UTC Lean: ACE -3 QCP
Eaton AccuProx Analog Sensors 产品指南说明书
Volume 8—Sensing Solutions CA08100010E—October V8-T3-453For Customer Service in the U.S. call 1-877-ETN CARE (386-2273),in Canada call 1-800-268-3578.For Application Assistance in the U.S. and Canadacall 1-800-426-9184.AccuProx Analog SensorsAccuProx Analog SensorsContentsDescriptionPage AccuProx Analog SensorsApplication Guide . . . . . . . . . . . . . . . . . . . . . . .V8-T3-46Product SelectionAccuProx Analog Sensors . . . . . . . . . . . . . .V8-T3-47Compatible Connector Cables . . . . . . . . . . .V8-T3-47Technical Data and Specifications . . . . . . . . . .V8-T3-48Wiring Diagrams . . . . . . . . . . . . . . . . . . . . . . . .V8-T3-50Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . .V8-T3-50AccuProx Analog SensorsProduct DescriptionThe AccuProx from Eaton’s Electrical Sector is a high performance analog inductive proximity sensor. The AccuProx family of analog sensors provide unmatched sensing range, linearity and resolution in an affordable and compact tubular package.Unlike standard inductive sensors, which send an open or close signal upon target presence or absence, AccuProx analog sensors provide an electrical signal that varies in proportion to the position of the metal target within its sensing range. This makes AccuProx ideal for applications requiring precise position sensing and measurement.The sensing performance of AccuProx sets it apart from traditional analog inductive designs. Utilizingcomponents from the cutting-edge iProx family, AccuProx provides sensing ranges of three to four times that of typical tubular analog inductive sensors—all without compromising accuracy.Unlike many competitive products, which are often hampered by an “S-shaped” output curve, AccuProx outputs are linear.AccuProx has the range and precision to solve your most difficult measurement applications.Application DescriptionTypical Applications ●Part positioning ●Distance, size andthickness measurement ●General inspection and error proofing, such as material imperfection or blemish detection ●Eccentricity or absolute angle detection ●Identification of different metalsSee the Application Guide on Page V8-T3-46 for more detail.Features●Extended linear sensing range of up to 25millimeters—three times longer than standard tubular analog inductive sensors●Outputs available in current (4–20 or 0–20 mA) and voltage (0–10V)●High output resolution and repeatability forapplications requiring precision sensing performance●Robust stainless steel barrel, shock-resistant front cap, polycarbonate end bell and impact-absorbing potting compound●Ideal for extreme temperature or high pressure washdown environments●High noise immunity of 20V/m prevents many problems associated with electrical noiseStandards and Certifications●cUL Listed ●CEDANGERTHIS SENSOR IS NOT ASAFETY DEVICE AND IS NOT INTENDED TO BE USED AS A SAFETY DEVICE. This sensor is designed only to detect and read certain data in an electronic manner and perform no use apart from that, specifically no safety-related use. This sensor product does not include self-checking redundant circuitry, and the failure of this sensor product could cause either an energized or de-energized outputcondition, which could result in death, serious bodily injury, or property damage.For the most current information on this product, visit our Web site:3Application GuidePresenting AccuProx—Unmatched Analog Rangein a Proven PackageHistorically, analog sensorshave been limited by veryshort sensing ranges—aslittle as one or twomillimeters. By utilizingtechnology first perfected inthe iProx family of digitalinductive sensors, AccuProxcan sense objects as far as25millimeters. This extendedrange can be achievedwithout making compromisesoften found in competitiveproducts, such as reducedoutput accuracy.AccuProx utilizes many ofthe proven materials foundin other tubular sensorfamilies. The threaded barreland included mounting nutsare made of stainless steel,which exhibits superiorcorrosion and abrasionresistance versus nickel-plated brass. AccuProx alsofeatures a proprietary internalpotting compound thatabsorbs impacts and vibrationwhile sealing out moisture.The materials used in theconstruction of AccuProx aretime-tested and proven towork.High Output AccuracyAnalog inductive sensors areoften used in applicationsthat require a higher level ofprecision than a standarddigital sensor. For example,applications such as partinspection require a sensorthat can detect very smallvariances. AccuProx has beendesigned with theseapplications in mind.Output accuracy isdetermined by the repeataccuracy, linearity, resolutionand response time of thesensor.Repeat accuracy refers to thevariations in sensing distancebetween successive sensoroperations due to componenttolerances, where alloperating conditions are keptthe same. The repeataccuracy of an 18 millimeter,unshielded AccuProx sensoris less than 20 micrometers.See the chart below for arepeat accuracy comparisonof AccuProx versus thecompetition.Linearity refers to the shape ofthe output curve. Manycompetitive analog sensorsexhibit a wavy or “S-shaped”output curve. This means thata change in target distancemay not always translate intoan equivalent change inoutput, particularly at theinnermost and outermostranges of a non-linear analogsensor. AccuProx features alinear output. See thediagram below for anexample of AccuProxversus a non-linearcompetitive offering.Resolution refers to thenumber of “steps” in thesensor output. A higherresolution is ideal because itwill allow the sensor todetect smaller changes intarget position.An 18 millimeter, unshieldedAccuProx features more than350 output steps, ensuringconsistent performance.Typical Analog ApplicationsMaterial Imperfection orBlemish DetectionEccentricity or AbsoluteAngle DetectionSaw Blade DeflectionV8-T3-46Volume 8—Sensing Solutions CA08100010E—October Volume 8—Sensing Solutions CA08100010E—October V8-T3-473AccuProx Analog SensorsProduct SelectionAccuProx Analog SensorsThree-/Four-Wire SensorsCompatible Connector CablesStandard Cables 3NotesSee listing of compatible connector cables above.1 Published range data is based on a 1 mm thick square target made of Type FE 360 steel per ISO Standard 630.2 Models available in custom output configurations (for example, 1–5V, 0–5V). Contact factory for details.3 For a full selection of connector cables, see Tab 10, section 10.1.Operating VoltageSensing Range 1ShieldingConnection TypeCurrent (0–20 mA) and Voltage (0–10V) Output 2Catalog NumberCurrent (4– 20 mA) Output Only 2Catalog Number12 mm Diameter2-meter cableE59-A12A104C02-CV E59-A12A104C02-C12-meter cableE59-A12C108C02-CVE59-A12C108C02-C118 mm Diameter2-meter cableE59-A18A107C02-CV E59-A18A107C02-C12-meter cableE59-A18C115C02-CVE59-A18C115C02-C12-meter cableE59-A30A112C02-CV E59-A30A112C02-C12-meter cableE59-A30C125C02-CVE59-A30C125C02-C1Voltage StyleNumber of PinsGauge LengthPin Configuration/Wire Colors (Face View Female Shown)PVC Jacket Catalog Number PUR JacketCatalog NumberMicro-Style, Straight Female DC4-pin,3-wire22 AWG6.0 ft (2m)CSDS4A3CY 2202 CSDS4A3RY 222DC4-pin,4-wire22 AWG 6.0 ft (2m)CSDS4A4CY 2202 CSDS4A4RY 220212 mm18 mm 30 mm Micro-Style Straight Female3Technical Data and SpecificationsAccuProx Analog SensorsNotes1Published range data is based on a 1 mm thick square target made of Type FE 360 steel per ISO Standard 630.2The sensor achieves its maximum repeat accuracy after warming up for a period of at least one hour.3Voltage outputs available on models ending in -CV.4Continuous short-circuits can exceed power dissipation ratings and cause eventual destruction.12 mm Models18 mm Models30 mm ModelsDescription Shielded Unshielded Shielded Unshielded Shielded Unshielded PerformanceAnalog operating range 10.5–4 mm1–8 mm1–7 mm1–15 mm1–12 mm1–25 mm Temperature range–40° to 158°F(–40° to 70°C)–40° to 158°F(–40° to 70°C)–40° to 158°F(–40° to 70°C)–40° to 158°F(–40° to 70°C)–40° to 158°F(–40° to 70°C)–40° to 158°F(–40° to 70°C) Temperature drift<± 10%<± 10%<± 10%<± 10%<± 10%<± 10%Conformity<± 10%<± 10%<± 10%<± 10%<± 10%<± 10%Repeat accuracy<25 μm 2<20 μm 2<40 μm 2<20 μm 2<50 μm 2<30 μm 2Minimum repeat accuracy<3.0% at max. range<1.1% at max. range<2.2% at max. range<1.2% at max. range<1.2% at max. range<0.8% at max. range Recovery time<1.0 ms<1.1 ms<1.5 ms<2.0 ms<2.0 ms<3.0 msResponse time200 Hz100 Hz200 Hz100 Hz140 Hz100 HzLinearity tolerance<± 1.0% of full scale<± 1.0% of full scale<± 1.0% of full scale<± 1.0% of full scale<± 1.0% of full scale<± 1.0% of full scale Resolution23 μm max.16 μm max.40 μm max.21 μm max.50 μm max.30 μm max. ElectricalStyle AccuProx Analog,three-/four-wire DCAccuProx Analog,three-/four-wire DCAccuProx Analog,three-/four-wire DCAccuProx Analog,three-/four-wire DCAccuProx Analog,three-/four-wire DCAccuProx Analog,three-/four-wire DC Operating voltage15–30 Vdc15–30 Vdc15–30 Vdc15–30 Vdc15–30 Vdc15–30 VdcCurrent output signal0–20 mA or4–20 mA by model0–20 mA or4–20 mA by model0–20 mA or4–20 mA by model0–20 mA or4–20 mA by model0–20 mA or4–20 mA by model0–20 mA or4–20 mA by model Current output load resistance400–500 ohms400–500 ohms400–500 ohms400–500 ohms400–500 ohms400–500 ohms Current output ripple content± 40 μA max.± 40 μA max.± 40 μA max.± 40 μA max.± 40 μA max.± 40 μA max. Current output minimum change30 μA20 μA50 μA28 μA66 μA40 μAVoltage output signal 30–10V0–10V0–10V0–10V0–10V0–10VVoltage output load resistance 4.7–5.0 kohm(2.5 mA max.)4.7–5.0 kohm(2.5 mA max.)4.7–5.0 kohm(2.5 mA max.)4.7–5.0 kohm(2.5 mA max.)4.7–5.0 kohm(2.5 mA max.)4.7–5.0 kohm(2.5 mA max.) Voltage output ripple content± 10 mV max.± 10 mV max.± 10 mV max.± 10 mV max.± 10 mV max.± 10 mV max. Voltage output minimum change15 mV10 mV25 mV14 mV33 mV20 mVBurden current<20 mA<20 mA<20 mA<20 mA<20 mA<20 mAOutput LED Dual-color,360º viewableDual-color,360º viewableDual-color,360° viewableDual-color,360° viewableDual-color,360° viewableDual-color,360° viewableShort circuit protection Incorporated 4Incorporated 4Incorporated 4Incorporated 4Incorporated 4Incorporated 4Wire breakage protection Incorporated Incorporated Incorporated Incorporated Incorporated Incorporated Reverse polarity protection Incorporated Incorporated Incorporated Incorporated Incorporated Incorporated PhysicalSize See Dimensions on Page V8-T3-50.Enclosure protection NEMA 4, 4X, 6, 6P, 13NEMA 4, 4X, 6, 6P, 13NEMA 4, 4X, 6, 6P, 13NEMA 4, 4X, 6, 6P, 13NEMA 4, 4X, 6, 6P, 13NEMA 4, 4X, 6, 6P, 13 Shock30g half-sine at 11 ms30g half-sine at 11 ms30g half-sine at 11 ms30g half-sine at 11 ms30g half-sine at 11 ms30g half-sine at 11 ms Vibration10–55 Hz,1 mm amplitude10–55 Hz,1 mm amplitude10–55 Hz,1 mm amplitude10–55 Hz,1 mm amplitude10–55 Hz,1 mm amplitude10–55 Hz,1 mm amplitude Housing material Stainless steel,polycarbonate end bell,polyphenylene sulfidefront capStainless steel,polycarbonate end bell,polyphenylene sulfidefront capStainless steel,polycarbonate end bell,polyphenylene sulfidefront capStainless steel,polycarbonate end bell,polyphenylene sulfidefront capStainless steel,polycarbonate end bell,polyphenylene sulfidefront capStainless steel,polycarbonate end bell,polyphenylene sulfidefront cap Termination Micro-connector,potted cable, 2m;Pigtail,micro-connector, 2mMicro-connector,potted cable, 2m;Pigtail,micro-connector, 2mMicro-connector,potted cable, 2m;Pigtail,micro-connector, 2mMicro-connector,potted cable, 2m;Pigtail,micro-connector, 2mMicro-connector,potted cable, 2m;Pigtail,micro-connector, 2mMicro-connector,potted cable, 2m;Pigtail,micro-connector, 2mV8-T3-48Volume 8—Sensing Solutions CA08100010E—October Volume 8—Sensing Solutions CA08100010E—October V8-T3-493AccuProx Analog SensorsAccuProx Analog Performance Graphs Linear Output 12 mm18 mm30 mmMeasurement Resolution 112 mm18 mm30 mmOutput Resolution 212 mm18 mm30 mmNotes1Measurement resolution is the sensor’s ability to detect a change in target position. The measurement resolution is the finest at the highest point in the curve.2Output resolution is the change in output signal relative to target position. The minimum change in output resolution is defined by the lowest point in the curve.3Wiring DiagramsPin numbers are for reference, rely on pin location when wiring.AccuProx Analog SensorsDimensionsApproximate Dimensions in Inches (mm)Micro-Connector ModelsCable and Pigtail ModelsNote1For models ending in -C1 (current output only models), pins 2 and 4 are intentionally connected.Do not connect outputs of -C1 models to separate loads—this sensor should only be connected to a single-output load.Style Output(s)Micro-Connector Models Cable and Pigtail ModelsModels ending in -CV Current: 0–20 mAVoltage: 0–10VSize Shielding A B C D12 mm Shielded 3.05 (77.5) 1.98 (50.3)0.02 (0.50)0.67 (17)Unshielded 3.05 (77.5) 1.64 (41.6)0.36 (9)0.67 (17)18 mm Shielded 2.73 (69.3) 2.00 (50.9)0.02 (0.50)0.94 (24)Unshielded 2.73 (69.3) 1.47 (37.4)0.55 (14)0.94 (24)30 mm Shielded 2.92 (74.1) 2.13 (54.1)0.03 (0.75) 1.41 (36)Unshielded 2.92 (74.1) 1.41 (35.8)0.75 (19) 1.41 (36)Size Shielding A B C D12 mm Shielded 2.46 (62.4) 1.98 (50.3)0.02 (0.5)0.67 (17)Unshielded 2.46 (62.4) 1.64 (41.6)0.36 (9)0.67 (17)18 mm Shielded 2.54 (64.5) 2.00 (50.9)0.02 (0.5)0.94 (24)Unshielded 2.54 (64.5) 1.47 (37.4)0.55 (14)0.94 (24)30 mm Shielded 2.74 (69.6) 2.13 (54.1)0.03 (0.75) 1.41 (36)Unshielded 2.74 (69.6) 1.41 (35.8)0.75 (19) 1.41 (36)V8-T3-50Volume 8—Sensing Solutions CA08100010E—October 。
中国移动VoLTE试点测试规范-网络功能及基本业务分册 V1_3_1
中国移动通信企业标准QB-╳╳-╳╳╳-╳╳╳╳中国移动V o L T E试点测试规范(网络功能及基本业务分册)C h i n a M o b i l e V o L T E T r i a l T e s tS p e c i f i c a t i o n--N e t w o r k f u n c t i o na n d B a s i c S e r v i c e版本号:1.3.1╳╳╳╳-╳╳-╳╳发布╳╳╳╳-╳╳-╳╳实施目录前言 ............................................................................................................................................ I II1.范围 (1)2.规范性引用文件 (1)3.术语、定义和缩略语 (1)4.测试环境和方法 (3)4.1 测试设备 (3)4.2 测试工具 (4)4.3 测试方法 (4)4.4 测试组网图 (4)4.5 测试配置 (4)5.测试用例 (5)5.1 VoLTE基础功能测试 (5)5.1.1 VoLTE基础功能测试 (5)5.2 端到端业务流程 (134)5.2.1 VoLTE基本呼叫及切换流程 (134)5.2.2 补充业务 (300)5.3 其它业务 (414)5.3.1 IP短消息 (414)5.3.2 紧急呼叫 (447)5.4 业务质量及性能指标 (450)5.4.1 业务指标测试 (450)5.4.2 终端测试 (454)6 编制历史 (468)前言本测试规范对中国移动通信集团公司VoLTE业务涉及的测试相关内容进行规定,是VoLTE测试实施的依据。
本测试规范共分四册,分别为网络功能及基本业务分册、增值业务分册、开通及计费分册和无线性能分册。
中国移动VoLTE外场测试系列规范用于VoLTE外场试验城市端到端环境的测试,指导测试无线网络、核心网络及终端等方面的功能与性能。
leap 3GRCP培训讲义
L E A P800测井系统培训3G R C P远传仪器提纲一.概述二.3G网介绍三.面板结构四.操作五.维修六.现场操作一.概述●当今,随着3G业务的迅猛发展,3G实现无线上网的特点是传输速率快,依目前发展,3G的传输速率可达2M b p s(每秒两百万位元),约是一般电话拨号上网速度的35倍,更达到当前一般移动电话的200倍,具有其他移动通信技术不可比拟的优势。
●基于3G平台的远程通讯系统,可以实现全球无缝隙的宽带网络接入,语音、短信、传真、远程视频直播、远程数据传输、多点无线局域网络接入、多点有线局域网络接入等多种业务应用,从而满足石油测井工程的实时测井数据远程传输、井场作业视频监控、远程通讯系统建立等需求。
技术性能指标系统结构主机一台主机电源线一根VGA 视频线一根Video视频线一根Mini显示器电源线一根摄像机电源线一根摄像机控制线一根高速球摄像机一台Mini显示器一台客户端软件与文档光盘一张操作手册一本维修手册一本主要功能本系统主要实现三个功能:视频监控、数据传输和远程控制。
视频监视功能a.实时视频监控帧速率25帧/秒,可调。
视网络状况,手动调节帧速率。
b.视频图像显示性能,VGA格式,分辨率为640*480,无锯齿,图像清晰。
c.视频延时500毫秒以下,语音和视频同步。
d.支持自动重连功能,在网络中断时最短时间自动重连,视频在短时间内自动恢复。
e.监控中心和井场测井车可实现双向视频语音传输。
数据传输功能a.具有100kbps以上的带宽用于传输测井曲线。
b.传输具有续传能力,在网络中断后自动建立连接。
c.传输的测井数据保证无误码。
在网络状况差情况下,可降低视频的分辨率,保证测井数据的传输。
控制显示功能a.监控中心具有远程控制功能,可获取现场大车的工控机的桌面信息。
同时现场大车可通过3G模块接入internet。
b.监控中心通过云台控制远程测井车的摄像头转向,可获取多角度的视频信息。
2010-26-EU-欧盟新排放指令
DIRECTIVESCOMMISSION DIRECTIVE 2010/26/EUof 31 March 2010amending Directive 97/68/EC of the European Parliament and of the Council on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery(Text with EEA relevance)THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union,Having regard to Directive 97/68/EC of 16 December 1997 of the European Parliament and of the Council on the approxi mation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery ( 1 ), and in particular Articles 14 and 14a thereof, Whereas:(1) Article 14a of Directive 97/68/EC sets out the criteria and the procedure for extending the period referred to in Article 9a(7) of that Directive. Studies carried out in accordance with Article 14a of Directive 97/68/EC show that there are substantial technical difficulties to comply with stage II requirements for professional use, multi- positional, hand-held mobile machinery in which engines of classes SH:2 and SH:3 are installed. It is therefore necessary to extend the period referred to in Article 9a(7) until 31 July 2013. (2) Since the amendment of Directive 97/68/EC in 2004, technical progress has been made in the design of diesel engines with a view to make them compliant with the exhaust emission limits for stages IIIB and IV. Electronically controlled engines, largely replacing me- chanically controlled fuel injection and control systems, have been developed. Therefore, the current general type- approval requirements in Annex I to Directive 97/68/EC should be adapted accordingly and general type-approval requirements for stages IIIB and IV should be introduced. (3) Annex II to Directive 97/68/EC specifies the technical details of the information documents that need to be submitted by the manufacturer to the type-approval authority with the application for engine type-approval. The details specified regarding the additional anti- pollution devices are generic and should be adapted to the specific after-treatment systems that need to be used to ensure that engines comply with exhaust emission limit stages IIIB and IV. More detailed information on the after-treatment devices installed on the engines should be submitted to enable type-approval authorities to assess the engine’s capability to comply with stages IIIB and IV.(4) Annex III to Directive 97/68/EC sets out the methodtesting the engines and determining their level of emissions of gaseous and particulate pollutants. The type-approval testing procedure of engines to demon strate compliance with the exhaust emission limits of stage IIIB and IV should ensure that the simultaneous compliance with the gaseous (carbon monoxide, hydro carbons, oxides of nitrogen) and the particulate emission limits is demonstrated. The non-road steady cycle (NRSC) and non-road transient cycle (NRTC) should be adapted accordingly. (5) Point 1.3.2 of Annex III to Directive 97/68/EC foreseesthe modification of the symbols (section 2.18 of Annex I), the test sequence (Annex III) and calculation equations (Appendix III to Annex III), prior to the introduction of the cold/hot composite test sequence. The type approval procedure to demonstrate compliance with the exhaust emission limits of stage IIIB and IV requires the intro duction of a detailed description of the cold start cycle. (6) Section 3.7.1 of Annex III to Directive 97/68/EC sets out the test cycle for the different equipment specifications. The test cycle under point 3.7.1.1 (specification A) needs to be adapted to clarify which engine speed needs to be used in the type approval calculation method. It is also necessary to adapt the reference to the updated version of the international testing standard ISO 8178-4:2007.( 1 ) OJ L 59, 27.2.1998, p. 1.(7) Section 4.5 of Annex III to Directive 97/68/EC outlines the emissions test run. This section needs to be adapted to take account of the cold start cycle. (8) Appendix 3 of Annex III to Directive 97/68/EC sets out the criteria for the data evaluation and calculation of the gaseous emissions and the particulate emissions, for both the NRSC test and the NRTC test set out in Annex III. The type approval of engines in accordance with stage IIIB and IV requires the adaptation of the calculation method for the NRTC test. (9) Annex XIII to Directive 97/68/EC sets out the provisions for engines placed on the market under a ‘flexible scheme’. To ensure a smooth implementation of stage IIIB, an increased use of this flexibility scheme may be needed. Therefore, the adaptation to technical progress to enable the introduction of stage IIIB compliant engines needs to be accompanied by measures to avoid that the use of the flexibility scheme may be hampered by notifi cation requirements which are no longer adapted to the introduction of such engines. The measures should aim at simplifying the notification requirements and the reporting obligations, and at making them more focused and tailored to the need for market surveillance authorities to respond to the increased use of the flexi bility scheme that will result from the introduction of stage IIIB. (10) Since Directive 97/68/EC provides for the type-approval of stage IIIB engines (category L) as from 1 January 2010 it is necessary to provide for the possibility to grant type approval from that date. (11) For reasons of legal certainty this Directive should enter into force as a matter of urgency. (12) The measures provided for in this Directive are in accordance with the opinion of the Committee estab lished in Article 15(1) of Directive 97/68/EC, HAS ADOPTED THIS DIRECTIVE: Article 1 Amendments to Directive 97/68/EC Directive 97/68/EC is amended as follows: 1. in Article 9a(7), the following subparagraph is added: ‘Notwithstanding the first subparagraph, an extension of the derogation period is granted until 31 July 2013, within the category of top handle machines, for professional use, multi- positional, hand-held hedge trimmers and top handle tree service chainsaws in which engines of classes SH:2 and SH:3 are installed.’;2. Annex I is amended in accordance with Annex I to this Directive;3. Annex II is amended in accordance with Annex II to this Directive;4. Annex III is amended in accordance with Annex III to this Directive;5. Annex V is amended in accordance to Annex IV to this Directive;6. Annex XIII is amended in accordance with Annex V to this Directive.Article 2Transitional provisionWith effect from the day following the publication of this Directive in the Official Journal, Member States may grant type-approval in respect of electronically controlled engines which comply with the requirements laid down in Annexes I, II, III, V and XIII to Directive 97/68/EC, as amended by this Directive.Article 3Transposition1. Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with the Directive within 12 months after the publication of the Directive. They shall forthwith communicate to the Commission the text of those provisions.They shall apply those provisions from 31 March 2011.When Member States adopt those provisions, they shall contain a reference to this Directive or be accompanied by such a reference on the occasion of their official publication. Member States shall determine how such reference is to be made.2. Member States shall communicate to the Commission the text of the main provisions of national law which they adopt in the field covered by this Directive.Article 4Entry into forceThis Directive shall enter into force on the day following its publication in the Official Journal of the European Union .Article 5AddresseesThis Directive is addressed to the Member States. Done at Brussels, 31 March 2010. For the Commission The President José Manuel BARROSOANNEX IThe following section 8 is added to Annex I to Directive 97/68/EC:IIIBIVSTAGESANDFOR‘8. TYPEAPPROVALREQUIREMENTS8.1. This section shall apply to the type-approval of electronically controlled engines, which uses electronic control todetermine both the quantity and timing of injecting fuel (hereafter “engine”). This section shall apply irrespective of the technology applied to such engines to comply with the emission limit values set out in sections 4.1.2.5 and 4.1.2.6 of this Annex.8.2. DefinitionsFor the purpose of this section, the following definitions shall apply:8.2.1. “emission control strategy” means a combination of an emission control system with one base emission controlstrategy and with one set of auxiliary emission control strategies, incorporated into the overall design of an engine or non-road mobile machinery into which the engine is installed.8.2.2. “reagent” means any consumable or non-recoverable medium required and used for the effective operation of theexhaust after-treatment system.8.3. Generalrequirements8.3.1. Requirements for base emission control strategy8.3.1.1. The base emission control strategy, activated throughout the speed and torque operating range of the engine,shall be designed as to enable the engine to comply with the provisions of this Directive8.3.1.2. Any base emission control strategy that can distinguish engine operation between a standardised type approvaltest and other operating conditions and subsequently reduce the level of emission control when not operating under conditions substantially included in the type approval procedure is prohibited.8.3.2. Requirements for auxiliary emission control strategy8.3.2.1. An auxiliary emission control strategy may be used by an engine or a non-road mobile machine, provided thatthe auxiliary emission control strategy, when activated, modifies the base emission control strategy in response toa specific set of ambient and/or operating conditions but does not permanently reduce the effectiveness of theemission control system:(a) where the auxiliary emission control strategy is activated during the type approval test, sections 8.3.2.2 and8.3.2.3 shall not apply;(b) where the auxiliary emission control strategy is not activated during the type approval test, it must bedemonstrated that the auxiliary emission control strategy is active only for as long as required for thepurposes identified in section 8.3.2.3.8.3.2.2. The control conditions applicable to this section are all of the following:(a) an altitude not exceeding 1 000 metres (or equivalent atmospheric pressure of 90 kPa);(b) an ambient temperature within the range 275 K to 303 K (2 °C to 30 °C);(c) the engine coolant temperature above 343 K (70 °C).Where the auxiliary emission control strategy is activated when the engine is operating within the control conditions set out in points (a), (b) and (c), the strategy shall only be activated exceptionally.8.3.2.3. An auxiliary emission control strategy may be activated in particular for the following purposes:(a) by onboard signals, for protecting the engine (including air-handling device protection) and/or non-roadmobile machine into which the engine is installed from damage;(b) for operational safety and strategies;(c) for prevention of excessive emissions, during cold start or warming-up, during shut-down;(d) if used to trade-off the control of one regulated pollutant under specific ambient or operating conditions, formaintaining control of all other regulated pollutants, within the emission limit values that are appropriate forthe engine concerned. The purpose is to compensate for naturally occurring phenomena in a manner thatprovides acceptable control of all emission constituents.8.3.2.4. The manufacturer shall demonstrate to the technical service at the time of the type-approval test that theoperation of any auxiliary emission strategy complies with the provisions of section 8.3.2. The demonstration shall consist of an evaluation of the documentation referred to in section 8.3.3.8.3.2.5. Any operation of an auxiliary emission control strategy not compliant with section 8.3.2 is prohibited.8.3.3. Documentation requirements8.3.3.1. The manufacturer shall provide an information folder accompanying the application for type-approval at thetime of submission to the technical service, which ensures access to any element of design and emission control strategy and the means by which the auxiliary strategy directly or indirectly controls the output variables. The information folder shall be made available in two parts:(a) the documentation package, annexed to the application for type-approval, shall include a full overview of theemission control strategy. Evidence shall be provided that all outputs permitted by a matrix, obtained fromthe range of control of the individual unit inputs, have been identified. This evidence shall be attached to theinformation folder as referred to in Annex II;(b) the additional material, presented to the technical service but not annexed to the application for type-approval, shall include all the modified parameters by any auxiliary emission control strategy and theboundary conditions under which this strategy operates and in particular:(i) a description of the control logic and of timing strategies and switch points, during all modes ofoperation for the fuel and other essential systems, resulting in effective emissions control (such asexhaust gas recirculation system (EGR) or reagent dosing);(ii) a justification for the use of any auxiliary emission control strategy applied to the engine, accompanied by material and test data, demonstrating the effect on exhaust emissions. This justification may be basedon test data, sound engineering analysis, or a combination of both;(iii) a detailed description of algorithms or sensors (where applicable) used for identifying, analysing, or diagnosing incorrect operation of the NO x control system;(iv) the tolerance used to satisfy the requirements in section 8.4.7.2, regardless of the used means.8.3.3.2. The additional material referred to in point (b) of section 8.3.3.1 shall be treated as strictly confidential. It shallbe made available to the type-approval authority on request. The type-approval authority shall treat this material as confidential.ofoperationNO x control measures8.4. Requirementstoensurecorrect8.4.1. The manufacturer shall provide information that fully describes the functional operational characteristics of theNO x control measures using the documents set out in section 2 of Appendix 1 to Annex II and in section 2 of Appendix 3 to Annex II.8.4.2. If the emission control system requires a reagent, the characteristics of that reagent, including the type of reagent,information on concentration when the reagent is in solution, operational temperature conditions and reference to international standards for composition and quality must be specified by the manufacturer, in section 2.2.1.13 of Appendix 1 and in section 2.2.1.13 of Appendix 3 to Annex II.8.4.3. The engine emission control strategy shall be operational under all environmental conditions regularly pertainingin the territory of the Community, especially at low ambient temperatures.8.4.4. The manufacturer shall demonstrate that the emission of ammonia during the applicable emission test cycle ofthe type approval procedure, when a reagent is used, does not exceed a mean value of 25 ppm.8.4.5. If separate reagent containers are installed on or connected to a non-road mobile machine, means for taking asample of the reagent inside the containers must be included. The sampling point must be easily accessible without requiring the use of any specialised tool or device.8.4.6. Use and maintenance requirements8.4.6.1. The type approval shall be made conditional, in accordance with Article 4(3), upon providing to each operator ofnon-road mobile machinery written instructions comprising the following:(a) detailed warnings, explaining possible malfunctions generated by incorrect operation, use or maintenance ofthe installed engine, accompanied by respective rectification measures;(b) detailed warnings on the incorrect use of the machine resulting in possible malfunctions of the engine,accompanied by respective rectification measures;(c) information on the correct use of the reagent, accompanied by an instruction on refilling the reagentbetween normal maintenance intervals;(d) a clear warning, that the type-approval certificate, issued for the type of engine concerned, is valid only whenall of the following conditions are met:(i) the engine is operated, used and maintained in accordance with the instructions provided;(ii) prompt action has been taken for rectifying incorrect operation, use or maintenance in accordance with the rectification measures indicated by the warnings referred to in point (a) and (b);(iii) no deliberate misuse of the engine has taken place, in particular deactivating or not maintaining an EGR or reagent dosing system.The instructions shall be written in a clear and non-technical manner using the same language as is used in the operator’s manual on non-road mobile machinery or engine.8.4.7. Reagent control (where applicable)8.4.7.1. The type approval shall be made conditional, in accordance with the provisions of section 3 of Article 4, uponproviding indicators or other appropriate means, according to the configuration of the non-road mobile machinery, informing the operator on:(a) the amount of reagent remaining in the reagent storage container and by an additional specific signal, whenthe remaining reagent is less than 10 % of the full container’s capacity;(b) when the reagent container becomes empty, or almost empty;(c) when the reagent in the storage tank does not comply with the characteristics declared and recorded insection 2.2.1.13 of Appendix 1 and section 2.2.1.13 of Appendix 3 to Annex II, according to the installedmeans of assessment.(d) when the dosing activity of the reagent is interrupted, in cases other than those executed by the engine ECUor the dosing controller, reacting to engine operating conditions where the dosing is not required, providedthat these operating conditions are made available to the type approval authority.8.4.7.2. By the choice of the manufacturer the requirements of reagent compliance with the declared characteristics andthe associated NO x emission tolerance shall be satisfied by one of the following means:(a) direct means, such as the use of a reagent quality sensor.(b) indirect means, such as the use of a NO x sensor in the exhaust to evaluate reagent effectiveness.(c) any other means, provided that its efficacy is at least equal to the one resulting by the use of the means ofpoints (a) or (b) and the main requirements of this section are maintained.’ANNEX IIAnnex II to Directive 97/68/EC is amended as follows:1. Section 2 of Appendix 1 is replaced by the following:POLLUTIONAIRAGAINSTTAKEN‘2. MEASURESyes/no(*)............................................................................................................gases:recyclingcrankcase2.1. Deviceforcoverednotbyheading)ifanother(ifanti-pollutiondevices2.2. Additionalandany,(*)yes/noconverter:2.2.1. Catalytic.......................................................................................................................................................................................2.2.1.1. Make(s):........................................................................................................................................................................................2.2.1.2. Type(s):converterselements................................................................................................................andcatalytic2.2.1.3. Numberofconverter(s):...............................................................................................thecatalyticofandvolume2.2.1.4. Dimensions-........................................................................................................................................................action:ofcatalytic2.2.1.5. Typeprecious........................................................................................................................................metals:of2.2.1.6. Totalchargeconcentration:...........................................................................................................................................................2.2.1.7. Relative.....................................................................................................................................material):and2.2.1.8. Substrate(structure...............................................................................................................................................................................2.2.1.9. Celldensity:2.2.1.10. Type of casing for the catalytic converter(s): .................................................................................................................2.2.1.11. Location of the catalytic converter(s) (place(s) and maximum/minimum distance(s) from engine): ............2.2.1.12. Normal operating range (K): ................................................................................................................................................2.2.1.13. Consumable reagent (where appropriate): .......................................................................................................................2.2.1.13.1. Type and concentration of reagent needed for catalytic action: .............................................................................2.2.1.13.2. Normal operational temperature range of reagent: ......................................................................................................2.2.1.13.3. International standard (where appropriate): ....................................................................................................................2.2.1.14. NO x sensor: yes/no (*)(*)yes/nosensor:2.2.2. Oxygen.......................................................................................................................................................................................2.2.2.1. Make(s):............................................................................................................................................................................................2.2.2.2. Type:.....................................................................................................................................................................................2.2.2.3. Location:(*)yes/noinjection:2.2.3. Airetc.):.........................................................................................................................................pump,2.2.3.1. Type(pulseair,air(*)yes/no2.2.4. EGR:etc.):pressure,........................................................................2.2.4.1. Characteristicspressure/low(cooled/uncooled,high(*)yes/no2.2.5. Particulatetrap:particulate.........................................................................................................thetrap:capacityof2.2.5.1. Dimensionsandparticulatetrap:.........................................................................................................................theandof2.2.5.2. Typedesignengine):..................................................................fromdistance(s)2.2.5.3. Locationand(place(s)maximum/minimumdescriptionand/ordrawing:regeneration,............................................................................ofor2.2.5.4. Methodsystempressure(kPa)and..................................................................................range:2.2.5.5. Normal(K)operatingtemperature(*)yes/nosystems:2.2.6. Otheroperation:...................................................................................................................................................and2.2.6.1. Description___________(*) Strike out what does not apply.’2. Section 2 of Appendix 3 is replaced by the following:POLLUTIONAGAINSTAIRTAKEN‘2. MEASURESyes/no(*)............................................................................................................gases:crankcase2.1. Deviceforrecyclingcoverednotbyheading)ifanotherany,anti-pollutiondevices(ifand2.2. Additional(*)yes/noconverter:2.2.1. Catalytic.......................................................................................................................................................................................2.2.1.1. Make(s):........................................................................................................................................................................................2.2.1.2. Type(s):and................................................................................................................converterselementscatalyticof2.2.1.3. Numberconverter(s):...............................................................................................thecatalyticofandvolume2.2.1.4. Dimensions-........................................................................................................................................................action:ofcatalytic2.2.1.5. Typeprecious........................................................................................................................................metals:of2.2.1.6. Totalchargeconcentration:...........................................................................................................................................................2.2.1.7. Relative.....................................................................................................................................material):and2.2.1.8. Substrate(structure...............................................................................................................................................................................2.2.1.9. Celldensity:2.2.1.10. Type of casing for the catalytic converter(s): .................................................................................................................2.2.1.11. Location of the catalytic converter(s) (place(s) and maximum/minimum distance(s) from engine): ............2.2.1.12. Normal operating range (K) .................................................................................................................................................2.2.1.13. Consumable reagent (where appropriate): .......................................................................................................................2.2.1.13.1. Type and concentration of reagent needed for catalytic action: .............................................................................2.2.1.13.2. Normal operational temperature range of reagent: ......................................................................................................2.2.1.13.3. International standard (where appropriate): ....................................................................................................................2.2.1.14. NO x sensor: yes/no (*)yes/no(*)sensor:2.2.2. Oxygen.......................................................................................................................................................................................2.2.2.1. Make(s):............................................................................................................................................................................................2.2.2.2. Type:.....................................................................................................................................................................................2.2.2.3. Location:(*)yes/noinjection:2.2.3. Airetc.):.........................................................................................................................................pump,2.2.3.1. Type(pulseair,air(*)yes/no2.2.4. EGR:etc.):pressure,........................................................................2.2.4.1. Characteristicspressure/low(cooled/uncooled,high(*)yes/no2.2.5. Particulatetrap:particulate.........................................................................................................thetrap:capacityof2.2.5.1. Dimensionsandparticulatetrap:.........................................................................................................................theandof2.2.5.2. Typedesignengine):..................................................................fromdistance(s)2.2.5.3. Locationand(place(s)maximum/minimumdescriptionand/ordrawing:regeneration,............................................................................ofor2.2.5.4. Methodsystempressure(kPa)and..................................................................................range:2.2.5.5. Normal(K)operatingtemperature(*)yes/nosystems:2.2.6. Otheroperation:...................................................................................................................................................and2.2.6.1. Description___________(*) Strike out what does not apply.’。
适航证申请书
the prescribed limitations when the aircraft is registered in the People’s Republic of China.
备 注: Remarks
AAC-023(04/2007)
第1页 共2页
5
附录三(续)
民用航空器标准适航证
STANDARD AIRWORTHINESS CERTIFICATE
□满意 □不满意
3 维修大纲(MRB)
□满意 □不满意
4 载重平衡手册(WBM)
□满意 □不满意
5 机组使用手册(FCOM)
□满意 □不满意
6 维修计划文件(MPD)
□满意 □不满意
7 航空器维修手册(AMM)
□满意 □不满意
8 结构修理手册(SRM)
□满意 □不满意
9 补充结构检查文件(SSID)
航空器序号: 适航监察员签字:
一、持续适航文件的完整有效性(航空器持续适航文件应表明符合型号审定时确定的持续 适航文件,并已由型号合格证、补充型号合格证持有人或制造人向营运人提供,一般包括 以下内容。)
序 检查内容
号
检查结果
文件号/版次/日期
是否满意
备注
1 航空器飞行手册(AFM)
□满意 □不满意
2 主最低设备清单(MMEL)
机身增压边界结构修理评估方案的执 34
行情况 备注:
AAC-198(01/2008)
□接受 □不接受
□接受 □不接受
□接受 □不接受
□接受 □不接受 □接受 □不接受 □接受 □不接受 □接受 □不接受
10
附录四(续)
三、航空器现场检查 序
SIMATIC S7-1500 ET 200MP 自动化系统 系统手册说明书
SIMATICS7-1500/ET 200MP 自动化系统系统手册01/2023A5E03461186-AKSiemens AG Digital Industries Postfach 48 48 90026 NÜRNBERG 德国Ⓟ 02/2023 本公司保留更改的权利Copyright © Siemens AG 2013 - 2023.保留所有权利法律资讯警告提示系统为了您的人身安全以及避免财产损失,必须注意本手册中的提示。
人身安全的提示用一个警告三角表示,仅与财产损失有关的提示不带警告三角。
警告提示根据危险等级由高到低如下表示。
危险表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。
警告表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。
小心表示如果不采取相应的小心措施,可能导致轻微的人身伤害。
注意表示如果不采取相应的小心措施,可能导致财产损失。
当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。
如果在某个警告提示中带有警告可能导致人身伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。
合格的专业人员本文件所属的产品/系统只允许由符合各项工作要求的合格人员进行操作。
其操作必须遵照各自附带的文件说明,特别是其中的安全及警告提示。
由于具备相关培训及经验,合格人员可以察觉本产品/系统的风险,并避免可能的危险。
按规定使用 Siemens 产品请注意下列说明:警告Siemens 产品只允许用于目录和相关技术文件中规定的使用情况。
如果要使用其他公司的产品和组件,必须得到 Siemens 推荐和允许。
正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。
必须保证允许的环境条件。
必须注意相关文件中的提示。
商标所有带有标记符号 ® 的都是 Siemens AG 的注册商标。
本印刷品中的其他符号可能是一些其他商标。
KELI-UTC3.1集中协调式交通信号机解析
KELI-UTC3.1解决的关键技术问题
一、采用多核芯片技术有效提高了信号机及控制 系统可靠性、稳定性,提升了信号控制的智能 化水平,实现了绿波控制、感应控制、自适应 控制、BRT控制、警卫路线等功能应用。故障 自诊断技术可以实现城市大范围内信号机智能 化管理
二、系统支持分布式组网,真正实现城市信号机 区域实时线控、区域优化控制和中央控制
三、产品符合GA47-2002《道路交通信号控制机 》国家公共安全行业标准,能够兼容德国、美 国相关标准,在城市信号控制与管理中实现异 种信号机的联通与控制,兼容国际SCAITS控 制系统
四、通过TCP/IP,GPRS和ZIGBEE协议,能够与道 路交通视频、超声波、电磁、微波和FCD浮动 车辆等多种交通信息采集方式联接,具备交通 流在线仿真和信号控制系统实时优化功能
3、先进性
遵循目前信号控制系统通行的中心控制级 、区域控制级和路口控制级三级系统结构,系 统的控制原理、技术路线符合现代信号控制理 论的发展方向。
4、可扩展性
产品软件和硬件将采用便于扩展的模块化 设计,以便满足在相当长一段时间内城市发展 规模对系统容量的扩展需求。另外,系统的数 据可以很方便、有效地集成到城市道路交通综 合管控平台上,使得系统的主要参数和数据可 以为各级领导决策提供服务。
同时被点亮。 全红状态:所有信号灯组红灯全被点亮的信号状态。 最小绿灯时间:绿灯允许开启的最短时间。 最大绿灯时间:绿灯允许开启的最长时间。 相位差:在协调控制中,某个路口与基准路口渐进式依
1、实用性
在保证一定技术先进性的前提下,以满足实际应 用需求为前提。采用成熟而先进的技术和设备,使系 统具有良好的开放性、可扩展性和较长的生命周期; 按照现有标准和模块化设计,保证系统扩充方便性。
信号一致性测试
Agilent Technologies 周英航
内容安排
DDR原理及测试方法 PCIE原理及测试方法 USB3.0原理及测试方法 SATA原理及测试方法
DP原理及测试方法
HDMI1.4原理及测试方法 Ethernet原理及1G/10G的测试方法
Double Data Rate (DDR)技术
Separation of Read and Write with Infiniiscan
READ
Must not intersect this zone Must intersect this zone
WRITE
Must not intersect these zone
Most popular way to separate read/write 1) Trigger at the falling edge of DQS (Trigger at the preamble) 2) Use Infiniiscan zone qualify to DQS to separate read and write.
读/写相对于DQS信号的时序不同; 读数据时,DQS和DQ边沿对齐; 写数据时,DQS 的边沿对准DQ的 中心,即有90度的相位偏移。
DDR3 Application Tests Parameters
Specification JESD79-3 DDR3 SDRAM Specifications
DIMM FPGA Design DDR DRAM
Comparison of DDR1/2/3
Voltage
Memory Speed Roadmap
DDR4 3.2 GT/s DDR3 1.6 GT/s
KELI-UTC3.1集中协调式交通信号机
目前国内高端智能交通型信号控制 系统严重缺乏,80%以上的路口沿袭的 只是国外80年代末的技术,仅能实现简 单地定时功能;在国内50多个品牌信号 控制系统中能实现线控、面控、自适应 控制等功能的很少。国内高端智能交通 型信号控制系统市场大部分被SCAITS、 西门子等国外品牌垄断,这些国外品牌 信号控制系统不仅售价高昂;而且不适 应中国城市道路混合交通流的特点。
干线协调控制(绿波控制)
为了确保在指定路线上的某个车流,能在进入被 控制区域时,只要它们按一定的车速行驶,那么就使 它们具有优先通过的权力,这时,可以采用干线协调 控制模式。 纳入协调控制的信号机,要求它们采用相同的周 期,并以一个基准的时段方案配合,同时设基准时间 点,每个路口以基准时间点设置相位差。在实现绿波 控制前,要查询干线每个路口的空间距离,并按设计 时速换算成时间距离,最好开车在干线上按设计时速 调研几次,然后确定路口之间的相位差。 本信号可设置多时段绿波带,也可以与多时段定 时交叉使用,而且从过渡平滑,采用了特殊的融合算 法使得多时段定时控制方式向协调控制切换时不会出 现特殊的过渡灯色。
三 信号机功能介绍
控制方式
多时段多方案 协调控制
代号
1 2
说明
根据不同时段选择预定的配置方案自动运行 一条路上把多个相邻交叉口协调起来的控制 方式
检测器
无 无(但需时钟同步 )
感应控制 手动控制
交通管制 自适应控制 熄灯控制 全红控制 黄闪控制
3 4
5 6 7 8 9
根据车辆检测器测得的交通流数据调节信号 显示时间的控制方式 利用遥控器或键盘、开关在现场手动控制实 际灯色
KELI-UTC3.1信号机硬件配置
KELI-UTC3.1智能 交通型信号控制系统的 配置体系主要包括驱动 卡、交通信息采集主机、 按键显示板、故障检测 机、电源、防雷和防浪 涌装置、接地系统、通
QCC report
对策实施对策实施-5
灰尘 改善后,在PF装架工位加装一个离子风枪,每一块大板在操作员工用风 枪吹过后再装入架子,并且在明显出张贴提醒标示。
降低Calimero 330 假坏率 降低
检查效果
测试假坏趋势图
PPM 14000 12000 10000 8000 6000 4000 2000 0 Mar Target
法
机
环
降低Calimero 330 假坏率 降低
确定主要原因
可能原因 PCBA放反 漏测(人) OP 更换 Batch不及时 人 Batch被无意hold 开单不及时 OP未及时反馈 DIAG输入报告不准确 法 文档化操作流程不完善 维护方法不当 电脑系统不稳定 FPS-8 异常 机 测试针接触不良 压板 漏测(机) 物 环 PCBA板脏 湿度、温度 灰尘 判断依据 OP操作记录表 OP操作记录表 现场观察发现,OP很难及时更换Batch OP操作记录表 向拉长调查取证 现场调查OP反馈标准 PDMS与R3之间GAP较小 岗位操作培训不够具体 debug mode测试,不影响MFR 系统重装对MFR影响较大 FPS-8重启影响MFR 清洁测试针影响MFR OP操作记录表 现场测试观察1小时无漏测 OP操作记录表 车间内温湿度保持恒定 清洁测试针影响MFR 是否主因 NO NO Yes NO NO Yes NO Yes NO Yes Yes Yes NO NO NO NO Yes
降低Calimero 330 假坏率 降低
制定对策
主因 制定对策 负责人 完成日期
OP 更换 Batch不及时 人 OP未及时反馈
联系BI,Batch System updata
李晓峰
WK26
更新培训材料,加强现场培训力度
乐鑫 ESP32-C3 系列芯片 技术规格书说明书
技术规格书
搭载 RISC-V 32 位单核处理器的极低功耗 SoC 支持 2.4 GHz Wi-Fi (802.11 b/g/n) 和 Bluetooth® 5 (LE) 封装内可叠封 4 MB flash QFN32 (5×5 mm) 封装
包括:
ESP32-C3 ESP32-C3FN4 – 不推荐用于新设计 (NRND) ESP32-C3FH4 ESP32-C3FH4AZ
乐鑫信息科技
4 反馈文档意见
ESP32-C3 系列芯片技术规格书 v1.5
安全机制
• 安全启动 - 内部和外部存储器的权限控制 • Flash 加密 - 加密和解密存储器 • 4096 位 OTP,用户可用的高达 1792 位 • 加密硬件加速器:
– AES-128/256 (FIPS PUB 197) – SHA 加速器 (FIPS PUB 180-4) – RSA 加速器 – 随机数生成器 (RNG) – HMAC – 数字签名
I2S
TWAI® Debug Assistant
Peripherals
Generalpurpose Timers
LED PWM
System Timer
GPIO
eFuse Controller
DIG ADC
Temperature Sensor
USB Serial/ JTAG
Main System Watchdog Timers
功耗管理
• 通过选择时钟频率、占空比、Wi-Fi 工作模式和单独控制内部器件的电源,实现精准电源控制 • 针对典型场景设计的四种功耗模式:Active、Modem-sleep、Light-sleep、Deep-sleep • Deep-sleep 模式下功耗低至 5 µA • Deep-sleep 模式下 RTC 存储器仍保持工作
六旋翼无人机的设计
无人直升机具备垂直升降、悬停等灵活飞行性能优势,因此在某些环境下比 固定翼无人机具有更好地适用性。六旋翼无人机将更加适用于在危险和恶劣的 环境下工作。在军事和民用领域都将具有广阔的应用前景。如今,它将成为新的 受关注的研究方向。这种关注既来自于应用需求的带动,也源于这项技术的挑战 性。
技术要求与主要内容: (1)尺寸、结构与续航 不带桨尺寸:长 562mm 宽 487mm 高 150mm 带桨尺寸:长 592mm 宽 517mm 高 150mm 具有可折叠机构,折叠后可以放入箱子内,便于携带运输 具有可拆卸的旋翼护罩,保证特殊应用场景下的安全性问题 机体重量:小于 1.5kg 续航时间:25min (2)视频部分 机载相机 通过 WiFi 将视频传回至 PC、视频眼镜,保证 500m 的图像传输距离。 通过视频的识别,控制 UAV 跟踪单一颜色背景下某一物体的移动。 (3)控制部分 传感器包括陀螺仪、加速度计、磁强计、气压计、GPS、超声波测距、摄像
动端的控制。完善 PC 端的人机界面 4 月 21 日~4 月 30 日 完成系统的完善。提高遥控系统的集成度与通讯系
统的集成度。 5 月 1 日~~5 月 10 日 完成整套系统的便携性设计,便于外出携带 5 月 11 日~5 月 20 日 收尾工作 5 月 21 日~6 月 1 日 准备毕业论文、Demo 等资料 6 月 2 日 结题
PC1031 友顺UTC 电子元器件芯片
UTC PC1031LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.1QW-R111-001,ATV HORIZONTAL DEFLECTION CIRCUITDESCRIPTIONUTC PC1031 is designed for B/W TV and small screen color TV. It generates deflection signal and drives deflection coil.FEATURES*Low external components required *Wide operating supply voltage(9V-18V) *Adjustable synchronous input range *Adjustable blanking voltage *Large output current(2AP-P) *Built in adjustable fly-back timeAPPLICATION CIRCUITFig 1UTC PC1031LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD.2QW-R111-001,AABSOLUTE MAXIMUN RATINGS (Ta=25°C)PARAMETER SYMBOLVALUEUNITSupply Voltage VCC 20 V Output Current IP-P 2 AP-PPower Dissipation PD1 1.5(Ta=+75°C) WPower dissipationPD2 2.15(Ta=+75°C) With heat sink (31.6 x 31.6 x 1mm 3)WOperating temperature TOPR -20 ~ +75°C Storage Temp.TSTG-40 ~ +150°CELECTRICAL CHARACTERISTICS (V CC =12V,Ta=25°C)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT FIGSupply Current ICC No signal input and load 15 30 46 mA 2 Output Voltage VN No signal input and load 5.6 6.0 6.4 V2Field osc Frequency fV Synchronization voltage onPin 5 is 1.3VP-P —50/60—HZ 2Free osc FrequencyfVOCosc=1µF Ta, Rosc=38.1K Ω53 60 67 HZ 2Synchronization Input Range ∆f(PULL) Synchronization voltage onPin 5 is 1.3VP-P -10 -12 —HZ 2Free osc Frequency Change with Supply Voltage ∆fVOfVO=60HZ,VCC=12V fVO deviation for +-2Vchange of Vcc——+-1.0HZ2Synchronization Range deviation with Supply Voltage ∆f(PULL) VCCVCC is+-2V deviated from12V——+-3.0HZ2Output Saturation VoltageVSAT Io =0.7A —1.3 1.6 V 2Pin 4 Output Pulse WidthtO Cosc =1µ F Ta,Rosc=38.1K Ω300 420 600 µsec 2UTC PC1031 LINEAR INTEGRATED CIRCUIT TEST CIRCUITFIG2FIG3UTC UNISONIC TECHNOLOGIES CO., LTD. 3QW-R111-001,AUTC PC1031 LINEAR INTEGRATED CIRCUITUTC UNISONIC TECHNOLOGIES CO., LTD. 4QW-R111-001,A。
LXXLD32 友顺UTC 电子元器件芯片
UNISONIC TECHNOLOGIES CO., LTDLXXLD32CMOS IC3A, ULTRA LOW DROPOUT(0.23V@3A) LINEAR REGULATOR⏹DESCRIPTIONThe UTC LXXLD32 is a typical LDO with the features of very lowdropout voltage as low as 0.23V at output current 3A.For normal operation, two supply voltages are necessary. One calledcontrol voltage from other equipment can shutdown the output voltageand it should pull and hold the voltage of EN pin less than 0.5V. Anotherone is the main supply voltage whose purpose is for main powerconversion, to keep the power dissipation low, and to make the dropoutvoltage lower.Internally, in the UTC LXXLD32, there’re many functions which canbe seen in the block figure to prevent the IC from being damaged.Internal Power-On-Reset (POR) circuit can control the two supplyvoltages to prevent fault operations of the circuit; the thermal shutdowncircuit is able to protect the device from over thermal operation, and acurrent limit function will keep the device work safely under currentover-loads.The UTC LXXLD32 can be used as an ideal to provide well supplyvoltage in the applications, such as front-side-bus termination onmotherboard, NB applications, front side bus V TT (1.2V/3A) and notebook PC applications.⏹FEATURES*Compatible with LXXLD30*Low Dropout V D=0.23V(typ.)@ I OUT=3A*Low ESR Output Capacitor*V REF=0.8V*Fast Transient Response*Output Voltage Adjustable through External Resistors *POR(Power-On-Reset) controlling V CNTL and V IN *With internal Soft-Start*Internal Current Limit Protection*Internal Under Voltage Protection*Hysteretic Thermal Shutdown*With Power-OK Output (with a Delay Time) *Low Shutdown Quiescent Current (<30 uA) *Shutdown/Enable Control Function⏹ORDERING INFORMATIONOrdering NumberPackage Packing Lead Free Halogen FreeLXXLD32L-SH2-R LXXLD32G-SH2-R HSOP-8TapeReel⏹MARKING INFORMATION⏹PIN CONFIGURATION⏹PIN DESCRIPTIONDESCRIPTIONGround pin.There’s an external resistor divider connected to this pin which is necessary to give the feedback voltage to the regulator. The external circuit is combined as the follow: between V OUT and FB is R1(connected with a bypass capacitor which can improve the load transient response),and between FB and ground is R2.Thevalue of R2 and R1 are recommended between 100voltage is equals:=0.8·(1+)(V)The output voltage pin of the regulator. There should be set an output capacitor tocompensate for closed-loop and also to improve transient responses.No connectThis pin is the main supply input.Monitoring this pin’s voltage can reset Power-On.Power input pin of the control circuitry. Connecting this pin to a +5V(recommended) supply voltage provides the bias for the control circuitry. Thevoltage at this pin is monitored for Power-On Reset purpose. Output pin for Power-OK signal output.Being an open drain output, through senescing FB voltage, this pin can show the users the output voltage’s states. That’s this pin will be low under any of thesetwo situations: the rising FB voltage is not above the V voltage is below the V threshold. That indicates the output voltage is not ready for users.Input Enable control pin. The output voltage can be shut down when this pin isbelow 0.3V. This pin’s voltage can be set higher than V A current source, and then the regulator will begin working normally.Connect exposed pad to GND.BLOCK DIAGRAM⏹ABSOLUTE MAXIMUM RATINGPARAMETER SYMBOL RATINGS UNIT Supply Voltage (V CNTL to GND) V CNTL-0.3 ~ +7V Supply Voltage (V IN to GND) V IN-0.3 ~ + 4.0VEN and FB to GND V I/O-0.3 ~ V CNTL+0.3V POK to GND V POK-0.3 ~ +7V Junction Temperature T J+150°СStorage Temperature T STG-65 ~ +150°СNote: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.⏹RECOMMENDED OPERATING CONDITIONSPARAMETER SYMBOL RATINGS UNIT Supply Voltage Control V CNTL3~5.5V Supply Voltage Input V IN 1.2~3.65VOutput Voltage V CNTL=3.3±5%V OUT0.8 ~ 1.2 V V CNTL=5.0±5%+0.8 ~ V IN-0.2VOutput Current I OUT0 ~ 3 A⏹THERMAL DATAPARAMETER SYMBOL RATINGS UNIT Junction to Ambient (Note 1) θJA90°C/W Note: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of HSOP-8 is soldered directly on the PCB.ELECTRICAL CHARACTERISTICSTYPICAL APPLICATION CIRCUIT ing an Output Capacitor with ESR≥18mΩing an MLCC as the Output CapacitorUTCLXXLD32POKENEnablePOKENGNDFBOUTVV CNTLR3=1kΩR2=78kR1=39kΩOUT=22µFOUT+1.2V/3AV IN+1.5VCNTL=1µFC IN=22µF=56pFV CNTL+5V5678V OUT (V) R1 (kΩ)R2(kΩ)C1(pF)1.0543137.6471.52730.86821.81512150APPLICATION INFORMATION1.Power SequencingWhen there’s no main voltage applied at V IN, it is suggested not to apply a voltage to V OUT for a long time. Because the internal parasitic diode (between V OUT to V IN) will conduct and dissipate power, there’s no protection.2.Output CapacitorA proper output capacitor to maintain stability and improve transient response over temperature and current is necessary. Proper ESR (equivalent series resistance) and capacitance of the output capacitor should be selected properly for stability of the normal operation and good load transient response.Many kinds of capacitors can be used as an output capacitor, such as ultra-low-ESR capacitors (like ceramic chip capacitors), low-ESR bulk capacitors (like solid Tantalum, POSCap, and Aluminum electrolytic capacitors). And also the value of the output capacitors’ can be increased without limit.In the applications with large stepping load current, the low-ESR bulk capacitors are normally recommended.Decoupling ceramic capacitors are recommended to be placed at the load and ground pins very closely and also the impedance of the layout must be minimized.3.Input CapacitorIn order to prevent the input rail from dropping, the proper input capacitor to supply current surge during stepping load transients is required. Because the limited slew rate of the surge currents, more parasitic inductance needs more input capacitance.Ultra-low-ESR capacitors (>100mF, ESR<300mW) is recommended for the input capacitor.4.Feedback NetworkThe following figure shows the feedback network between V OUT GND and FB pins. Working with the internal error amplifier, the feedback network can provide proper frequency response for the UTC LXXLD32.V OUT。
LR3865 友顺UTC 电子元器件芯片
CONFIGURATION
Packing
Tape Reel Tape Reel Tape Reel
Copyright © 2022 Unisonic Technologies Co., Ltd
1 of 6
QW-R102-099.E
LR3865
MARKING INFORMATION
PACKAGE
VOLTAGE CODE
2 of 6
QW-R102-099.E
LR3865
CMOS IC
PIN DESCRIPTION
SOT-223 1 2 3 -
-
-
PIN No.
SOP-8
A
B
8
5~8
6
3
3
2
HSOP-8
8 6
3
PIN NAME
GND OUT VIN
1
-
1
POK
2
1
2
EN
5
4
5
SS
SET
7
-
7
ADJ
-
- Exposed Pad GND
DESCRIPTION
Ground Output Power Input Voltage. Supply voltage can range from 2.5V to 6V. Bypass with a 10µF capacitor to GND. Open-Drain Power-ok Output. POK Remains low while the output voltage is below the POK threshold. Connect a 100 kohm Pullup resistor from POK to OUT Active-High Enable Input. A logic low at EN reduces supply current to 0.5µA. In shutdown, the POK output is
CSQ-3 users manual 同步表使用手册
Denmark E-mail:List of contents1. Warnings, legal information and notes to CE-marking and UL listing (3)2. Application and functionality summary (3)3. Operation of display, push-buttons and LEDs (6)3.1 LEDs (7)3.2 Settings (8)4. Terminal list (10)4.1 Overview of the terminals (10)5. Wiring diagrams (11)5.1 AC input connections (11)5.1.1 Connection diagram (11)6. Commissioning (12)7. Technical data (12)8. Dimensions (15)9. Order specifications (15)Example of an order specification for the CSQ-3 (15)Appendix 1: Setting and parameters for synchronising (16)Settings (16)Guidelines for setting of the CSQ-3 (18)Visual representation of the parameters (18)Page 2 of 21 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@User manual, Check synchroscope CSQ-34189340263K (UK)1. Warnings, legal information and notes to CE-marking and UL listingThis manual gives general guidelines on how to install and operate the CSQ-3. Installing and operating the CSQ-3 implies work with dangerous currents and voltages. Therefore this should only be done by qualified personnel. DEIF A/S takes no responsibility for operation or installation. If there is any doubt about how to install or operate the system on which the CSQ-3 is measuring, the company responsible for the installation or the operation must be contacted.The CSQ-3 is CE-marked with respect to the EMC directive for residential, commercial and light industry plus industrial environment. This covers all environment types where the CSQ-3 can normally be used.The CSQ-3 is CE-marked with respect to the low-voltage directive for up to 600V phase to ground voltage, installation category (overvoltage category) III and pollution degree 2.The CSQ-3 can be delivered with UL listing. Please refer to the section “Technical data” for installation information as required by the UL.The package contains the following items:• Check synchroscope CSQ-3 unit • User manual • Two fixing clamps• A plugable connection (mounted on the unit)• Cable for system status output (only marine version)2. Application and functionality summaryThe CSQ-3 check synchroscope is a microprocessor-based synchronising unit providing measurement of all relevant values for synchronising a generator to a net (busbar). It is used in any kind of installation where manual or semi-automatic synchronising is required.In the CSQ-3 there is a possibility of adjusting the following synchronising requirements: The voltage difference between GEN and BB, the size of the phase window and the length of the synchronising pulse.In addition to that there is an indication of ‘U GEN TOO HIGH’ or ‘U GEN TOO LOW’ (red LEDs), phase difference within the preset window ‘ϕOK’ (yellow LED), and finally synchronising output active, ‘SYNC.’ (green LED).Display/readingThe unit measures the two inputs voltages: Generator (GEN) and busbar (BB), respectively. The phase difference from GEN’s zero-crossing to BB’s zero-crossing is calculated by the processor and is shown on the LED circle, consisting of 36 red LEDs.The red LEDs are only lit one at a time and its position indicates the phase difference between GEN and BB. The lit LED simulates the pointer tip of an analogue pointer instrument. If the LED is lit in the 12 o’clock position, the phase difference is 0 degrees. In the 6 o’clock position, 180 degrees etc. With 36 LEDs the resolution is 10 degrees.The movement of the lit LED’s position indicates the frequency difference between GEN and BB. If the indication is turning clockwise (too fast), the GEN frequency is too high in proportion to the BB frequency. If the indication is turning counter-clockwise, the proportion is inversed. The rate of the motion tells about the frequency difference. The faster the rotation, the bigger the frequency difference, e.g. 1 rotation per second = 1Hz. If the BB frequency is 50Hz and the rotation turns right, the GEN frequency will be 51Hz in this example.If the frequency difference between GEN and BB is becoming too big (>3Hz), the circular motion stops and a LED will be lit at the ‘too fast’ or ‘too slow’ mark, dependent on which direction the GEN frequency has to be adjusted to.Normal synchronisingThe unit automatically calculates the synchronising parameters to check if there is the required space for the synchronising inside the preset phase window. These calculations compare the frequency difference with t R and the size of the phase window. When t R is set to ∞, t d can be set by the user and is then included in the calculations instead of t R.If the Δϕ window is set symmetrically, both underfrequency synchronising and over-frequency synchronising is possible.Under- or overfrequency synchronisingWhen the Δϕ window is set asymmetrically the following functionality is possible:theΔϕ window is set asymmetrically with a higher positive than negative Δϕ Ifvalue, only synchronising with the generator input at lower frequency than the busbar input is possible (underfrequency synchronising).theΔϕ window is set asymmetrically with a lower positive than negative Δϕ Ifvalue, only synchronising with the generator input at higher frequency than the busbar input is possible (overfrequency synchronising).Note:This function is not active with t R set to ∞.Page 4 of 21 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@User manual, Check synchroscope CSQ-34189340263K (UK)Dead bus synchronisingWhen the dead bus function is set, the synchronising relay will be activated and the green LED (SYNC) will be lit, when the busbar voltage is below the dead busbar preset level and the GEN voltage exceeds 80% of nominal value.Please notice that when the voltage on the net has been restored, the CSQ-3 will remain in the dead bus function for a period of 5 seconds.Power up resetThe unit will operate when the GEN voltage exceeds 80% of the nominal value. Below this level no functionality is obtained.μP supervision outputDue to the demands from the classification societies (GL) a special optocoupler output has been added on the marine version.From this output it is possible to supervise the internal microprocessor (μP).If an error is present, the output changes state from a low to a high impedance (open collector output).Page 6 of 21 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@3. Operation of display, push-buttons and LEDsTo get access to the settings, remove the front frame and the front foil.The CSQ-3 can be operated in two different modes: ‘Normal mode’ and ‘setting mode’. Normal mode is used to display measuring values, and setting mode is used to view the settings or change them to the desired functionality.User manual, Check synchroscope CSQ-34189340263K (UK)3.1 LEDsThe CSQ-3 has the following LEDs on the fronts showing different operating information.LEDs on primary front (normal mode):LEDColour Function Circle Red The lit LED in the circle shows the phase difference betweenGEN and BUSBARSYNC. Green All preset sync. parameters are OK, and the output relay isactivatedϕ OKYellow The phase difference between GEN and BUSBAR is within the preset windowU GEN TOO HIGH Red The voltage difference between GEN and BUSBAR is outside the preset range. U GEN is too high U GEN TOO LOW Red The voltage difference between GEN and BUSBAR is outside the preset range. U GEN is too lowLEDs on secondary front (setting mode):LEDColour Function Circle Red Parts of the circle are used as scales for the different settingsΔϕYellow Shows that the Δϕ scale is active t d Yellow Shows that the t d scale is active Please notice that t d only becomes active with t R set to ∞ t RYellow Shows that the t R scale is active ΔUYellow Shows that the ΔU scale is active U bus Yellow Shows that the U bus scale (dead bus) is activeFor further information about the settings, please see appendix 1.3.2 SettingsPage 8 of 21 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@User manual, Check synchroscope CSQ-34189340263K (UK)OperationThe operation occurs via the secondary foil accessible when the primary foil/front frame is removed. The operation occurs by means of 3 push-buttons: Mode (toggle), up arrow (▲) and down arrow (▼).Control of settingsThe mode button is held down for about 2-3 seconds to obtain the setting mode. This is confirmed by the fact that the LED is lit at the ΔU scale and that the setting of the ΔU max. parameter can be read on the matching scale. With ▲ and ▼ the setting can be changed.For every subsequent push on the mode button, a change to the next parameter occurs. These can be read and changed in a corresponding way. When mode is pushed after the last parameter, one returns to normal mode.When leaving the last setting menu, the LED circle ‘rotates’ to indicate that the current setting has been automatically saved.Please notice that the preset window, ΔU and Δϕ, is divided into two separate settings, making asymmetrical setting of this parameter possible.Also please notice that if the settings are changed unintentionally, these are saved when the setting mode is left.Change of Δϕ rangeThe normal range of Δϕ is -20°...-5° and 5°...20° in 1° steps.This can be changed to -40°...-10° and 10°...40° in 2° steps.Step down to the 20° point with the down arrow button. While pressing the down arrow button, press the up arrow button and the scale will change from normal range to the scale 2 x normal range. Press the up arrow button to return to normal range. While pressing the up arrow button, press the down arrow button, and the scale will change from 2 x normal range to normal range. Please notice that the 2 x normal range mode is indicated on the LED circle by activation of 2 LEDs each time Δϕ is changed.Factory settingsWhen the product is delivered from the factory, the following basic settings will be set:ΔU: 5% of ±U BBt R : 0.5 sec. Δϕ: ±10° Dead bus: OFFRestorage of factory settingsActivate the two arrow buttons simultaneously. While doing this hold down the mode button for approximately 5 seconds. Then the LED circle will light up and rotate to indicate that the factory settings have been restored.4. Terminal list4.1 Overview of the terminals5. Wiring diagrams5.1 AC input connectionsWhen ordering the CSQ-3, the correct range of voltage inputs must be specified. They must be connected as shown below (unused terminals are not shown).5.1.1 Connection diagram6. CommissioningBefore commissioning:Check phases for correct voltage and correct phasesequence.Warning:Incorrect voltage may lead to malfunction anddamage of the unit.7. Technical data±2° (electrical degrees)Accuracy:Resolution: 10° (36 LEDs)Settings, range: Δϕ: ±5…20° in 1° steps or±10…40° in 2° stepsΔU: ±1…10% in 1% stepst R : 0…1 sec. in 0.1 sec. steps or ∞t d : 0…1 sec. in 0.1 sec. stepsU bus offset: Off or 4 levels of noise suppressionbus)(deadMax. frequency difference: No limitInput range (U N): 100…127V AC (115V AC) or220…240V AC (230V AC) or380…415V AC (415V AC) or440…480V AC (450V AC)Busbar input: Load: 2kΩ/VGenerator input: (Max. 2VA). Also supply for the unitMax. input voltage: 1.2 x U N, continuouslyAbove 450V: 1.1 x U N, continuously2 x U N for 10 sec.Frequency range: 40…70Hz (supply)Relay contact: 1 SPST-NO-contactRelay contact ratings: Resistive loads: AC1: 8A, 250V AC(Gold plate silver alloy) DC1: 8A, 24V DCInductive loads: AC15: 3A, 250V ACDC13: 3A, 24V DC(UL/cUL: Resistive load only)Mechanical life: 2 x 107Electrical life: 1 x 105 (nominal value)Optocoupler output: System status off = failure NpN optocoupler output Max. 40V, 10mA 2 wires AWG 20 (red/black) 30 mm length (Only in marine version)Temperature:-10…55°C (nominal)-25…70°C (operating) -40…70°C (storage)Temperature drift: Set points:Max. 0.2% of full scale per 10°CGalvanic separation:According to EN/IEC61010-1All input/output groups to ground: 3.75kV Between all input/output groups: 3.75kV Test conditions: 50Hz, 1 min.Climate:HSE, to DIN40040EMC:CE-marked according to EN50081-1/2, EN50082-1/2 and IEC255-3Connections: Max. 2.5 mm 2(single-stranded)Max. 1.5 mm 2(multi-stranded)Materials:All plastic parts are self-extinguishing to UL94 (V0)Protection:Front: IP52. Terminals: IP20According to IEC529 and EN60529Type approval: For current approvals please see (Only valid for marine version)UL listing:On request, the instrument can be delivered according to UL listing:UL508, E230690 T ambmax 50°C For use in a flat surface of type 1 enclosure Wire: 24-12 AWG Use 60/75° C copper conductors only Main disconnect is to be provided by installerTerminal screw torque: 5-7 lb-in.Installed in accordance with the NEC (United States) or the CEC (Canada)CAUTION: Risk of electrical shock. More than onemain disconnect may be required to de-energize equipment before servicing.Dimensions: Please see drawing in section 8 Panel cut-out: 91 x 91 ±1 mmWeight: < 0.40 kgAppendix 1: Setting and parameters for synchronisingSettingsΔUHere the allowed relative voltage difference between GEN and busbar is adjusted. The regulating range is ±1…10% in steps of 1%. The adjustment is made individually for ΔU MIN and ΔU MAX, so asymmetrical adjustment is possible. The setting is done according to the following formula:(U GEN – U BUSBAR) x 100ΔU MIN, ΔU MAX =U BUSBARIf the preset value is exceeded, one of the two U GEN LEDs will emit red light, and synchronising is not possible.If the generator voltage is too low, the U GEN too low LED will be lit.If the generator voltage is too high, the U GEN too high LED will be lit.If both the U GEN LEDs are lit simultaneously, there is an overvoltage error on the input. In this case, disconnect the unit and check the applied voltage level!ΔϕHere the phase window is adjusted, in which synchronising can take place. The adjustment starts from ±5° and the window can open symmetrically or asymmetrically around this value.The regulating range is -20°...-5° and 5°...20°, in 1° steps or-40°...-10° and 10°...40°, in 2° steps.t RHere the length of the pulse for the synchronising relay is adjusted.The regulating range is 0...1 sec. in steps of 0.1 sec. or ∞.This function makes it possible to adjust the synchronising pulse according to the external breakers demands (closing time).For special purposes it is also possible to adjust t R to ∞ (infinite). This setting will (after t d has expired) provide a synchronising pulse as long as the following conditions are met:•Phase is inside the phase window•Voltage > 70% of U NOMINALt dHere the time is adjusted, in which the phase difference must be inside the preset synchronising window to allow SYNC. The regulating range is 0...1 sec. in steps of 0.1 sec.t d is only activated if t R is set to ∞.Dead busThe possibility of closing the circuit breaker even though the busbar voltage is missing. There is an extra adjustment, U BUS, where the level of dead busbar can be set. This facility makes dead bus synchronising possible, even though there is noise on the busbar. The regulating range is off or 10...40% of U N in steps of 10%.Setting Dead bus function U BUSOFF Deactivated10 Activated within the range 15-25% of actual generator voltage > 70%20 Activated within the range 25-30% of actual generator voltage > 70%30 Activated within the range 30-40% of actual generator voltage > 70%40 Activated within the range 40-50% of actual generator voltage > 70% Please notice that this setting is a coarse step regulation for suppression of possible noise on the busbar. The scale 10-20-30-40 should therefore be considered more as a 4 level noise suppression than as an accurate measuring setting.Please notice that when the voltage on the net has been restored, the CSQ-3 will remain in the dead bus function for a period of 5 seconds.Guidelines for setting of the CSQ-3CommissioningNormally t R is adjusted so it equals the circuit breakers closing time and Δϕ-/Δϕ+ to max. allowed synchronising error.Please notice that the CSQ-3 calculates space for t R (breaker closing time) within the chosen Δϕ window at the actual Δf (slip frequency). Therefore the max. synchronising error will never exceed the chosen Δϕ window.Calculation exampleThe breaker closing time is 200mS, and t R is chosen to 200mS. The phase window is set symmetrically to ±10° (electrical degrees). Then the max. Δf can be calculated using the following formula:Synchronising relay pulse will not be emitted if Δf exceeds 0.278Hz.(Δϕ-) + (Δϕ+)Δf = 360 x t R 10 + 10 Δf = = 0.278Hz 360 x 0.2Calculation of the actual synchronising error – not to be mistaken for the max. synchronising error which is solely determined by the chosen Δϕ windowThe next examples apply to situations where t R is set in the range 0.1...1 sec. Example:With a slip frequency (Δf) of 0.1Hz the phase changes with a rate of 36°/sec. If Δϕ is set to ±10° and t R is set to 0.2 sec. = breaker closing time, the actual synchronising error can be calculated.The moment the phase is within the set phase window (Δϕ) the relay of the CSQ-3 is activated on condition that there is space for the chosen t R, in this case 0.2 sec. If Δf is too big it will cause lack of space for the chosen t R time within the chosen Δϕ window. Example 1:With a phase change of 36°/sec. the phase will change 7.2° during the 0.2 sec. This means that we can now calculate the phase displacement at the exact moment when the breaker closes. Δϕ is set to -10° and +10°. The CSQ-3 relay will be activated -10° before top (12 o’clock position), and after 7.2° the breaker closes which means that the breaker closes 10° - 7.2° = 2.8° before top, that is an actual synchronising error of -2.8°. Applying the formula on page 17 the max. Δf with the shown settings can be calculated to be 0.277Hz.Example 2:If we assume that the slip frequency in the actual case is 0.2Hz the phase changes with a rate of 72°/sec. With a phase change of 72°/sec. the phase will change 14.4° during the 0.2 sec. which gives a synchronising error of 10° - 14.4° = -4.4°. The negative result means that the breaker closed 4.4° after top, that is an actual synchronising error of +4.4°.Example 3:The same as examples 1 and 2 but with a slip frequency of 0.3Hz = 108°/sec. At t R = 0.2 sec. the phase will change 21.6°. As the Δϕ window is set to ±10°, the CSQ-3 will calculate that there is no longer space for a t R pulse of 0.2 sec. and therefore no relay pulse is emitted.General formula for the above-mentioned:Actual synchronising error = (Δϕ-) - 360 x Δf x breaker closing time (t R).Alternatively at negative slip frequency:Actual synchronising error = (Δϕ+) - 360 x Δf x breaker closing time (t R).If the result is negative the synchronising will take place after top (0°) provided that there is space for t R within the Δϕ window.If you want to avoid synchronising after top, Δϕ is set asymmetrically. At positive slip frequency (Δf) as in the shown example a setting of Δϕ- to -10° and Δϕ+ to +5° would have as a result that synchronising after top of more than 5° would not be possible.The length of the relay pulse t R can never be set to a lower value than the breakerclosing time, whereas t R can be set to a higher value if you want the max. slip frequency (Δf) to be lower to limit the rush of current of the breaker (the generators) inconnection with the synchronising.Example:In the light of the above-mentioned examples t R is changed to 0.4 sec. With a slip frequency (Δf) of 0.1Hz = 36°/sec. and t R = 0.4 sec. the phase changes 14.4° during the 0.4 sec. If Δϕ is set to ±10° the CSQ-3 will calculate that there is space for t R. Withthis setting the synchronising error will be identical with the synchronising error in example 1 (-2.8°) as the breaker closing time is the same (0.2 sec.). But the max. Δfcan now only be 0.138Hz and not, as in example 1, 0.277Hz. The max. slip frequency (Δf) could also be controlled by setting Δϕ differently. If Δϕ was set to ±5° instead of ±10° the max. Δf would be 0.138Hz at t R = 0.2 sec. With this setting and a Δf of 0.1Hz the actual synchronising error will be +2.2°. Please notice that the breaker now closes2.2° after top and not, as in example 1, 2.8° before top. The choise of setting must bebased on the knowledge of the actual installation in which the CSQ-3 is applied. But the examples are to show that t R and Δϕ are inextricably connected and influence the same parameters, but with different results as to the calculation of the actual synchronising error.If t R is set to infinite (∞) the max. allowable Δf can no longer be controlled by means of t R. When t R is set to infinite the setting of t d is automatically activated. Infinite t R is primarily used where the CSQ-3 is applied as supervision of an automatic synchronising system or in connection with closing of a tie breaker where you want to control frequency, phase and voltage to be within certain values before the breaker is closed.The setting of t d is to be calculated from Δϕ and the estimated max. allowable Δf.(Δϕ-) + (Δϕ+)t d =360 x ΔfExample 1:Δϕ is set to ±7°, and a max. Δf of 0.05Hz at the moment of synchronising is estimated to be allowable.| -7 | +7t d =360 x 0.05t d = 0.77 sec. ~ 0.8 sec.Please notice that when t R is set to infinite (∞) the synchronising pulse (the relay contact of the CSQ-3) is interrupted the moment the phase is outside the set phase window. As the timer t d starts the moment the phase is within the set phase window Δϕ, and is to expire in the period the phase is still within the phase window before the synchronising pulse is emitted, it means in the shown example that with an actual ΔfUser manual, Check synchroscope CSQ-3 of 0.049Hz the synchronising pulse would only be 18 msec. To avoid transmission of such a short synchronising pulse, the CSQ-3 performs a calculation based on Δf and the actual phase window to make room for a synchronising pulse of at least 100 msec. Referring to example 1, 100 msec must be subtracted from the calculated t d to allow a max. Δf of 0.05Hz.Function in particular situations:In connection with test “on desk” the CSQ-3 is normally connected to the same supply point so that frequency and phase are completely identical on the generator input and the busbar input. At this test form the following must be noticed:The first time the CSQ-3 is connected, synchronising pulse is emitted whether the Δϕwindow is set symmetrically or asymmetrically. If only the busbar input is interrupted subsequently (the CSQ-3 is supplied with auxiliary voltage from the generator input), synchronising pulse is only emitted if the interruption has lead to the result that the Δϕwindow was left in connection with the interruption (occurs if the interruption results in a noise pulse).If Δϕ is set asymmetrically so that only e.g. positive Δf is accepted and Δf changes sign (inverse direction) after the phase between generator and busbar is within the phase window, the synchronising pulse is not interrupted until the Δϕ window is left, even if Δf has changed sign to negative Δf.If Δf is changed to correct direction of rotation after the phase is within the phase window the CSQ-3 calculates if there is space for t R (the synchronising pulse), and in that case synchronising pulse is emitted.Errors and changes excepted4189340263K (UK)。
NRS系统软件系列之-EagleCenterV3操作手册
南方网络参考站系统软件系列之EagleCenterV3操作手册第二版广州南方测绘仪器有限公司二○一零年一月关于EagleCenter V3EagleCenterV3为NRS系统软件系列之一,主要为S3,S8使用,兼容工控型CORS主机。
EagleCenterV3主要功能为NRS模式中静态、差分数据的存储及传输,支持S3, S5、S8单基站模式。
EagleCenterV3支持国内外各种型号的GNSS接收机数据接入服务,支持多种差分格式RTCM23(含RTD)/CMR/RTCA/RTCM30等技术特点。
关于本手册使用本手册的用户应该具备的条件:(1)熟悉计算机及Windows的基本操作,(2)具有一定的GNSS基础,对连续运行参考站系统比较熟悉。
目录第一章EagleCenter V3的安装 (4)§1.1 EagleCenterV3的运行环境 (4)§1.1.1 硬件环境 (4)§1.1.2 软件环境 (4)第二章NetS8的使用说明 (5)2.1 NetS8在局域网(或用交叉线网线直连)中的使用说明: (5)2.2 用串口COM3对NetS8设置的使用说明: (13)2.3 远程对NETS8进行升级和下载 (20)2.4 用按键对NetS8设置使用说明: (23)2.5 NetS8在广域网(公网)中的使用说明: (25)2.6 远程对NetS8参数进行修改 (29)第一章EagleCenter V3的安装§1.1 EagleCenterV3的运行环境§1.1.1 硬件环境⏹处理器(CPU):Pentium(r)Ш或更高版本⏹内存(RAM):128MB⏹视频:1026x768真彩色⏹硬盘安装:安装100MB⏹定点设备:鼠标、数字化仪或其他设备⏹C D-ROM:任意速度(仅对于安装)§1.1.2 软件环境⏹操作系统:Microsoft Windows NT 4.0 SP 或更高版本●Microsoft Windows 98●Microsoft Windows 2000●Microsoft Windows XP Professional●Microsoft Windows XP Home Edition●Microsoft Windows XP Tablet PC EditionEagleCenterV3操作手册 4第二章NetS8的使用说明2.1 NetS8在局域网(或用交叉线网线直连)中的使用说明:使用前首先确定以下两项:1、在使用电脑设置之前首先关掉电脑的所有防火墙(XP系统防火墙以及杀毒软件的防火墙等);2、问问网络管理人员路由器是否被设定了MAC过滤程序。
某雷达终端适配器的设计与应用
某雷达终端适配器的设计与应用王明辉;季晓芳【摘要】文章介绍了某雷达终端适配器的设计及应用方法,应用本适配器,检测人员可通过测试平台的引导,能迅速、准确、方便地进行故障诊断测试.【期刊名称】《安徽水利水电职业技术学院学报》【年(卷),期】2015(015)002【总页数】3页(P78-80)【关键词】适配器;终端系统;功能测试【作者】王明辉;季晓芳【作者单位】中国电子科技集团电子第三十八研究所,安徽合肥230088;中国电子科技集团电子第三十八研究所,安徽合肥230088【正文语种】中文【中图分类】TN95Key words:adapter;terminal system;a functional test在雷达设计调试过程中,其功能测试一般遵循着单板功能调试、分机功能调试、分系统功能调试、整机功能调试顺序,往往要耗费设计师的大量的时间和精力,且在与外界接口调试中容易出现问题误判。
通过设计专用适配器,模拟所有外界接口信号,独立完成终端设备的所有功能调试,极大地提高终端调试效率及功能的可靠性。
适配器输入到终端测试分机的数据和时序完全模拟整机环境,营造数据流环境,使终端系统测试机箱置身于雷达整机中一样。
终端系统检测适配器一边是通过连接器与通用雷达检测诊断平台相连,用于接收测试信号并送出检测信号;另一边是通过测试电缆与终端综合分机和光栅分机相连,为终端分机提供测试信号,同时接收终端分机送出的待检测信号。
整个适配器主要有机箱、电缆、接口组件和终端信号调理插件组成,其信号测试流程如图1所示。
终端适配器通过专用的连接器与通用测试平台相联接,另一边通过连接电缆与终端处理分机相联接,通用测试平台控制适配器产生终端处理分机所需要的各种时序、方位及模拟目标测试信号,工作模式(正常、对消MTI/MTD工作模式)、分3路送到终端分机,在终端分机中完成延时对齐、检测、录取后自动跟踪,完成对终端分系统的上报、询问机接口、串口、GPS、3路A显、MTD信号、MTI信号、正常信号等功能检测和故障定位。
接收机载波相位平滑技术授时应用研究
接收机载波相位平滑技术授时应用研究于雪岗; 李超; 邓志鑫【期刊名称】《《无线电工程》》【年(卷),期】2019(049)012【总页数】4页(P1068-1071)【关键词】卫星授时; 载波相位; 伪距平滑; 单频【作者】于雪岗; 李超; 邓志鑫【作者单位】中国电子科技集团公司第五十四研究所河北石家庄 050081; 北京卫星导航中心北京100094【正文语种】中文【中图分类】TP311.10 引言接收机主要由天线、下变频、基带处理和定位授时四部分组成[1]。
载波相位平滑伪距[2]在现有接收机中已经得到成熟应用,并且对接收机定位性能有很大的提升效果。
目前,存在采用单星[2]载波相位平滑伪距+基准站[3]的授时方法,但这种方法必须保证接收机在基准站服务范围内,并且与时间标准值存在固定偏差。
本文研究单模单频接收机的授时性能,同样使用载波相位平滑伪距[4-7]方式进行,采用先定位后授时的结构,分析授时调整对引起的载波相位变化,并对变化量进行分析和修正。
本文对授时过程中载波相位变化进行了理论分析,指出如何对这种变化量进行修正,并进行相关的工程测试来验证上述理论。
1 载波相位平滑原理被广泛应用的借助载波相位测量值来平滑伪距测量值的平滑器公式[8]如下:ρs,1=ρ1,(1)(2)式中,ρs,k为k时刻平滑后的伪距;ρk为k时刻伪距测量值;φk为k时刻载波相位测量值;λ为载波波长;M为平滑时间常数,M值越大,代表平滑后的伪距越依赖于载波相位测量值[9]。
但是上述平滑器存在2个根本性的缺陷:① 假定了电离层延迟保持不变,但这一点并不一定总是接近正确,并且电离层对伪距和载波相位测量值的作用相反,会造成电离层误差会随时间不断积累;② 如果对伪距平滑初始值ρs,1的设定会存在一个较大的误差,平滑器需要很长的一段时间运行才能逐渐消除此误差。
对于第1种缺陷,在实际的工程应用中,通过每间隔一段时间重置平滑器[10]的方式解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是误工?
无库存 靠近井道 – 清理和干燥成问题
现场不合适的屏障 IE精益网
材料受潮 交付过早 无库存
设计因素
IE精益网
内部因素
改进前 改进后
返工因素 由于牵引机没有安装脚轮,所以很费人力。
改进细节 制造特殊的小车,使两个人就可以搬动设备。
什么是T/B或问题?
T/B或问题/误工,是指任何阻碍或影响正常 工作流程的情况, 包括流程中任何低效因素。
IE精益网
误工的具体例子(T/B)
你在日常的工作过程中,经常碰到哪些 影响工作效率的问题?
问题类型
安全问题 材料问题 停机 工具问题 计划改变 费用计算失误 测量工具问题 放置和运输问题
误工率 =
=
误工数 完成工件数
×100%
2/20 × 100% = 10%
IE精益网
Step 2 汇总数 据
W ork C el N am e:M odelC el l l 工作区:样板区
W eekl T urnbacks R ati y o T /B 返工率周汇总表
M ay-99 2002年5月份
衡量改进后质量水平 衡量改进后质量水平
分享项目改进成果 分享项目改进成果 并形成正式文件 并形成正式文件
IE精益网
SW:将改进后的项目成果形成公司正式 工作文件: 如纳入ISO9000标准—Step 3
UTC问题解决程序
流程管理及认证 新 5S 标准工作 通行证制度 QCPC 减少准备 工时素(2)
改进前 (轿箱框架) 改进后
返工因素
改进细节 将与支架相连的各个部分制成整体。
装配轿箱支架费时又麻烦。
IE精益网
这是什么动物?
IE精益网
这是什么动物?
IE精益网
衡量现有质量水平 衡量现有质量水平
QCPC: 计算出改进前产品或服务的质量水平, 即“turnback”率-- Step 1 RRCA: 利用分析工具分析造成产品或服务的质量水平低的原因--Step 2
分析问题根本原因 分析问题根本原因
采取措施加以改进 采取措施加以改进
MP, New 5S, TPM and Setup Reduction: 利用这4种工具对造成产品或服务的质量水平低的原因 采取改进措施,即分别从人,环境,机器,物料,测量系统, 工作方法等6个方面予以改进,避免差错发生--Step 3 QCPC: 计算出改进后产品或服务的质量水平, 即“turnback”率--Step 1
安全和环境不利因素
8 部件 A)停机 B)CHESS短缺 C)无箱库存 D)无发货箱 E)提货错误 数量错误 F)部件错误 G)材料处理 9 材料质量 A)加工错误 B)焊接错误 C)整理错误 D)卖方错误 E)修理错误 10 工具 A)工具流动 B)缺少工具 C)太多工具 D)工具磨损 E)工具错误 11 设施及工效 A)装配现场分布图 B)浪费的搬迁 C)更换线轴 D)可接线度 E)分段运输区域
7 材料(存储) A)箱里混合的存储 B)无序的存储 C)存储地点错误
可记录的工伤或疾病 急救情形 险兆事故 产生环境问题的化学 品泄漏 产生有害废物
F)损坏的部件 F)检测器错误 F)接收材料 G)不完整装配 H)部件损坏 I)接线错误 J)停机错误 K)不恰当装配
IE精益网
切记是你在你的单元/工作区域定义了QCPC过程。 使用一个成功过程所需要同样多或少的细节。
IE精益网
Step 1-1流程识别例子1
电梯安装工序流程图
In
到货检验 货物存放
支架导轨 底坑设备
机房 控制柜
轿厢架 工作平台 对重钢绳
井道设备 箱提轿厢 轿厢门 轿厢 检验测试 轿顶操纵设备 开门机 机房接线
IE精益网
Step 1 启动QCPC
基本符号
这些符号 您必须 熟悉
过程或活动 检 测 包含检测 的过程 物料进入 物料输出
扩充符号
A
Automated Operation/Activity Non-Destructive Testing (NDT) Weighing or Counting
Step 4 确定改进方 案
A ssem bl y 装配
Packi ng 装箱
Shi ent pm 发运
280
280
10
0
52%
52%
2%
0%
105%
5/7/1999
541
541
541
541
92
127
180
40
W eek 2 第二周
26%
35%
50%
11%
123%
5/14/1999
358
358
358
358
W eek 3 第三周
独角兽!!!
单独看问题 将会影响我们 正确的判断 数值的取样 越多越能反映 问题的根源
IE精益网
建立信任
提出的任何问题, 都备受欢迎,每个 问题都认真对待且 被视为财富… 对提出问题的人员 和为你带来财富的 人进行鼓励 和适当 奖励… 不要处罚承认问题 的人… – 与小组成员一起 庆祝所获成功 以竞猜开始来激发 兴趣 – 推测返工数
P10
P20
P30
P40
P50
P60
P70
P80
P90
P100
IE精益网
流程识别例子2
人员招聘的流程图
部门申请
批准
发布信息
收集信息
安排面试
确认
IE精益网
练习
分组讨论设计划出新员工入职的理想流程
IE精益网
练习 - 新员工入职流程识别
先以总误工率 多少为顺序做 工序的排列图
% 误工率
10
20
30
再将该工序中 出现频率最高 的3个问题做 排列图
Step 10
8% 6% 4% 2% 0%
Wrong Color Spring Too Long Actuator Broken
如何作错误预 防?
7.2%
2.4% 1.3%
ACE工具
TPM
第一步 第二步 第三步
QCPC活动 QCPC诊断
严格的根源分析 错误预防
结果 --零缺陷过程
IE精益网
QCPC 是一个工具 什么是QCPC活动?
QCPC 是产生 优质产品 和流程 的途径
QCPC是通过不断的收集问题/误工,优选 问题/误工,从而找出问题/误工的根源,以达 到解决并预防问题/误工再次发生的一种简单 直观的工具。
UTC问题解决过程---ACE 工具的实际应用
应用以下2种工具建立质量指标衡量体系(Quality Matrix)--Step 1 - MFA: 用于收集分析客户/竞争对手的信息, 即了解外部是如何看自己的; - PM : 主要针对于流程, 即选择哪些重点流程予以改进
定义问题并确定 定义问题并确定 项目改进方向 项目改进方向
IE精益网
Step 4 帮助解决问题的工具
总结意见 找出模式和关系 组建小组 5个为什么 鱼骨图 散布图 故障模式和效果 分析 事件树分析 立场分析 数据收集指南 Red-X 统计过程 过程分析 结果检验 意见分组 小组命名技术
IE精益网
头脑风暴 立场分析
数据和行动排序 直方图 排列图 方案选择图 行动计划 说明板 方案选择图
IE精益网
Step 2 汇总数 据
设立基线和进取性目标
基线
任 信 立 建
400%
降低 50% 降低 90% 200%
误工率
40%
至少3 个月 至少3 个月 至少6 个月
时间
IE精益网
Step 3 做排列 图
14% 12% 10% 8% 6% 4% 2% 0% 12.2% 9.2% 6.8%
CAT Scan
Eye Test
EKG
Blood Test
Urine Test
Colonoscopy
MRI
X-Ray
QCPC 诊断过程
IE精益网
请医生找出潜在 诊断病人的状况 的疾病 -视问题为财富, -定义描述问题… 分析问题…
快速诊断和治疗 -快速反应…
用走势图监控病 人的康复情况 -验证改进…
QCPC小结
QCPC 是一个工具 QCPC 活动内容 T/B问题是任何影响正常生产的低效因素 如何建立信心 QCPC =全身诊断 QCPC 提供简单直观的控制 设立进取性目标
IE精益网
实施QCPC的 5个步骤
Step 1- 启动QCPC Step 2 - 汇总数据 Step 3 - 作排列图 Step 4 - 确定改进方 案 Step 5 - 展示成功故
新员工入职过程图
OP10
OP20
OP30
OP40
OP50
OP60
OP70
OP80
OP90
OP100
体检
聘用书 通知 入职
办理 入职 手续
办理 保险 手续
照相 及办 员工证
安排 入职 培训
部门秘 书介绍 相关人 员及工 作环境
领用 文具及 劳保用品
开始 工作
IE精益网
QCPC Step 1-2 问题的收集
IE精益网
Turnback Ratio
600%
500%
400%
300%
200%
重建信任后的基线 st ru T ng di il Bu 原来的基线
100%
0% Jun-97 Jul-97 Aug-97 Sep-97 Oct-97 Nov-97 Dec-97