一次函数测试题-北师大版八年级数学(上)各章测试题及其期末测试题
北师大版八年级数学(上)一次函数检测试卷
八年级数学(上)一次函数检测试卷一、选择题:本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各曲线中不能表示y是x的函数是()A.B.C.D.2. 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量 B.时间t是变量C.速度v和时间t都是变量 D.速度v、时间t、路程s都是常量3.汽车由 A 地驶往相距 120km 的 B 地,它的平均速度是 30km/h,则汽车距B 地路程(s km)与行驶时间 t(h)的函数关系式及自变量 t 的取值范围是()A.S=120﹣30t(0≤t≤4) B.S=120﹣30t(t>0)C.S=30t(0≤t≤40) D.S=30t(t<4)4. 一次函数y=﹣2x+4的图象是由y=﹣2x的图象平移得到的,则移动方法为()A.向右平移4个单位B.向左平移4个单位C.向上平移4个单位D.向下平移4个单位5. 根据图中的程序计算y的值,若输入的x值为3,则输出的y值为()A.﹣5 B.5 C.3D.426. 一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个7. 一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()A. x=2B. y=2C. x=-1D. y=-18.把两个一次函数y=ax+2与y=2x﹣a的图象在同一坐标系中画出,则可能是下面图象中的()A. B.C. D.9. 向一个容器内均匀地注入水,液面升高的高度y与注水时间x满足如图所示的图象,则符合图象条件的容器为()A. B.C.D.10.如图,已知一次函数y=kx﹣1和y=﹣x﹣b的图象交于点P(﹣1.﹣2),则关于x的方程kx﹣1=﹣x﹣b的解是.二、填空题:本大题共5小题,每小题3分,共15分.11. 一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m=____,n=______.12.若正比例函数y=2x上的点(1,2)关于x轴的对称点在y=kx上.则k的值为_________13.一次函数的图象经过点A(3,2),且与y轴的交点坐标是B(0.-2),则这个一次函数的表达式是_____________________14. 如图,已知一次函数y=kx﹣1和y=﹣x﹣b的图象交于点P(﹣1.﹣2),则关于x的方程kx﹣1=﹣x﹣b的解是.15. 已知一次函数y1=(m2-4)x+1-m与y2=(m2-2)x+2m+3的图象与y轴交点的纵坐标互为相反数,则m的值为___________.三、解答题:本大题共8小题,共75分.16.(8分)已知弹簧的长度y(cm)在一定弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时弹簧的长度是6cm,挂4kg的重物时弹簧的长度是7.2cm,求这个一次函数的表达式.17.(8分)已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.18.(9分)地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间满足如下关系:1 2 3 4深度x(km)温度y55 90 125 160(℃)(1)请直接写出y与x之间的关系式;(2)当x=10时,求出相应的y值;(3)若岩层的温度是475℃,求相应的深度是多少?19.(8分)某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图4-9所示.(1)求y与x的函数关系式;(2)一箱油可供拖拉机工作几个小时?20.(9分)如图所示,已知直线y=x+3的图象分别与x轴和y轴交于点A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式.21.(9分)如图所示,已知函数y=kx+3与y=mx的图象相交于点(2,1).(1)求这两个函数的表达式;(2)求图中阴影部分的面积.22.(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家,两人离家的距离y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示.(1)家与图书馆之间的距离为________m,小玲步行的速度为________m/min;(2)求小东离家的距离y关于x的函数表达式.(3)求两人相遇的时间.23.(12分)纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,且每月排污设备物资损耗为8000元.设该厂每月生产产品x件,每月获得纯利润y元.(纯利润=总收入﹣总支出).(1)求出y与x之间的函数表达式;(2)若厂家有盈利,则每月至少要生产多少件产品?(3)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产产品的件数.。
北师大版八年级数学上册第四章一次函数期末复习练习题(有答案)
第四章一次函数一.选择题1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是()A.13B.5C.2D.3.52.函数y=的定义域是()A.x≠0B.x≥2C.x≥2且x≠0D.x>2且x≠0 3.根据如图所示的计算程序,若输入x=﹣2,则输出结果y的值为()A.﹣3B.3C.﹣7D.74.下列图形中,不能代表y是x函数的是()A.B.C.D.5.若函数y=(k﹣3)x+k2﹣9是正比例函数,则()A.k≠3B.k=±3C.k=3D.k=﹣36.如图,直线y=ax+b过点A(0,3)和点B(﹣7,0),则方程ax+b=0的解是()A.x=0B.x=3C.x=﹣7D.x=﹣47.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=2的解为()A.x=1B.x=2C.x=3D.无法判断8.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A.B.C.D.9.对于函数y=2x﹣3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象不经过第二象限C.当x>0时,y>0D.y的值随x值的增大而减小10.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y112.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=6;④当P A+PC的值最小时,点P的坐标为(0,1).其中正确的说法是()A.①②③B.①②④C.①③④D.①②③④二.填空题13.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.14.如图,在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A′OB′,其中点A′与点A对应,点B′与点B对应.若点A(﹣1,2),B(﹣3,0),则直线A′B′的解析式为.15.y=(m﹣1)x|m|+3是关于x的一次函数,则m=.16.已知y与x成正比例,且x=1时,y=﹣2,则当x=﹣1时,y=.17.函数y=(2m﹣2)x+3﹣m的图象经过第一、二、三象限,m的取值范围是.18.如图,直线CD与x轴、y轴正半轴分别交于C、D两点,∠OCD=45°,第四象限的点P(m,n)在直线CD上,且mn=﹣6,则OP2﹣OC2的值为.19.甲、乙两人同时从A、B两地出发相向而行,甲先步行到达B地后原地休息,甲、乙两人的距离y(km)与乙步行的时间x(h)之间的函数关系的图象如图,则步行全程甲比乙少用小时.20.在某条街道上依次有图书馆、小明家、学校,某日小明从家出发先去学校,然后返回去图书馆,与此同时小亮从学校出发去图书馆,两人均匀速行走.经过一段时间后两人同时到达图书馆,设两人步行的时间为x分,两人之间的距离为y米,y与x之间的函数关系如图所示,则学校与图书馆的距离是米.三.解答题21.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.22.一次函数y=kx+b(k≠0)的图象经过点(﹣2,0)和(0,2),求k,b的值.23.根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.24.如图,边长为4的等边△ABC,请建立适当的直角坐标系,使得点B的坐标为(4,0),并求出直线AC 的关系式.25.已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.26.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣12,0),B(0,6)两点.(1)求一次函数的解析式;(2)若C为x轴上任意一点,使得△ABC的面积为6,求点C的坐标.27.在如图的直角坐标系中,画出函数y=﹣2x+3的图象,并结合图象回答下列问题:(1)y的值随x值的增大而(填“增大”或“减小”);(2)图象与x轴的交点坐标是;图象与y轴的交点坐标是;(3)当x时,y<3.28.已知一次函数y=kx﹣2,当x=2时,y=0.(1)求该一次函数的表达式;(2)将该函数的图象向上平移3个单位长度,求平移后的图象与x轴的交点的坐标.29.如图,在平面直角坐标系中,已知直线与y轴,x轴分别交于点A和点B,点E在直线AB 上.将线段AO沿OE翻折,使点A落在线段AB上的点D处;再将线段OB沿OF翻折,使点B落在OD的延长线上的点B'处,两条折痕与线段AB分别交于点E、F.(1)分别求出点A和点B的坐标;(2)请直接写出线段B'F的长度为;(3)若点P坐标为(﹣4,n),且△ABP的面积为8,则n=.30.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?31.从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)32.小明和爸爸进行登山锻炼,两人从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距离出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图,根据图象信息解答下列问题,(1)图中a=;b=;c=.(2)小明上山速度为米/分;爸爸上山速度为米/分,(3)直接写出小明与爸爸何时相距30米.33.某学校的教学楼,校门口和公园恰好依次分布在一条笔直的公路上,周五下午初二年级组织学生从校门口出发匀速步行到公园野餐,学生队伍(学生队伍长度忽略不计)出发同时林林发现未带餐垫,便立即匀速跑向教学楼,到教学楼后用6分钟找到了餐垫,他即刻将速度提高至原速度的倍匀速向公园跑去,最后林林比学生队伍提前分钟到达公园.在整个过程中,林林和学生队伍分别到教学楼的距离y (米)与学生队伍的步行时间t(分钟)之间的关系如图所示.根据图象解决下列问题:(1)林林最初从校门口跑向教学楼为米/分钟,学生队伍的速度为米/分钟;(2)学生队伍出发多少分钟后与林林相距360米?34.如图,直线y=与坐标轴分别交于点A、B,与直线y=x交于点C,在如图线段OA上,动点Q 以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P,Q其中一点停止运动时,另一点也停止运动.分别过点P、Q做x轴的垂线,交直线AB、OC 于点E,F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.35.为深入推进“健康沈阳”建设,倡导全民参与健身,我市举行“健康沈阳,重阳登高”活动,广大市民踊跃参加.甲乙两人同时登山,2分钟后乙开始提速,且提速后乙登高速度是甲登山速度的3倍,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米,乙在距地而高度为300米时对应的时间t是分钟;(2)请分别求出线段AB、CD所对应的函数关系式(需写出自变量的取值范围);(3)登山分时,甲、乙两人距地面的高度差为70米?36.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小冲出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间;(2)分别求线段AB、EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.37.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y(元)与x之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.38.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下.方案一:购买一张学生卡,每次游泳费用按六折优惠;方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求y1关于x的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.39.为发展农村经济,修建一批沼气池.某村共264户村民,村里得335200元政府补助款,不足部分由村民集资,修建A型、B型沼气池共20个,两种沼气池每个的修建费用、修建用地、可供使用户数情况如表:沼气池修建费用(万元/个)修建用地(m2/个)可供使用的户数(户/个)A型34820B型263已知政府只批给该村沼气池修建用地708m2,设修建A型沼气池x个;修建两种沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)既不超过政府批给该村沼气池修建用地,又要使该村每户村民都用上沼气的修建方案有哪几种?(3)若选择(2)中费用最少的修建方案,平均每户村民应自筹资金多少元?40.如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)求k、b和m的值;(2)求△ADC的面积;(3)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由;(4)若动点P在线段DA上从点D开始以每秒1个单位的速度向点A运动,设点P的运动时间为t秒.是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,清说明理由.参考答案一.选择题1.【解答】解:当y=5时,5=2x+1,解得:x=2,故选:C.2.【解答】解:由题可得,,解得x≥2,∴函数y=的定义域是x≥2,故选:B.3.【解答】解:x=﹣2时,y=2x2﹣1=7,故选:D.4.【解答】解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;C、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项符合题意;D、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;故选:C.5.【解答】解:∵y=(k﹣3)x+k2﹣9是正比例函数,∴k2﹣9=0,且k﹣3≠0,解得:k=﹣3,故选:D.6.【解答】解:∵直线y=ax+b过点B(﹣7,0),∴方程ax+b=0的解是x=﹣7,故选:C.7.【解答】解:观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,2),所以关于x的方程kx+b=2的解为x=1,故选:A.8.【解答】解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.9.【解答】解:A、当x=1,y=2x﹣3=2﹣3=﹣1,点(1,1)不在函数y=2x﹣3的图象上,所以A选项错误;B、函数y=2x﹣3经过第一、三、四象限,所以B选项正确;C、当x=0时,y=﹣﹣3,则x>0,y>﹣3,所以C选项错误;D、因为k=2>0,则y的值随x值的增大而增大,所以D选项错误.故选:B.10.【解答】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因此一次函数y=﹣bx+k的一次项系数﹣b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因此一定经过二三四象限,因此函数不经过第一象限.故选:A.11.【解答】解:∵A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,∴y1=1+b,y2=+b,y3=﹣3+b.∵﹣3+b<1+b<+b,∴y3<y1<y2.故选:C.12.【解答】解:①∵直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),∴方程组的解为,故①正确,符合题意;②把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,又∵直线l2:y=﹣x+m,∴直线l1与直线l2互相垂直,即∠BCD=90°,∴△BCD为直角三角形,故②正确,符合题意;③把C(﹣,)代入直线l2:y=﹣x+m,可得m=1,y=﹣x+1中,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,在直线l1:y=2x+4中,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2,∴S△ABD=×3×2=3,故③错误,不符合题意;④点A关于y轴对称的点为A'(2,0),由点C、A′的坐标得,直线CA′的表达式为:y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故④正确,符合题意;故选:B.二.填空题13.【解答】解:由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).14.【解答】解:∵△AOB顺时针旋转90°得到△A′OB′,其中点A′与点A对应,点B′与点B对应,而点A(﹣1,2),B(﹣3,0),∴点A′(2,1),B′(0,3),设直线A′B′的解析式为y=kx+b,把A′(2,1),B′(0,3)代入得,解得,∴直线A′B′的解析式为y=﹣x+3.故答案为y=﹣x+3.15.【解答】解:∵y=(m﹣1)x|m|+3是关于x的一次函数,∴|m|=1且m﹣1≠0,解得m=﹣1,故答案为:﹣1.16.【解答】解:因为y与x成正比例,所以设正比例函数的解析式为y=kx(k≠0),把x=1时,y=﹣2代入得:k=﹣2,故此正比例函数的解析式为:y=﹣2x,当x=﹣1时,y=﹣2×(﹣1)=2.故答案为:2.17.【解答】解:∵函数y=(2m﹣2)x+3﹣m的图象经过第一、二、三象限,∴,∴1<m<3.故答案为:1<m<3.18.【解答】解:如图,过P作PE⊥y轴于E,则OC∥PE,∴∠OCD=∠DPE=45°,∵∠DOC=∠DEP=90°,∴OD=OC,DE=EP,∵P(m,n),∴m=OD﹣n,∴OD=m+n,两边同时平方得:OD2=m2+n2+2mn,∵mn=﹣6,∴m2+n2=OD2+12,由勾股定理得:OP2﹣OC2=m2+(﹣n)2﹣OD2=OD2+12﹣OD2=12,故答案为12.19.【解答】解:由图象可得,乙的速度为21×7=3(km/h),则甲的速度为:21÷3﹣3=7﹣3=4(km/h),a=21÷4=5.25,则步行全程甲比乙少用7﹣5.25=1.75(小时),故答案为:1.75.20.【解答】解:由图象可得,小明的速度为:300÷5=60(米/分钟),小亮的速度为:(300﹣60×3)÷3=(300﹣180)÷3=120÷3=40(米/分钟),设学校与图书馆的距离是x米,,解得x=600,即学校与图书馆的距离是600米,故答案为:600.三.解答题21.【解答】解:(1)该车平均每千米的耗油量为(45﹣30)÷150=0.1(升/千米),行驶路程x(千米)与剩余油量Q(升)的关系式为Q=45﹣0.1x;(2)当x=280时,Q=45﹣0.1×280=17(L).答:当x=280(千米)时,剩余油量Q的值为17L.(3)(45﹣3)÷0.1=420(千米),∵420>400,∴他们能在汽车报警前回到家.22.【解答】解:将(﹣2,0),(0,2)代入y=k+b得:,∴.23.【解答】解:(1)当x=2时,y=0,所以方程kx+b=0的解为x=2;(2)当x=1时,y=﹣1,所以代数式k+b的值为﹣1;(3)当x=﹣1时,y=﹣3,所以方程kx+b=﹣3的解为x=﹣1.24.【解答】解:以A为原点,AB所在直线为x轴建立直角坐标系,此时A、B点的坐标分别为(0,0)、(4,0),作CD⊥AB于D,则AD=BD=AB=2.∴CD===2,∴C(2,2),设直线AC的解析式为y=kx,把C(2,2)代入得,2=2k,解得k=,∴直线AC的关系式为y=x.25.【解答】解:(1)画出函数图象如图:设直线l的解析式为y=kx+b,把A(4,0)、点B(0,2)分别代入得,解得,∴一次函数解析式为y=﹣x+2;(2)∵点A(4,0),B(0,2).∴OA=4,OB=2,∴S△AOB==4;(3)在x轴上存在一点P,使S△P AB=3,理由如下:设P(x,0),∵A(4,0)、B(0,2),∴P A=|x﹣4|,∵S△P AB=3,∴P A•OB=3,即|x﹣4|×2=3,∴x﹣4=±3,∴x=7或1,∴P的坐标为(7,0)或(1,0).26.【解答】解:(1)把A(﹣12,0),B(0,6)代入y=kx+b得:,解得:,则一次函数解析式为y=x+6;(2)设C(x,0),则有AC=|x+12|,∵S△ABC=AC•OB=6,即|x+12|×6=6,∴|x+12|=2,解得:x=﹣10或x=﹣14,则C的坐标为(﹣10,0)或(﹣14,0).27.【解答】解:∵y=﹣2x+3,∴当x=0时,y=3,当y=0时,x=,∴函数y=﹣2x+3过点(0,3)、(,0),函数图象如右图所示;(1)由图象可得,y的值随x值的增大而减小,故答案为:减小;(2)由图象可得,图象与x轴的交点坐标是(,0),图象与y轴的交点坐标是(0,3),故答案为:(,0),(0,3);(3)由图象可得,当x>3时,y<3,故答案为:>3.28.【解答】解:把当x=2时,y=0代入一次函数y=kx﹣2,则得到2k﹣2=0,解得k=1,∴该一次函数的表达式为y=x﹣2;(2)由“上加下减”的原则可知,将函数y=x﹣2的图象向上平移3个单位长度后所得函数的解析式为y=x+1,令y=0,则x+1=0,解得x=﹣1,∴平移后的图象与x轴的交点的坐标为(﹣1,0).29.【解答】解:(1)直线中,令x=0,则y=6,∴A(0,6),令y=0,则﹣x+6=0,解得x=8,∴B(8,0);(2)∵OA=6,OB=8,∴AB==10,∵点E在直线AB上.将线段AO沿OE翻折,使点A落在线段AB上的点D处,∴OE⊥AB,AE=DE,∴AB•OE=OA•OB,∴OE===4.8,∴AE==3.6,∵∠AOB=90°,∠EOD=∠AOD,∠B′OF=BOD,∴∠EOF=45°,∴△EOF是等腰直角三角形,∴EF=OE=4.8,∴AF=AE+EF=3.6+4.8=8.4,∴B′F=BF=10﹣8.4=1.6,故答案为1.6.(3)设直线PB与y轴的交点为Q,∵△ABP的面积为8,∴S△ABP=S△APQ+S△ABQ=8,∵点P坐标为(﹣4,n),∴AQ•|x P|+AQ•OB=8,即AQ•4+AQ×8=8,∴AQ=,∴Q(0,)或(0,),设直线BP为y=kx+,把B(8,0)代入得,0=8k+,解得k=﹣,∴y=﹣x+,当x=﹣4时,y=7,设直线BP为y=kx+,把B(8,0)代入得,0=8k+,解得k=﹣,∴y=﹣x+,当x=﹣4时,y=11,∴n=7或11,故答案为7或11.30.【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.31.【解答】解:(1)设v与t之间的函数关系式为v=kt+b,由题意,得,解得:.故v与t之间的函数关系式为v=﹣10t+25.(2)物体达到最高点,说明物体向上的速度为0,则0=﹣10t+25,解得t=2.5.答:经过2.5秒,物体将达到最高点.32.【解答】(1)根据题意,可知a=8,b=280,小明下山用的时间为:24﹣8=16(分钟),下山的速度为:400÷16=25(米/分钟),设小明与爸爸相遇的时间为x分,(280÷8)x=400﹣25(x﹣8),解得,x=10,故c=10,故答案为:8;280;10;(2)小明上山速度为400÷8=50(米/分);爸爸上山速280÷8=35(米/分);故答案为:50;35;(3)根据题意得:(50﹣35)x=30或25(x﹣8)+35x=400﹣30,解得x=2或,答:2分或分时两人相距30米.33.【解答】解:(1)由图可得,林林最初从校门口跑向教学楼的速度为:360÷3=120(米/分钟),林林提速后的速度为:120×=200(米/分钟),学生队伍的速度为:[200×(25﹣﹣3﹣6)﹣360]÷25=80(米/分钟),故答案为:120,80;(2)设学生队伍出发x分钟后与林林相距360米,|80x﹣[200(x﹣3﹣6)﹣360]|=360,解得x1=15,x2=21,∵25﹣=20.8(分钟),∴在学生队伍出发20.8分钟时,林林到达公园,此时林林和学生队伍相距80×=336(米),∴x=21舍去,即学生队伍出发15分钟后与林林相距360米.34.【解答】解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴点A(8,0),点B(0,4),∴BO=4,AO=8,∴,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴=,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,∵OQ=FQ=t,P A=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,P A=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4,综上所述:当t=2或4时,矩形PEFQ为正方形;(3)如图1,当Q在P点的左边时,∵OQ=t,P A=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值==,如图2,当Q在P点的右边时,∵OQ=t,P A=2t,∴2t>8﹣t,∴t>,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,∴t=4时,S矩形PEFQ的最大值=3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值=16.35.【解答】解:(1)由题意可得,甲登山的速度是每分钟(300﹣100)÷20=10(米),乙在A地提速时距地面的高度b=(15÷1)×2=30,乙在距地而高度为300米时对应的时间t=2+(300﹣30)÷(10×3)=11,故答案为:10,30,11;(2)由(1)可得,点A的坐标为(2,30),点B的坐标为(11,300),设线段AB对应的函数解析式为y=kx+a,,解得,即线段AB对应的函数解析式为y=30x﹣30(2≤x≤11);设线段CD所对应的函数关系式是y=mx+n,∵点C的坐标为(0,100),点D的坐标为(20,300),∴,解得,即线段CD所对应的函数关系式是y=10x+100(0≤x≤20);(3)登山前2分钟,甲乙两人的最近距离是100+10×2﹣30=90(米),当2≤x≤11时,|(30x﹣30)﹣(10x+100)|=70,解得x1=3,x2=10,当11<x≤20时,令10x+100=300﹣70解得x=13,由上可得,登山3、10或13分钟时,甲、乙两人距地面的高度差为70米,故答案为:3、10或13.36.【解答】解:(1)小冲骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),平路上的速度为:10+5=15(km/h);下坡的速度为:15+5=20(km/h),平路上所用的时间为:2(4.5÷15)=0.6h,下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小冲在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h);(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y AB=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y EF=4.5+20(x﹣0.9).即y EF=20x﹣13.5(0.9≤x≤1);(3)由题意可知:小冲第一次经过丙地在AB段,第二次经过丙地在EF段,设小冲出发a小时第一次经过丙地,则小冲出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5,解得:a=.×10=1(千米).答:丙地与甲地之间的距离为1千米.37.【解答】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)=130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.∴y=130﹣2x(x≥5);(2)设生产甲产品m人,根据题意得:W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200,∵2m=65﹣x﹣m,∴m=,∵x、m都是非负整数,∴取x=26时,m=13,65﹣x﹣m=26,即当x=26时,W最大值=3198,答:安排26人生产乙产品时,可获得的最大利润为3198元.38.【解答】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.39.【解答】解:(1)y=3x+2(20﹣x)=x+40;(2)由题意可得:,∴不等式组的解集为:12≤x≤14,∵x为正整数,∴x的取值为12、13、14,有3种修建方案:①A型12个,B型8个②A型13个,B型7个③A型14个,B型6个;(3)∵y=x+40中,y随x的增大而增大,当x=12时,最少费用y=x+40=52(万元),(520000﹣335200)÷264=700(元).答:平均每户村民应自筹资金为700元.40.【解答】解:(1)∵直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),∴5=1+b,∴b=4,∴直线l2:y=﹣x+4,∵直线l2:y=﹣x+4经过点C(2,m),∴m=﹣2+4=2,∴C(2,2),把C(2,2)代入y=kx+1,得到k=.∴k=,b=4,m=2.(2)对于直线l1:y=x+1,令y=0,得到x=﹣2,∴D(﹣2,0),∴OD=2,对于直线l2:y=﹣x+4,令y=0,得到x=4,∴A(4,0),∴OA=4,AD=6,∵C(2,2),∴S△ADC=×6×2=6.(3)作点C关于x轴的对称点C′,连接BC′交x轴于E,连接EC,则△BCE的周长最小.∵B(﹣1,5),C(2,2),∴直线BC的解析式为y=﹣x+,令y=0,得到x=,∴E(,0).(4)如图,由题意AC==2,当AC=AP=2时,t=6﹣2,当P′C=P′A时,∠AP′C=90°,AP′=2,∴t=6﹣2=4,当AC=CP时,P(0,0),此时t=2.综上所述,满足条件的t的值为6﹣2或4或2.。
北师大版数学八年级上册第四章《一次函数》检测题(解析版)
第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
一次函数测试题-北师大版八年级数学(上)各章测试题及其期末测试题
第六章 一次函数测试题姓名------------ 学号----------一、选择题(每小题2分,共30分)1. 对于正比例函数y=-m 2x(m ≠0)下列结论正确的是( ).(A )y >0 (B)y 随x 的增大而增大 (C )y <0 (D)y 随x 的增大而减小 2. 下列四个函数,其中自变量取值范围相同的是( ).(1) y=x+1; (2) y=(2; (3)2(1)1x y x +=+;(4)y =(A)(1)和(2) (B )(1)和(3) (C )(2)和(4) (D )(1)和(4) 3. 平行四边形的周长为240,两邻边为x 、y ,则它们的关系是( ). (A )y=120-x(0<x <120) (B )y=120-x(0≤x ≤120) (C)y=240-x(0<x <240) (D)y=240-x(0≤x ≤240) 4. 下列关系式中,不是一次函数的是( ).xy 2=x x y 22-= x y 2-= 53+-=x y 5. 已知直线y=kx+b (k ≠0)与x 轴的交点在x 轴的正半轴,下列结论:①k >0,b >0;②k >0,b <0;③k <0,b >0;④k <0,b <0.其中正确的结论的个数是( ). A.1 B.2 C.3 D.46. 当自变量x 增大时,下列函数值反而减小的是( ).(A ) y=3x (B)y=2x (C)y=-- 3x(D)y=--2+5x7. 已知一次函数的图象经过点A (0,4),且与两坐标轴围成的三角形面积是8,则这个函数的表达式是( )A .y=x +4 B.y=-x +4 C.y=x +4或y=-x +4 D.y=x -4或y=-x -4 8.如果函数y =-的值大于-3,则自变量x 的取值范围是( ). (A )x >0 (B)x <0 (C)-1≤x ≤0 (D)-1≤x <0 9. 如图所示,函数y=99x-90的大致图象是( ).(A)(C)(D)(B)10. 无论m 为何实数,直线y=x +2m 与y=-x +4的交点不可能在( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 11. 直线y=-8x+b 与y 轴交点在x 轴下方,则b 的取值为( ). (A )b=0 (B)b ≠0 (C)b <0 (D)b >012. 对于一次函数y=(1-m)x+m ,若m >1,则函数图象不经过( ).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 13. 正比例函数的图象如图,则这个函数的解析式为( )A.y=xB.y=-2xC.y=-xD. D 12y x =-214. 若直线y =3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).A .k >1,或13k < B.113k << C.k >1 D. 13k <15. 下列关于函数的说法中,正确的是( ). A . 一次函数是正比例函数 B .正比例函数是一次函数C . 正比例函数不是一次函数D 不是正比例函数的就不是一次函数二、填空题(每小题2分,共30分)1. 已知一次函数y=kx+b 的图象经过点M (2,-1)和点N ,且点N 是直线132y x =-+与y 轴的交点,则点N 的坐标为____,这个函数的表达式为____.2. 如图表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.请回答:①汽车行驶前,油箱里有油______升; ②汽车最多能行驶______小时,每小时耗油______升; ③油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式为______,自变量x 的取值范围是______.3. 直线y=(2-5k)x+3k-2若经过原点,则k= ,若直线与x 轴交于点(-1,0),则k= ,4. 一次函数图象经过点A (-2,3)和点B (1,-1),它的表达式是____.5. 如图所示是温度计的示意图,左边的刻度表示摄氏温度,℉右边的刻度表示华氏温度华氏(℉)温度y 与摄氏(℃)温度x 之间的函数关系式为____.6. 直线y =(2-5k )x +3k -2若经过原点,则k =____,若直线与x 轴交于点(-1,0),则k =____. 7. 一个正方形的边长为3cm ,它的边长减少x cm , 得到的新正方形的周长为y cm ,则y 与x 之间的函数关系为____. 8. 等腰三角形的周长为20cm ,腰长为y (cm),底边长为x (cm) ,则y 与x 的函数关系式为______.9. 圆的直径y 与这个圆的面积x 之间的函数关系式为 . 10. 当x 时,函数y=2x+3的值大于0.11. 一次函数y=-2x +4的图象经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____,y 随x 的增大而____.12. 直线y=3x-4与x 、y 轴交于A 、B 两点,则△AOB 的面积为 .13. 拖拉机开始工作时,油箱中有油36L ,如果每小明耗油4L ,那么油箱中剩余油量y (L),与工作时间x (h)之间的函数关系式是____,自变量x 的取值范围是____.14. 当ab >0,c <0时,直线ax+by+c=0通过第____象限. 三、解答题(每小题4分,共40分)1. 如图,是某地一天的气温随时间变化的图象,根据图象回答,在这一天中:(1) 什么时间气温最高,什么时间气温最低,最高气温和最低气温各是多少? (2) 20时的气温是多少?(3) 什么时间气温为6℃? (4) 哪段时间内气温不断下降?(5) 哪段时间内气温持续不变?2. 图中的曲线表示一辆自行车离家的距离与时 间的关系,骑车者九点离开家,十五点回家. 根据这个曲线图,请你回答下列问题:(小时)3(1)到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远? (4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少? (6)他在何时至何时停止前进并休息用午餐?(7)他在停止前后返回时,骑了多少千米?(8)返回时的平均速度是多少? (9)11:30和13:30时,分别离家多远? (10)何时距家22千米?3. 分别写出下列问题中的函数关系式,并指出自变量的取值范围.(1)50千米的路程,以v (千米/时)的速度前进,所用的时间为t (时),t 与v 之间的函数关系式;(2)半径为2的圆柱体的体积为V (m 3),高为h (米),V 与h 的函数关系式; (3)一栋住宅楼,底层高4m ,以上每层高为3.2m ,楼高H 与层数n 之间的函数关系式; (4)1吨民用自来水的价格为2.35元,所交水费y (元)与使用自来水的数量n (吨)的函数关系式.4. 甲、乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox 表示这条公路,原点O 为零千米路标(如图所示),并作出如下约定:①速度v >0,表示汽车向数轴正方向行驶;速度v <0,表示汽车向数轴负方向行驶;v =0时,表示汽车静止.②汽车位置在数轴上的坐标s >0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s <0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s =0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况以一次函数的形式画在一了同一直角坐标系中,如图所示,请解答下列问题:(1)就这两个一次函数图象所反映的两条汽车在这条公路上行驶的情况填写如下的(遇,请说明理由.t (h)s =50t -80t +1905. 某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示.求(1)y(时)与x之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.6. 请指出下列问题中,哪些是变量?哪些是常量?(1) 以45km/h的速度匀速行驶的汽车,t h所行驶的路程有s km;(2) 边长为x cm的正方体,它的表面积为S cm2.7. 指出下列函数中的自变量、函数和常量:(1)y=-2x; (2)y=3x-16(3)y=3x2-7x+2 (4)p=15q8. 下列函数中,哪些是一次函数,哪些是正比例函数?(1) y=3-2x; (2) y=1x; (3) y=x2+1; (4) y=8x; (5) y=29. 已知y=z+b,这里b是一个常数,z与x成正比例,且x=2时,y=1,x=3时,y=-2.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤5,求y的取值范围.10. (1)已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.一次函数测试题(参考答案)一、选择题(每小题2分,共30分)1. C D2. D D3. A A4. D D5. B6. C C7. C8. D D9. D D10. C11. C C12. C C13. C14. D4515. B二、填空题(每小题2分,共30分)1. 0.512y x =+2. (0,3),23y x =-+.3. ① 40; ②8,5; ③y =40-5x , 0≤x ≤84.21,32 5. 4133y x =-+. 6. 9325y x =+ 7. 21,328. 412y x =-+ 9. 1102y x =-+10. y =11. 32-> 12. 一、二、四象限,(2,0),(0,4),减小13. 8314. 436,09y x x =-+≤≤ 15. 二、四、一象限三、解答题(每小题4分,共40分)1. (1)4时,-4℃;16时,10℃;(2)20时,8℃;(3)10时和22时,6℃;(4)0时到4时和16时到24时,这两段时间气温不断下降;(5)12时到14时,保持8℃温度不变.2. 解:(1)到达离家最远地方的时间是12点,离家30千米.(2)10时半开始第一次休息,休息了半小时. (3)第一次体息时离家17千米.(4)11:00到12:00,他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时. (6)从12点到13点间停止前进,并休息用午餐较为符合实际情形. (7)返回骑了30千米.(8)返回30千米共用了2小时,故返回时的平均速度是15千米/时.(9)首先确定直线段DE 所在直线的表达式.设其为:s kt b =+,将D (11,17),E (12,30)的坐标值代入,得1117,1230,k b k b +=⎧⎨+=⎩ 解得13,126,k b =⎧⎨=-⎩所以13126s t =-.当11.5t =时,23.5s =,故11:30时,离家23.5千米.3. (1) 50(0)t v v=>; (2) 4(0)V h h π=> (3) 3.2(1)4(H n n =-+为大于2的整数);(4) 2.35y n =4. 解:(1)根据这两个一次函数的表达式及图象,填得下表:6(2)设经过t (h)两车相遇,则有40190,5080,s t s t =-+⎧⎨=-⎩解得3,70.t s =⎧⎨=⎩ 所以经过3h 两车相遇,相遇在零千米路标右侧70km 处. 5. 1. 解:(1)设一次函数的表达式为y kx b =+.因为当60x =时,6y =;当80x =时,10y =,所以8010,60 6.k b k b +=⎧⎨+=⎩解得1,56.k b ⎧=⎪⎨⎪=-⎩ 所以所求函数的关系式是16(30)5y x x =-≥.(2)当0y =时,1605x -=,所以30x =.所以旅客最多可免费携带30公斤行李.6. s,t 是变量,45是常量;②s 、x 是变量,6是常量.7. (1)自变量x ,y 是x 的函数,常量-2;(2)自变量x ,y 是x 的函数,常量3和16-; (3)自变量x ,y 是x 的函数,常量3,-7和2; (4)自变量q ,p 是q 的函数,常量15.8. ①是一次函数;④是正比例函数;②、③、⑤既不是正比例函数,也不是一次函数. 9. (1)∵z 与x 成正比例,∴设(0z kx k =≠且为常数),y kx a ∴=+.将2,1,3,2x y x y ====-分别代入y kx a =+,得213,327,k a k k a a +==-⎧⎧⇒⎨⎨+=-=⎩⎩∴所求函数的关系式是37y x =-+.(2)根据15x ≤≤,分别把121,5x x ==代入37y x =-+中,得124,8y y ==-.7∴当15x ≤≤时,有84y -≤≤. 10. (1)依题意,有10230k k ->⎧⎨-<⎩,解得312k <<;(2)依题意,得430m ->,即34m >时,y 随x 的增大而增大.。
2022-2023学年上学期初中数学北师大版八年级期末必刷常考题之一次函数
2022-2023学年上学期初中数学北师大版八年级期末必刷常考题之一次函数一.选择题(共5小题)1.(2021春•孟村县期末)直线y=kx﹣4经过点(﹣2,2),则该直线的解析式是()A.y=x﹣4 B.y=﹣x﹣4 C.y=﹣3x﹣4 D.y=3x﹣42.(2021春•新城区校级期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如表:气温x(℃)05101520音速y(米/秒)331334337340343下列结论错误的是()A.在变化中,气温是自变量,音速是因变量B.y随x的增大而增大C.当气温为30℃时,音速为350米/秒D.温度每升高5℃,音速增加3米/秒3.(2021春•江油市期末)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.4.(2020秋•温州期末)若一次函数y=kx+b(k≠0)的图象经过(4,0)和(3,2)两点,则方程kx+b =4的解为()A.x=0 B.x=2 C.x=3 D.x=55.(2020秋•雁塔区校级期末)在平面直角坐标系中,O为坐标原点.若直线y=2x+b向右平移3个单位后经过点(b,0),则b的值为()A.﹣1 B.1 C.2 D.﹣2二.填空题(共5小题)6.(2021春•铁西区期末)若关于x的方程﹣2ax+b=0的解为x=2,则直线y=﹣2ax+b一定经过某点的坐标为.7.(2021春•汉阳区期末)已知一次函数的图象经过(2,0),(0,﹣4)两点,则该一次函数解析式是.8.(2021春•寻乌县期末)小明妈妈给了小明100元去买作业本,已知作业本的单价是1.5元,小明购买了x本作业本,剩余费用为y元,则y与x的函数关系式为.9.(2021春•禹城市期末)为了抗击疫情,小明加强身体锻炼,他从家跑步去体育场,在那里锻炼了一阵后,沿原路返回.途中又去早餐店吃早餐,然后散步走回家,如图,其中x表示时间,y表示小明离家的距离,根据图象提供的信息,有以下四个说法:①体育场离小明家 2.5km;②小明在体育场锻炼了15min;③体育场离早餐店1km;④小明从早餐店回家的平均速度是km/h.其中说法正确的有.10.(2021春•涿鹿县期末)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为小时.三.解答题(共5小题)11.(2021春•凤山县期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.12.(2020秋•莲都区期末)在国内投寄平信应付邮资如表:信件质量x(克)0<x≤2020<x≤4040<x≤60邮资y(元/封) 1.20 2.40 3.60(1)根据函数的定义,y是关于x的函数吗?(2)结合表格解答:①求出当x=48时的函数值,并说明实际意义.②当寄一封信件的邮资是2.40元时,信件的质量大约是多少克?13.(2021春•石狮市期末)已知直线l的图象如图所示.(1)求直线l的函数表达式;(2)求证:OC=OD.14.(2020秋•镇江期末)如图,一次函数y=kx+b(k≠0)的图象经过点A、B.(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;(2)将直线AB向下平移5个单位后经过点(m,﹣5),求m的值.15.(2020秋•钱塘区期末)一次函数y1=(k﹣1)x+2k,y2=(1﹣k)x+k+1,其中k≠1.(1)判断点A(﹣2,2)是否在函数y1的图象上,并说明理由;(2)若函数y1与y2的图象交于点B,求点B的横坐标;(3)点C(a,m),D(a,n),分别在函数y1与y2的图象上,当k>1时,若CD<k﹣1,求a的取值范围.2022-2023学年上学期初中数学北师大版八年级期末必刷常考题之一次函数参考答案与试题解析一.选择题(共5小题)1.(2021春•孟村县期末)直线y=kx﹣4经过点(﹣2,2),则该直线的解析式是()A.y=x﹣4 B.y=﹣x﹣4 C.y=﹣3x﹣4 D.y=3x﹣4【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,2)代入直线y=kx﹣4中求k即可.【解答】解:将点(﹣2,2)代入直线y=kx﹣4中,得:﹣2k﹣4=2,解得:k=﹣3,∴直线解析式为y=﹣3x﹣4.故选:C.【点评】本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题的关键.2.(2021春•新城区校级期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如表:气温x(℃)05101520音速y(米/秒)331334337340343下列结论错误的是()A.在变化中,气温是自变量,音速是因变量B.y随x的增大而增大C.当气温为30℃时,音速为350米/秒D.温度每升高5℃,音速增加3米/秒【考点】常量与变量;函数的表示方法.【专题】计算题;函数及其图象;应用意识.【分析】根据表格中的数据以及函数的定义,逐一判断选项即可.【解答】解:A:∵对于气温的每一个值,都存在一个唯一确定的音速,符合函数定义,∴气温是自变量,音速是因变量,正确,∴A不符合题意;B:由表格数据可知:y随x的增大而增大,∴B不符合题意;C:由表格数据可知:温度每升高5℃,音速增加3米/秒,∴当气温为30°℃时,音速为349米/秒,∴C符合题意;D:由表格数据可知:温度每升高5℃,音速增加3米/秒,∴D不符合题意.故选:C.【点评】本题主要考查了函数的表示方法,掌握函数的定义,求出温度每升高5℃,音速增加3米/秒,是解题关键.3.(2021春•江油市期末)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.【考点】函数的图象.【专题】函数及其图象;运算能力.【分析】根据题意,可知y随x的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:C.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.(2020秋•温州期末)若一次函数y=kx+b(k≠0)的图象经过(4,0)和(3,2)两点,则方程kx+b =4的解为()A.x=0 B.x=2 C.x=3 D.x=5【考点】一次函数与一元一次方程.【专题】一次函数及其应用;运算能力.【分析】先求出函数的解析式,再把y=4代入,即可求出x.【解答】解:把(4,0)和(3,2)代入y=kx+b得:,解得:,即y=﹣2x+8,当y=4时,﹣2x+8=4,解得:x=2,∴方程kx+b=4的解为x=2,故选:B.【点评】本题考查了一次函数与一元一次方程,求一次函数的解析式等知识点,能正确求出函数的解析式是解此题的关键.5.(2020秋•雁塔区校级期末)在平面直角坐标系中,O为坐标原点.若直线y=2x+b向右平移3个单位后经过点(b,0),则b的值为()A.﹣1 B.1 C.2 D.﹣2【考点】一次函数图象与几何变换.【专题】一次函数及其应用;运算能力;应用意识.【分析】根据“左加右减”的原则得到y=2(x﹣3)+b.然后代入点(b,0)即可求得b的值.【解答】解:由“左加右减”的原则可知:直线y=2x+b向右平移3个单位后,其直线解析式为y=2(x﹣3)+b,即y=2x﹣6+b,∵平移后的直线经过点(b,0),∴2b﹣6+b=0,解得b=2,故选:C.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二.填空题(共5小题)6.(2021春•铁西区期末)若关于x的方程﹣2ax+b=0的解为x=2,则直线y=﹣2ax+b一定经过某点的坐标为(2,0).【考点】一次函数与一元一次方程.【专题】一次函数及其应用;模型思想.【分析】首先求出b的值为4a,则直线为y=﹣2ax+4a,再把y=0能代入解析式可得x=2,进而可得答案.【解答】解:由方程的解可知:当x=2时,﹣4a+b=0,即b=4a,∴直线为y=﹣2ax+4a,当y=0时,x=2.故答案为:(2,0).【点评】本题主要考查的是一次函数与一元一次方程的关系,掌握一次函数与一元一次方程的关系是解题的关键.7.(2021春•汉阳区期末)已知一次函数的图象经过(2,0),(0,﹣4)两点,则该一次函数解析式是y =2x﹣4.【考点】待定系数法求一次函数解析式.【专题】待定系数法;一次函数及其应用;运算能力.【分析】由一次函数的图象经过(2,0),(0,﹣4)两点,可设一次函数解析式为y=kx+b(k≠0).然后将点的坐标代入解析式,故得2k+b=0,b=﹣4.进而推导出函数解析式为y=2x﹣4.【解答】解:设该一次函数的解析式为:y=kx+b(k≠0).由题意得:解得:∴该一次函数的解析式为y=2x﹣4.故答案为:y=2x﹣4.【点评】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键.8.(2021春•寻乌县期末)小明妈妈给了小明100元去买作业本,已知作业本的单价是1.5元,小明购买了x本作业本,剩余费用为y元,则y与x的函数关系式为y=100﹣1.5x.【考点】函数关系式.【专题】函数及其图象;数据分析观念.【分析】根据剩余费用=总金额﹣单价×数量解答即可.【解答】解:由题意,得y=100﹣1.5x.故答案为:y=100﹣1.5x.【点评】本题考查了函数关系式.能够正确利用剩余费用=总金额﹣单价×数量列出关系式是解题的关键.9.(2021春•禹城市期末)为了抗击疫情,小明加强身体锻炼,他从家跑步去体育场,在那里锻炼了一阵后,沿原路返回.途中又去早餐店吃早餐,然后散步走回家,如图,其中x表示时间,y表示小明离家的距离,根据图象提供的信息,有以下四个说法:①体育场离小明家 2.5km;②小明在体育场锻炼了15min;③体育场离早餐店1km;④小明从早餐店回家的平均速度是km/h.其中说法正确的有①②③.【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【解答】解:由图象可知:体育场离小明家2.5km,故①说法正确;明在体育场锻炼了:30﹣15=15(min),故②说法正确;体育场离早餐店:2.5﹣1.5=1(km),故③说法正确;小明从早餐店回家的平均速度是:1.5÷=3(km/h).故④说法错误.∴其中正确的说法是①②③.故答案为:①②③.【点评】本题考查了函数图象,观察函数图象获得有效信息是解题关键.10.(2021春•涿鹿县期末)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为0.6小时.【考点】函数的图象.【专题】一次函数及其应用;应用意识.【分析】先利用待定系数法分别求出甲、乙蓄水池中水的深度y(米)与注水时间x的函数关系式,然后求函数值相等时的自变量的值即可.【解答】解:设甲蓄水池中水的深度y(米)与注水时间x的函数关系式为y=kx+b,把(0,2)、(3,0)代入得,解得,所以y甲=,设乙蓄水池中水的深度y(米)与注水时间x的函数关系式为y=mx+n,把(0,1)、(3,4)代入得,解得,所以y乙=x+1,解方程﹣x+2=x+1得x=0.6,所以注水时间为0.6、乙两个蓄水池的水的深度相同.故答案为0.6.【点评】本题考查了一次函数的应用:利用图象信息得到两组对应值,再利用待定系数法确定函数关系式,然后利用函数的性质解决问题.三.解答题(共5小题)11.(2021春•凤山县期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.【考点】正比例函数的定义.【专题】一次函数及其应用;运算能力.【分析】(1)根据正比例函数的特点设y=kx,把x=﹣1,y=3代入求解k即可.(2)把x=2代入函数解析式中求解.【解答】解(1)设y=kx(k≠0),把x=﹣1,y=3代入y=kx,得k=﹣3,所以y=﹣3x.(2)把x=2代入y=﹣3x,得y=﹣3×2=﹣6.【点评】本题考查了用待定系数法求解正比例函数解析式,正确解设正比例函数解析式是解题的关键.12.(2020秋•莲都区期末)在国内投寄平信应付邮资如表:信件质量x(克)0<x≤2020<x≤4040<x≤60邮资y(元/封) 1.20 2.40 3.60(1)根据函数的定义,y是关于x的函数吗?(2)结合表格解答:①求出当x=48时的函数值,并说明实际意义.②当寄一封信件的邮资是2.40元时,信件的质量大约是多少克?【考点】函数的概念;函数值.【专题】函数及其图象;应用意识.【分析】(1)根据函数的定义判断即可.(2)①②利用表格求出对应的函数值即可.【解答】解:(1)y是x的函数,理由是:对于x的一个值,函数y有唯一的值和它对应;(2)①当x=48时,y=3.60,实际意义:信件质量为48克时,邮资为3.60元;②一封信件的邮资为2.40元,信件质量大约为大于20克,且不超过40克.【点评】本题考查函数的概念,解题的关键是理解题意,灵活运用所学知识解决问题.13.(2021春•石狮市期末)已知直线l的图象如图所示.(1)求直线l的函数表达式;(2)求证:OC=OD.【考点】待定系数法求一次函数解析式;全等三角形的判定与性质.【专题】一次函数及其应用;运算能力.【分析】(1)根据待定系数法即可求得;(2)求得直线与坐标轴的交点,即可得到结论.【解答】解:(1)由图象知:A(﹣3,﹣1),B(1,3),设直线l的函数表达式为y=kx+b(k≠0),依题意得,解得,即直线l的函数表达式为y=x+2;(2)在y=x+2中,令y=0,则x=﹣2;令x=0,则y=2,∴C(﹣2,0),D(0,2),∴OC=2,OD=2,∴OC=OD.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.14.(2020秋•镇江期末)如图,一次函数y=kx+b(k≠0)的图象经过点A、B.(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;(2)将直线AB向下平移5个单位后经过点(m,﹣5),求m的值.【考点】一次函数图象与几何变换.【专题】一次函数及其应用;运算能力.【分析】(1)根据待定系数法求得即可;(2)求得平移后的直线的解析式,代入点(m,﹣5),即可求得m的值.【解答】解:(1)由图象可知,一次函数y=kx+b(k≠0)的图象经过点A(2,6)、B(﹣4,﹣3),∴,解得,所以一次函数的表达式为:y=x+3;(2)将直线AB向下平移5个单位后得到y=x+3﹣5,即y=x﹣2,∵经过点(m,﹣5),∴﹣5=m﹣2,解得m=﹣2.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象与几何变换,熟练掌握待定系数法是解题的关键.15.(2020秋•钱塘区期末)一次函数y1=(k﹣1)x+2k,y2=(1﹣k)x+k+1,其中k≠1.(1)判断点A(﹣2,2)是否在函数y1的图象上,并说明理由;(2)若函数y1与y2的图象交于点B,求点B的横坐标;(3)点C(a,m),D(a,n),分别在函数y1与y2的图象上,当k>1时,若CD<k﹣1,求a的取值范围.【考点】一次函数的性质;一次函数图象上点的坐标特征.【专题】计算题;一次函数及其应用;运算能力.【分析】(1)把x=﹣2代入y1=(k﹣1)x+2k,求y的值即可判断;(2)函数y1与y2的图象相交,得y1=y2,解出x的值;(3)CD=|m﹣n|,再根据CD<k﹣1,求出a的取值范围.【解答】解:(1)A(﹣2,2)是在函数y1的图象上,把x=﹣2代入y1=(k﹣1)x+2k,得,y1=2,∴A(﹣2,2)是在函数y1的图象上;(2)∵函数y1与y2的图象交于点B,∴(k﹣1)x+2k=(1﹣k)x+k+1,解得x=﹣,(3)∵|m﹣n|=|(k﹣1)a+2k﹣(1﹣k)a﹣k﹣1|=|2(k﹣1)a+k﹣1|,∵k>1,∴|m﹣n|=(k﹣1)|2a+1|,∵CD<k﹣1,∴|(k﹣1)|2a+1|<k﹣1,∵k>1,∴k﹣1>0,∴|2a+1|<1,∴a的取值范围﹣1<a<0.【点评】本题考查了一次函数图象点的特征、一次函数的性质,掌握两个性质的熟练应用,函数y1与y2的图象相交,得y1=y2,CD=|m﹣n|,是解题关键.考点卡片1.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.(2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化;②常量和变量是相对于变化过程而言的.可以互相转化;③不要认为字母就是变量,例如π是常量.2.函数的概念函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.3.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y 的函数.4.函数值函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.5.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..6.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.7.正比例函数的定义(1)正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k 是正数也可以是负数.(2)正比例函数图象的性质正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y =kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.8.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b <0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.9.一次函数图象上点的坐标特征一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y 轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.10.一次函数图象与几何变换直线y=kx+b,(k≠0,且k,b为常数)①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b.(关于原点轴对称,横、纵坐标都变为原来的相反数)11.待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.12.一次函数与一元一次方程一次函数与一元一次方程.13.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
北师大版八年级上册数学第四章一次函数单元测试(附答案)
八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
八年级数学上册第四章一次函数单元综合测试含解析北师大版
《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
最新北师大版八年级上册一次函数单元测试试题以及答案
八年级上册一次函数单元测试试题一、选择题。
1x–2,其中一次函数的1、下列函数:①y=–2x,②y=–3x2+1,③y=4个数有()A.0个B.1个C.2个D.3个2、某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x (分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里3、若函数5-()=是一次函数,则m的值为()1xmy m-A.±1B.-1C.1D.24、已知函数3m2(+)=是正比例函数,且图像在第二、四象限内,x1my-则m的值是()1A.2B.2C.2 D.25、已知一次函数y=mx+n的图象如图所示,则m.n的取值范围是()A.m>0,n<0B.m>0,n>0C.m<0,n<0D.m<0,n>06、直线y=kx﹣1与y=x﹣1平行,则y=kx﹣1的图象经过的象限是()A、第一、二、三象限B、第一、二、四象限C、第二、三、四象限D、第一、三、四象限7、下列说法中不正确的是()A、一次函数不一定是正比例函数B、不是一次函数就一定不是正比例函数C、正比例函数是特殊的一次函数D、不是正比例函数就一定不是一次函数8、下列函数中,y随x的增大而增大的函数是()(A)y=2-x(B)y=-2x+1(C)y=x-2(D)y=-x-29、下列各点中,在函数y=-2x+5的图象上的是()(A)(0,―5)(B)(2,9)(C)(–2,–9)(D)(4,―3)10、若一次函数y=kx-4的图象经过点(–2,4),则k等于()(A)–4(B)4(C)–2(D)211、若y=(m-2)x+(m2-4)是正比例函数,则m的取值是()A.2B.-2C.±2D.任意实数12、13、等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是()A.y=-0.5x+20(0<x<20)B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20)D.y=-2x+40(0<x<20)二、填空题。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)
第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
新北师大版八年级上册第四章《一次函数》测试题(60分钟)
新北师大版八年级上册第四章《一次函数》测试题(60分钟)一、填空题1、若一条直线经过点(-1,1)和点(1,5),则这条直线与x轴的交点坐标为.2、如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,y轴分别交于点C,点D,若DB=DC,则直线CD的函数解析式为.3、某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800hm2的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是.二、选择题4、如图,直线AB对应的函数解析式是( )A.y=-x+3B.y=x+3C.y=-x+3D.y=x+35、有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为( )A.x=1,y=3B.x=3,y=2C.x=4,y=1D.x=2,y=36、某年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人日均用水量分别为18kg和15kg,并一直按此趋势直线下降.当人日均用水量低于10kg时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23B.24C.25D.26三、简答题7、已知一次函数y=kx-4,当x=2时,y=-3. (1)求一次函数的解析式. (2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.8、某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台(假设共生产50台机器),请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)9、如图,A(0,1),M(3,2),N(4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为ts.(1)当t=3时,求l 的解析式.(2)若点M,N 位于l 的异侧,确定t 的取值范围.(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.)。
北师大版八年级上册数学第四章 一次函数 单元测试卷(Word版,含答案)
第 1 页 共 9 页 北师大版八年级上册数学第四章 一次函数 单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.下面四个函数中,符合当自变量x 为1时,函数值为1的函数是( ) A .22y x =- B .2y x = C .2y x D .1y x =+2.下列图象中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个 3.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( ) A .-15 B .15 C .35 D .53-4.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是()A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20g第 2 页 共 9 页 D .当温度为30℃时,甲、乙的溶解度相等5.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5) 6.甲乙两车从 A 城出发匀速驶向 B 城,在整个行驶过程中,两车离开 A 城的距离()km y 与甲车行驶的时间()h t 之间的函数关系如图,则下列结论错误的是( )①A 、B 两城相距 300 千米①甲车比乙车早出发 1 小时,却晚到 1 小时①相遇时乙车行驶了 2.5 小时①当甲乙两车相距 50 千米时,t 的或54或56或156或 254A .①①B .①①C .①①D .①① 7.下列等式:①y =2x +1;①1y x =;①y x =,①y 2=5x -8;①y =y 是x 的函数有() A .1个 B .2个 C .3个 D .4个8.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .yx =0 D .yx >﹣79.下列表达式中,y 是x 的函数的是( )。
新北师大版八年级上册一次函数单元测试试题以及答案
八年级上册一次函数练习试题1、一次函数的图象过点M(3,2),N(—1,—6)两点.(1)求函数的表达式;⑵画出该函数的图象•(3)与x、y交点坐标分别是多少?(4)与坐标轴围成三角形面积是多少?2、在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.3、已知一次函数的图象过点A(2,—1)和点B,其中点B是另一条直线y=—x+3与y轴的交点,求这个一次函数的表达式4、已知直线I与直线y=2x+1的交点的横坐标为2,与直线y=—x+8的交点的纵坐标为—7,求直线的表达式。
5、某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)(2)当x>2时,求y与x之间的函数关系式;((3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?7、已知y与x+1成正比例关系,当x=2时,y=1,求当x=-3时y的值?8、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.9、某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?10、已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.11、已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=﹣x?(4)k为何值时,y随x的增大而减小?12、判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.13、一次函数y=kx+b的自变量x的取值范围是﹣3≤x≤6,相应函数值的取值范围是﹣5≤y≤﹣2,确定这个函数的解析式。
2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)
14.−4
15.<
1
1
16.k=2或−2.
17. = 2 + 10 (−5 < < 0)
18.(1) = 20−2 (2)5 < < 10
19.(1) = 1.5 + 5(0 < < 15);
(2)当弹簧长度为23cm时,所挂物体的质量为 12kg.
20.(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买 10 张票时,两种优惠方案付款
.
时,y 随 x 的增大而增大.
14.已知正比例函数 = −2的图象经过点(2,),则 m 的值为
15.已知点(−2,1),(2,2)都在直线 = 2−3上,则1
.
2.(填“<”或“>”或“=”)
16.若直线 ykx2 与坐标轴围成的三角形的面积是 4,则 k 的值为
.
17.已知点(−4,0)及第二象限的动点(,),且− = 5.设的面积为,则关于的
10.已知一次函数 y=kx+b(k,b 为常数,k≠0)的图象经过一、三、四象限,则下列结论
正确的是(
A.kb>0
)
B.kb<0
C.k+b>0
D.k+b<0
二、填空题
11.一次函数 = 2 + 1与轴的交点坐标是
12.请写出一个当 > 1时,随的增大而减小的函数表达式:
13.已知一次函数 = (5−) + 2,当 m
B. = + 1
6.一次函数 = −2−1的图象大致是(
A.
C. = −−2
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1一次函数测试题一、选择题1. 对于正比例函数y=-m 2x(m ≠0)下列结论正确的是( ).(A )y >0 (B)y 随x 的增大而增大 (C )y <0 (D)y 随x 的增大而减小 2. 下列四个函数,其中自变量取值范围相同的是( ).(1)y=x+1; (2) y=2; (3)2(1)1x y x +=+;(4)y =(A)(1)和(2) (B )(1)和(3) (C )(2)和(4) (D )(1)和(4) 3. 平行四边形的周长为240,两邻边为x 、y ,则它们的关系是( ).(A )y=120-x(0<x <120) (B )y=120-x(0≤x ≤120) ( C )y=240-x(0<x <240) (D)y=240-x(0≤x ≤240) 4. 下列关系式中,不是一次函数的是( ).xy 2=xx y 22-=x y 2-= 53+-=x y5. 已知直线y=kx+b (k ≠0)与x 轴的交点在x 轴的正半轴,下列结论:①k >0,b >0;②k >0,b <0;③k <0,b >0;④k <0,b <0.其中正确的结论的个数是( ).A.1B.2C.3D.4 6. 当自变量x 增大时,下列函数值反而减小的是( ).(A )y=3x (B)y=2x (C)y=--3x (D)y=--2+5x7. 已知一次函数的图象经过点A (0,4),且与两坐标轴围成的三角形面积是8,则这个函数的表达式是( )A .y=x +4 B.y=-x +4 C.y=x +4或y=-x +4 D.y=x -4或y=-x -4 8.如果函数y =-的值大于-3,则自变量x 的取值范围是( ).(A )x >0 (B)x <0 (C)-1≤x ≤0 (D)-1≤x <0 9. 如图所示,函数y=99x-90的大致图象是( ).(A)(C)(D)(B)10. 无论m 为何实数,直线y=x +2m 与y=-x +4的交点不可能在( ).A.第一象限B.第二象限C.第三象限D.第四象限 11. 直线y=-8x+b 与y 轴交点在x 轴下方,则b 的取值为( ).(A )b=0 (B)b ≠0 (C)b <0 (D)b >012. 对于一次函数y=(1-m)x+m ,若m >1,则函数图象不经过( ).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 13. 正比例函数的图象如图,则这个函数的解析式为( )A.y=xB.y=-2xC.y=-xD. D12y x =-214. 若直线y =3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).A .k >1,或13k <B.113k << C.k >1 D. 13k <15. 下列关于函数的说法中,正确的是( ).A . 一次函数是正比例函数B .正比例函数是一次函数C . 正比例函数不是一次函数D 不是正比例函数的就不是一次函数二、填空题1. 已知一次函数y=kx+b 的图象经过点M (2,-1)和点N ,且点N 是直线132y x =-+与y 轴的交点,则点N 的坐标为____,这个函数的表达式为____. 2. 如图表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.请回答: ①汽车行驶前,油箱里有油______升;②汽车最多能行驶______小时,每小时耗油______升; ③油箱里所剩油y (升)与行驶时间x (小时)之间 的函数关系式为______,自变量x 的取值范围是______.3. 直线y=(2-5k)x+3k-2若经过原点,则k= ,若直线与x 轴交于点(-1,0),则k= ,4. 一次函数图象经过点A (-2,3)和点B (1,-1),它的表达式是____.5. 如图所示是温度计的示意图,左边的刻度表示摄氏温度,℉右边的刻度表示华氏温度华氏(℉)温度y 与 摄氏(℃)温度x 之间的函数关系式为____.6. 直线y =(2-5k )x +3k -2若经过原点,则k =____,若直线与x 轴交于点(-1,0),则k =____.7. 一个正方形的边长为3cm ,它的边长减少x cm ,得到的新正方形的周长为y cm ,则y 与x 之间的函数关系为____. 8. 等腰三角形的周长为20cm ,腰长为y (cm),底边长为x (cm) ,则y 与x 的函数关系式为______.9. 圆的直径y 与这个圆的面积x 之间的函数关系式为 . 10. 当x 时,函数y=2x+3的值大于0.11. 一次函数y=-2x +4的图象经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____,y 随x 的 增大而____.12. 直线y=3x-4与x 、y 轴交于A 、B 两点,则△AOB 的面积为 .13. 拖拉机开始工作时,油箱中有油36L ,如果每小明耗油4L ,那么油箱中剩余油量y (L),与工作时间x (h)之间的 函数关系式是____,自变量x 的取值范围是____. 14. 当ab >0,c <0时,直线ax+by+c=0通过第____象限. 三、解答题1. 如图,是某地一天的气温随时间变化的图象,根据图象回答,在这一天中:(1) 什么时间气温最高,什么时间气温最低,最高气温和最低气温各是多少? (2) 20时的气温是多少? (3) 什么时间气温为6℃? (4) 哪段时间内气温不断下降? (5) 哪段时间内气温持续不变?(小时)32. 图中的曲线表示一辆自行车离家的距离与时间的关系,骑车者九点离开家,十五点回家. 根据这个曲线图, 请你回答下列问题:(1)到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远? (4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少?(6)他在何时至何时停止前进并休息用午餐? (7)他在停止前后返回时,骑了多少千米? (8)返回时的平均速度是多少? (9)11:30和13:30时,分别离家多远? (10)何时距家22千米?3. 分别写出下列问题中的函数关系式,并指出自变量的取值范围.(1)50千米的路程,以v (千米/时)的速度前进,所用的时间为t (时),t 与v 之间的函数关系式; (2)半径为2的圆柱体的体积为V (m 3),高为h (米),V 与h 的函数关系式;(3)一栋住宅楼,底层高4m ,以上每层高为3.2m ,楼高H 与层数n 之间的函数关系式;(4)1吨民用自来水的价格为2.35元,所交水费y (元)与使用自来水的数量n (吨)的函数关系式.4. 甲、乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox 表示这条公路,原点O 为零千米路标(如图所示),并作出如下约定:①速度v >0,表示汽车向数轴正方向行驶;速度v <0,表示汽车向数轴负方向行驶;v =0时,表示汽车静止. ②汽车位置在数轴上的坐标s >0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s <0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s =0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况以一次函数的形式画在一了同一直角坐标系中,如图所示,请解答下列问题: (1)就这两个一次函数图象所反映的两条汽车在这条公路上行驶的情况填写如下的表格.(2)甲、乙两车能否相遇?如果相遇,求相遇的时刻及在公路上的位置;如不能相遇,请说明理由.t (h)s =50t -80 t +190(时)5. 某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图象如图所示.求(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.6. 请指出下列问题中,哪些是变量?哪些是常量?(1) 以45km/h的速度匀速行驶的汽车,t h所行驶的路程有s km;(2) 边长为x cm的正方体,它的表面积为S cm2.7. 指出下列函数中的自变量、函数和常量:(1)y=-2x; (2)y=3x-16(3)y=3x2-7x+2 (4)p=15q8. 下列函数中,哪些是一次函数,哪些是正比例函数?(1) y=3-2x; (2) y=1x; (3) y=x2+1; (4) y=8x; (5) y=29. 已知y=z+b,这里b是一个常数,z与x成正比例,且x=2时,y=1,x=3时,y=-2.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤5,求y的取值范围.10. (1)已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.45一次函数测试题(参考答案)一、选择题(每小题2分,共30分)1. C D2. D D3. A A4. D D5. B6. C C7. C8. D D9. D D 10. C11. C C 12. C C 13. C14. D15. B 二、填空题(每小题2分,共30分)1. 0.512y x =+2. (0,3),23y x =-+.3. ① 40; ②8,5; ③y =40-5x , 0≤x ≤84.21,32 5. 4133y x =-+. 6. 9325y x =+ 7. 21,328. 412y x =-+ 9. 1102y x =-+10. y =32-> 12. 一、二、四象限,(2,0),(0,4),减小 13. 8314. 436,09y x x =-+≤≤ 15. 二、四、一象限三、解答题(每小题4分,共40分)1. (1)4时,-4℃;16时,10℃;(2)20时,8℃;(3)10时和22时,6℃;(4)0时到4时和16时到24时,这两段时间气温不断下降;(5)12时到14时,保持8℃温度不变.2. 解:(1)到达离家最远地方的时间是12点,离家30千米.(2)10时半开始第一次休息,休息了半小时. (3)第一次体息时离家17千米. (4)11:00到12:00,他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12点到13点间停止前进,并休息用午餐较为符合实际情形. (7)返回骑了30千米.(8)返回30千米共用了2小时,故返回时的平均速度是15千米/时. (9)首先确定直线段DE 所在直线的表达式.设其为:s kt b =+,将D (11,17),E (12,30)的坐标值代入, 1117,1230,k b k b +=⎧⎨+=⎩ 解得13,126,k b =⎧⎨=-⎩所以13126s t =-.当11.5t =时,23.5s =,故11:30时,离家23.5千米.3. (1)50(0)t v v=>; (2) 4(0)V h h π=> (3) 3.2(1)4(H n n =-+为大于2的整数); (4) 2.35y n = 4. 解:(1)根据这两个一次函数的表达式及图象,填得下表:(2)设经过t (h)两车相遇,则有640190,5080,s t s t =-+⎧⎨=-⎩解得3,70.t s =⎧⎨=⎩ 所以经过3h 两车相遇,相遇在零千米路标右侧70km 处. 5. 1. 解:(1)设一次函数的表达式为y kx b =+.因为当60x =时,6y =;当80x =时,10y =,所以8010,60 6.k b k b +=⎧⎨+=⎩解得1,56.k b ⎧=⎪⎨⎪=-⎩所以所求函数的关系式是16(30)5y x x =-≥. (2)当0y =时,1605x -=,所以30x =.所以旅客最多可免费携带30公斤行李. 6. s,t 是变量,45是常量;②s 、x 是变量,6是常量.7. (1)自变量x ,y 是x 的函数,常量-2; (2)自变量x ,y 是x 的函数,常量3和16-; (3)自变量x ,y 是x 的函数,常量3,-7和2; (4)自变量q ,p 是q 的函数,常量15.8. ①是一次函数;④是正比例函数;②、③、⑤既不是正比例函数,也不是一次函数. 9. (1)∵z 与x 成正比例,∴设(0zkx k =≠且为常数), y kx a ∴=+.将2,1,3,2x y x y ====-分别代入y kx a =+,得213,327,k a k k a a +==-⎧⎧⇒⎨⎨+=-=⎩⎩∴所求函数的关系式是37y x =-+.(2)根据15x ≤≤,分别把121,5xx ==代入37y x =-+中,得124,8y y ==-.∴当15x ≤≤时,有84y -≤≤. 10. (1)依题意,有10230k k ->⎧⎨-<⎩,解得312k <<; (2)依题意,得430m ->,即34m >时,y 随x 的增大而增大.。