磁化电流分布(1)2I H e rφπ=;0102, 22I IB H e B H e r rφφμμμμππ==== (2)磁介质在的磁化强度 0200()12IM B H e rφμμμπμ-=-=则磁化电流体密度00()111()()02M zz I d d J M e rM e r r dr r dr rφμμπμ-=??=== 在0r =处,2B 具有奇异性,所以在磁介质中0r =处存在磁化线电流m I 。
以z 轴为中心、r 为半径作为一个圆形回路C ,由安培环路定理,有01I I I B dl μμμ+==,故得到 0(1)m I I μμ=- 在磁介质的表面上,磁化电流面密度为000()|2mS z z rIJ M e e rμμπμ=-=?=电容电阻:厚度方向电阻;圆弧面间电阻;a 方向电阻。
电磁场与电磁波(必考题)
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
电磁场与电磁波概念复习资料
一、判断1. 安培环路定理中,其电流I 是闭合曲线所包围的电流;2. 恒定磁场是无源、有旋场; P1113. 体电荷密度的单位是C/m3; P344. 面电荷密度的单位是C/m2; P355. 线电荷密度的单位是C/m ; P356. 体电流密度的单位是A/m2 ;P367. 面电流密度的单位是A/m ; P378. 矢量场A 的散度是一个标量;9. 如果0F ∇∙=,则F A =∇⨯; P2710. 如果0F ∇⨯=,则F u =-∇ ;P2611. 判断回路中是否会出现感应电动势,则看回路所围面积的磁通是否变化; P6312. 静电场的电容C 比拟恒定电场的电导G ;13. 静电场的电位移矢量D 比拟恒定电场的电流密度J ;P10814. 静电场的介电常数ε比拟恒定电场的电导率σ;P10815. 时变电磁场的能量以电磁波的形式进行传播; P17216. 在无源空间中,电流密度和电荷密度处处为0; P17217. 坡印延定理描述的是电磁能量守恒关系; P17618. 电导率为有限值的导电煤质存在损耗; P20519. 在理想导体内不存在电场强度和磁场强度;20. 弱导电煤质的损耗很小; P20821. 在两种煤质的分界面上,存在面电流分布时,磁场强度H 的切向分量不连续; P7922. 在两种煤质的分界面上,不存在面电流分布时,磁场强度H 的切向分量连续; P7923. 在两种煤质的分界面上,电场强度E 切向分量连续; P7924. 在两种煤质的分界面上,磁感应强度B 的法向分量连续; P7925. 在两种煤质的分界面上,存在面电荷时,电位移矢量D 的法向分量不连续; P7926. 在两种煤质的分界面上,不存在面电荷时,电位移矢量D 的法向分量连续; P7927. 无旋场,其场量可以表示为另一个标量场的梯度; P2628.无散场,其场量可以表示为另一个矢量场的旋度;P2729.梯度的定义与坐标系无关,但具体表达式与坐标系有关;P1230.均匀平面波在理想介质中,其本征阻抗是实数;P19731.时谐电磁场中,电场强度的复数表达式中不含时间因子;P18232.载有恒定电流的两个回路之间存在相互作用力;P4533.电偶极子是相距很小距离的两个等值异号的点电荷组成的电荷系统;P4034.麦克斯韦方程表明:时变电场产生磁场,时变磁场产生电场;P7035.静态电磁场是电磁场的一种特殊形式;P8936.静电场最基本的性质是对静止电荷有作用力,表明静电场有能量;P10037.回路中的感应电动势等于穿过回路所围面积磁通量的时间变化率;P6338.静电场和恒定磁场都属于静态电磁场;P8939.在静态场情况下,电场强度可用一个标量电位来描述P90;磁感应强度可用一个矢量磁位来描述;P11140.要在导电煤质中维持恒定电流,必须存在一个恒定电场;P10641.由麦克斯韦方程可以推导建立电磁场的波动方程;P17242.位移电流= 时变电场;P7043.电磁能量是通过电磁场传输的;44.应用最多的是时谐电磁场;P18045.均匀平面波在理想介质中,电场、磁场与传播方向之间相互垂直,是横电磁波(TEM波);电场和磁场的振幅不变;波阻抗为实数;电场与磁场同相位;电磁波的相速与频率无关;电场能量密度等于磁场能量密度;P19646.均匀平面波在导电煤质中,电场、磁场与传播方向之间相互垂直,仍然是横电磁波(TEM波);电场与磁场的振幅呈指数衰减;波阻抗为复数,电场与磁场不同相位;电磁波的相速与频率有关;平均磁场能量密度大于平均电场能量密度;P20747.电磁波在良导体中,衰减常数随频率、煤质的磁导率和电导率的增加而增大;P20948.趋肤效应是良导体中的电磁波局限于导体表面附近区域;P20949.散度定理是体积分到面积分的变化;P2050.斯托克斯定理是面积分到线积分的变化;P2451.在无损耗煤质中,电磁波的相速与波的频率无关;52.标量场的梯度是一个矢量;P1353.高斯定理中,电场强度由闭合曲面内的电荷确定;54.均匀平面波在理想导体表面发生透射;55.反射系数和透射系数的差为1;P24456.在两种煤质中间插入四分之一波长的匹配层是为了消除煤质1的表面上的反射;P24057.静态场中的边值问题分为三类。
电磁场与电磁波总复习
一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
电磁场与电磁波48学时考试复习
一、基本概念;电场强度▁▁▁▁、磁场强度▁▁▁▁▁、坡印廷向量▁▁▁、电位▁▁▁、极化强度▁▁▁▁、电通量密度▁▁▁▁、磁化强度▁▁▁▁、电感▁▁▁、能量密度▁▁▁▁、介电常数▁▁▁▁▁、电偶极矩▁▁▁▁2.解释名词:散度、旋度、电场强度、传导电流、位移电流、电位、梯度、电偶极子、磁偶极子、束缚电荷、束缚电流、极化强度、磁化强度、电容、电感、互感、能量密度、恒定电场、等位面、漏电流、铁磁物质、磁通、坡印廷向量、理想导体、理想介质3.主要内容:电场、磁场边界条件;电场与电位的关系;真空中的电场;介质中的电场;真空中的磁场;介质中的磁场;高斯定律;安培环路定律;同轴电缆中电场磁场计算;磁通量的计算;直导线对线框的作用力;同轴线电容、漏电流、电导计算;复坡印廷向量,坡印廷向量平均值;二、填空题:①.电场的最基本特征就是电场对运动或静止的电荷都有作用力。
②.在静电场中,导体内电场等于▁▁,导体是▁▁▁▁体,导体表面是▁▁▁▁,电力线▁▁▁于导体表面。
而在恒定电场中,导体内部可能存在▁▁▁。
③.在恒定电场中有⎰∙ss d E=0,它说明在均匀内部虽然有恒定电流,但没有▁▁▁,恒定电荷只能分布在导体▁▁▁。
④.在导电媒质中,平均磁能密度比平均电能密度▁▁。
这正是由于σ≠0 所引起的▁▁▁所致,因为它激发了附加▁▁▁。
⑤.全电流包括▁▁▁▁▁▁、▁▁▁▁▁▁和▁▁▁▁▁▁。
⑥.当磁力线从▁▁▁▁▁▁进入到▁▁▁▁▁▁时,▁▁▁▁一侧的B ▁▁▁于分界面。
⑦.介质在外电场作用下,内部的▁▁▁▁▁形成▁▁▁▁▁,对外呈▁▁▁▁▁▁,从而改变了原来的▁▁▁▁▁▁。
一、判断与选择(判断题正确时在括号内打√,错题打╳,选择题直接选)(分)(1) 电场强度相同的地方电位也一定相等。
( )(2) 电力线与磁力线在任何情况下都相互垂直 ( )(3) 电感的大小由流过导体的电流确定。
( )(4) 电场磁场在通过不同媒质界面会发生突变。
电磁场与电磁波考试试题
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
(完整word版)电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波期末考试题库
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
电磁场与电磁波复习资料
电磁场与电磁波复习资料标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。
矢量用坐标重量表示矢量的混合运算—— 分配律—— 分配律—— 标量三重积—— 矢量三重积1. 电荷体密度电荷连续分布于体积V 内,用电荷体密度来描述其分布依照电荷密度的定义,假如已知某空间区域V 中的电荷体密度,则区域V 中的总电量q 为2. 电荷面密度若电荷分布在薄层上的情形,当仅考虑薄层外,距薄层的距离要比薄层的厚度大得多处的电场,而不分析和运算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。
面分布的电荷可用电荷面密度表示。
单位: C/m2 (库仑/米2)假如已知某空间曲面S 上的电荷面密度,则该曲面上的总电量q 为 3. 电荷线密度在电荷分布在细线上的情形,当仅考虑细线外,距细线的距离要比细线的直径大得多处的电场,而不分析和运算线内的电场时,可将线的直径忽略,认为电荷是线分布。
单位: C/m2 (库仑/米2)假如已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为 4. 点电荷点电荷的电荷密度表示电流 —— 电荷的定向运动而形成,用i 表示,其大小定义为:单位时刻内通过某一横截面S 的电荷量,即说明:电流通常时时刻的函数,不随时刻变化的电流称为恒定 电流,用I 表示。
zz y y x x e A e A e A A++=γβαcos cos cos A A A A A A z y x ===)cos cos cos (γβαz y x e e e A A ++=γβαcos cos cos z y x A e e e e ++=CB C A C B A⋅+⋅=⋅+)(CB C A C B A⨯+⨯=⨯+)()()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅C B A B C A C B A)()()(⋅-⋅=⨯⨯Vr q V r q r V d )(d )(lim )(0 =∆∆=→∆ρ⎰=VV r q d )( ρSr q S r q r S S d )(d )(lim )(0 =∆∆=→∆ρ⎰=Ss S r q d )( ρl r q l r q r l l d )(d )()(lim0 ==→∆∆ρ∆⎰=Cl l r q d )(ρ)()(r r q r '-= δρ0lim ()d d t i q t q t ∆→=∆∆=形成电流的条件: • ①存在能够自由移动的电荷 •② 存在电场1、 体电流电荷在某一体积内定向运动所形成的电流称为体电流,用电流密度矢量 J 来描述。
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
电磁场与波复习资料完整版
(2.11) (2.12) (2.13) (2.14)
线密度分布电荷 3.静电场方程 积分形式 :
∫
l
r −r' ρl ( r ')dl ' 3 r −r'
1 N ∑ qi ε 0 i =1
� ∫
S
E ( r )idS =
(2.15) (2.16) (2.17) (2.18)
� ∫ E ( r )idl = 0
1.坡印廷定理 坡印廷定理表征了电磁场能量守恒关系,其微分形式为
−∇i( E × H ) =
积分形式为
∂ 1 1 ( H i B + E i D) + E i J ∂t 2 2
(4.8)
d 1 1 ( H i B + E i D )dV + ∫ E i JdV (4.9) ∫ V dt V 2 2 坡印廷定理的物理意义:单位时间内通过曲面 S 进入体积 V 的电磁能量等于单位时间
ρ ( r ) = lim
C/m3 C/m 2 C/m
(2.1) (2.2) (2.3)
“点电荷”是电荷分布的一种极限情况。当电荷 q 位于坐标原点时,其体密度 ρ ( r ) 应 为
ρ ( r ) = lim
可用 δ 函数表示为
q ⎧ ⎪0 =⎨ ∆V → 0 ∆V ⎪ ⎩∞ ρ ( r ) = qδ ( r )
Wm =
(3.37) (3.38) (3.39)
L= M 21 = ψ 21 I1 µ M= 4π
ψ I
, M 12 =
(3.41) (3.42) (3.43)
∫
c1
ψ 12 I2 dl gdl ∫ c2 r12− r21
电磁场与电磁波答案(无填空答案)
电磁场与电磁波复习材料简答2.试写出在理想导体表面电位所满足的边界条件。
一2•答:设理想导体内部电位対机,空气媒质中电位为观。
由于理想导1■本表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有〔3分)3.试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分)4.什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
(3分)色散将使信号产生失真,从而影响通信质量。
(2分) aB dt ,试说明其物理意义,并写出方程的积分形式。
答:意义:随时间变化的磯场可以产生电场-其和分形式为:样•必=-[理廖C 右况6.试简述唯一性定理,并说明其意义。
答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的「这一定理称为唯一性定理4(3分9它的意义:给岀了定解的充要条件:既满足方程区满足边界条件的解是正确的。
7. 什么是群速?试写出群速与相速之间的关系式。
〔写出微分形式也对)VxE=5.已知麦克斯韦第二方程为 1.简述恒定磁场的性质,并写出其两个基本方程。
1■答:恒定谢场是连续的场或无散场,即谢感应强度沿任一闭合曲面的积分等于恒定磁场的源是矢量两个基本方答:它表明时变场中的磁场是由传导电§盍丿和位移电渍该方程的积分形芒为答:电磁波包络或能量的传播速度称为群速。
群速叫与相速®的关系式为:耳=―気厂(2分)1片畑8. 写出位移电流的表达式,它的提出有何意义?告,位移电流,=®位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。
9.简述亥姆霍兹定理,并说明其意义。
答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。
电磁场与电磁波复习资料全
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
电磁场与电磁波复习资料.
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ= 、20n E ⨯=、2s n H J ⨯=、20n B = )1. 简述穿过闭合曲面的通量及其物理定义2.sA ds φ=⋅⎰⎰是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 在直角坐标系证明0A ∇⋅∇⨯=2.()[()()()]()()()0y x x x z z x y z x y z y y x x z z AA A A A A A e e e e e e x y z y z z x x y A A A AA A x y z y z x z x y∇⋅∇⨯∂∂∂∂∂∂∂∂∂=++⋅-+-+-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-=∂∂∂∂∂∂∂∂∂1. 简述亥姆霍兹定理并举例说明。
2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
例静电场0sD ds q ⋅=∑⎰⎰0D ρ∇⋅= 有源0lE dl ⋅=⎰0E ∇⋅= 无旋1. 已知 R r r '=- ,证明RR R R e R''∇=-∇==。
电磁场与电磁波试题
电磁场与电磁波一、填空题。
1.已知电荷体密度为ρ,其运动速度为v,则电流密度的表达式为:_________________.2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为∈,电荷体密度为零,电位所满足的方程为__________________________.3.时变电磁场中,平均坡印延矢量的表达式为_________________________.4.时变电磁场中,变化的电场可以产生_________________________.5、位移电流的表达式为______________________.6、两相距很近的等值异性的点电荷称为_______________________.7、恒定磁场是______场,故磁感应强度沿任一闭合曲面的积分等于零。
8、如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互______________________.9、对平面电磁波而言,其电场、磁场和波的____________三者符合右手螺旋关系。
10、由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可以用磁矢位函数的__________来表示。
11、静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为________________.12、变化的磁场激发__________是变压器和感应电动机的工作原理。
13.从矢量场的整体而言,无旋场的___________不能处处为0。
14.________________方程式经典电磁场理论的核心。
15.如果两个不等于0的矢量的点乘等于0,则此两个矢量必然相互________16.在导电媒质中,电磁波的传播速度随_____________变化的现象称为色放。
17.电场强度矢量的方向随时间变化所描绘的_____________称为极化。
18.两个相互靠近,又相互_____________的任意形状的导体可以构成电容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2 .3 )
例6:试利用麦克斯韦方程,推导无源空间磁场强度满足的 波动方程。 解:在无源空间,在线性、各向同性的均匀媒质中,E、H 满足的麦克斯韦方程为
H E t (1)
H E t H 0 E 0
(2) (3) (4)
对(1)式两边取旋度,有
2
q' 4 0 ( d d ')
2
q '' 4 0 d
2
Q 4 0 d
2
a d
q a
2
a )
2
q
2
d 4 0 d
4 0 ( d Q [ d a d
2
d aqd
1 4 0
q
(d a )
2 2
2
]
点 电 荷 q受 电 场 力 为 q 4 0 Q [ d a d
(2) 利用安培环路定理得
7 0I 4 1 0 2 0 3 B1 .2 m m e e e 3 .3 3 1 0 T 3 2 2 1 .2 1 0
(3).
in
SFra bibliotek B in d S 4 1 0
证明: D H J t
两边取散度有 ( H ) 0 J ( D ) t ( D ) t t 得 D (2 .4 )
得 B ( E ) 0 ( ) ( B ) t t B 常数 0
?
H ( E ) t
将(2)式代入上式,得到
H
H
2 2
t 2 利用矢量恒等式 H ( H ) H
0
,和式(3),即
可得H在无源空间服从的波动方程
H
V
相互作用力为
W m 1 2 F | I C 0 ( n a I a n b I b ) R a l I b C 12 2
F 0 ,说明作用力沿 l 减小的方向,即为排斥力。
例 5 :试 证 明 : 由 麦 克 斯 韦 的 两 个 旋 度 方 程 和 连 续 性 方 程 可导出两个散度方程。
解:设内、外导体上分别带电q 和 q, 由 高 斯 定 理 有 2 D d s 2 r ( D1 D 2 ) q s (a r b ) 由 边 界 条 件 : E 1 E 2, 1 E 1 D 1,
2 E 2 D 2, 可 以 得 到
E1 E 2 q 2 ( 1 2 ) r
2
U h
2
ln
R2 R1
例:两个同轴的螺线管,重叠部分长为 l ,单位长度上分 Ia na 别绕有、 n b 匝线圈,通有方向相反的电流、 I b ,设两线 圈半径相等,均为R,忽略边缘效应,请用虚位移法求两线 圈间相互作用力。
螺线管内的磁场强度分别为 H a ex na I a H b e x nb I b ?
2 * 1 Ei0 1 2 S a vi R e[ E i H i ] e z ez W /m 2 2 1 6 0 2 2 * 1 1 Ei0 2 S a vr R e[ E r H r ] e z ez W /m 2 2 1 5 4 0 2 2 * 1 2 Ei0 2 S a vt R e[ E t H t ] e z ez W /m 2 2 2 1 3 5
?
解:设电极A、B间加电压为U,则
U E e I
U J E e
J dS
S
R R1
U
hd
Uh
ln
R2 R1
半园环的电阻为
R U I
h ln ( R 2 / R1 )
半园环的功率损耗为
P U R
例 2: 内 、 外 半 径 分 别 为 a和 b的 球 形 电 容 器 , 上 半 部 分 填 充 介 电 常 数 为 1的 电 介 质 , 下 半 部 分 填 充 介 电 常 数 为 2的 电 介 质 。 如 图 所 示 。 今 在 两 极 板 间 加 电 压 U 0, 试 求 : (1).电 容 器 内 的 电 位 和 电 场 分 布 ; ( 2 ).电 容 器 的 电 容 。
a
2
a d
q
,空间的电位分布为:
( a 与电位参考点选取有关)
1 ( q q r q
q'
2
d
a
(r a )
(r a)
4 0 r q
q [
q' r q '
q'
q' r q '
2
) a
q 4d
2
(2)
F q F q
4 0 ( d d ')
2
又由于
U 0 a E d l
b
· ( 2
q (b a )
1
2 )ab
q
2 ( 1 2 ) a b U 0 ba
两极板间电场和电位分布为 E (r ) ar
b
abU 0 (b a ) r
2
(a r b )
a U (b r ) 0 ( r ) r E d l (b a ) r
在重叠部分,合磁场为
H e x ( n a I a nb I b ) B e x 0 ( n a I a nb I b )
1 2 2 H B d V 0 ( na I a nb I b ) R l 2
重叠部分的磁场能为
Wm 1 2
2
q ( q '' Q ) 4 0 D
2
Q ( R / D )q D
2
Rq D (D R / D )
2 2
]
(2). 当q与Q同号,且F表现为斥力,即F<0时,应有
Q ( R / D )q D
2
2
Rq D (D R / D )
2
2 2
2
0
由此得出
Q q
RD
2
(D R )
Q q RD
2 3 2 2
(D R )
R D
成立时,
F
表现为引力。
(1) 镜像电荷的大小和位置分别为
q' R D q '' q ' R D q, q, d ' R
2
D d '' 0
导体球自身电荷Q置于球心,故点电荷q受到的电场力为
F qq ' 4 0 ( D d ') q 4 0 [
2
q
F qE
aqd (d a )
2 2 2
]
Q
a d
2
q
即
d
aqd (d a )
2 2 2
Q d aq d
3
aqd (d a )
2 2 2
?
整理即得结果。
例: 一半径为R的导体球带有电荷量Q,在球体外距球心D处 有一点电荷q。 (1). 求点电荷q与导体球之间的静电作用力; (2). 证明:当q与Q同号且
R D
例:两个点电荷 q 位于半径为a的导体球直径延长线上, 分别距球心
d (d a )
,如下图所示。求(1). 空间电位分布;
(2). 两个点电荷分别受到的静电力; (3).两个点电荷的像电
荷构成的中心位于球心的电偶极子的电偶极矩。
?
(1)选择点电荷 q 的像电荷分别为 q ' ,其中 q ' ,分别距球心 d '
?
(1)园柱形导体内的电流密度为
J ez I
a
2
ez
20
(1 1 0 )
3
2
6 2 e z 6 .3 7 1 0 A / m
利用安培环路定理得
1 1 7 6 3 3 B 0 .8 m m e 0 J e 4 1 0 6 .3 7 1 0 0 .8 1 0 e 3 .2 1 0 T 2 2
1 jk z H i ey Ei0e 1 e y jk z H r ey Ei0e 1 e y
e
j 2 z
1
e
j 2 z
jk z H t ey Ei0e 2 e y
2
e
j 4 z
(3). 入射波、反射波、透射波的平均功率密度为
( d d ')
]
(3)
3 a 2a P q ' l q ( d ' d ') e l 2 q e l d d
例:厚度为h的导体平板做成半园环,如下图所示。导体的电 导率为 ,设电极A、B的电导率 0 求半园环的电阻。 如果在电极间加电压U,求半园环的功率损耗。
例 11: 电 磁 波 磁 场 振 幅 为
1 3
A / m, 在 自 由 空 间 沿 z 方 向 传 播 ,
当 t 0, z 0时 , H 在 y 方 向 , 相 位 常 数 3 0 ra d / m。 ( a )写 出 E 、 H 的 表 达 式 ; (b )求 频 率 和 波 长 。