高中数学-几个常用函数的导数、基本初等函数的导数公式及导数的运算法则(一)课后练习
几个常用函数的导数、基本初等函数的导数公式及导数的运算法则 课件
【微思考】 (1)y=sinx在x=x0处的导数是多少?其几何意义是什么? 提示:y′=cosx,x=x0,f′(x0)=cosx0,几何意义是曲线 y=sinx在点(x0,y0)处的切线的斜率. (2)y=x3在(0,0)点存在切线吗?若存在,切线方程是什么? 提示:存在,y′=3x2,y′|x=0=3×02=0,所以过(0,0)点的 切线为y=0.
【解题探究】1.题(1)中抛物线x2=2y上两点P,Q的切线的斜率 等于多少? 2.题(2)中两条直线互相垂直的条件是什么? 【探究提示】1.kP=y′|x=4=4,kQ=y′|x=-2=-2. 2.两直线互相垂直的条件是斜率的乘积等于-1.
【自主解答】(1)由于P,Q为抛物线x2=2y(即y1= x2)上的点,
x3
数的导数公式? 2.在题(2)中能否直接对②应用导数公式求导,如果不能,应 该如何处理? 【探究提示】1.应用幂函数的导数公式求导,可先将原函数变 形为幂函数,再求导数. 2.不能直接用公式求导,应对函数进行变形,可变形为cos x.
【自主解答】(1)选D.因为f′(x)=(x-3)′=-3x-4,
类型二 导数的几何意义的应用 【典例2】(1)(辽宁高考)已知P,Q为抛物线x2=2y上两点,点P, Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线 交于点A,则点A的纵坐标为__________. (2)已知两条曲线y=sinx,y=cosx,是否存在这两条曲线的一 个公共点,使在这一点处,两条曲线的切线互相垂直?并说明 理由.
【微思考】
(1)若函数f(x)=x3,那么f′(m)的含义是什么?
提示:f′(m)的含义是函数f(x)=x3在x=m时所对应的导数值. (2)没有公式能直接求函数f(x)= 1 的导数,是不是其导数就
高中数学第一章导数及其应用1.2.1_2几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)课件新
1. 能根据定义求函数 y=c(c 为常数),y=x,y=x2,y=1x, y= x的导数.
2.能利用给出的基本初等函数的导数公式求简单函数的导 数.
自主学习 基础认识
|新知预习|
1.几个常用函数的导数
函数 导数 函数
导数
f(x)=c f′(x)=0 f(x)=x f′(x)=1
f(x)=x2 f′(x)=2x f(x)=1x f′(x)=-x12
3.函数 f(x)=sinx,则 f′(6π)=________.
解析:f′(x)=cosx,所以 f′(6π)=1. 答案:1
【解析】 (1)因为 y=sinx,所以 y′=cosx,
曲线在点 Pπ6,12处的切线斜率是
y′|x=π6=cosπ6=
3 2.
所以过点
P
且与切线垂直的直线的斜率为-
2, 3
故所求的直线方程为 y-12=- 23x-π6,
即 2x+ 3y- 23-π3=0.
(2)因为 y′=(x2)′=2x, 设切点为 M(x0,y0), 则 y′|x=x0=2x0, 又因为直线 PQ 的斜率为 k=42- +11=1,而切线平行于直线 PQ,
切线方程为 y-14=-x+12, 即 4x+4y+1=0.
|素养提升|
1.基本初等函数的导数公式可分为四类 第一类为幂函数,y′=(xα)′=αxα-1(注意幂指数 α 可推广到全体 非零实数); 第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函 数的导数为正弦函数的相反数; 第三类为指数函数,y′=(ax)′=axlna,当 a=e 时,y=ex 的导 数是指数函数的导数的一个特例; 第四类为对数函数,y′=(logax)′=xl1na,也可写为(logax)′= 1x·logae,当 a=e 时,y=lnx 的导数是对数函数的导数的一个特例.
高二数学 1.2.1-1.2.2几个常用函数的导数 基本初等函数的导数公式及导数的运算法则(一)
1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)1.主要问题及教学建议(1)根据导数定义求常用函数的导数.建议教师让学生明确导数的定义本身包含着可导与导数两层含义.可导是指有极限,反映函数在一点所具有的性质,导数是刻画这一性质的数量.因为教材不介绍极限,尽量淡化用定义法求导的严格性要求及涉及的相关技巧.(2)基本初等函数的导数公式.建议教师在教学中适量地增加练习去熟悉公式的运用,但要避免过量形式化的运算练习.同时,选配适量的求导问题,帮助学生熟悉导数公式.备选习题1.已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:由于y=sin x,y=cos x,设两条曲线的一个公共点为P(x0,y0),则两条曲线在P(x0,y0)处的切线斜率分别为k1=y'=cos x0,k2=y'=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin 2x0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.2.已知函数f(x)=,g(x)=a ln x,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程.解:∵f(x)=,g(x)=a ln x,∴f'(x)=,g'(x)=.设两曲线的交点坐标为(x0,y0),又两曲线在交点处有相同的切线,∴解得∴两曲线的交点坐标为(e2,e),切线斜率为.∴切线方程为y-e=(x-e2),即x-2e y+e2=0.。
高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则
2021/12/8
第十页,共二十八页。
[规律方法] 1.若所求函数符合导数公式,则直接利用公式求解 2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原 则,避免不必要的运算失误 3.要特别注意“1x与ln x”,“ax与logax”,“sin x与cos x”的导数区别.
2021/12/8
第一章 导数及其应用(yìngyòng)。谢谢观看
No Image
12/8/2021
第二十八页,共二十八页。
2021/12/8
第十九页,共二十八页。
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
C
[对于①,y′=0,故①错;对于②,∵y′=-
2 x3
,∴y′|x=3=-
2 27
,
故②正确;显然③,④正确,故选C.]
2021/12/8
第二十页,共二十八页。
2.已知f(x)=xα(α∈Q*),若f′(1)=14,则α等于(
(4)若y=2sin x-cos x,则y′=2cos x+sin x.( )
[答案] (1)× (2)× (3)√ (4)√
2021/12/8
第六页,共二十八页。
2.若函数y=10xn 10
D.10l1n 10
C [∵y′=10xln 10,∴y′|x=1=10ln 10.]
)
A.13
B.12
C.18
D.14
D [∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=14.]
2021/12/8
第二十一页,共二十八页。
3.设y=-2exsin x,则y′等于( )
【导学号:31062023】
几个常用函数的导数与基本初等函数的导数公式 课件
3.利用导数的定义可以求函数的导函数,但运算比较繁 杂,有些函数式子在中学阶段无法变形,怎样解决这个 问题? 提示:可以使用给出的导数公式进行求导,简化运算过 程,降低运算难度.
结论:导数的描述
原函数 f(x)=c (c为常数)
f(x)=xα (α∈Q*)
f(x)=sin x
用文字语言描述导数
常数的导数为0
几个常用函数的导数与基本初等函数的导数公式
主题 几个常用函数的导数与 基本初等函数导数公式 1.f(x)=x,f(x)=x2,f(x)= x均可表示为y=f(x)=xα (α∈Q*)的形式,其导数有何规律?
提示:因为(x)′=1·x1-1,(x2)′=2·x2-1,(
(
1
x2
)′=
1
x
1 2
1,,所以(xα)′=α·xα-1.
【解析】(1)设点P(x0,y0)是曲线y= 1 上任意一点,因
x
为y′=- 1 ,所以切线斜率为k=- 1 ,所以切线方程为
x2
x 02
y-y0=-
1
x
2 0
(x-x0),即x+
x
2 0
y-2x0=0,所以切线与坐标轴
的交点为(2x0,0), (0, 2 ) ,所以切线与两条坐标轴围成
x0
的三角形的面积为 1 |2x0|×|
y
2 1 x 2
22
,即:x- 2
2y +2=0.所以切点坐标为
(2, 2) ,切线方程为x- 2 2y+2=0.
【方法总结】求曲线方程或切线方程时的注意点 (1)切点是曲线与切线的公共点,切点坐标既满足曲线 方程也满足切线方程. (2)曲线在切点处的导数就是切线的斜率. (3)必须明确已知点是不是切点,如果不是,应先设出切 点.
高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)讲义
1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常见函数的导数2.基本初等函数的导数公式设两个函数分别为f(x)和g(x).4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f1±f2±…±f n)′=□17f1′±f2′±…±f n′.(2)两个函数和(或差)的导数还可推广为[mf(x)±ng(x)]′=□18mf′(x)±ng′(x)(m,n为常数).基本初等函数的四类求导公式(1)第一类为幂函数,y ′=(x α)′=α·xα-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y ′=(a x)′=a x·ln a ,当a =e 时,e x的导数是(a x )′的一个特例.(4)第四类为对数函数,y ′=(log a x )′=1x ·ln a ,也可记为(log a x )′=1x·log a e ,当a=e 时,ln x 的导数也是(log a x )′的一个特例.1.判一判(正确的打“√”,错误的打“×”) (1)若y =2,则y ′=12×2=1.( )(2)若f ′(x )=sin x ,则f (x )=cos x .( ) (3)若f (x )=-1x ,则f ′(x )=12x x.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)⎝ ⎛⎭⎪⎫1x 3′=________. (2)(2x)′=________.(3)若f (x )=x 3,g (x )=log 3x ,则f ′(x )-g ′(x )=________. 答案 (1)-3x4 (2)2x ln 2 (3)3x 2-1x ln 3探究1 利用导数公式及运算法则求导 例1 求下列函数的导数.(1)y =5x 3;(2)y =log 5x ;(3)f (x )=(x +1)2(x -1); (4)f (x )=2-2sin 2x2;(5)f (x )=e x+1e x -1.[解] (1)y ′=(5x 3)′=(x 35 )′=35x - 25 =355x 2.(2)y ′=(log 5x )′=1x ln 5. (3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x .(5)解法一:f ′(x )=x +x--x+x-x -2=-2e xx -2.解法二:因为f (x )=e x+1e x -1=1+2e x -1,所以f ′(x )=x--x -x -2=-2e xx -2.拓展提升(1)利用函数的和、差、积、商的求导法则求函数的导数时,要分清函数的结构,再利用相应的法则进行求导.(2)遇到函数的表达式是乘积形式或是商的形式,有时先将函数表达式展开或化简,然后再求导.【跟踪训练1】 求下列函数的导数. (1)y =13x2;(2)y =x 3·e x;(3)y =cos x x.解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x - 23 )′=-23x -23-1 =-23x - 53 .(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x)′ =3x 2·e x +x 3·e x=x 2e x(3+x ). (3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=xx -cos x xx 2=-x ·sin x -cos x x2=-x sin x +cos xx2. 探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x的切线,求切点的坐标及切线的斜率.[解] 因为(e x )′=e x,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,所以所求切线方程为y -ex 0=ex 0(x -x 0).因为切线过原点,所以-ex 0=-x 0·ex 0,x 0=1.所以切点为(1,e),斜率为e.[条件探究] 已知点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[解] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.y ′=(e x )′=e x,ex 0=1,得x 0=0,代入y =e x,y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′| x =x 0=2x 0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 探究3 导数的综合应用例3 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去.若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去.综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想划归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单,例如求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x 32 ,再求y ′=32x 12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.已知函数f (x )=5,则f ′(1)等于( ) A .5 B .1 C .0 D .不存在 答案 C解析 因为f (x )=5,所以f ′(x )=0,所以f ′(1)=0. 2.已知f (x )=x 3+3x+ln 3,则f ′(x )为( ) A .3x 2+3xB .3x 2+3x·ln 3+13C .3x 2+3x ·ln 3D .x 3+3x·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)=13的错误,∵f (x )=x 3+3x +ln 3,∴f ′(x )=3x 2+3x·ln 3.3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0.4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1,故填1. 5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′| x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .。
选修2-2——基本初等函数的导数公式及导数的运算法则(一)
1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一), [学生用书P 11])1.问题导航(1)函数y =c ,y =x ,y =x -1,y =x 2,y =x 1的导数分别是什么?能否得出y =x n 的导数公式?(2)正余弦函数的导数公式、指数函数、对数函数的导数公式分别是什么?如何应用这些公式?2.例题导读通过对P 14例1的学习,应注意以下两个问题: (1)用导数公式直接求函数的导数.(2)变化率的实际意义及利用导数知识解决实际问题的优越性.1.几个常用函数的导数(1)若y =f (x )=c ,则f ′(x )=0. (2)若y =f (x )=x ,则f ′(x )=1. (3)若y =f (x )=x 2,则f ′(x )=2x .(4)若y =f (x )=1x ,则f ′(x )=-1x2=-x -2.(5)若y =f (x )=x ,则f ′(x ).2.基本初等函数的导数公式(1)若f (x )=c (c 为常数),则f ′(x )=0.(2)若f (x )=x α(α∈Q *),则f ′(x )=αx α-1. (3)若f (x )=sin x ,则f ′(x )=cos_x . (4)若f (x )=cos x ,则f ′(x )=-sin_x . (5)若f (x )=a x ,则f ′(x )=a x ln_a . (6)若f (x )=e x ,则f ′(x )=e x .(7)若f (x )=log a x ,则f ′(x )=1x ln a .(8)若f (x )=ln x ,则f ′(x )=1.1.判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( )(2)若y =1x ,则y ′=1x2.( )(3)若y =2x,则y ′=x ·2x -1.( ) 答案:(1)× (2)× (3)×2.余弦曲线y =cos x 在(0,1)处的切线的斜率为( ) A .1 B .0 C.π2D .-1 答案:B3.若y =25,则y ′=________. 答案:04.已知f (x )=x α,若f ′(-1)=-4,则α=________. 答案:41.对常数函数导数的几何意义与物理意义的两点说明(1)常数函数的导数为0,其几何意义为f (x )=c 在任意点处的切线平行于x 轴或与x 轴重合,其斜率为0.(2)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.2.函数y =kx (k 为常数)的导数值k 与该函数增减快慢之间的关系(1)函数y =kx (k >0)增加的快慢与k 有关系,即与函数的导数有关系,k 越大,函数增加得越快,k 越小,函数增加得越慢.(2)函数y =kx (k <0)减少的快慢与|k |有关系,即与函数导数的绝对值有关系,|k |越大,函数减少得越快,|k |越小,函数减少得越慢.利用导数公式求函数的导数[学生用书P 12]求下列函数的导数: (1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =⎝⎛⎭⎫12x ;(5)y =2cos 2x 2-1.[解] (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=()x 35′=35x -25=355x2.(4)y ′=⎝⎛⎭⎫12x ln 2-1=-⎝⎛⎭⎫12x ln 2. (5)y =2cos 2x2-1=cos x ,∴y ′=-sin x .用公式求函数导数的方法:(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是合理转化函数的关系式为可以直接应用公式的基本函数的模式,如y =1x4可以写成y =x -4,y =5x 3可以写成y =x 35等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.(1)已知函数f (x )=1x3,则f ′(-3)=( )A .81B .243C .-243D .-127解析:选D.∵f (x )=x -3,∴f ′(x )=-3x -4=-3x 4,∴f ′(-3)=-3(-3)4=-127. (2)已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0=________.解析:∵f (x )=ln x (x >0),∴f ′(x )=1x,∴f ′(x 0)=1x 0=1x 20,∴x 0=1. 答案:1导数的几何意义(1)求曲线y =e x 在x =0处的切线方程. [解] ∵y ′=(e x )′=e x ,∴曲线y =e x 在x =0处的切线斜率为e 0=1, 又∵切线过点(0,1),∴切线方程为y -1=x -0, 即x -y +1=0.(2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解] 由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), 所以两条曲线在P (x 0,y 0)处的切线斜率分别为k 1=y ′|x =x 0=cos x 0, k 2=y ′|x =x 0=-sin x 0.若使两条切线互相垂直, 必有cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.利用导数的几何意义解决曲线切线问题的方法:2.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于________.解析:∵y ′=-12x -32,∴切线的斜率k =-12a -32,∴切线方程是y -a -12=-12a -32(x -a ).令x =0,得y =32a -12,令y =0,得x =3a ,∴三角形的面积S =12·3a ·32a -12=18,解得a =64.答案:64导数几何意义的综合应用[学生用书P 12](1)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1nB.1n +1C.n n +1D .1 [解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n . 令x =1,得在点(1,1)处的切线的斜率k =n +1, ∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1),令y =0,则x n =nn +1,∴x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.[答案] B (2)(2015·高考全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.[解析] ∵ f ′(x )=3ax 2+1, ∴ f ′(1)=3a +1. 又f (1)=a +2,∴ 切线方程为y -(a +2)=(3a +1)(x -1).∵ 切线过点(2,7),∴ 7-(a +2)=3a +1,解得a =1. [答案] 1利用导数的几何意义求解曲线的切线与坐标轴所围成的三角形的面积问题,切线与数列的交汇问题,公切线问题等,首先要熟记导数公式,对函数能够正确求导,再注意转化思想,数形结合思想及构造法、配方法的运用.3.已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,试在抛物线弧AOB ︵上求一点P ,使△ABP 的面积最大.解:如图所示,|AB |为定值,要使△P AB 面积最大,只要使P 到AB 的距离最大,所以点P 是抛物线的平行于AB 的切线的切点.设P (x ,y ),由图知,点P 在x 轴下方的图象上,所以y =-2x .由导函数的定义不难求得y ′=-1x. 因为k AB =-12,所以-1x=-12,即x =2,x =4.由y 2=4x (y <0),得y =-4,所以P (4,-4).下列结论:①若y =3x ,则y ′=133x ;②若y =x 3,则y ′=3x 2;③若f (x )=x 2,则f ′(3)=9.其中正确的序号是________.[解析] y =3x ,y ′=(3x )′=()x 13′ =13x -23=133x 2. ∵f (x )=x 2,∴f ′(x )=2x ,则f ′(3)=2×3=6. [答案] ② [错因与防范](1)求导时易出现的错误是解析式化简出错,符号处理不清,理解不到位,从而出错. (2)对用根式形式表示的函数要化商成指数式,能够化商后变为基本初等函数的函数求导问题是易错点.4.求下列函数的导数. (1)y =7x 3; (2)y =lg x ;(3)y =cos t (t 为常数). 解:(1)∵y =7x 3=x 37,∴y ′=(7x 3)′=(x 37)′=37x -47=377x 4.(2)y ′=(lg x )′=1x ln 10.(3)y ′=(cos t )′=0.1.若f (x )=sin x ,f ′(α)=12,则下列α的值中满足条件的是( )A.π3B.π6C.23πD.56π 解析:选A.∵f (x )=sin x ,∴f ′(x )=cos x .又∵f ′(α)=cos α=12,∴α=2k π±π3(k ∈Z ).当k =0时,α=π3,故选A.2.(2015·广州高二检测)已知直线y =kx 是曲线y =3x 的切线,则k 的值为( ) A.13B .eln 3C .log 3 eD .e 解析:选B.设切点为(x 0,y 0), 因为y ′=3x ln 3, 所以k =3x 0ln 3, 所以y =3x 0ln 3·x ,又因为(x 0,y 0)在曲线y =3x 上, 所以3x 0ln 3·x 0=3x 0,所以x 0=1ln 3=log 3 e.所以k =eln 3. 3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,且a 1=16,则a 1+a 3+a 5=________.解析:在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,∴a k +1=a k2,∵a 1=16,∴a 2=8,a 3=4,a 4=2,a 5=1,∴a 1+a 3+a 5=16+4+1=21.答案:21[A.基础达标]1.下列结论不正确的是( ) A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1解析:选B.A 、D 显然正确;对于B ,y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x 3,不正确;对于C ,y ′=(x )′=12x -12=12x.正确.2.曲线y =12x 2在点⎝⎛⎭⎫1,12处的切线的倾斜角为( ) A .-π4 B .1C.π4D.34π 解析:选C.y ′=x ,∴切线的斜率k =tan α=1,∴α=π4.3.曲线y =x 过点(1,1)的切线方程为( )A .y =x +1B .y =12x +12C .y =-12x +32D .y =x解析:选 B.∵y ′=12x,∴在点(1,1)处的切线的斜率为12,由点斜式得过点(1,1)的切线方程为y =12x +12.4.下列结论中不正确的是( ) A .若f (x )=x 4,则f ′(2)=32B .若f (x )=1x,则f ′(2)=-22C .若f (x )=1x 2·x,则f ′(1)=-52D .若f (x )=x -5,则f ′(-1)=-5解析:选B.对于A ,∵f ′(x )=4x 3,∴f ′(2)=4×23=32,正确;对于B ,∵f ′(x )=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32,∴f ′(2)=-12×2-32=-12×123=-142=-28,不正确;对于C ,∵f ′(x )=⎝ ⎛⎭⎪⎫1x 2·x ′=⎝ ⎛⎭⎪⎫1x 52′=(x -52)′=-52x -72,∴f ′(1)=-52,正确;对于D ,∵f ′(x )=-5x -6,∴f ′(-1)=-5,正确. 5.曲线f (x )=x 3的斜率等于1的切线有( ) A .0条 B .1条 C .2条 D .3条解析:选C.f ′(x )=3x 2,设切点为(x 0,y 0),则f ′(x 0)=3x 20=1.解得切点坐标为⎝⎛⎭⎫33,39或⎝⎛⎭⎫-33,-39.∴切线有2条. 6.(2015·高考全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵ y =x +ln x ,∴ y ′=1+1x,y ′|x =1=2.∴ 曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵ y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴ a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵ y ′=2ax +(a +2),∴ y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:87.质点的运动方程是s =1t4(其中s 的单位是m ,t 的单位是s).则质点在t =3s 时的速度是________.解析:∵s =t -4,∴s ′=-4t -5,∴质点在t =3 s 时的速度是(-4)×135=-4243(m/s).答案:-4243m/s8.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________. 解析:∵f (x )=a 2(a 为常数), ∴f ′(x )=0.又∵g (x )=ln x (x >0),∴g ′(x )=1x,∴2x [f ′(x )+1]-g ′(x )=1,即2x -1x=1,解之得x =1. 答案:19.(2015·长沙高二检测)求过曲线f (x )=cos x 上一点P ⎝⎛⎭⎫π3,12且与曲线在这点的切线垂直的直线方程.解:因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝⎛⎭⎫π3,12的切线斜率为f ′⎝⎛⎭⎫π3=-sin π3=-32,所以所求直线的斜率为233,所求直线方程为y -12=233⎝⎛⎭⎫x -π3.即y =233x -239π+12.10.(2015·苏州高二检测)设曲线y =e x (x ≥0)在点M (t ,e t )处的切线l 与x 轴、y 轴所围成的三角形的面积为S (t ),求S (t )的解析式.解:对y =e x 求导可得f ′(x )=(e x )′=e x , 故切线l 在点M (t ,e t )处的斜率为f ′(t )=e t , 故切线l 的方程为y -e t =e t (x -t ). 即e t x -y +e t (1-t )=0,令y =0可得x =t -1.令x =0可得y =e t (1-t ),所以S (t )=12|(t -1)·e t (1-t )|=⎪⎪⎪⎪-12(t -1)2e t =12(t -1)2e t .(t ≥0) [B.能力提升]1.曲线y =x n在x =2处的导数为12,则n 等于( ) A .1 B .2 C .3 D .4解析:选C.∵y ′=n ·x n -1,∴y ′|x =2=n ·2n -1=12,∴n =3. 2.(2015·北京高二检测)已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b =( )A .4B .-4C .28D .-28解析:选C.∵y =x 3,∴y ′=3x 2, y ′|x =2=12,∴在点(2,8)处的切线方程为y =12x -16, ∴k =12,b =-16. ∴k -b =28. 3.若质点P 的运动方程是s =3t 2(s 单位为m ,t 单位为s),则质点P 在t =8时的瞬时速度是________.解析:∵s ′=(3t 2)′=(t 23)′=23t -13,∴当t =8时,s ′=23×8-13=23×2-1=13.∴质点P 在t =8时的瞬时速度为13m/s.答案:13m/s4.设直线l 1与曲线y =x 相切于点P ,直线l 2过点P 且垂直于l 1,若l 2交x 轴于点Q ,又作PK 垂直于x 轴于点K ,则KQ 的长为________.解析:如图所示,设P (x 0,y 0),∵y ′=12x ,∴kl 1=12x 0.∵直线l 1与l 2垂直,则kl 2=-2x 0,∴直线l 2的方程为y -y 0=-2x 0(x -x 0). ∵点P (x 0,y 0)在曲线y =x 上,∴y 0=x 0.在直线l 2的方程中令y =0,则-x 0=-2x 0(x -x 0).∴x =12+x 0,即x Q =12+x 0.又x K =x 0,∴|KQ |=x Q -x K =12+x 0-x 0=12.答案:125.(2015·淮南高二检测)已知 P (-1,1),Q (2,4)是曲线y =x 2上的两点,(1)求过点P ,Q 的曲线y =x 2的切线方程; (2)求与直线PQ 平行的曲线y =x 2的切线方程. 解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2, 过Q 点的切线的斜率k 2=y ′|x =2=4, 过P 点的切线方程:y -1=-2(x +1), 即:2x +y +1=0.过Q 点的切线方程:y -4=4(x -2), 即4x -y -4=0.(2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1,所以x 0=12,所以切点M ⎝⎛⎭⎫12,14, 与PQ 平行的切线方程:y -14=x -12,即:4x -4y -1=0.6.如图,已知曲线f (x )=2x 2+a (x ≥0)与曲线g (x )=x (x ≥0)相切于点P ,且在点P 处有相同的切线l .求点P 的坐标及a 的值.解:设切点P (x 0,y 0),由直线l 与曲线f (x )相切于点P ,得切线l 的斜率为f ′(x 0)=4x 0, 由直线l 与曲线g (x )相切于点P ,得切线l 的斜率为g ′(x 0)=12x 0,由f ′(x 0)=g ′(x 0),得4x 0=12x 0,解得x 0=14.所以y 0=x 0=12,即点P 的坐标为⎝⎛⎭⎫14,12. 由点P ⎝⎛⎭⎫14,12在曲线f (x )上,得2×⎝⎛⎭⎫142+a =12,解得a =38.所以点P 的坐标为⎝⎛⎭⎫14,12,a 的值为38.。
几种常见函数的导数基本初等函数的导数公式及导数的运算法则
几种常见函数的导数基本初等函数的导数公式及导数的运算法则一、常见函数的导数公式:1.常数函数的导数公式:若f(x)=C(C为常数),则f'(x)=0。
2. 幂函数的导数公式:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 指数函数的导数公式:若f(x) = a^x(a为正常数且a≠1),则f'(x) = ln(a)・a^x。
4. 对数函数的导数公式:若f(x) = log_a(x)(a为正常数且a≠1),则f'(x) = 1 / (x • ln(a))。
5.三角函数的导数公式:a) 正弦函数的导数公式:f(x) = sin(x),则f'(x) = cos(x)。
b) 余弦函数的导数公式:f(x) = cos(x),则f'(x) = -sin(x)。
c) 正切函数的导数公式:f(x) = tan(x),则f'(x) = sec^2(x)。
d) 余切函数的导数公式:f(x) = cot(x),则f'(x) = -csc^2(x)。
二、基本初等函数的导数公式:1.(f+g)'(x)=f'(x)+g'(x)(求和法则)2.(a・f)'(x)=a・f'(x)(常数倍法则)3.(f・g)'(x)=f'(x)・g(x)+f(x)・g'(x)(乘积法则)4.(f/g)'(x)=(f'(x)・g(x)-f(x)・g'(x))/(g(x))^2(商法则)5.(fⁿ)'(x)=n・f'(x)・f^(n-1)(x)(幂法则)其中,f'表示f的导数,fⁿ表示f的n次幂,f^(n-1)表示f的n-1次导数。
三、导数的运算法则:1.和差法则:(f+g)'(x)=f'(x)+g'(x);(f-g)'(x)=f'(x)-g'(x)。
高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
1 ,可以转化为y=
x3
x
2 3
,y=x-3
后再求导.
(4)对解析式较复杂的,要先化简解析式,再选择公式进行求
导,化简时注意化简的等价性.
【典例训练】
1.若y=10x,则y′|x=1=_________.
2.求下列函数的导数:
(1)y=x7;(2)y=
1 x2
;(3)y=
3 x;
(4)y=2sin
题目类型三、导数的综合应用 【技法点拨】
导数的综合应用的解题技巧 (1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很 多综合问题我们可以数形结合,巧妙利用导数的几何意义,即 切线的斜率建立相应的未知参数的方程来解决,往往这是解决 问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、 不等式等知识结合出现综合大题.遇到解决一些与距离、面积 相关的最值、不等式恒成立等问题.可以结合导数的几何意义 分析.
【解析】1.依题意,y′|x=x1=
,1
2 x1
∵n与m垂直,
(6)若f(x)=ex,则f′(x)=_ex_;
(7)若f(x)=logax,则f′(x)=
1 (a>0且a≠1);
xlna
(8)若f(x)=lnx,则f′(x)= 1 .
x
1.利用导数的定义求导与导数公式求导的区别 导函数定义本身就是函数求导的最基本方法,但导函数是由极 限定义的,所以函数求导总是要归结为求极限,这在运算上很 麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与 基本初等函数公式后,求函数的导函数就可以用公式直接求导 了,简洁迅速.
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
课几个常用函数的导数、基本初等函数的导数公式及导数的运算法则课件(人教A选修
应用:在计算 复杂函数的导 数时,可以通 过链式法则将 复杂函数分解 为简单函数, 从而简化计算
过程
注意事项:在 使用链式法则 时,需要注意 函数的定义域 和值域,以及 函数的连续性
和可导性
乘积法则和商的导数法则
乘积法则:导数等于导数的乘积 商的导数法则:导数等于导数的商 复合函数的导数法则:导数等于导数的复合 反函数的导数法则:导数等于原函数的导数的倒数
04
导数的运算法则
导数的四则运算法则
加法法则:导数 相加等于导数之 和
减法法则:导数 相减等于导数之 差
乘法法则:导数 相乘等于导数之 积
除法法则:导数 相除等于导数之 商
链式法则
定义:链式法 则是导数的运 算法则之一, 用于计算复合
函数的导数
公式:若 f(x)=g(h(x)),
则 f'(x)=g'(h(x))
导数是函数在某一点的局 部线性逼近的斜率极限
02
常用函数的导数
一次函数、二次函数、幂函数的导数
一次函数:y=ax+b,导数为a
二次函数:y=ax^2+bx+c, 导数为2ax+b
幂函数:y=x^n,导数为 nx^(n-1)
指数函数和对数函数的导数
指数函数: y=a^x,其导 数为y'=a^x * ln(a)
导数的几何意义
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率
导数的基本性质
导数是函数在某一点的切 线斜率
导数是函数在某一点的瞬 时变化率
导数是函数在某一点的局 部线性近似
几个常见函数的导数公式和基本初等函数的导数公式
几个常见函数的导数公式和基本初等函数的导数公式函数的导数是用来描述函数在一点上的变化率。
对于常见函数的导数公式和基本初等函数的导数公式,以下是一些常见的公式和规则。
常见函数的导数公式:1.常数函数:导数为0。
即对于函数f(x)=C,其中C是常数,导数f'(x)=0。
2.幂函数:对于函数f(x)=x^n,其中n是一个实数,导数f'(x)=n*x^(n-1)。
3. 指数函数:对于函数 f(x) = a^x,其中 a 是一个正实数且a ≠ 1,导数 f'(x) = a^x * ln(a)。
4. 对数函数:对于函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,导数 f'(x) = 1 / (x * ln(a))。
5. 三角函数:常见的三角函数包括正弦函数(sin(x))、余弦函数(cos(x))、正切函数(tan(x)),它们的导数分别为 sin'(x) =cos(x)、cos'(x) = -sin(x)、tan'(x) = sec^2(x),其中 sec(x) = 1 / cos(x)。
基本初等函数的导数公式:1.常见的常数导数公式:即常数函数的导数为0,如f(x)=5的导数为0。
2.单项式函数导数公式:对于f(x)=a*x^n,其中a是常数且n是正整数,导数f'(x)=a*n*x^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,导数f'(x)=e^x,其中e是自然对数的底数。
4. 对数函数导数公式:对于 f(x) = ln(x),导数 f'(x) = 1 / x。
5. 反三角函数导数公式:包括反正弦函数(arcsin(x))、反余弦函数(arccos(x))、反正切函数(arctan(x))等。
其导数分别为:arcsin'(x) = 1 / sqrt(1-x^2)、arccos'(x) = -1 / sqrt(1-x^2)、arctan'(x) = 1 / (1+x^2)。
16-17版:1.2.1 几个常用函数的导数~1.2.2 基本初等函数的导数公式及导数的运算 法则(
1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一)[学习目标] 1.能根据定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数思考 (1)函数f (x )=c ,f (x )=x ,f (x )=x 2的导数的几何意义和物理意义分别是什么? (2)函数f (x )=1x 导数的几何意义是什么?知识点二基本初等函数的导数公式思考由函数y=x,y=x2的导数,你能得到y=xα(α∈Q*)的导数吗?如何记忆该公式?题型一运用求导公式求常见的基本初等函数的导数例1求下列函数的导数:(1)y=1x5;(2)y=12log x;(3)y=cos π4;(4)y=22x.反思与感悟 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 跟踪训练1 求下列函数的导数: (1)y =x 8;(2)y =⎝⎛⎭⎫12x; (3)y =x x ;(4)y =12log x .题型二 利用导数公式求曲线的切线方程例2 求过曲线y =sin x 上点P ⎝⎛⎭⎫π6,12且与过这点的切线垂直的直线方程.反思与感悟 导数的几何意义是曲线在某点处的切线斜率,两条直线互相垂直时,其斜率之积为-1(在其斜率都存在的情形下). 跟踪训练2 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.在利用求导公式时,因没有进行等价变形出错例3 求函数y =3x 2的导数. 错解 ∵y =3x 2,∴y =x 32,故y ′=3212x .错因分析 出错的地方是根式化为指数幂,没有进行等价变形,从而导致得到错误的结果. 正解 ∵y =3x 2=23x ,∴y ′=2313x -.防范措施 准确把握根式与指数幂的互化:nx m =m nx ,1n x m=m nx-.1.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A .0 B .1 C .2D .32.函数f (x )=x ,则f ′(3)等于( ) A.36B .0 C.12xD.323.给出下列结论:①⎝⎛⎭⎫cos π6′=-sin π6=-12; ②若y =1x 2,则y ′=-2x -3;③若f (x )=3x ,则[f ′(1)]′=3; ④若y =5x ,则y ′=155x .其中正确的个数是( ) A .1 B .2 C .3D .44.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________.5.求下列函数的导数:(1)y=1x3;(2)y=3 x.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.提醒:完成作业 1.2.1~1.2.2(一)答案精析知识梳理 知识点一0 1 2x -1x 2 12x思考 (1)常数函数f (x )=c :导数为0,几何意义为函数在任意点处的切线垂直于y 轴,斜率为0;当y =c 表示路程关于时间的函数时,y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.一次函数f (x )=x :导数为1,几何意义为函数在任意点处的切线斜率为1,当y =x 表示路程与时间的函数,则y ′=1可以解释为某物体作瞬时速度为1的匀速运动;一般地,一次函数y =kx :导数y ′=k 的几何意义为函数在任意点处的切线斜率为k ,|k |越大,函数变化得越快.二次函数f (x )=x 2:导数y ′=2x ,几何意义为函数y =x 2的图象上点(x ,y )处的切线斜率为2x ,当y =x 2表示路程关于时间的函数时,y ′=2x 表示在时刻x 的瞬时速度为2x . (2)反比例函数f (x )=1x :导数y ′=-1x 2,几何意义为函数y =1x 的图象上某点处切线的斜率为-1x 2. 知识点二0 αx α-1 cos x -sin x a x ln a e x1x ln a 1x思考 因y =x ,得y ′=1;y =x 2,得y ′=2x ,故y =x α的导数y ′=αx α-1,结合该规律,可记忆为“求导幂减1,原幂作系数”. 题型探究例1 解 (1)y ′=⎝⎛⎭⎫1x 5′=(x -5)′=-5x -6=-5x 6; (2)y ′=1x ln 12=-1x ln2;(3)y ′=⎝⎛⎭⎫cos π4′=0; (4)y ′=(22x )′=(4x )′=4x ·ln 4. 跟踪训练1 解 (1)y ′=8x 7; (2)y ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2;(3)∵y =x x =x 32,∴y ′=32x 12;(4) y ′=1x ln 13=-1x ln 3.例2 解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝⎛⎭⎫π6,12处的切线斜率是: y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝⎛⎭⎫x -π6, 即2x +3y -32-π3=0. 跟踪训练2 解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1. 又∵f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4).∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2).又∵切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2). 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1.当x 0=2时,f ′(x 0)=1,此时所求切线方程为x -y -4=0; 当x 0=1时,f ′(x 0)=0,此时所求切线方程为y +2=0. 故经过点A (2,-2)的曲线f (x )的切线方程为 x -y -4=0或y +2=0. 当堂检测1.D [令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义,可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.]2.A [∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.]3.A [cos π6=32为常数,则⎝⎛⎭⎫cos π6′=0,所以①错误;y ′=⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,所以②正确;因为f (x )=3x ,所以f ′(x )=3,所以[f ′(1)]′=0,所以③错误;y ′=(5x )′=⎝⎛⎭⎫x 15′=15x -45,所以④错误.] 4.12e 2 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.5.解 (1)y ′=⎝⎛⎭⎫1x 3′=(x -3)′=-3x -3-1=-3x -4. (2)y ′=(3x )′=(x 13)′=13x 13-1=13x -23.。
高中数学同步学案 几个常用函数的导数 基本初等函数的导数公式及导数的运算法则一教师用书
3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一) 学 习 目 标核 心 素 养1.能根据定义求函数y =c,y =x,y =x 2,y =1x ,y=x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.(重点、难点)借助导数的定义求几个常用函数的导数,培养逻辑推理及数学运算的素养.1.几个常用函数的导数原函数 导函数 f(x)=c f′(x)=0 f(x)=x f ′(x)=1 f(x)=x 2f′(x)=2x f(x)=1xf′(x)=-1x2思考:根据上述四个公式,你能总结出函数y =x α的导数是什么吗? [提示] 若y =x α,则y′=αx α-1.2.基本初等函数的导数公式原函数 导函数 f(x)=c f′(x)=0 f(x)=x α(α∈Q *) f′(x)=αxα-1f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x f(x)=a xf′(x)=a xln_a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1xln a(a>0,且a≠1)f(x)=ln xf′(x)=1x1.函数f(x)=0的导数是( ) A .0 B .1 C .不存在D .不确定A [由基本初等函数的导数公式知(0)′=0,故选A .] 2.下列结论正确的个数为( ) ①f(x)=ln 2,则f′(x)=12;②g(x)=cos x,则g′⎝ ⎛⎭⎪⎫π6=-12; ③h(x)=2x,则h′(x)=2xln 2; ④φ(x)=log 5x,则φ′(x)=1xln 5. A .0 B .1 C .2D .3D [对①,f ′(x)=(ln 2)′=0;对②,g′(x)=-sin x,g′⎝ ⎛⎭⎪⎫π6=-sin π6=-12;对③,h′(x)=2x·ln 2;对④,φ′(x)=1xln 5.故选D .] 3.求下列函数的导数.(1)(2x)′=________;(2)(log 3 x)′=________;(3)(sin 30°)′=________;(4)⎝ ⎛⎭⎪⎫1x 4′=________. [答案] (1)2xln 2 (2)1xln 3 (3)0 (4)-4x5利用导数公式求函数的导数(1)y =x 12;(2)y =5x 3;(3)y =2sin x 2cos x 2;(4)y =log 12x ;(5)y =3x.[解] (1)y′=(x 12)′=12x12-1=12x 11.(2)y′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2.(3)∵y=2sin x 2cos x2=sin x,∴y′=cos x.(4)y′=(log 12x)′=1xln12=-1xln 2.(5)y′=(3x)′=3xln 3.用导数公式求函数导数的方法1若所求函数是基本初等函数,则直接利用公式求解. 2对于不能直接利用公式的类型,关键是将其进行合理转化为可以直接应用公式的基本函数的模式,如y =1x 4可以写成y =x -4,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.[跟进训练] 求下列函数的导数:(1)y =5x ;(2)y =-1x 5;(3)y =ln 3;(4)y =x x 3.[解] (1)y′=(5x)′=5xln 5. (2)y′=-(x -5)′=5x -6=5x 6.(3)y′=(ln 3)′=0. (4)∵y=x x 3,∴y=x 52,∴y′=⎝ ⎛⎭⎪⎫x 52′=52x 52-1=52x 32=5x x2.利用导数公式求曲线的切线方程【例2】 已知点P(-1,1),点Q(2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程. [思路点拨] 直线PQ 的斜率⇒所求切线的斜率⇒切点坐标⇒所求切线方程. [解] 因为y′=(x 2)′=2x,设切点为M(x 0,y 0),则y′|x=x 0=2x 0,又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ,所以k =2x 0=1,即x 0=12.所以切点为M ⎝ ⎛⎭⎪⎫12,14.所以所求切线方程为y -14=x -12,即4x -4y -1=0.1.本例中,是否存在与直线PQ 垂直的切线?若存在,求出切线方程,若不存在,说明理由.[解] 假设存在与直线PQ 垂直的切线,因为PQ 的斜率为k =4-12+1=1,所以与PQ 垂直的切线斜率k =-1, 设切点为(x 1,y 1), 则y′|x=x 1=2x 1,令2x 1=-1,则x 1=-12,y 1=14,切线方程为y -14=-⎝ ⎛⎭⎪⎫x +12,即4x +4y +1=0. 2.若本例中曲线改为y =ln x,试求与直线PQ 平行的切线方程. [解] 设切点为(a,b), 因为k PQ =1,则由f′(a)=1a=1,得a =1,故b =ln 1=0,则与直线PQ 平行的切线方程为y =x -1,即x -y -1=0.解决切线问题,关键是确定切点,要充分利用: 1切点处的导数是切线的斜率; 2切点在切线上;3切点又在曲线上这三个条件联立方程解决.1.利用常见函数的导数公式可以比较简便地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y =1-2sin 2 x 2的导数.因为y =1-2sin 2 x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.1.判断正误(1)(log 3π)′=1πln 3.( ) (2)若f(x)=1x,则f′(x)=ln x .( ) (3)因为(sin x)′=cos x,所以(sin π)′=cos π=-1.( )[答案] (1)× (2)× (3)×2.已知直线y =kx 是曲线y =ln x 的切线,则k =________. 1e [y′=(ln x)′=1x ,则1x =k. 所以x =1k ,所以y =k×1k=1.所以曲线y =ln x 过点1k ,1,即1=ln 1k ,所以k =1e.]3.曲线y =e x在点(0,1)处的切线方程为__________.x -y +1=0 [y′=e x,y′|x =0=e 0=1,故切线方程为y -1=x,即x -y +1=0.]4.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a,b,c 的值. [解] 因为y =ax 2+bx +c 过点(1,1), 所以a +b +c =1.y′=2ax +b,曲线在点(2,-1)的切线的斜率为4a +b =1. 又曲线过点(2,-1), 所以4a +2b +c =-1. 由⎩⎪⎨⎪⎧a +b +c =1,4a +b =1,4a +2b +c =-1,解得⎩⎪⎨⎪⎧a =3,b =-11,c =9.所以a,b,c 的值分别为3,-11,9.。
几个常用函数导数基本初等函数导数公式及导
几个常用函数导数基本初等函数导数公式及导函数的导数是微分学中的一个重要概念,描述了函数在每一点上的变化率。
掌握基本初等函数的导数公式及导数求解方法,对于理解数学和物理等学科中的问题解决具有重要意义。
下面我将详细介绍几个常用函数的导数公式及导数求解方法。
1.常数函数:常数函数的导数恒为零,即对于常数C,其导数为0:f(x)=C,f'(x)=0。
2.幂函数:幂函数指的是形如f(x)=x^n的函数,其中n是实数。
幂函数的导数公式为:f'(x) = nx^(n-1)。
例如,对于函数f(x)=x^3,它的导数为f'(x)=3x^2、这个公式也被称为幂函数的指数法则。
3.指数函数:指数函数指的是形如f(x)=a^x的函数,其中a为正实数且不等于1指数函数的导数公式为:f'(x) = a^x * ln(a)。
例如,对于函数f(x) = 2^x,它的导数为f'(x) = 2^x * ln(2)。
其中ln(a) 是以e为底的对数函数。
4.对数函数:对数函数指的是形如f(x) = logₐ(x)的函数,其中a为正实数且不等于1对数函数的导数公式为:f'(x) = 1 / (x * ln(a))。
例如,对于函数f(x) = log₂(x),它的导数为f'(x) = 1 / (x *ln(2))。
5.三角函数:三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的导数公式为:f'(x) = cos(x)。
余弦函数的导数公式为:f'(x) = -sin(x)。
正切函数的导数公式为:f'(x) = sec^2(x) = 1 / cos^2(x)。
这些公式可以通过三角函数的定义及导数的定义进行求解。
6.反三角函数:反三角函数包括反正弦函数、反余弦函数和反正切函数等。
反正弦函数的导数公式为:f'(x) = 1 / sqrt(1 - x^2)。
高中数学 1.2.1 几个常用函数的导数、§1.2.1 基本初等函数的导数公式及导数的运算法则
§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)学习目标:1、理解各个公式的证明过程,进一步理解运用概念求导数的方法;2、掌握常见函数的导数公式;3、灵活运用公式求某些函数的导数;(4)能利用导数的四则运算法则求解导数。
一、主要知识:1、几个常用的导数公式(1)c '= ;(2)()nx '= ()*n Q ∈;(3)()sin x '= ;(4)()cos x '= ;(5)()x a '= ;(6)()x e '= ;(7)()log ax '= ;(8)()ln x '= 。
2、导数的运算法则:(1)()()f x g x '±=⎡⎤⎣⎦ ;(2)()()f x g x '⋅=⎡⎤⎣⎦; (3)()()f x g x '⎡⎤=⎢⎥⎣⎦ 。
二、典例分析:〖例1〗:求下列函数的导数:(1)100y x =;(2)41y x =;(3)y =;(4)5log y x =;(5)2x y =。
〖例2〗:求下列函数的导数:(1)423y x x x =--+;(2)2323y x x =+;(3)()()()123y x x x =+++;(4)sin cos 22x x y x =-;(5)2sin x y x =;(6)lg 3xx x e y -=。
〖例3〗:已知曲线y (1)曲线上与直线24y x =-平行的切线的方程;(2)过点()0,1P 且与曲线相切的切线方程。
〖例4〗:求证:双曲线1xy =上任何一点处的切线与坐标轴构成的三角形面积为常数。
三、课后作业:1、函数3cos y x x =的导数是( )A 、233cos sin y x x x x =+B 、233cos sin y x x x x =-C 、23cos y x x =D 、3sin y x x =- 2、已知11x f x x⎛⎫= ⎪+⎝⎭,则()f x '=( ) A 、11x + B 、11x -+ C 、()211x + D 、()211x -+ 3、已知()a f x x =,则()14f '-=-,则a =( )A 、4B 、4-C 、5D 、5- 4、设()()()()()()()()010211sin ,,,n n f x x f x f x f x f x f x f x n N +'''====∈,则()2010f x =( ) A 、sin x B sin x -、 C 、cos x D 、cos x -5、过曲线32y x ax =+上一点()1,P b -且平行于直线30x y +=的切线方程是( )A 、310x y +-=B 、310x y ++=C 、310x y -+=D 、320x y +-= 6、设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P 横坐标的取值范围为( )A 、11,2⎡⎤--⎢⎥⎣⎦B 、[]1,0-C 、[]0,1D 、1,12⎡⎤⎢⎥⎣⎦7、设直线12y x b =+是曲线ln y x =的一条切线,则实数b = 。
高中数学导数及其应用几个常用函数的导数基本初等函数的导数公式及导数的运算法则()_
12/12/2021
第二十六页,共四十一页。
题型三 导数的综合应用
(2018·北京卷)设函数 f(x)=[ax2-(4a+1)x+4a+ 3]ex,若曲线 y=f(x)在点(1,f(1))处的切线与 x 轴平行,求实数 a 的值.
【思路探索】 利用导数的几何意义求曲线在点(1,f(1)) 处的切线方程,切记需检验切线是否与 x 轴重合.
12/12/2021
第三十三页,共四十一页。
2.已知 f′(x)是 f(x)的导函数,f(x)=sin 2x,则 f′π2=(
)
A.-2
B.2
C.0
D.-1
解析:∵f′(x)=2cos 2x,∴f′π2=2cos π=-2,故选 A.
答案:A
12/12/2021
第三十四页,共四十一页。
3.(2019·赤峰二中高二月考)函数 y=ln 1+exex在 x=0 处的 导数为________.
第三页,共四十一页。
目标导学
1.能利用导数的四则运算法则求函数的导数. 2.能运用复合函数的求导法则求复合函数的导数.
12/12/2021
第四页,共四十一页。
‖知识梳理‖
1.导数的运的导数
[f(x)+g(x)]′=____f_′(_x_)+__g_′_(x_)_________
12/12/2021
第三十八页,共四十一页。
(3)y′=ln
x′x2+1-ln x·x2+1′ x2+12
=x2+xx12-+21x·2ln x=x2-x2xx2+2ln1x+2 1.
(4)y′=(3x2+5)′·ex+(3x2+5)·(ex)′
=6x·ex+(3x2+5)·ex=(3x2+6x+5)·ex.
高中数学 专题1.2.1 几个常用函数的导数 1.2.2基本初等函数的导数公式及导数的运算法则(1
高中数学专题1.2.1 几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(1)练习(含解析)新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.2.1 几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(1)练习(含解析)新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.2.1 几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(1)练习(含解析)新人教A版选修2-2的全部内容。
基本初等函数的导数公式及导数的运算法则(1)1。
下列结论不正确的是()A.若y=3,则y′=0B.若f(x)=3x+1,则f′(1)=3C.若y=-错误!+x,则y′=-错误!+1D.若y=sin x+cos x,则y′=cos x+sin x【答案】D【解析】利用求导公式和导数的加、减运算法则求解.D项,∵y=sin x+cos x,∴y′=(sin x)′+(cos x)′=cos x-sin x。
2。
已知直线y=x+b是曲线y=f(x)=ln x的切线,则b的值等于( )A.-1 B.0 C.1 D.e【答案】A3.设曲线y=错误!在点(3,2)处的切线与直线ax+y+1=0垂直,则a等于( )A.2 B.错误! C.-错误! D.-2【答案】D【解析】∵y=错误!=1+错误!,∴y′=-错误!.∴y′|x=3=-错误!.∴-a=2,即a=-2。
4.已知曲线y=x3在点P处的切线斜率为k,则当k=3时的P点坐标为( )A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-错误!,-错误!)【答案】B【解析】y′=3x2,∵k=3,∴3x2=3,∴x=±1,则P点坐标为(-1,-1)或(1,1).5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-几个常用函数的导数、基本初等函数的导数公式及
导数的运算法则(一)课后练习
课时演练·促提升
A组
1.若f(x)=,则f'(-1)=()
A.0
B.-
C.3
D.
解析:∵f'(x)=()'=()'=,
∴f'(-1)=.
答案:D
2.函数y=在点P处的切线斜率为-4,则P的坐标为()
A.
B.
C.
D.
解析:∵y'=-,令-=-4,得x=±,
∴P的坐标为.
答案:C
3.函数f(x)=x2,g(x)=ln x,若f'(x)-g'(x)=1,则x=()
A.-
B.1
C.-或1
D.或1
解析:∵f'(x)=2x,g'(x)=,∴2x-=1.
∴2x2-x-1=0,解得x=1或x=-.
又∵g(x)有意义时,x>0,∴所求x=1.
答案:B
4.函数f(x)=x3的斜率等于1的切线有()
A.1条
B.2条
C.3条
D.不确定
解析:∵f'(x)=3x2,设切点为(x0,y0),则3=1,得x0=±,即在点和点处的切线的斜率为1.
答案:B
5.设正弦曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()
A. B.[0,π)
C. D.
解析:∵(sin x)'=cos x,
又∵k l=cos x,∴-1≤k l≤1,
∴直线l的倾斜角的范围是.
答案:A
6.设函数f(x)=log a x,f'(1)=-1,则a=.
解析:∵f'(x)=,∴f'(1)==-1.
∴ln a=-1.∴a=.
答案:
7.直线y=e2x+b是曲线y=e x的一条切线,则b=.
解析:∵y'=e x,设切点为(x0,y0),则=e2.
∴x0=2,∴y0=e2.又y0=e2x0+b,
∴b=-e2x0+y0=-2e2+e2=-e2.
答案:-e2
8.求下列函数的导数:
(1)y=;
(2)y=;
(3)y=-2sin;
(4)y=log2x2-log2x.
解:(1)y'=()'=()'=.
(2)y'='=(x-4)'=-4x-4-1=-4x-5=-.
(3)∵y=-2sin
=2sin=2sincos=sin x,
∴y'=(sin x)'=cos x.
(4)∵y=log2x2-log2x=log2x,
∴y'=(log2x)'=.
9.求过曲线y=sin x上点P且与过这点的切线垂直的直线方程.
解:∵y=sin x,∴y'=cos x,
曲线在点P处的切线斜率是:y'=cos.
∴过点P且与切线垂直的直线的斜率为-,
故所求的直线方程为y-=-,
即2x+y-=0.
B组
1.已知直线y=kx是曲线y=ln x的切线,则k=()
A.e
B.-e
C.
D.-
解析:设切点为(x0,y0),则由y'=,得=k,
又y0=kx0,y0=ln x0,从而联立解得y0=1,x0=e,k=.
答案:C
2.设f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N,则f2 015(x)等于()
A.sin x
B.-sin x
C.cos x
D.-cos x
解析:∵f0(x)=sin x,
∴f1(x)=f'0(x)=cos x,
f2(x)=f'1(x)=-sin x,
f3(x)=f'2(x)=-cos x,
f4(x)=f'3(x)=sin x,
∴f n(x)的值具有周期性,且周期为4.
∴f2 015(x)=f3(x)=-cos x.
答案:D
3.设曲线y=x n+1(x∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,则log2x1+log2x2+log2x3=.
解析:曲线y=x n+1(n∈N*)在点(1,1)处的切线斜率k=y'|x=1=(n+1)×1n=n+1,则在点(1,1)处的切线方程为y-1=(n+1)(x-1),
令y=0,得x n=,
所以log2x1+log2x2+log2x3=log2+log2+log2=log2=log2=-2.
答案:-2
4.设直线l1与曲线y=相切于点P,直线l2过P且垂直于l1,若l2交x轴于Q点,又作PK垂直x轴于K,求线段KQ的长.
解:
如图,设直线l1的斜率为k1,直线l2的斜率为k2,点P的坐标为(x0,y0),由题意知x0≠0, 则k1=y',
由l2与l1垂直,知l2的斜率k2=-2.
于是l2:y-y0=-2(x-x0),
令y=0,则-y0=-2(x-x0),
将y0=代入上式,
得x Q=+x0,易得x K=x0.
∴|KQ|=|x Q-x K|=.
5.
如图,已知双曲线y=,A为其在第一象限分支上的一点,试判断过点A能否作一条直线与第三象限的分支相切?若能,求出这条直线的方程;若不能,请说明理由.
解:假设能作.设切点坐标为(x0,y0),
则切线方程为y-y0=-(x-x0).
又y0=,且切线过点,
∴=-(2-x0),
∴2x0-=4-2x0,-4x0+4=0,x0=2,
∴切点坐标为,
∴过点A只能作一条直线与曲线y=在第一象限分支相切,不能作一条直线与第三象限的分支相切.。