第4章平面图形及其位置关系

合集下载

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。

将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。

将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。

结论:射线是直线的一部分,线段是射线和直线的一部分。

2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理过两点有且只有一条直线,简称两点确定一条直线。

4、线段的比较线段的比较有叠合比较法和度量比较法。

5、线段公理连接两点的线段是最短的,叫做这两点的距离。

6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。

例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。

2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。

3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。

二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。

角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。

第四章 平面图形及其位置关系辅导题

第四章 平面图形及其位置关系辅导题

第四章 平面图形及其位置关系辅导题典例精讲:例1:如图,∠AOB 是平角,∠AOC=80°,∠COE=50°,OD 平分∠AOC ; 1)求∠DOE 的度数;2)OE 是∠BOC 的平分线吗?为什么?例2:如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD=8,求MC 的长. 随堂练习1、 下列说法正确的是( ) A. 一条直线就是一个平角 B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离2、平面上有任意三点,经过其中两点画一条直线,可以画( )直线A 、1条B 、2条C 、3条D 、1条或者3条3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )A 、AB=2ACB 、AC+BC=ABC 、BC=D 、AC=BC 4、按下列线段的长度,点A 、B 、C 一定在同一直线上的是( )AB MC D图9-14AB 21A 、AB=2cm ,BC=2cm ,AC=2cmB 、AB=1cm ,BC=1cm ,AC=2cmC 、AB=2cm ,BC=1cm ,AC=2cmD 、AB=3cm ,BC=1cm ,AC=1cm 5、8点30分时,时钟的时针与分针所夹的锐角是( )A. 60B. 55C. 75D. 706、 已知AB=6cm ,P 点是到A 、B 两点等距离的点,则PA 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定7、平面内,有两个角∠AOB=50°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A ) 30° B 70° C 30°或70° D 无法确定8、在一段火车路线上有四4个车站,在这段路线中往返行车,需要制几种不同的车票(每种车票都要印出上、下车站) ( )A .12种B .9种C .6种D .3种 9、下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( )二、填空题1. 如图9-1,AB________AC+BC (填“<”、“>”或“=”),依据是____________.2、如图,∠AOC 与∠BOD 都是直角,如果∠AOB=144°,则∠DOC=3、如果线段AB=5cm ,BC=3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.4、比较20°15′与20.15°的大小关系是5、图中共有________条线段,共有_______条射线,以点C 为端点的射线是____。

初一数学几何部分练习题

初一数学几何部分练习题

第四章平面图形及其位置关系试题一、选择题(共13 小题,每题 4分,满分 52 分)1、如图,以 O 为端点的射线有()条.A、 3 B 、 4C、5 D 、 62、以下说法错误的选项是()A、不订交的两条直线叫做平行线 B 、直线外一点与直线上各点连结的全部线段中,垂线段最短C、平行于同一条直线的两条直线平行 D 、平面内,过一点有且只有一条直线与已知直线垂直3、一个钝角与一个锐角的差是()A、锐角 B 、钝角C、直角 D 、不可以确立4、以下说法正确的选项是()A、角的边越长,角越大B、在∠ ABC 一边的延伸线上取一点 DC、∠ B= ∠ ABC+ ∠ DBCD、以上都不对5、以下说法中正确的选项是()A、角是由两条射线构成的图形 B 、一条射线就是一个周角C、两条直线订交,只有一个交点D、假如线段 AB=BC ,那么 B 叫做线段 AB 的中点6、同一平面内互不重合的三条直线的交点的个数是()A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0 个,1个,2个或 3个D、可能是 1 个可 3 个7、以下说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC ,则点 B 是线段 AC 的中点.A、1 个B、2 个C、3 个D、4 个8、钟表上12 时 15 分钟时,时针与分针的夹角为()A、90°B、°C、°D、 60°9、按以下线段长度,能够确立点 A 、 B 、 C 不在同一条直线上的是()A、 AB=8cm , BC=19cm , AC=27cm B 、 AB=10cm , BC=9cm , AC=18cmC、 AB=11cm , BC=21cm , AC=10cm D 、 AB=30cm , BC=12cm , AC=18cm10、以下说法中,正确的个数有()①两条不订交的直线叫做平行线;②两条直线订交所成的四个角相等,则这两条直线相互垂直;③经过一点有且只有一条直线与已知直线平行;④假如直线a∥ b, a∥ c,则 b∥ c.A、1 个B、2 个C、3 个D、4 个11、以下图中表示∠A BC 的图是()A、B、C、D、12、以下说法中正确的个数为()①不订交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线相互平行④在同一平面内,两条直线不是平行就是订交A、1 个B、2 个C、3 个D、4 个13、∠ 1 和∠ 2 为锐角,则∠1+∠ 2 知足()A、 0°<∠ 1+∠ 2< 90°B、 0°<∠ 1+∠2< 180°C、∠ 1+∠ 2< 90° D 、 90°<∠ 1+∠ 2< 180°二、填空题(共 5 小题,每题 5 分,满分25 分)14、如图,点 A 、B 、 C、 D 在直线 l 上.( 1)AC=﹣CD; AB++CD=AD ;( 2)如图共有条线段,共有条射线,以点 C 为端点的射线是.15、用三种方法表示如图的角:.16、将一张正方形的纸片,按以下图对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图, OB , OC 是∠ AOD 的随意两条射线,OM 均分∠ AOB , ON 均分∠ COD ,若∠ MON=α,∠ BOC=β,则表示∠ AOD 的代数式是∠ AOD=.18、如图,∠ AOD= ∠ AOC+=∠ DOB+.三、解答题(共 3 小题,满分23 分)19、如图, M 是线段AC 的中点, N 是线段 BC 的中点.(1)假如 AC=8cm , BC=6cm ,求 MN 的长.(2)假如 AM=5cm , CN=2cm ,求线段 AB 的长.20、如图,污水办理厂要把办理过的水引入排水渠PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明原因.21、如图,直线AB 、 CD、 EF 都经过点O,且 AB ⊥ CD ,∠ COE=35°,求∠ DOF 、∠ BOF 的度数.北师大版七年级下册第二章订交线、平行线单元测试题一、填空(每题 4 分,共 40 分)1、一个角的余角是30o,则这个角的大小是..2、一个角与它的补角之差是20o,则这个角的大小是3、如图①,假如∠= ∠,那么依据可得 AD ∥BC(写出一个正确的就能够).4、如图②,∠ 1 = 82o,∠ 2 = 98o,∠ 3 = 80o,则∠ 4 =度.5、如图③,直线AB , CD,EF 订交于点 O,AB ⊥CD,OG 均分∠ AOE,∠ FOD = 28o,则∠ BOE =度,∠ AOG =度.6、时钟指向 3 时 30 分时,这不时针与分针所成的锐角是.7、如图④, AB ∥ CD,∠ BAE = 120o,∠DCE = 30o,则∠ AEC =度.8、把一张长方形纸条按图⑤中,那样折叠后,若获得∠ AOB ′= 70o,则∠ B′OG =.9、如图⑥中∠ DAB 和∠ B 是直线 DE 和 BC 被直线称它们为角.10、如图⑦,正方形ABCD 边长为 8,M 在 DC 上,且则 DN + MN 的最小值为.二、选择题(每题 3 分,共 18 分)11、以下正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A. 1,B.2,C.3,D.412、如图⑧,在△ ABC 中, AB = AC ,∠ A = 36o,BD均分∠ ABC , DE∥ BC,那么在图中与△ ABC 相像的三角形的个数是()A.0,B.1,C.2,D.3所截而成的,DM=2,N是AC上一动点,13、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C. ⑶、⑷、⑸,D.⑴、⑵、⑸14、以下说法正确的选项是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线.15、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45o,B.60o,C.75o,D.80o16、如图⑨, DH∥EG∥ BF,且 DC∥EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C. 5,D.6三、解答题:117、按要求作图(不写作法,但要保存作图印迹)( 3 分)已知点 P、 Q 分别在∠ AOB 的边 OA , OB 上(如图) .①作直线 PQ,2②过点 P 作 OB 的垂线,③过点 Q 作 OA 的平行线 .18、已知线段 AB,延伸 AB 到 C,使 BC∶AB=1 ∶3,D 为 AC 中点,若 DC = 2cm,求 AB 的长 . (7 分)19、如图,,已知AB∥ CD,∠ 1 =∠ 2.求证.:∠ E=∠ F(6分)20、如图所示,在△ AFD 和△ BEC 中,点 A、 E、F、C 在同向来线上,有下边四个判断:⑴AD=CB⑵AE=FC⑶ ∠B= ∠D⑷ AD∥BC请用此中三个作为已知条件,余下一个作为结论,编一道数学识题,并写出解答过程.(8分)21、如图,ABCD是一块釉面砖,居室装饰时需要一块梯形APCD 的釉面砖,且使∠ APC=120o. 请在长方形 AB边上找一点 P,使∠ APC= 120o. 而后把剩余部切割下来,试着表达如何选用 P 点及其选用 P 点的原因 . ( 8 分)22、如图,已知AB ∥CD,∠ ABE和∠ CDE的均分线订交于F,∠ E = 140o,求∠ BFD 的度数 .(10 分)北师大版七年级下册第三章三角形单元测试题(一):一、选择题1.一个三角形的两边长为 2 和 6,第三边为偶数.则这个三角形的周长为()A.10 B .12C. 142.在△ ABC中, AB= 4a,BC=14,AC=3a.则 a 的取值范围是()A. a> 2B.2<a< 14 C .7<a< 14 D . a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B. 1 C .2D.34.下边说法错误的选项是()A.三角形的三条角均分线交于一点 B .三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分红面积相等的两个三角形的一条线段是()A.中线B.角均分线C.高线 D .三角形的角均分线6.如图—∠°⊥AB,垂足是 D,则图中与∠A 相等5 12,已知ACB=90 , CD的角是()A.∠1B.∠2 C .∠B D.∠1、∠ 2和∠B7.点 P 是△ ABC内随意一点,则∠ APC与∠ B 的大小关系是() A.∠ APC>∠ B B.∠ APC=∠ B C.∠APC<∠B D.不可以确立8.已知:a、b、c是△ABC三边长,且 M= (a + b+c)(a +b- c)(a - b-c) ,那么()A.M>0B. M=0 C.M<0 D.不可以确立9.周长为P 的三角形中,最长边m的取值范围是()A.Pm P B.P m P C .Pm P D.Pm P32323232()10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有A.5 个B.4个 C .3个D.2 个二、填空题1.五条线段的长分别为 1,2, 3,4, 5,以此中随意三条线段为边长能够________个三角形.2.在△ ABC中, AB= 6,AC= 10,那么 BC边的取值范围是 ________,周长的取值范围是 ___________ 3.一个三角形的三个内角的度数的比是2:2: 1,这个三角形是 _________三角形.4.一个等腰三角形两边的长分别是15cm 和 7cm则它的周长是 __________.5.在 △ABC 中,三边长分别为正整数≥ ≥a 、b 、c ,且 c b a > 0,假如 b =4,则这样的三角形共有 _________个.6.直角三角形中,两个锐角的差为 40 ° _________.,则这两个锐角的度数分别为7.在 △ ABC 中, ∠ A - ∠ ° ∠ C = 4 ∠ B ,则 ∠ C = ________.B = 30 、8.如图 — △ ⊥ ⊥ ⊥ ⊥5 13,在 ABC 中,AD BC ,GC BC ,CF AB ,BE AC ,垂足分别为 D 、C 、F 、E ,则 _______是 △ ABC 中 BC 边上的高, _________是 △ ABC 中 AB 边上的高, _________是 △ ABC 中 AC边上的高, CF 是△ ABC 的高,也是 △ _______、 △ _______、 △ _______、 △ _________的高.— △ ABC 的两个外角的均分线订交 于点 D ,假如 ∠ ° ∠ D =_____.9.如图 5 14, A = 50 ,那么— △ ABC 中, ∠A =60 ° ∠ ABC 、 ∠ ACB 的均分线 BD 、 CD 交于点D ,则 ∠ BDC =_____ 10.如图 5 15, , — ∠ A + ∠ B + ∠ C + ∠ D + ∠E = ________度.11.如图 5 16,该五角星中,12.等腰三角形的周长为 24cm ,腰长为 xcm ,则 x 的取值范围是 ________. 三、解答题1.如图 —A 、B 、C 、D 、E 五点可确立多少个三角形 ?说明原因.5 17,点 B 、 C 、D 、E 共线,试问图中 2.如图 — ∠ BAD = ∠ CAD ,则 AD 是 △ ABC 的角均分线,对 吗 ?说明理5 18, 由.3.一个飞机部件的形状如图 — 所示,按规定 ∠ °∠ B , ∠ D 5 19 A 应等于 90 ,应分别是 20 ° ° ∠ BCD =143 °部件不合 和 30 ,康师傅量得 ,就能判定这个格,你能说出此中的道理吗 ?— △ ABC 中,AD 是 BC 边上的中线, △ ADC 的周长比 △ ABD 的 4.如图 5 20,在周长多 5cm ,AB 与 AC 的和为 11cm ,求 AC 的长.5.如图 — △ ABC 中, ∠ B = 34 ° ∠ ACB = 104° ∠ BAC 的均分线,求5 21, , , AD 是 BC 边上的高, AE是 ∠ DAE 的度数.6.如图 5—22,在 △ ABC 中, ∠ ACB = 90°, CD 是 AB 边上的高, AB = 13cm ,BC = 12cm ,AC =5cm ,求:(1) △ ABC 的面积; (2)CD 的长.7.已知:如图 5 — △ ABC 内任一点,求证: ∠ BPC > ∠A .23,P 是 8. △ ABC 中,三个内角的度数均为整数,且 ∠ A <∠ B <∠ C ,4∠ C =7∠ A ,求 ∠ A 的度数.9.已知:如图 5 — △ABC 内任一点,求证: AB + AC > BP + PC . 24,P 是—A 、B 、C 、D .此刻要建筑一个水塔 P .请回答水塔 P 应建在何地点,10.如图 5 25,豫东有四个乡村 才能使它到 4 村的距离之和最小,说明最节俭资料的方法和原因.11.已知△ ABC 的周长为 48cm ,最大边与最小边之差为 14cm ,另一边与最小边之和为 25cm ,求△ ABC 各边的长.北师大版七年级下册 第三章三角形 单元测试题(二):1.必定在△ ABC 内部的线段是( )A .锐角三角形的三条高、三条角均分线、三条中线B .钝角三角形的三条高、三条中线、一条角均分线C .随意三角形的一条中线、二条角均分线、三条高D .直角三角形的三条高、三条角均分线、三条中线 2.以下说法中,正确的选项是( )A .一个钝角三角形必定不是等腰三角形,也不是等边三角形B .一个等腰三角形必定是锐角三角形,或直角三角形C .一个直角三角形必定不是等腰三角形,也不是等边三角形D .一个等边三角形必定不是钝角三角形,也不是直角三角形3.如图,在△ ABC中, D、 E 分别为 BC上两点,且 BD= DE=EC,则图中面积相等的三角形有(A.4对B.5对C.6对D.7对)(注意考虑完整,不要遗漏某些状况)4.假如一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是(A.锐角三角形 B .钝角三角形 C .直角三角形 D .没法确立5.以下各题中给出的三条线段不可以构成三角形的是()A. a+ 1,a+ 2, a+ 3(a> 0)B.三条线段的比为4∶ 6∶ 10C. 3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18B.15C.18或15D.没法确立)7.两根木棒分别为5cm和 7cm,要选择第三根木棒,将它们钉成一个三角形,假如第三根木棒长为偶数,那么第三根木棒的取值状况有()种A.3B.4C.5D.68.△ ABC的三边 a、 b、c 都是正整数,且知足a≤b≤ c,假如 b= 4,那么这样的三角形共有(个A.4B.6C.8D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个B.2个C.3个D.4个)10.三角形全部外角的和是(A. 180°B.360°)C. 720°D. 540°11.锐角三角形中,最大角α的取值范围是()A. 0°<α< 90°; B .60°<α< 180°; C . 60°<α< 90°; D . 60°≤α< 90°12.假如三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形 ; D .钝角或直角三角形13.已知△ ABC中,∠ ABC与∠ ACB的均分线交于点O,则∠ BOC必定()A.小于直角 ; B.等于直角;C.大于直角;D.大于或等于直角14.如图 : ( 1) AD⊥ BC,垂足为 D,则 AD是 ________的高,∠________=∠ ________= 90°;(2)AE 均分∠ BAC,交 BC于点 E,则 AE叫 ________,∠________=∠ ________=1∠ ________,AH叫 ________;2(3)若 AF= FC,则△ ABC的中线是 ________;(4)若 BG= GH= HF,则 AG是 ________的中线, AH是 ________的中线.15.如图,∠ ABC=∠ ADC=∠ FEC=90°.(1)在△ ABC中, BC边上的高是 ________;(2)在△ AEC中, AE边上的高是 ________;(3)在△ FEC中, EC边上的高是 ________;(4 )若 AB= CD= 3, AE= 5 ,则△ AEC 的面积为________.16.在等腰△ ABC中,假如两边长分别为 6cm、10cm,则这个等腰三角形的周长为 ________.17.五段线段长分别为 1cm、 2cm、 3cm、 4cm、 5cm,以此中三条线段为边长共能够构成________个三角形.18.已知三角形的两边长分别为 3 和 10,周长恰巧是 6 的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,假如它的三边长都是整数,那么它的腰长为________cm.20.在△ ABC中,若∠ A∶∠ B∶∠ C= 5∶ 2∶ 3,则∠ A= ______;∠ B= ______;∠ C=______.21.如图,△ ABC中,∠ ABC、∠ ACB的均分线订交于点 I .(1)若∠ ABC= 70°,∠ ACB= 50°,则∠ BIC= ________;(2)若∠ ABC+∠ ACB=120°,则∠ BIC=________;( 3)若∠ A =60°,则∠ BIC = ________; ( 4)若∠ A =100°,则∠ BIC =________;( 5)若∠ A =n °,则∠ BIC = ________. 22.如图,在△ ABC 中,∠ BAC 是钝角.画出:( 1)∠ ABC 的均分线;( 2)边 AC 上的中线;( 3)边 AC 上的高.23.△ ABC 的周长为 16cm , AB =AC ,BC 边上的中线 AD 把△ ABC 分红周长相等的两个三角形.若BD =3cm ,求 AB 的长.24.如图, AB ∥ CD , BC ⊥ AB ,若 AB =4cm , S ABC 12cm 2,求△ ABD 中 AB 边上的高.25 .学校有一块菜地,以以下图.现计划从点 D 表示的地点( BD ∶DC = 2∶ 1)开始挖一条小水渠,希望小水渠两边的菜地面积相等.有人说:假如D 是 BC 的中点的话,由此点 D 笔挺地挖至点 A 就 能够了.此刻 D 不是 BC 的中点,问题就没法解决了. 但有人以为假如仔细研究的话必定能办到. 你以为上边两种建议哪一种正确,为何?23 题24 题26 .在直角△ ABC 中,∠ BAC = 90°,以以下图所示.作BC 边上的高,图中出现三个直角三角形( 3= 2×1+1);又作△ ABD 中 AB 边上的高DD 1,这时图中便出现五个不一样的直角三角形( 5=2×2+ 1);依据相同的方法作 D 1D 2、D 2 D 3、 、D k 1D k.看作出D k 1D k时,图中共有多少个不同的直角三角形 ? 25 题 26 题27.一块三角形优秀品种试验田,现引进四个良种进行对照实验,需将这块土地分红面积相等的四块.请你制定出两种以上的区分方案.28.一个三角形的周长为 36cm ,三边之比为 a ∶ b ∶ c =2∶3∶ 4,求 a 、b 、 c . 29.已知三角形三边的长分别为:5、 10、a -2,求 a 的取值范围.30.已知等腰三角形中, AB = AC ,一腰上的中线 BD 把这个三角形的周长分红 15cm 和 6cm 两部分,求这个等腰三角形的底边的长. 31.如图,已知△ ABC 中, AB =AC ,D 在 AC 的延伸线上.求证: BD - BC < AD - AB .32.如图,△ ABC 中, D 是 AB 上一点.求证:( 1) AB + BC + CA > 2CD ;(2) AB + 2CD >AC +BC .33.如图, AB ∥ CD ,∠ BMN 与∠ DNM 的均分线订交于点 G , ( 1)达成下边的证明:31 题∵ MG 均分∠ BMN ( ),∴ ∠ GMN = 1∠ BMN (),32 题2同理∠ GNM = 1∠ DNM .2∵ AB ∥CD ( ),∴ ∠ BMN +∠ DNM = ________( ).∴ ∠ GMN +∠ GNM = ________.∵∠ GMN +∠ GNM +∠ G = ________(),∴∠ G= ________ .∴ MG 与 NG的地点关系是 ________.( 2)把上边的题设和结论,用文字语言归纳为一个命题:_______________________________________________________________.34.已知,如图D是△ ABC中 BC边延伸线上一点,DF⊥ AB交 AB 于 F,交 AC于 E,∠ A= 46°,∠ D = 50°.求∠ ACB的度数.35.已知,如图△ ABC中,三条高AD、 BE、 CF订交于点 O.若∠ BAC= 60°,求∠ BOC的度数.36.已知,如图△ ABC中,∠ B=65°,∠ C= 45°, AD是 BC边上的高, AE 是∠ BAC的均分线.求∠ DAE的度数.37.已知,如图CE是△ ABC的外角∠ ACD的均分线, BE 是∠ ABC内任一射线,交CE 于 E.求证:∠EBC<∠ ACE.38.画出图形,并达成证明:35 题34 题已知: AD是△ ABC的外角∠ EAC的均分线,且A D∥BC.求证:∠ B=∠ C.北师大版七年级下册第三章三角形单元测试题(三):一、选择题 (每题 3 分,共 30 分)1.有以下长度的三条线段,能构成三角形的是()A2,3,4B1,4,2 C 1,2, 3D6,2, 32.在以下各组图形中,是全等的图形是()3.以下条件中,能判断两个直角三角形全等的是()A 、一个锐角对应相等B 、两个锐角对应相等C、一条边对应相等 D 、两条边对应相等4.已知:如图, CD ⊥ AB , BE⊥ AC ,垂足分别为D、 E,BE、CD 订交于 O 点,∠ 1=∠ 2.图中全等的三角形共有()A.4 对B..3对C2 对D.1 对5.如图所示,某同学把一块三角形玻璃打坏成了三块,此刻要到玻店去配一块完整相同的玻璃,那么最省事的方法是()①②③A. 带①去B. 带②去C. 带③去D. 带①和②去 5 题A6.右图中三角形的个数是() A.6B.7C. 8 D . 97.假如两个三角形全等,那么以下结论不正确的选项是()B FA .这两个三角形的对应边相等B .这两个三角形都是锐角三角形D C.这两个三角形的面积相等 D .这两个三角形的周长相等E C 6 题8.在以下四组条件中,能判断△ABC ≌△ A /B/C/的是()=A /B/, BC= B /C/,∠ A= ∠ A / B.∠A= ∠ A/,∠ C=∠C/,AC= B /C/C.∠ A= ∠ B/,∠ B=∠ C/, AB= B/C/=A /B/, BC= B /C/,△ ABC 的周长等于△ A /B /C/的周长9.以下图中,与左图中的图案完整一致的是()10.以下判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为500和 200的三角形必定是钝角三角形,④直角三角形中两锐角的和为900,此中判断正确的有()个个个个二、填空题:(每题4分共 24分)11、为了使一扇旧木门不变形,木匠师傅在木门的反面A B C。

【中考-章节复习三】 第四章 平面图形及其位置关系

【中考-章节复习三】 第四章 平面图形及其位置关系

第四章 平面图形及其位置关系【同步教育信息】一. 教学内容:第四章:平面图形及其位置关系学习目标:1. 经历观察、测量、折叠、模型制作与图案设计等活动,发展空间观念。

2. 在现实情境中认识线段、射线、直线、角等简单图形。

3. 了解平面上两条直线的平行和垂直关系。

4. 能用符号表示角、线段、互相平行或垂直的直线。

5. 会进行线段或角的比较。

能估计一个角的大小,会进行角的单位的简单换算。

6. 经历在操作活动中探索图形性质的过程。

7. 了解线段、平行线、垂线的有关性质。

8. 借助三角尺、量角器、方格纸等工具;会画角、线段、平行线、垂线。

9. 能进行简单的图案设计,并能表达和交流自己的设计方案。

§4.1线段、射线、直线基本知识回顾:图形 名称 特征 端点 度量 表示方法直线向两方 无限延长 无不可以 A B 直线AB 或直线BAl 直线l射线 向一方 无限延长 1个 不可以O M射线OM线段 不可延长2个 可以A B 线段AB 或线段BA a线段a直线的相关知识:(1)过一点可以做无数条直线。

(2)过两点有且只有一条直线(两点确定一条直线) (3)过三点中的两个点最多可以做3条直线。

()过个点中的两个点最多可以做条直线。

4n n n ()12例1:过平面上的两个点最多可以作几条直线?若平面上有三个点、四个点、五个点……n 个点,过任意两点作一条直线,最多可以作多少条直线,完成下列表格。

点的个数 2 3 4 5 6 n最多可以作直线 1361015n n ()-12§4.2 比较线段的长短基本知识回顾:(1)两点之间,线段最短。

(2)两点之间线段的长度,叫做这两点之间的距离。

(3)点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点。

A M B表达式:∵M 是AB 中点∴==AM BM AB 12AB AM BM ==22(4)作一条线段等于已知线段。

a作法书P 123A C B∴线段AC 即为所求。

第四章平面图形及其位置关系测试题三

第四章平面图形及其位置关系测试题三

第四章 平面图形及其位置关系测试题三一、填空题:1. 我们平常看到沿平直公路架设的单根电缆,给我们以_______的感觉,吃饭用的筷子给我们以__________的形象,教师用的激光灯给我们以________的形象. 2. 如图9-1,AB ________AC+BC (填“<”、“>”或“=”),依据是____________. 3. 三条直线相交,有________个交点. 4. 图9-2中共有________个角.5. 对于同一平面内的直线a 、b 、c ,如果a ∥b ,c 与a 相交,那么c 与b 的位置关系是_____________.6. 7点整时,分针和时针之间的夹角度数是_________度.西东北西东南北1250°A BCDOA BAB图9-1 图9-2 图9-3 图9-4 7. 如图9-3,由点B 观察点A 的方向是____________________.8. 如果线段AB =5cm ,BC =3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.9. 如图9-4,当图中∠1与∠2满足条件___________时,OA ⊥OB . 10. 如图9-5,利用表格画图.(1) 与AB 相互平行的线段CD ;(2) 与AB 互相垂直且垂足为B 的直线.二、选择题:11. 下列说法正确的是( )A. 一条直线就是一个平角B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离 12. 过一条线段外一点画这条线段的垂线,垂足在( )A. 这条线段上B. 这条线段的端点上C. 这条线段的延长线上D. 以上都有可能13. 如图9-6,其中一定能相交的是( )A B C D图9-6abC EFO Ddc14. 如图9-7,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( )A. 过两点只有一条直线B. 过有点只能作一条直线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短 15. 在同一平面内,直线a 、b 相交于点P ,a ⊥c ,则b 与c 的关系是( ) A. 平行 B. 相交 C. 重合 D. 平行或相交16. 已知AB =6cm ,P 点是到A 、B 两点等距离的点,则P A 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定17. 已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( )A. 30°B. 150°C. 30°或150°D. 不同于以上答案 18. 比较20°15′与20.15°的大小,正确的是( )A. 20°15′>20.15°B. 20°15′=20.15°C. 20°15′<20.15°D. 不能确定19. 如图9-8,PO ⊥OR ,OQ ⊥RP ,能表示点到直线的距离的线段有( ) A. 二条 B. 三条C. 四条D. 五条20. 如图9-9,右边的四个图形中,不是用左边这幅七巧板拼成的是( )图9-7O 图9-8三、解答题:21. 如图9-10,一副三角尺的直角顶点重合,请指出图中相等的角.22. 在图9-11中,①延长线段BA 到D ,使AD =BC ,连结DC②在DC 上截取DE =AD ,连结AE③过点A 作AF ∥DC 交BC 于F23. 如图9-12,矩形的长为3cm ,宽为2cm ,用刻度尺作出每条边上的中点,并顺次连接它们,猜一猜能得到什么图形?24. 画图并回答如图9-13,请作出由A 地经过B 地去河边l 的最短路线.并回答 (1) 确定A 地到B 地路线的依据是什么?(2) 确定B 地到河边l 路线的依据是什么?AB C 图9-11 图9-12图9-10 A B CD E A B l图9-1325. 如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD =8,求MC 的长.AB MC D图9-1426. 如图9-15,AB 、CD 相交于O ,且OD 平分∠AOF ,OE ⊥OD ,∠AOE =48°,求∠BOC 、∠EOF 的度数.27. 如图9-16,∠AOB 是直角.(1) 利用三角尺画出∠AOB 的平分线OC ;(2) 在OC 上任取一点P ,用三角尺作OA 、OB 的垂线,垂足分别为D 、E ; (3) 比较PD 、PE 的大小; (4) 在OC 上任取一点Q ,过点Q 作OA 、OB 的垂线,垂足分别为M 、N ; (5) 比较QM 、QN 的大小你会得到什么结论? 你的结论是:图9-16 A BA B C D E O图9-15 F平面图形及其位置关系测试题三参考答案1. 直线线段射线2. < 两点之间线段最短3. 1或34. 65. 相交6. 150°7. 南偏西50°(或西偏南40°)8. 2或89. ∠1+∠2=90°10. 略11. D 12. D 13. A 14. C 15. D 16. D 17. C 18. A 19. D 20. C21. ∠DCA=∠BCE,∠D=∠E22. 略23. 菱形24. ①两点之间线段最短②垂线段最短25. 126. 42°,132°27. 角平分线上的点到这个角的两边的距离相等28. 略。

鲁教版六年级上册第四章平面图形及其位置关系第4节角的比较课件参考三

鲁教版六年级上册第四章平面图形及其位置关系第4节角的比较课件参考三
➢用一个顶点字母和角的符号表示; 如:∠A
➢用一个小写数字和角的符号表示; 如:∠1
➢用一个 希腊字母和角的符号表示。 如:∠β
4.图中有几个角?分别用三个的写字母表示:
答:共有六个角:
D
(1)∠DOC (2)∠DOB (3)∠DOA
(4)∠COB (5)∠COA (6)∠BOA
5. 比较线段大小的方法有几种?
)1
)1
=
O
B
2∠1
A
)1
B
C
∠ABC= 3∠1
∠1 = 1 2 ∠AOB
∠1 = 1 3 ∠ABC
想一想:什么叫角平分线?
当∠2= 2∠1时,∠1= ∠3. 即射线OC把∠2分成两个相 等的角。则称OC为∠AOB
的角平分线。B
C
21
O
A
例题:1
如图:ABC中,BD 是∠1的
平分线,∠1=60°
(1)实物叠合法;(2)度量比较法。
a
a
a
b a=b
b a>b
b a<b
角的比较方法1:实物叠合比较 (请同学们用三角板作实物比较)
退出 返回 上一张下一张
叠合比较角的大小应注意:
1 .两角顶点重合。2.一边重合。
3. 另一边落在重合边的同旁。
A
D
A D ∠ABC>∠DEF
B
CE A
F B(E) C(F)
1. 什么叫角 (静止、运动两观点)?
(1)有公共端点的两条射线组成的图形叫角。
(2)一条射线绕着它的端点从一个位置旋转 到另一位置所形成的图形。
2. 角的边越大角就越大吗?
答:不正确。角的大小只与角的张口大小有关。

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(13)》教案 北师大版

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(13)》教案 北师大版

教学目标:⒈在现实情境中理解线段、射线、直线等简单图形,感受图形世界的丰富多彩;⒉会说出线段、射线、直线的特征;⒊会用字母表示线段、射线、直线;⒋通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验.教学重点:通过操作活动,感受图形世界的丰富多彩,积累操作活动经验.教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题.教学过程:一、引入:一段棉线可近似地看作线段师生画出线段演示投影片1:①将线段向一个方向无限延长,就形成了______学生画射线②将线段向两个方向无限延长就形成了_______学生画直线二、小组讨论:①生活中,有哪些物体可以近似地看作线段、射线、直线?②线段、射线、直线,有哪些不同之处,有哪些相同之处?问题1:图中有几条线段?哪几条?“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法:用一个大写英文字母线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示自己想办法表示射线,让学生充分讨论,并比较如何表示合理射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面。

直线的记法:①用直线上两个点来表示②用一个小写字母来表示如右图:我们可以说,点A、B在直线l上,点C不在直线l上或点C在外,也可以说成:直线l经过点A、点B,直线l经过点A、点B,直线l不经过点C三、随堂练习:⑴读下列语句,并按照下列语句画的图形①直线EF经过点C②点A在直线l外③过点O的直线a不经过点P⑵按图填空④点A、B、C__________(填“在”或“不在”)同一条直线上⑤点_______在直线a上,点____在直线b外,直线_____都经过点C。

介绍:直线a、b相交于点A⑵请过一点A画一条直线,可以画几条?过两点A、B呢?学生通过画图,得出结论:过一点可以画无数条直线。

经过两点有且只有一条直线。

⑶如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?为什么?(学生通过操作,回答)⑷你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?四、小结:①学生回忆今天这节课学过的内容②线段构成的美丽的图案,展示小制作五、作业:①阅读“读一读” P121②习题4课后反思:§4.2比较线段的长短教学目标:1.会从“数”和“形”的两个方面来比较线段的大小,能说出线段比较大小的结果;知道线段的和与差的意义。

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(4-8)》教案 北师大版

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(4-8)》教案 北师大版

某某省某某市花溪二中七年级数学上册《第一章丰富的图形世界》教案北师大版教学目标:1. 使学生通过联想线段大小的比较方法,找到角的大小的比较方法2.在现实情境中,进一步丰富对角与锐角、钝角、直角、平角、周角极其大小关系的认识。

3.在操作活动中认识角的平分线,能画出一个角的平分线。

4.培养学生类比联想的思维能力和对知识的迁移能力。

教学重点:角的两种比较方法、角的和、差、倍、分的作法和计算、角的平分线定义。

教学难点:角平分线定义的各种数学表达式。

教学过程:一、类比联想,提出问题,探索解决问题的方法1.类比联想,提出问题前面学习了线段的概念之后,紧接着就学习了比较线段的大小以及线段的和、差、倍、分的画法问题。

上节课我们已经学习了角的概念,类似的,今天我们也要学习如何比较角的大小,以及角的和、差、倍、分的画法问题。

(板书课题)2.类比联想,探索解决问题的方法(1)师生共同回忆线段大小比较的方法,以及和、差、倍、分的画法。

(2)分组讨论,发现方法。

提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD。

教师让学生讨论,动手画图,在此基础上,教师引导学生归纳总结出:(a)角大小比较的方法:重叠法和度量法。

(b)角的和、差、倍、分的画法。

3.角的大小可以有两种比较方法:重叠比较法和度量法。

(1)重叠比较法:由线段的重叠比较法知,将要比较的两条线段一端重合,再看另一端的位置。

角的比较也类似,提问谁能用两个三角板演示一下,然后总结,在比较角的大小的过程中,要让角的顶点和角的一条边都重合,看另一条边落在角内还是角外。

(让学生自己总结出三种不同的结论,并让学生在黑板上画出图形,如图1-26(b.)记作:∠AOB=∠COD记作:∠AOB>∠COD记作:∠AOB<∠COD(2)度量法:因为角可以用量角器来量出度数,度数大的角大于度数小的角,通过角的度数来比较角的大小。

(注意写法)例1 如图1-27,比较∠AOB与∠CDE的大小。

初一数学教材目录(北师大版)

初一数学教材目录(北师大版)

北师大版初中数学教材目录(一)七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复习题第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用回顾与思考复习题第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律回顾与思考复习题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计回顾与思考复习题第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄回顾与思考复习题第六章生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择回顾与思考复习题第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大回顾与思考复习题课题学习制成一个尽可能大的无盖长方体七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整流器式的除法回顾与思考复习题第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角回顾与思考复习题第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图回顾与思考复习题课题学习制作“人口图”第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率回顾与思考第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复习题第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化回顾与思考复习题第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸回顾与思考复习题总复习。

第四章 平面图形及其位置关系单元复习

第四章 平面图形及其位置关系单元复习

平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。

第四章《平面图形及其位置关系》复习总结

第四章《平面图形及其位置关系》复习总结

第四章《平⾯图形及其位置关系》复习总结第四章《平⾯图形及其位置关系》复习⼀、线段、射线、直线意义:性质:两点之间,线段最短表⽰:线段AB (或BA ),线段b线段⽐较⼤⼩:度量法,叠合法两点间的距离重要概念线段的中点意义:射线表⽰:射线OA意义:直线表⽰:直线AB (或BA ),直线m性质:两点确定⼀条直线注意:1.表⽰线段,射线,直线时,在字母前要注明“线段”“射线”或“直线”;2.线段,射线都可看作直线的⼀部分;3.射线,直线没有长度,线段有长度;4.⽤两个⼤写字母表⽰线段或直线时,两个字母没有顺序性,但表⽰射线的两个⼤写字母必须把端点字母放在前⾯;5.线段可向两⽅延长:延长线段AB (反向延长线段BA ),延长线段BA (反向延长线段AB );6.射线只能反向延长;7.端点相同,延伸⽅向相同的射线是同⼀条射线;8.AM=MB 并不能说明点M 是线段AB 的中点,需添上条件“M 在线段AB 上”;9.“距离”与“线段”、“路程”不同.结论:平⾯内n 条直线,最多..可有()21-n n 个交点;过平⾯上n 个点中的两个点,最多..可画()21-n n 条直线;n 个班进⾏单循环⽐赛,共⽐赛()21-n n 场; n 个⼈相互握⼿的总次数为()21-n n 次;D CB A O B A 直线上有n 个点,则⼀共有()21-n n 条线段;有公共端点的n 条射线共可组成()21-n n 个⾓;平⾯内n 条直线最多..可将平⾯分成222++n n 个部分. 练习:1.分别画出下列图形:⑴直线l 经过点C ,D ;⑵点P 在直线m 上,但在直线n 外;⑶取不在同⼀直线上的三点A ,B ,C ,画直线AB ,线段BC ,射线CA ;⑷取不在同⼀直线上的三点P ,Q ,R ,①连接PQ ,并延长⾄E ,②连接RQ 并反向延长⾄F ,③过点R 画射线PR.2.判断题⑴直线l 上有两个端点;⑵经过A ,B 两点的线段只有⼀条;⑶延长线段AB 到C ,使AC=BC ;⑷反向延长线段BC ⾄A ,使AB=BC ;⑸过两点有且只有⼀条直线;⑹直线上的任意两点都可以表⽰这条直线;⑺两条直线相交,只有⼀个交点;⑻三条直线两两相交,共有三个交点;⑼射线AC 在直线AB 上;⑽直线AB 与直线BA 是指同⼀条直线.3.根据下图,下列说法正确的有⑴点B 在线段AC 上;⑵直线AB 经过点C ;⑶点D 不在直线AC 上;⑷点A 在线段BC 的延长线上.4.观察下图,并判断对错⑴线段OA 与线段AO 是同⼀条线段;⑵线段OA 与线段OB 是同⼀条线段;⑶直线OA 与线段BO 是同⼀条直线;⑷射线OA 与射线AO 是同⼀条射线;DC B A m C B A ⑸射线OA 与射线OB 是同⼀条射线;⑹射线OB 与射线AB 是同⼀条射线.5.点与直线的位置关系有种,分别是和 .6.如图,直线上有四点,则图中有条直线,条射线,条线段.7.如果线段AB=5cm ,BC=3cm ,那么A ,C 两点的距离是()A.8cmB.2cmC.4cmD.⽆法确定8.两根⽊条,⼀根长60cm ,⼀根长100cm ,将它们的⼀端重合,顺次放在同⼀条直线上,此时两根⽊条的中点间的距离是cm.9.已知线段m ,⽤圆规和直尺作⼀条线段 AB ,使AB=2m.思考题如图所⽰,某单位有三个住宅区A ,B ,C (在⼀条直线上)分别住有职⼯30⼈,25⼈,10⼈,已知AB=100m,BC=200m. 该单位为⽅便职⼯上下班,单位的接送车打算在AC 之间只设⼀个停靠点P ,为使所有的⼈步⾏到停靠点的路程之和最短,那么停靠点P 的位置应设在() A. A 点 B. B 点C. AB 之间D. BC 之间⼆、⾓静态定义动态相关概念:直⾓,平⾓,周⾓,锐⾓,钝⾓⾓⾓的平分线表⽰法:∠A ,∠AOB ,∠1,∠α度量与计算:1°=60′=3600″,1′=60″⼤⼩⽐较:度量法,叠合法注意:1.构成⾓的两个要素是顶点、两边,两边都是射线,⾓的⼤⼩与两边的长短⽆关,只与两边张开的程度有关;2.在初中阶段,如⽆特别说明,所涉及的⾓均指⼩于平⾓的⾓.C D B AE DC B AO 3.不管⽤哪种⽅法表⽰⾓,⾸先要写上符号“∠”,注意区分“∠”与“<”;4.⽤⼀个⼤写字母表⽰⾓,只适⽤于顶点处只有⼀个⾓的情形5.⾓的平分线是射线,不是直线、线段6.⽤⼀付三⾓板可以画出15°的整数倍的⾓7.如果⼀个⾓的两边分别平⾏于另⼀个⾓的两边,那么这两个⾓相等或互补.练习;1.判断⑴平⾓是⼀条直线;⑵⼀条射线是⼀个周⾓;⑶两条射线组成的图形叫做⾓;⑷两边成⼀直线的⾓是平⾓;⑸有公共端点的两条线段组成的图形叫做⾓;⑹⼀条射线旋转得到⾓;⑺⼀个钝⾓与⼀个锐⾓的差⼀定是锐⾓;⑻两个锐⾓的和⼀定⼤于90°;⑼若∠AOC=∠BOC ,则OC 是∠AOB 的平分线;⑽若∠AOC=21∠AOB ,则OC 是∠AOB 的平分线. 2.如图所⽰,图中⼩于平⾓的⾓有个.3.灯塔A 在灯塔B 的南偏东70°,A 、B 相距4海⾥,轮船C 在灯塔B 的正东,在灯塔A 的北偏东40°,试画图确定轮船C 的位置.4.如图,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE=20°,∠AOD=40°,求∠DOE 的度数.5.48.26°= ° ′″ 56°25′12″= °6.⼀条船沿北偏东60°的⽅向航⾏⾄某地,然后依原航线返回,船返回时正确的⽅向是 .7.已知∠1,∠2都是钝⾓,甲,⼄,丙,丁四⼈计算()2161∠+∠的结果依次是28°,48°,88°,60°,其中只有⼀个结果正确,那么正确的结果是()A.甲B.⼄C.丙D.丁三、位置定义:同⼀平⾯内,不相交的两条直线叫做平⾏线表⽰:AB∥CD,m∥n平⾏画法:三⾓板,量⾓器,直尺圆规,⽅格纸等经过直线外⼀点,有且只有⼀条直线平⾏于已知直线性质:位置平⾏与同⼀直线的两直线互相平⾏定义:相关概念:点到直线的距离垂直表⽰:AB⊥CD,m⊥n画法:三⾓板,量⾓器,直尺圆规,⽅格纸等性质:同⼀平⾯内,过⼀点有且只有⼀条直线垂直于已知直线注意:1.平⾏线是相互的,AB∥CD,也可记作CD∥AB;2.⼀条直线有⽆数条直线与其平⾏,但过直线外⼀点却只有⼀条;3.点到直线的距离是⼀个数量,不是指图形(垂线段),⽽是指垂线段的长度练习:1.判断对错⑴不相交的两条直线是平⾏线;⑵同⼀平⾯内,不相交的两条射线叫做平⾏线;⑶同⼀平⾯内,两条直线不相交就重合;⑷同⼀平⾯内,没有公共点的两条直线是平⾏线;⑸过平⾯内⼀点有且只有⼀条直线与已知直线平⾏;⑹两条线段AB,CD没有交点,那么直线AB与直线CD平⾏;⑺平⾏于同⼀直线的两条直线互相平⾏;⑻同⼀平⾯内,不相交的两条射线互相平⾏;⑼同⼀平⾯内,不重合的两条直线的位置关系只有相交、平⾏两种;⑽同⼀平⾯内,经过⼀个已知点能画⼀条直线和已知直线垂直;⑾⼀条直线的垂线可以有⽆数条;⑿过射线的端点与射线垂直的直线只有⼀条;⒀过直线外⼀点和直线上⼀点这两个已知点,可以画已知直线的垂线.2.对直线a,b,c ,若a∥b,a与c相交,那么b与c是什么位置关系?说明理由. 3.在同⼀平⾯内有三条直线,如果要使其中有且只有两条直线平⾏,那么它们()A.没有交点 B.只有⼀个交点 C.有两个交点 D.有三个交点D C B A D C B A OP N M B A N M O C B A 4.同⼀平⾯内的四条直线⽆论其位置关系如何,它们的交点个数不可能有()A.2个B.3个C.4个D.5个5.⼀个三棱柱中有多少对平⾏线?6.在平⾯上有三条直线a ,b ,c ,它们之间有哪⼏种可能的位置关系?请画图说明.7.已知平⾏四边形ABCD 如图,过A 点分别作出BC ,DC 边上的⾼AE ,AF.8.如图所⽰,下⾯结论中正确的有个⑴线段AC 与线段BC 互相垂直;⑵线段CD 与线段BC 互相垂直;⑶点C 到AB 的距离是线段CD ;⑷线段AC 是A 到BC 的距离;⑸线段AC 的长度是点A 到BC 的距离.9.点P 为直线l 外⼀点,点A 、B 、C 为直线l 上三点:PA=4,PB=5,PC=2,则点P 到直线l 的距离为()A .4B .2C .⼩于2D .不⼤于210.如图,已知点O 在直线AB 上,OP ⊥MN 于点P ,那么()A .线段OP 的长度叫做点O 到直线MN 的距离;B .线段OP 的长度叫做点P 到直线AB 的距离;C .线段OP 叫做直线AB 到直线MN 的距离;D .直线OP 的长度叫做点O 与P 两点间的距离. 11.画⼀条线段的垂线,垂⾜在()A .线段上B .线段的端点C .线段的延长线上D .以上都可能12.七巧板通常是由个直⾓三⾓形,个正⽅形和个平⾏四边形组成.13.⽤⼀副七巧板分别拼出⑴⼀个等腰梯形;⑵长⽅形;⑶平⾏四边形,并在图中找出⼀个锐⾓、⼀个直⾓、⼀个钝⾓、⼀对平⾏线段、⼀对互相垂直的线段.14.点M 为线段AB 的三等分点,且AM=6,求AB 的长.15.如图,点O 是直线AB 上⼀点,过O 画射线OC ,OM ,ON ,且OM 平分∠AOC ,ON 平分∠BOC ,那么射线OM ,ON 之间有什么位置关系?说明你的理由.。

第四章《平面图形及其位置关系》测试题(北师大版)

第四章《平面图形及其位置关系》测试题(北师大版)

( ) 手验 证一 下你 的结 论. 果验 证 的结果 与观 察的结 果不 同 , 有何 感想 ? 2动 如 你







图 8

图9
图 1 O
1 . 图 9, 段 A日=1 c , 6如 线 2 m O是 A日上 的 任 一 点 , C是 O 的 中 点 , D是 OB的 中 点 , C 点 A 点 则 D等
于 ( )
A.c 6 m
B 8 m .c
C.0 m 1c
维普资讯
中 学 课 程 辅
第四 章《 面 图形 平
其健置关系》 试题 ,
( 师 大版 ) 北

4 4' -- "
◎福 建
周 奕 生


填 空题 ( 题3 , 3分 ) 每 分 共 0
— —
1要 在 墙 壁 上 固 定 一 根 横 木 条 , 少 需 要 . 至
度 ;81 一 2 .5 度
— —



秒.
— — .
9 如 图 5, A 上 OB, . O OC上EF, AOE= 0 , U_BO 4 。贝 / C=
1. 图6 的小 天 鹅 ( 图② ) 由七 巧板 ( 图①) 成 的 , 果 七巧 板 的面积 为 1 , 小天 0如 中 即 是 即 拼 如 6则


1 . 跳 远 比 赛 时 。 新 从 点 A起 跳 。 在 点 日处 ( 图 7) 如 果 A日等 于 2 , 小 新 这 次 跳 远 的 2在 小 落 如 , 米 则
维普资讯
学 课 程 辅 导
( A. 米 2 B. 于 2米 大 C. 于 2米 小 )

第四章平面图形及其位置关系 线段、射线、直线PPT课件

第四章平面图形及其位置关系  线段、射线、直线PPT课件

M
一方有界 射线OM 一方无限 1个 无
直线 A
B l
直线AB 两方无限 直线 l
0个

做一做
拿出直尺和铅笔,用直尺来画线段、直线、射线。
在几何里,我们常用字母表示图形, 一个点可以用一个大写字母表示.
线段、射线、直线的表示方法
(1)线段:
◆ 用两个大写字母(既线段的两端点) 表示 。 如:线段AB或BA
将线段向两个方向无限延长形成了直线
★ 直线没有端点
直线上的两点和他们之间的
部分叫做线段.线段有两个端点 将线段向一个方向无限延长就
形成了射线.射线有一个端点. 将线段向两个方向无限延长 就形成了直线.直线没有端点.
名称
图形
表示方 法
界限
端点 长度
线段 A
a
B
线段AB 线段 a
两方有界
2个

射线 O
其特点是__没___有___端___点_______ 。 4. 过一点可以画__无___数___条直线,过两点只可以画__一___条直线。
5.将线段向 一个 方向无限延长就形成了射线 ; 将线段向 两个 方向无限延长就形成了直线
读一读:
这些漂亮的图案是由什么组成的?
线段
本节课你收获了什么
(1)线段、射线、直线的表示方法 (2)射线的表示有方向性,端点字母在前,
◆用一个小写字母表示。
如:线段 a
a


A
B
(2) 射线:
★ 用两个大写字母(既端点和射线另 外一点,端点必须写在前面)示。 如:射线 OA ,但不能记为射 AO.
ι ★用一个小写字母表示。如:射线
ι

第四章《平面图形及其位置关系》专项练习(含答案)

第四章《平面图形及其位置关系》专项练习(含答案)

第四章《平面图形及其位置关系》专项练习在本章中,我们不仅能从测量、折纸、画图等活动中学到线段、直线、射线、角等简单的平面图形,以及两直线平行、垂直的位置关系和特征,而且还可以自己创作出新颖、有趣的七巧板拼图,用尺规设计出精美、别致的图案,这样,你自己也会成为一名小小的设计师,更会感受到美就在我们身边.考点一:直线、射线线段 1.考点分析:考查直线、射线、线段的性质以及直线与线段计数问题,线段的计算及简单的语言的认识与应用,多以填空、选择的形式出现2.典例剖析例1.在表示直线时,常常要用到直线上的两个点表示,这条直线为什么不用一个点,三个点或更多的点表示直线?答:因为过一点可作无数条直线,即一点不能确定一条直线,所以不能用一点表示一条直线,而两点确定一直线,用直线上三个点或更多的点表示太繁,一般来说也没必要,因此用两点最简单明了.例2.(1)如图1,从教室门A 到图书馆B ,总有少数同学不走边上的路而横穿草坪,这是为什么?请你用所学的数学知识来说明这个问题.(2)如图2,A 、B 是河流L 两旁的两个村庄,现在要在河边修一个引水站向两村供水,问引水站修在什么地方才能使所需要的管道最短?请在图中表示出点P 的位置,并说明你的理由.(3)你赞同以上的做法吗?你认为应用 科学知识为人民服务应注意什么?分析:利用“两点之间,线段最短”.答:(1利用的是两点之间,线段最短.(2)连接A 、B两点与L 相交,交点就是P 的位置,根据两点之间,线段最短. (3)第一种做法不对,践踏草坪不道德;第二种做法对,节省物质.例3.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,求线段AC 的长. 解:当点C 在线段AB 的延长线时,如图3, AC=AB+BC=8+3=11(cm ) 当点C 在射线BA 上时,如图4,AC=AB-BC=8-3=5(cm ) 所以线段AC 的长为11cm 或5cm .评注:这是一道读句画图计算题,只要按照题意,正确地画出图形,这里还要注意分类讨论的数学思想,否则容易漏解. 专练一: 1.一般来说,把门安装在门框上需要两个合页,这是为什么呢?2.“已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,(1)线段CB 是线段AB 的几倍?(2)线段AC 是线段CB 的几分之几?”3.如图5,平原上有A 、B 、C 、D 四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池.不考虑其他因素,A L图2·· · A C B 图4 ·· · B A C 图3H B · A · ·C ·D E F ┒ ≈ ≈ ≈≈ ≈ ≈图5请你画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小. 4. 如图6,在正方体两个相距最远的顶点处有一只苍蝇B 和蜘蛛A , 蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.5.在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,那么8条直线把一个平面最多分成 部分, n 条直线把一个平面最多分成 部分.6.问题:在直线上有n 个不同点,则此直线上共有多少条线段?考点二:角的度量、表示与比较 1.考点分析:角的度、分、秒的转换与计算,角的计数等内容是中考的热点,多以填空题、选择题的形式出现2.典例剖析例1.下图中有几个角?是哪几个角?分析:由一点引n 条射线所组成的角的个数共有(1)1234(1)2n n n -+++++-=个,此题从O 出发有4条射线,n=4,此时(1)62n n -=.解:图中有6个角,分别为∠AOB 、∠AOC 、∠AOD 、∠BOC 、∠BOD 、∠COD . 例2.如图7,一幅三角板的两个直角顶点重合在一起,(1)比较∠EOM 和∠FON 的大小,并说明为什么?(2)∠EON 与∠FOM 的和是多少度?为什么?解:由三角板可知∠EOM+∠FOM=900,∠FOM+∠FON=900, 所以∠EOM=∠FON ,又因为∠EON=∠EOM+∠FOM+∠FON , 所以∠EON+∠FOM=∠EOM+∠FOM+∠FON+∠FOM= 900+900=1800.例3.如图8,OA 是表示北偏东300方向的一条射线,仿照这条射线,画出展示下列方向的射线:(1)南偏东250;(2)北偏西600.分析:(1)以正南方向的射线为始边,向东旋转250, 所成的角的终边OB 即为所求的射线.(2)以正北方向的射线为始边,向西旋转600, 所成的角的终边OC 即为所求的射线.解:如图8所示:B图6 O A BCD图6O 西 南 北 300 A 600O 西 南 北 250B C 图8 图9 图7O A B P QR图1专练二: 1.(2006年潍坊市)用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 2.如图10,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠A OD.3.如图11,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.4.如图12,∠AOB=900,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线, 求∠MON 的大小.考点三:直线与直线的位置关系1.考点分析:直线与直线的位置关系有两种:平行与垂直,有关平行线的定义的辨析题和平行线性质的应用以及垂线、垂线段的概念、性质是中考的主要考点,多以填空题、选择题为主2.典例剖析例1.已知:如图1,∠A0B 的两边 0A 、0B 均为平面反光镜, ∠A0B =40.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .100 °C . 80°D .120°分析:本题考察相交线、平行线的问题,题目非常简单. 答案为C .评注:本题把考察相交线、平行线的问题,放置在生活中的实际背景中,贴近生活,体现了数学的现实性、实用性,题目灵活,重点考察学生的数学素养.例2.按如图所示的方法将圆柱切开,所得的截面中 有没有互相平行的线段?答案:有.即:AB ∥CD AD ∥BC评注:由于圆柱的上、下底面平行,按照这样截法 阴影部分为平行四边形例3.体育课上,老师是怎样测量同学们的跳远成绩的? 你能尝试说明其中的理由吗?理由:将尺子拉直与踏板边沿所在的直线垂直,量取最近的脚印与踏板边沿之间的距离. “垂线段最短”.专练三:1.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交BAC M N O图12 图10图12G C FMA HED BNB.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧2.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条 3.将一张长方形纸对折,使OA 与OB 重合,这时∠AOC 是什么角?为什么?4.如图,哪些线段是互相垂直的,请利用量角器或直尺等工具将它们找出来.5.如图,所示是楼梯台阶的一部分,与面AB-DC 垂直的棱有哪些?6.读下列语句作图(1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB .(4)若∠AOB =30°,猜想∠MPQ 是多少度?考点四:平面图形问题1.考点分析:这部分内容主要是指:有趣的七巧板与图案设计两部分,利用七巧板的原理拼图以及用基本的图形,通过想象,设计一些个性化的图案,多以填空题、选择题为主2.典例剖析例1.如图1,用一块边长为22的正方形ABCD 厚纸板,按照下面的作法,做了一套七巧板:作对角线AC ,分别取AB 、BC 中点E 、F ,连结EF ;作DG ⊥EF 于G ,交AC 于H ;过G 作GL ∥BC ,交AC 于L ,再由E 作EK ∥DG ,交AC 于K ;将正方形ABCD 沿画出的线剪开,现用它拼出一座桥(如图2),这座桥的阴影部分的面积是( )A.8B.6C.4D.5分析:本题先将正方形割成七巧板,然后再拼成一座桥,因此不难发现阴影部分是由5个小板构成的,由于拼图前后图形的总面积以及7个小板的面积不变,所以这座桥的阴影部分的面积应是正方形面积的一半,即阴影部分的面积为4,故选C例2.(1)在七巧板中(如图1),找几组平行线或垂直的线段? (2)在七巧板中(如图),直角、锐角、钝角有哪些? 分析:根据七巧板中每个图形的特点可以得到: (1)平行线有:AB ∥DC ;EK ∥HG ;LG ∥CF 等; 垂直的线段有:EK ⊥AC ;GH ⊥AC ;EG ⊥HG 等(2)锐角12个:∠BAH ;∠FGL ;∠HGL 等,它们均为450 直角有:∠AHG ;∠HKE ;∠LHG ;∠KEG 等; 钝角有:∠CLG ;∠CFG ,它们均内为1350例3.如图3,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应分析:根据剪拼前后,小块图形的大小,形状不变的特点,仔细观察每个正方形中的小块图形的特征,以此判断出:A 与M 对应;B 与P 对应;C 与Q 对应;D 与N 对应专练四:1.如图1是利用七巧拼成风的图案,在这个图案中找出二组平行线是_ __.(1)E C FM A HD BG(2)EC FA DBG(3)2.如图2是利用七巧板拼成的山峰的图案, 在这个图案中找出二组互相垂直的线段是___________________.3.如图3是利用七巧板拼成的数字3,这个图案中直角的个数是( )A.5B.9C.7D.8图3 图2 图14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图4①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图4②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12 cm ,则梯形MNGH 的周长是____cm (结果保留根号).5.用你所制作的七巧板,拼成一个等腰直角三角形与一个梯形,并在纸上画出所拼的图案. 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)7种不同形状的平面图形?请你画出拼成的图形.参考答案专练一:1.答:是因为经过两点有一条直线且只有一条直线.2.若学生不会画图,很难得到其数量关系,但学生只要把图画出来,其数量关系就一目了然.3.解:如图5所示:连结AD 、BC ,交于点H ,则H 为所求蓄水池点. 4.解:分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的 展开有不同的方法,因而从A 到B 可用6种不同的方法选取最短的 路径,但每条路径都通过连接正方体两个顶点的棱的中点.线段最短”就可确定最短路径(如图6). 5.分析:在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,可以猜想:8条直线把一个平面最多分成部分2882372++=部分,那么n 条直线把一个平面图5图6图6图4最多分成222n n++部分.6.1+2+3+4+…+n=2)1(-⨯nn条线段,专练二:1.1100;2.120°;3.90°4.450.专练三:1.B;2.B;3.90°4.BC⊥AB BC⊥BE BC⊥AE BC⊥CD 5.有棱DF,CE,HN,GM6.如图;30°或150°专练四:1.AB∥DC,HG∥BC;2.AG⊥AB,BC⊥CD ___3.B;4.略;5.如答图所示:(1)(2)6.答案不唯一(如图7)7.答案不唯一(如图8)图7 ①②图8。

第四章《平面图形及其位置关系》水平测试(含答案)

第四章《平面图形及其位置关系》水平测试(含答案)

第四章《平面图形及其位置关系》水平测试(满分:120分 时间:100分钟)一、精心选一选(每题3分,共30分) 1.下列说法正确的是( )A 、两点之间,线段最短B 、射线就是直线C 、两条射线组成的图形叫做角D 、小于平角的角可分为锐角和钝角两类 2.两个锐角的和( )A.一定是锐角B.一定是直角C.一定是钝角D.可能是钝角、直角或钝角 3.如图,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN=a,BC=b.则线段AD 的长是( )A 、2(a -b )B 、2a -bC 、a+bD 、a -b4.已知∠AOB=30°,∠BOC=80°,∠AOC=50°,那么( ) A 、射线OB 在∠AOC 内 B 、射线OB 在∠AOC 外C 、线OB 与射线OA 重合D 、射线OB 与射线OC 重合 5.如图所示,∠1=15°,∠AOC=90°,点B 、O 、D 在同一直线上,则∠2的度数为( ) A 、75° B 、15° C 、105° D 、165°6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ) A 、南偏西50°方向 B 、南偏西40°方向 C 、北偏东50°方向 D 、北偏东40°方向7.按下列线段长度,可以确定点A 、B 、C 不在同一条直线上的是( ) A 、AB=8㎝,BC=19㎝,AC=27㎝; B 、AB=10㎝,BC=9㎝,AC=18㎝ C 、AB=11㎝,BC=21㎝,AC=10㎝;D 、AB=30㎝,BC=12㎝,AC=18㎝8.学校、电影院、公园在平面图上的标点分别是A 、B 、C ,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于( ) A 、115° B 、155° C 、25° D 、65° 9.下列说法中正确的是( )A 、在同一平面内,两条不平行的线段必相交B 、在同一平面内,不相交的两条线段是平行线C 、两条射线或线段平行是指它们所在的直线平行D 、一条直线有可能同时与两条相交直线平行 10.下列结论正确的有( )A 、如果a ⊥b,b ⊥c,那么a ⊥cB 、a ⊥b,b ∥c,那么a ∥cC 、如果a ∥b,b ⊥c, 那么a ∥cD 、如果a ⊥b,b ∥c,那么a ⊥c 二、耐心填一填(每题3分,共30分)11.要整齐地栽一行树,只要确定下两端的树坑的位置 ,就能确定这一行树坑所在的直线,这里用到的数学知识是_________________ 12.上午10点30分,时针与分针成___________度的角。

七年级上数学第四章平面图形及其位置关系 易错题

七年级上数学第四章平面图形及其位置关系 易错题

第四章平面图形及其位置关系一、立体图形与平面图形一、立体图形(一)围成图形1、下面图形经折叠后可以围成一个棱柱的有()A、1B、2C、3D、42、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()3、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是()A.甲B.乙C.丙D.丁4、如图是一正方体的平面展开图,若AB =4,则该正方体A,B两点间的距离为()A.1 B.2 C.3 D.4(二)骰子类1、如图,一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A、B、C三种状态所显示的数字,可推出6的对面和2的对面的两数字之和为________。

3、把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将上述大小相同,颜色、花朵分别完全一样的四个立方体拼成一个水平放置的长方体,如图所示,问长方体的下底面共有多少朵花?3、如图所示,一个正方体,六个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,你能看到的面上数分别是7,10,11,求这6个整数的和。

4、如图,线段AB和CD是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CD可能出现下列关系中的哪几种?①AB⊥CD;②AB∥CD;③A、B、C、D四点在同一直线上。

正确的结论是()A.①②B.②③C.①③D.①②③(三)立体图形的面、棱1、下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等。

其中正确的有()。

A.2个B.3个C.4个D.5个2、三棱柱的顶点有个,棱条总数是条,面有个;n棱柱的顶点有个,棱条总数是条,面有个;n棱锥的顶点有个,棱条总数是条,面有个。

北师大版七年级数学上册第四章 平面图形及其位置关系教案

北师大版七年级数学上册第四章  平面图形及其位置关系教案

第四章平面图形及其位置关系1.线段、射线、直线教学目标:知识与技能:在现实情景中了解线段、射线、直线的描述性定义和表示方法,理解直线的性质,充分感受生活中所蕴含的丰富多彩的几何图形。

过程与方法:通过识图、辨析、观察、猜测验证等数学探究过程,发展几何意识、合情推理和探究意识。

(过程与方法)情感与态度:在解决问题的过程中体验比较、联想、猜想等思维能力,解决问题的积极性和主动性。

重点:了解线段、射线、直线的描述性定义和表示方法,理解直线的性质。

难点:发展几何意识、合情推理和探究意识。

教学过程设计:第一环节情境导入,适时点题(1)、老师用多媒体出示一组生活中的图片,有筷子图、手电光束、笔直铁轨、人行横道、绷紧的琴弦。

让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(2)、教师点明课题。

(板书课题:线段、射线、直线)讲明线段、射线、直线的描述性概念,并指明端点。

(3)、学生讨论交流:(a)、生活中,有哪些物体可以近似的地看作线段、射线、直线。

(b)、线段、射线、直线的区别和联系。

(教师用多媒体演示)利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形。

让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情。

第二环节对比观察,辨析理解(1)、教师借助图形,讲明线段、射线、直线的表示方法。

(2)、一组小练习,加深理解:请完成表格:(3)、请表示出下图中的线段、射线、和直线:经过师生交流,屏幕显示线段、射线、直线的表示方法,以及一组小练习,目的在于让学生了解线段、射线、直线的规范的表示方法,并加深对线段、射线、直线的本质性的理解。

练习有助于学生理解线段、射线、直线的联系和区别。

同时可以巩固对表示方法的掌握。

教师应充分调动他们的积极性,让他们广泛参与、积极主动的学习。

第三环节动手操作,探索新知:(1)、教师拿出一根木条和几颗钉子和相关工具,要求用尽可能少的钉子把木条固定在木板上,问至少要几颗?要求:先猜想,再让学生发言说出道理,并让学生到前面动手操作,教师适时鼓励学生自己描述从操作中得到的结论。

新北师大版七年级数学上册 第4章 基本平面图形【说课稿】比较线段的长短

新北师大版七年级数学上册 第4章 基本平面图形【说课稿】比较线段的长短

4.2 比较线段的长短各位领导,老师们,大家好!今天我说课的内容是《比较线段的长短》,这一课将从三个方面说起。

首先是教材,其次是教法与学法,最后是重要的教学过程。

首先我来说教材,教材我们分了两个环。

第一环节是教材分析与教学目标。

《比较线段的长短》选自北师大版七年级数学上册第四单元《平面图形及其位置关系》。

教材分析《比较线段的长短》是既线段,射线,直线的概念之后的一个内容,是义务教育阶段数学课程标准中平面图形及其位子关系的一个重要组成部分."比较线段的长短"这节课的教学内容丰富灵活,符合七年级学生年龄特点和已有生活经验。

生活中有许多美丽的图案都是由简单的线段组成的,本节课正是让学生经历简单的线段长短比较,了解线段的位置关系的过程。

教学目标是教学活动的起点和归宿,对教学起向导性作用。

为此,我根据课程标准和教材的特点,结合学生的认知规律和实际情况确定知识,能力,情感三方面目标,具体如下:1.知识目标通过实例探索观察与动手操作,了解简单的线段长短比较的基本过程,使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想。

2.能力目标能够用两种方法比较线段的长短3.情感目标通过合作探究,培养学上的合作精神,取长补短,即动手操作的能力。

学情分析第二环节是学情分析,以及教学重点难点。

在小学中,教材为学生提供了大量生的有趣的现实情境,通过观察,测量,画图,模型操作,图案设计等活动使学生在活动中自觉体会线段长短的概念及相互比较的方法。

同时在活动中也培养了学生良好的情感态度,顺利实现了由小学到初中的学习过度,以积极的态度投入初中数学的学习,具备了一定的主动参与合作意识和初步的观察分析抽象概括的能力。

在对线段的长短有了一定的了解之后,对线段的比较也由了自己的方法,初步地实现了由感性认识到理性认识的过度。

在这一基础之上使学生进一步对线段的和差进行探究,理解线段的中点及等分点的特性,从而将图形与数量关系结合在一起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章平面图形及其位置关系
一、基础知识梳理
(一)主要概念
1.线段、射线、直线
(1)线段:表示方法是.(2)射线:表示方法是.(3)直线:表示方法是. 2.线段的中点
把一条线段分成两条相等的线段的点,叫做线段的中点.
利用线段的中点定义,可以得到下面的结论:
(1)∵AM=BM=1
AB,∴.
2
(2)∵M是线段AB的中点,∴或.3.角
静态定义:。

动态定义:。

4.角平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
利用角平分线定义,可以得到下面的结论:
(1)∵∠AOC=∠BOC=1
∠AOB,∴.
2
(2)∵OC是∠AOB的平分线,∴
或.
5.平行线
定义:.6.两条直线垂直
当两条直线相交所成的四个角中,有一个角是时,就说这两条直线,其中的一条直线叫做另一条直线的,其交点叫做垂足,•如直线AB•与直线CD垂直,记作.
7.两点之间的距离
两点之间的,叫做这两点之间的距离.
8.点到直线的距离
叫做点到直线的距离.(二)主要性质
1.直线的性质

2.线段的性质

3.与平行线有关的一些性质
(1).
(2).
4.垂线性质
(1).
(2).
二、典型例题
1.考查学生发现问题、解决问题的能力.
(1)、从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()
A.4种 B.6种 C.10种 D.12种
(2)、同一平面内的两条相交直线,它们有个交点,
•同一平面内的3条直线最多可有_______个交点;•
同一平面内的4条直线最多可有_______个交点;
由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,
n(n为大于1的整数)条直线最多可有_______个交点。

2.线段长度的计算,线段的中点
(3)某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在,路程之和最小是。

3.角的度量与换算
时钟在3点半时,它的时针和分针所成的锐角是()
A.70° B.75° C.85° D.90°
三、解题方法与技巧
方法1:见比设元
(1)如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中
点,CD=9,求线段MC的长.
【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】
总结:不论是有关线段还是有关角的问题,只要有比值,就设未知数.
方法2:利用线段的和差判断三点共线
(2)判断以下三点A、B、C是否共线.
(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;
(2)AB=10cm,AC=3cm,CB=9cm.
【解】(1)
(2)
方法3:寻找规律
(一)数直线条数:过任三点不共线的n点一共可画条直线.(二)数n个人两两握手能握次.
(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有条线段.
(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,
则(如图)•小于平角的角个数为.
(五)数交点个数:n条直线最多有个交点.(六)数直线分平面的份数:平面内n条直线最多将平面分成1+
(1)
2
n n

部分.
(3)同一平面内有四点,每过两点画一条直线,则直线的条数是() A.1条 B.4条 C.6条 D.1条或4条或6条(4)一张饼上切七刀,最多可得到几块饼.
【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.
【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:
n=1时 S=1+1
n=2时 S=1+1+2
n=3时 S=1+1+2+3
n=4时 S=1+1+2+3+4
……
则当切n刀时,S=
∴当n=7时,S=
答:当上张饼上切7切时,最多可得到块饼.
【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.
方法4:钟表问题
分针的转速是;
时针的转速是。

四、练习检测
1、如图,C是AB的中点,D是BC的中点,下面等式不正确的是(• )
A.CD=AC-DB B.CD=AD-BC C.CD=1
2
AB-BD D.CD=
1
2
AB
2、如图10,从A地到B地有多条道路,一般地,人们会走中间的直路,•而不会走其他的曲折的路,这是因为()
A.两点之间线段最短 B.两直线相交只有一个交点
C.两点确定一条直线 D.垂线段最短
3、某市召集20名特级老师参加教研教改研讨会,与会的特级老师每两人之间都握手一次,那么他们之间一共握手________次.
4、如图,OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC•的平分线,已知∠AOC=80°,求∠MON的度数.。

相关文档
最新文档