计量经济学复习重点

合集下载

计量经济学重点复习资料

计量经济学重点复习资料

计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。

② 回归的实质:由解释变量去估计被解释变量的平均值。

4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。

7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。

(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。

③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。

8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。

计量经济学复习笔记要点

计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。

计量经济学知识点(超全版)

计量经济学知识点(超全版)

1 .经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2. 解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的因”。

1 分)3. 被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4. 内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5. 外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6•滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)&控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9•计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10 .函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11 .相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12 .最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13 .高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯—马尔可夫定理。

《计量经济学》复习重点及答案

《计量经济学》复习重点及答案

各位同学:请大家按照这个复习重点进行认真复习,考试时请大家带上计算器,平时成绩占30%,期末占70%。

考试题型:一、名词解释题(每小题4分,共20分)计量经济学:一门由经济学、统计学和数学结合而成的交叉学科. 经济学提供理论基础,统计学提供资料依据,数学提供研究方法总体回归函数:被解释变量的均值同一个或者多个解释变量之间的关系样本回归函数:是总体回归函数的近似OLS 估计量 :以残差平方和最小的原则对回归模型中的系数进行估计的方法。

普通最小二乘法估计量OLS 估计量可以由观测值计算OLS 估计量是点估计量一旦从样本数据取得OLS 估计值,就可以画出样本回归线BLUE 估计量、BLUE :最优线性无偏估计量, 其估计量是无偏估计量,且在所有的无偏估计量中其方差最小。

拟合优度、衡量了解释变量能解释的离差占被解释变量的百分比。

拟合优度R 2(被解释部分在总平方和(SST)中所占的比例)虚拟变量陷阱、 带有截距项的回归模型,如果有m 个定性变量,只能引入m-1个虚拟变量。

如果引入了m 个,就将陷入虚拟变量陷阱。

既模型中存在完全共线性,使得模型无法估计方差分析模型、解释变量仅包含定性变量或虚拟变量的模型。

协方差分析模型、回归模型中的解释变量有些是定性的有些是定量的。

多重共线性 多重共线性是指解释变量之间存在完全的线性关系或近似的线性关系.分为完全多重共线性和不完全多重共线性ˆˆ)X |E(Y ˆ) )X |E(Y ( ˆˆˆ :SRF 2211i 21i 21的估计量。

是的估计量;是的估计量;是其中相对于ββββββββi i ii Y X X Y +=+=∑∑==222ˆi i y y TSS ESS R自相关: 随机误差项当期值和滞后期相关。

在古典线性回归模型中,我们假定随机扰动项序列的各项之间,如果这一假定不满足,则称之为自相关。

即用符号表示为:自相关常见于时间序列数据。

异方差、 是指模型误差项的方差随着变量的改变而不同随机误差项:模型中没有包含的所有因素的代表例:Y — 消费支出 X —收入、— —参数 u —随机误差项 显著性检验 :显著性检验时利用样本结果,来证实一个零假设的真伪的一种检验程序。

(完整版)计量经济学重点知识归纳整理

(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

计量经济学复习要点

计量经济学复习要点

1,否则为0;West居于西部取1,否则取0。
表1:基于2004年CPS数据得到的平均小时收入对年龄、性别、教育、地区的回归结果
因变量:AHE
(ollege(X1)
5.46
5.48
5.44
Female(X2)
(0.21) -2.64
(0.21) -2.62
(0.21) -2.62
2. 总体回归函数(Population Regression Function,PRF) --代表了总体变量间的依存规律。
3. 样本回归函数(Sample Regression Function,SRF) --代表了样本显示的变量关系。
4. 样本回归模型(Sample Regression Model,SRM) ---代表了样本显示的变量依存规律。 总体回归模型与样本回归模型的主要区别是:①描述的对象不同。
拟合优度的检验R2 离差平方和的分解:TSS=ESS+RSS
“拟合优度”是模型对样本数据的拟合程度。检验方法是构造一个可 以表征拟合程度的指标——判定系数又称决定系数。
(1),表示回归平方和与总离差平方和之比;反映了样本回归线对 样本观测值拟合优劣程度的一种描述;
(2) ; (3) 回归模型中所包含的解释变量越多,越大!
t=(-5.2066) (8.6246)
(5.1)
t=(-2.5884)
(5.2) (4.0149) (5.1613)
其中,W(weight)=体重 (单位:磅);h(height)=身高 (单位: 英寸)
请回答以下问题: 1 你将选择哪一个模型?为什么? 2 如果模型(5.2)确实更好,而你选择了(5.1),你犯了什么错 误?
4. 以下几种模型形式表达的不同含义; 1)

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要求(2011专升本)一、基本概念:1、名词:1)解释变量:自变量x,自变量是研究者选用或操纵的变量,以确定其对心理或行为的影响;2)被解释变量:因变量y,因变量是被试者在实验室中的行为反应。

3)內生变量:内生变量是具有一定概率分布的随机变量,它的数值是由模型本身决定的。

4)外生变量:是指非随机变量,它的取值是在模型之外决定的,是求解模型时的已知数。

5)滞后变量:是指内生变量和外生变量的时间滞后量(前期量)。

6)前定变量:外生变量与滞后内生变量统称为前定变量。

7)虚拟变量:虚拟变量又称虚设变量、名义变量或哑变量,用以反映质的属性的一个人工变量,是量化了的质变量,通常取值为0或1。

8)工具变量:某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为工具变量9)相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。

相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

定义;若随机变量X与Y的 EX,EY,及DX,DY存在,称为X与Y的相关系数10)协方差:E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。

定义:Cov(X,Y) =E( X - EX)(Y-EY)=E(XY) - (EX)(EY)当Y=X,Cov(X,X) =E(X2) - (EX)2 = D(X)11)回归方程:解: X与Y相关关系,设 Y= a+ bX+ε其中:X是可控变量,Y 和ε是随机变量, ε~N(0,σ2),a、b未知,当X取值:x1, x2,… x n时,对Y观察,得到一组样本:(x1, y1),(x2, y2), …,(x n, y n),满足: y i= a+ bx i +εiεI ~ N(0,σ2), εi .εj相互独立E(y i)= a+ bx i +0ˆˆˆY a bX=+12)异方差性:13)序列相关性:14)多重共线性:2、概念:1)数据类型:时间序列数据、横截面数据、合并数据2)计量经济研究的步骤:a. 建立理论模型(模型设定),包括模型的总体设计和个体设计;(1)确定模型中的变量(2)确定模型的函数形式(3)确定统计指标并搜集整理数据b. 估计模型的参数c. 模型的检验d. 模型的应用可进一步概括成:3)回归系数的经济意义:自变量每增加一个单位,因变量增加的平均值。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值;简单线性回归模型是只有一个解释变量的线性回归模型; 回归中的四个重要概念1. 总体回归模型Population Regression Model,PRMt t t u x y ++=10ββ--代表了总体变量间的真实关系;2. 总体回归函数Population Regression Function,PRFt t x y E 10)(ββ+=--代表了总体变量间的依存规律;3. 样本回归函数Sample Regression Function,SRFtt t e x y ++=10ˆˆββ--代表了样本显示的变量关系; 4. 样本回归模型Sample Regression Model,SRMtt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律; 总体回归模型与样本回归模型的主要区别是:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系;②建立模型的依据不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变;总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型; 线性回归的含义线性:被解释变量是关于参数的线性函数可以不是解释变量的线性函数 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定 普通最小二乘法原理、推导最小二乘法估计参数的原则是以“残差平方和最小”;Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y X X ==--β=-∑∑ , 01ˆˆY X β=-βOLS 的代数性质拟合优度R 2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度;检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数;121SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; 2 2[0,1]R ∈;3 回归模型中所包含的解释变量越多,2R 越大改变度量单位对OLS 统计量的影响函数形式对数、半对数模型系数的解释101ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 201ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性; 301ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ 401ˆˆˆln i i Y X =β+β:X 变化1%,Y 变化1ˆβ%; OLS 无偏性,无偏性的证明 OLS 估计量的抽样方差 误差方差的估计 OLS 估计量的性质1线性:是指参数估计值0β和1β分别为观测值t y 的线性组合; 2无偏性:是指0β和1β的期望值分别是总体参数0β和1β; 3最优性最小方差性:是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差;高斯-马尔可夫定理OLS 参数估计量的概率分布2^22()iVar x σβ=∑OLS 随机误差项μ的方差σ2的估计 简单回归的高斯马尔科夫假定 对零条件均值的理解习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释剔除、控制其他因素的影响对斜率系数1ˆβ的解释:在控制其他解释变量X2不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定;3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式;最小二乘法 OLS 公式:Y ' X X)' (X ˆ-1=β 估计的回归模型:的方差协方差矩阵:残差的方差 : 估计的方差协方差矩阵是: 拟合优度 遗漏变量偏误 多重共线性多重共线性的概念多重共线性的后果 多重共线性的检验 多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定 正态抽样分布2^22i e n σ=-∑变量显着性检验,t 检验 检验β值的其他假设 P 值实际显着性与统计显着性 检验参数的一个线性组合假设 多个线性约束的检验:F 检验 理解排除性约束 报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS 统计量的影响 进一步理解对数模型 二次式的模型 交互项的模型 拟合优度修正可决系数的作用和方法;习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量 虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差基准组或对照组与处理组 以下几种模型形式表达的不同含义;1tt t t u D X Y +++=210βββ:截距项不同; 2tt t t t u X D X Y +++=210βββ:斜率不同;3tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量;虚拟变量陷阱虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章异方差异方差的后果异方差稳健标准误BP检验异方差的检验White检验加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews回归结果界面解释表计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、C5、C6 第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8 第6章习题:1、3、4、7;C2、C3、C5、C9、C12 第7章习题:2、4、9;C2、C3、C6、C7、C11 第8章习题:1、2、3、4;C1、C2、C8、C9 1、判断下列表达式是否正确2469 2、给定一元线性回归模型:1叙述模型的基本假定;2写出参数0β和1β的最小二乘估计公式; 3说明满足基本假定的最小二乘估计量的统计性质; 4写出随机扰动项方差的无偏估计公式; 3、对于多元线性计量经济学模型:1该模型的矩阵形式及各矩阵的含义; 2对应的样本线性回归模型的矩阵形式; 3模型的最小二乘参数估计量;4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-=其中,Q=人均咖啡消费量单位:磅;P=咖啡的价格以1967年价格为不变价格;I=人均可支配收入单位:千元,以1967年价格为不变价格;P '=茶的价格1/4磅,以1967年价格为不变价格;T=时间趋势变量1961年第一季度为1,…,1977年第二季度为66;D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度; 请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么 ② 咖啡的需求是否很有弹性③ 咖啡和茶是互补品还是替代品 ④ 你如何解释时间变量T 的系数 ⑤ 你如何解释模型中虚拟变量的作用 ⑥ 哪一个虚拟变量在统计上是显着的 ⑦ 咖啡的需求是否存在季节效应5、为研究体重与身高的关系,我们随机抽样调查了51名学生其中36名男生,15名女生,并得到如下两种回归模型:h W5662.506551.232ˆ+-= t=h D W7402.38238.239621.122ˆ++-= t=其中,Wweight=体重 单位:磅;hheight=身高 单位:英寸 请回答以下问题:① 你将选择哪一个模型为什么② 如果模型确实更好,而你选择了,你犯了什么错误 ③ D 的系数说明了什么6、简述异方差对下列各项有何影响:1OLS 估计量及其方差;2置信区间;3显着性t 检验和F 检验的使用;4预测;7、假设某研究者基于100组三年级的班级规模CS 和平均测试成绩TestScore 数据估计的OLS 回归为:(1) 若某班级有22个学生,则班级平均测试成绩的回归预测值是多少 (2) 某班去年有19个学生,而今年有23个学生,则班级平均测试成绩变化的回归预测值是多少(3) 100个班级的样本平均班级规模为,则这100个班级的样本平均测试成绩是多少(4) 100个班级的测试成绩样本标准差是多少提示:利用R 2和SER 的公式 (5) 求关于CS 的回归斜率系数的95%置信区间;(6) 计算t 统计量,根据经验法则t=2来判断显着性检验的结果; 8、设从总体中抽取一容量为200的20岁男性随机样本,记录他们的身高和体重;得体重对身高的回归为:其中体重的单位是英镑,身高的单位是英寸;(1) 身高为70英寸的人,其体重的回归预测值是多少65英寸的呢74英寸的呢(2) 某人发育较晚,一年里蹿高了英寸;则根据回归预测体重增加多少 (3) 解释系数值和的含义;(4)假定不用英镑和英寸度量体重和身高而分别用厘米和千克,则这个新的厘米-千克回归估计是什么给出所有结果,包括回归系数估计值,R2和SER;(5)基于回归方程,能对一个3岁小孩的体重假设身高1米作出可靠预测吗9、假设某研究使用250名男性和280名女性工人的工资Wage数据估计出如下OLS回归:标准误其中WAGE的单位是美元/小时,Male为男性=1,女性=0的虚拟变量;用男性和女性的平均收入之差定义工资的性别差距;1性别差距的估计值是多少2计算截距项和Male系数的t统计量,估计出的性别差距统计显着不为0吗5%显着水平的t统计量临界值为3样本中女性的平均工资是多少男性的呢4对本回归的R2你有什么评论,它告诉了你什么,没有告诉你什么这个很小的R2可否说明这个回归模型没有什么价值5另一个研究者利用相同的数据,但建立了WAGE对Female的回归,其中Female为女性=1,男性=0的变量;由此计算出的回归估计是什么10、基于美国CPS人口调查1998年的数据得到平均小时收入对性别、教育和其他特征的回归结果,见下表;该数据集是由4000名全年工作的全职工人数据组成的;其中:AHE=平均小时收入;College=二元变量大学取1,高中取0;Female女性取1,男性取0;Age=年龄年;Northeast居于东北取1,否则为0;Midwest居于中西取1,否则为0;South居于南部取1,否则为0;West居于西部取1,否则取0;表1:基于2004年CPS数据得到的平均小时收入对年龄、性别、教育、地区的回归结果概括统计量和联合检验SERR2注:括号中是标准误;(1)计算每个回归的调整R2;(2)利用表1中列1的回归结果回答:大学毕业的工人平均比高中毕业的工人挣得多吗多多少这个差距在5%显着性水平下统计显着吗男性平均比女性挣的多吗多多少这个差距在5%显着性水平下统计显着吗(3)年龄是收入的重要决定因素吗请解释;使用适当的统计检验来回答; (4)Sally是29岁女性大学毕业生,Betsy是34岁女性大学毕业生,预测她们的收入;(5)用列3的回归结果回答:地区间平均收入存在显着差距吗利用适当的假设检验解释你的答案;(6)为什么在回归中省略了回归变量West如果加上会怎样;解释3个地区回归变量的系数的经济含义;7Juantia是南部28岁女性大学毕业生,Jennifer是中西部28岁女性大学毕业生,计算她们收入的期望差距计量经济学补充复习题一、填空题1、 计量经济学常用的三类样本数据是_横截面数据__、__时间序列数据__和_面板数据;2、虚拟解释变量不同的引入方式产生不同的作用;若要描述各种类型的模型在截距水平的差异,则以 加法形式 引入虚拟解释变量;若要反映各种类型的模型的不同相对变化率时,则以 乘法形式 引入虚拟解释变量;二、选择题1、参数的估计量βˆ具备有效性是指 BA Var βˆ=0B Var βˆ为最小C βˆ-=0D βˆ-为最小2、产量x,台与单位产品成本y, 元/台之间的回归方程为yˆ=356-,这说明 DA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少元3、在总体回归直线E x y10)ˆ(ββ+=中,1β表示 B A 当x 增加一个单位时,y 增加1β个单位B 当x 增加一个单位时,y 平均增加1β个单位C 当y 增加一个单位时,x 增加1β个单位D 当y 增加一个单位时,x 平均增加1β个单位4、以y 表示实际观测值,yˆ表示回归估计值,则普通最小二乘法估计参数的准则是使 DA )ˆ(i i yy -∑=0 B 2)ˆ(i i y y -∑=0 C )ˆ(i i yy -∑为最小 D 2)ˆ(i i y y -∑为最小 5、设y 表示实际观测值,yˆ表示OLS 回归估计值,则下列哪项成立 D A yˆ=y B y ˆ=y C yˆ=y D y ˆ=y 6、用普通最小二乘法估计经典线性模型t t t u x y ++=10ββ,则样本回归线通过点 DA x,yB x,yˆ C x ,yˆ D x ,y 7、判定系数2R 的取值范围是 CA 2R -1B 2R 1C 02R 1D -12R 18、对于总体平方和TSS 、回归平方和RSS 和残差平方和ESS 的相互关系,正确的是 BA TSS>RSS+ESSB TSS=RSS+ESSC TSS<RSS+ESSD TSS 2=RSS 2+ESS 29、决定系数2R 是指 CA 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重10、如果两个经济变量x 与y 间的关系近似地表现为当x 发生一个绝对量变动x 时,y 有一个固定地相对量y/y 变动,则适宜配合地回归模型是 BA i i i u x y ++=10ββB ln i i i u x y ++=10ββC i ii u x y ++=110ββ D ln i i i u x y ++=ln 10ββ 11、下列哪个模型为常数弹性模型 AA ln i i i u x y ++=ln ln 10ββB ln i i i u x y ++=10ln ββC i i i u x y ++=ln 10ββD i ii u x y ++=110ββ 12、模型i i i u x y ++=ln 10ββ中,y 关于x 的弹性为 C A i x 1β B i x 1β C iy 1β D i y 1β 13、模型ln i i i u x y ++=ln ln 10ββ中,1β的实际含义是 BA x 关于y 的弹性B y 关于x 的弹性C x 关于y 的边际倾向D y 关于x 的边际倾向14、当存在异方差现象时,估计模型参数的适当方法是 AA 加权最小二乘法B 工具变量法C 广义差分法D 使用非样本先验信息15、加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即 BA 重视大误差的作用,轻视小误差的作用B 重视小误差的作用,轻视大误差的作用C 重视小误差和大误差的作用D 轻视小误差和大误差的作用16、容易产生异方差的数据是 CA 时间序列数据B 修匀数据C 横截面数据D 年度数据17、设回归模型为i i i u x y +=β,其中var i u =22i x σ,则的最小二乘估计量为 CA. 无偏且有效 B 无偏但非有效C 有偏但有效D 有偏且非有效18、如果模型t t t u x b b y ++=10存在序列相关,则 DA cov t x ,t u =0B cov t u ,s u =0tsC cov t x ,t u 0D cov t u ,s u 0ts19、下列哪种形式的序列相关可用DW 统计量来检验i v 为具有零均值,常数方差,且不存在序列相关的随机变量 AA t t t v u u +=-1ρB t t t t v u u u +++=-- 221ρρC t t v u ρ=D ++=-12t t t v v u ρρ20、DW 的取值范围是DA -1DW0B -1DW1C -2DW2D 0 DW421、当DW =4是时,说明 DA 不存在序列相关B 不能判断是否存在一阶自相关C 存在完全的正的一阶自相关D 存在完全的负的一阶自相关22、模型中引入一个无关的解释变量 CA 对模型参数估计量的性质不产生任何影响B 导致普通最小二乘估计量有偏C 导致普通最小二乘估计量精度下降D 导致普通最小二乘估计量有偏,同时精度下降23、如果方差膨胀因子VIF =10,则认为什么问题是严重的 CA 异方差问题B 序列相关问题C 多重共线性问题D 解释变量与随机项的相关性24、某商品需求函数为i i i u x b b y ++=10,其中y 为需求量,x 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 BA 2B 4C 5D 625、根据样本资料建立某消费函数如下:tC ˆ=+tD +t x ,其中C 为消费,x 为收入,虚拟变量D =农村家庭城镇家庭⎩⎨⎧01,所有参数均检验显着,则城镇家庭的消费函数为AA t C ˆ=+t xB tC ˆ=+t xC t C ˆ=+t xD tC ˆ=+t x 26、假设某需求函数为i i i u x b b y ++=10,为了考虑“季节”因素春、夏、秋、冬四个不同的状态,引入4个虚拟变量形式形成截距变动模型,则模型的 DA 参数估计量将达到最大精度B 参数估计量是有偏估计量C 参数估计量是非一致估计量D 参数将无法估计27、对于模型i i i u x b b y ++=10,为了考虑“地区”因素北方、南方,引入2个虚拟变量形式形成截距变动模型,则会产生 DA 序列的完全相关B 序列不完全相关C 完全多重共线性D 不完全多重共线性28、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量的数目为 AA mB m-1C m-2D m+129、某一时间序列经一次差分变换成平稳时间序列,此时间序列称为A;A .1阶单整B .2阶单整C .K 阶单整D .以上答案均不正确30、当随机误差项存在自相关时,进行单位根检验是由B 来实现;A . DF 检验B .ADF 检验C .EG 检验D .DW 检验三、多项选择题:1、一元线性回归模型t t t u x y ++=10ββ的经典假设包括 ABCDEA 0)(=t u EB 2)(σ=t u Var 常数C 0),cov(=j i u uD t u ~N0,1E x 为非随机变量,且0),cov(=t t u x2、以带“”表示估计值,u 表示随机误差项,如果y 与x 为线性相关关系,则下列哪些是正确的 BEA t t x y 10ββ+=B t t t u x y ++=10ββC t t t u x y ++=10ˆˆββD tt t u x y ++=10ˆˆˆββ E tt x y 10ˆˆˆββ+= 3、用普通最小二乘法估计模型t t t u x y ++=10ββ的参数,要使参数估计量具备最佳线性无偏估计性质,则要求: ABCDEA 0)(=t u EB 2)(σ=t u Var 常数C 0),cov(=j i u uD t u 服从正态分布E x 为非随机变量,且0),cov(=t t u x4、假设线性回归模型满足全部基本假设,则其参数估计量具备 CDEA 可靠性B 合理性C 线性D 无偏性E 有效性5、下列哪些非线性模型可以通过变量替换转化为线性模型 ABC A i i i u x y ++=210ββ B i ii u x y ++=110ββ C ln i i i u x y ++=ln 10ββ D i i i u x y ++=210ββE i i i i u x y ++=ββ06、异方差性将导致 BCDEA 普通最小二乘估计量有偏和非一致B 普通最小二乘估计量非有效C 普通最小二乘估计量的方差的估计量有偏D 建立在普通最小二乘估计基础上的假设检验失效E 建立在普通最小二乘估计基础上的预测区间变宽7、当模型中解释变量间存在高度的多重共线性时 ACDA 各个解释变量对被解释变量的影响将难于精确鉴别B 部分解释变量与随机误差项之间将高度相关C 估计量的精度将大幅下降D 估计量对于样本容量的变动将十分敏感E 模型的随机误差项也将序列相关8、下述统计量可以用来检验多重共线性的严重性 ACDA 相关系数B DW 值C 方差膨胀因子D 特征值E 自相关系数三、判断题1、随机误差项u i 与残差项e i 是一回事; F2、当异方差出现时,常用的t 检验和F 检验失效; T3、在异方差情况下,通常预测失效; T四、计算分析题1、指出下列模型中的错误,并说明理由;1 tt Y C 2.1180ˆ+= 其中,C 、Y 分别为城镇居民的消费支出和可支配收入;2 tt t L K Y ln 28.0ln 62.115.1ˆln -+= 其中,Y 、K 、L 分别为工业总产值、工业生产资金和职工人数;2、对下列模型进行适当变换化为标准线性模型:(1) y =0β+1βx 1+2β21x +u ; (2) Q =A u e L K βα;(3) Y =exp 0β+1βx+u ;3、一个由容量为209的样本估计的解释CEO 薪水的方程为:其中,Y 表示年薪水平单位:万元, 1X 表示年收入单位:万元, 2X 表示公司股票收益单位:万元; 321D D D ,,均为虚拟变量,分别表示金融业、消费品工业和公用事业;假设对比产业为交通运输业;(1) 解释三个虚拟变量参数的经济含义;(2) 保持1X 和2X 不变,计算公用事业和交通运输业之间估计薪水的近似百分比差异;这个差异在1%的显着性水平上是统计显着吗消费品工业和金融业之间估计薪水的近似百分比差异是多少。

计量经济学重点

计量经济学重点

计量经济学重点第一章经济计量学的特征及研究范围1、经济计量学的定义P11经济计量学是利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学;2经济计量学运用数理统计学分析经济数据,对构建于数理经济学基础之上的模型进行实证分析,并得出数值结果;2、学习计量经济学的目的计量经济学与其它学科的区别P1-P21计量经济学与经济理论经济理论:提出的命题和假说,多以定性描述为主计量经济学:依据观测或试验,对大多数经济理论给出经验解释,进行数值估计2计量经济学与数理经济学数理经济学:主要是用数学形式或方程或模型描述经济理论计量经济学:采用数理经济学家提出的数学模型,把这些数学模型转换成可以用于经验验证的形式3计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤P2-P31建立一个理论假说2收集数据3设定数学模型4设立统计或经济计量模型5估计经济计量模型参数6核查模型的适用性:模型设定检验7检验源自模型的假设8利用模型进行预测4、用于实证分析的三类数据P3-P41时间序列数据:按时间跨度收集到的定性数据、定量数据;2截面数据:一个或多个变量在某一时点上的数据集合;3合并数据:包括时间序列数据和截面数据;一类特殊的合并数据—面板数据纵向数据、微观面板数据:同一个横截面单位的跨期调查数据第二章线性回归的基本思想:双变量模型1、回归分析P18用于研究一个变量称为被解释变量或应变量与另一个或多个变量称为解释变量或自变量之间的关系2、回归分析的目的P18-P191根据自变量的取值,估计应变量的均值;2检验建立在经济理论基础上的假设;3根据样本外自变量的取值,预测应变量的均值;4可同时进行上述各项分析;3、总体回归函数PRFP19-P221概念:反映了被解释变量的均值同一个或多个解释变量之间的关系2表达式:①确定/非随机总体回归函数:EY|Xi =B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项随机误差项、噪声B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项P221定义:代表了与被解释变量Y有关但未被纳入模型变量的影响;每一个随机误差项对于Y的影响是非常小的,且是随机的;随机误差项的均值为02性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单;5、样本回归函数P22-P251概念:是总体回归函数的近似2表达式①确定/非随机样本回归函数:i =b1+b2Xib 1:截距;b2:斜率②随机/统计样本回归函数:Yi =b1+b2Xi+eiei :残差项残差,ei= Yi-iB1+B2Xi:系统/确定性部分μ:非系统/随机部分6、条件期望与非条件期望1EY|Xi条件期望:在解释变量X给定条件下Y的条件期望,可以通过X给定条件下的条件概率分布得到;2非条件期望:在不考虑其他随机变量取值情况时,某个随机变量的期望值;它可以通过该随机变量的非条件分布或边缘分布得到;6、线性回归模型回归参数为线性B的模型7、回归系数/回归参数线性回归模型中的B参数8、回归系数的估计量bs说明了如何通过样本数据来估计回归系数Bs,计算出的回归系数的值称为样本回归估计值9、随机总体回归函数与随机样本回归函数的关系1随机样本回归函数:从所抽取样本的角度说明了被解释变量Yi 同解释变量Xi及残差ei之间的关系;2随机总体回归函数:从总体的角度说明了被解释变量Yi 同解释变量Xi及随机误差项μ之间的关系;10、关于线性回归的两种解释P25-P261变量线性:应变量的条件均值是自变量的线性函数此解释下的非线性回归:EY= B1+B2Xi2;EY= B1+B2×1/Xi2参数线性:应变量的条件均值是参数B的线性函数此解释下的非线性回归:EY= B1+B22Xi线性回归在教材中指的是参数线性的回归11、多元线性回归的表达式P261确定/非随机总体回归函数:EX=B1+B2X2i+B3X3i+B4X4i2随机/统计总体回归函数:Yi = B1+B2X2i+B3X3i+B4X4i+μi12、最小二乘法OLS法P26-P281最小二乘以残差被解释变量的实际值同拟合值之间的差平方和最小的原则对回归模型中的系数进行估计的方法;1表达式2重要性质①用OLS法得出的样本回归线经过样本均值点:;②残差的均值总为0;③对残值与解释变量的积求和,其值为0,即这两个变量不相关:④对残差与i 估计的Yi的积求和,其值为0,即第三章双变量模型:假设检验1、古典线性回归模型的假设P41-P441回归模型是参数线性的,但不一定是变量线性的:Yi =B1+B2Xi+μi2解释变量X与扰动误差项μ不相关3给定Xi ,扰动项的期望或均值为0:Eμ| Xi=04μi 的方差为常数,或同方差:varμi=σ2每个Y值以相同的方差分布在其均值周围,非这种情况为异方差5无自相关假定:两个误差项之间不相关,covμi ,μj=06回归模型是正确假定的:实证分析的模型不存在设定偏差或设定误差2、OLS估计量运用最小二乘法计算出的总体回归参数的估计量3、普通最小二乘估计量的方差与标准误P44-P461的方差与标准误①方差:②标准误:2的方差与标准误①方差:②标准差:3的计算公式n-2为自由度:独立观察值的个数4:回归标准误,常用于度量估计回归线的拟合优度,值越小,Y的回归值越接近根据回归模型得到的估计值4、OLS估计量的性质P461b1和b2是线性估计量:它们是随机变量Y的线性函数2b1和b2是无偏估计量:Eb1=B1,Eb2=B23Eσ^2=σ^2:误差方差的OLS估计量是无偏的4b 1和b 2是有效估计量:varb 1小于B 1的任意一个线性无偏估计量的方差,varb 2小于B 2的任意一个线性无偏估计量的方差 5、OLS 估计量的抽样分布或概率分布P47-P481新加的假设:在总体回归函数Yi=B 1+B 2X i +μi 中,误差项μi 服从均值为0,方差为σ^2的正态分布:μi ~N0,σ^2 2OLS 估计量服从的分布情况:b 1~NB 1,σ2b1 b 2~NB 2,σ2b26、假设检验P48-P53 1使用公式近似2方法①置信区间法②显着性检验法:对统计假设的检验过程 3几个相关检验①t 检验法:基于t 分布的统计假设检验过程 ②双边检验:备择假设是双边假设的检验 ③单边检验:备择假设是单边假设的检验 7、判定系数r 2P53-P56 1重要公式:TSS=ESS+RSS①总平方和TSS=:真实Y 值围绕其均值的总变异;②解释平方和ESS=:估计的Y值围绕其均值=的变异,也称为回归平方和由解释变量解释的部分③残差平方和RSS=:Y变异未被解释的部分2r2判定系数的定义:度量回归线的拟合程度回归模型对Y变异的解释比例/百分比3r2的性质①非负性②0≤r2≤14r2的计算公式5r的计算公式8、同方差性方差相同9、异方差性方差不同10、BLUE最佳线性无偏估计量,即该估计量是无偏估计量,且在所有的无偏估计量中方差最小11、统计显着拒绝零假设的简称第四章多元回归:估计与假设检验1、三变量线性回归模型EYi =B1+B2Xt+ B3X3tY i =B1+B2X2t+ B3X3t+μi2、偏回归系数B2,B3:1B2:在X3保持不变的情况下,X2单位变动引起Y均值EY的变动量2B3:在X2保持不变的情况下,X3单位变动引起Y均值EY的变动量3、多元线性回归模型的若干假定P73-P74 1回归模型是参数线性的,并且是正确设定的2X2,X3与扰动误差项μ不相关①X2,X3非随机:自动满足②X2,X3随机:必须独立同分布于误差项μ3误差项的期望或均值为0:Eμi=04同方差假定:varμi=σ25误差项μi ,μi无自相关:两个误差项之间不相关,covμi,μji≠j6解释变量X2和X3之间不存在完全共线性,即两个解释变量之间无严格的线性关系X2不能表示为另一变量X3的线性函数7随机误差μ服从均值为0,同方差为σ^2的正态分布:μi~N0,σ2 4、多重共线性问题1完全共线性:解释变量之间存在的精确的线性关系2完全多重共线性:解释变量之间存在着多个精确的线性关系5、多元回归函数的估计P74-P756、OLS估计量的方差与标准误P75-P761b1的方差与标准误2b1的方差与标准误3b3的方差与标准误7、多元判定系数P76-P778、多元回归的假设检验P78 方法类似于第三章9、检验联合假设P80-P811联合假设:H0:B2=B3=0H:R2=0多元回归的总体显着性检验2三变量回归模型的方差分析表2F分布公式10、F与R2之间的重要关系P82-P83 1关系式2R2形式的方差分析表11、设定误差P84会导致模型中遗漏相关变量12、校正判定系数P84-P851作用衡量了解释变量能解释的离差占被解释变量总离差的比例2公式3性质①如果k>1,则≤R2,即随着模型中解释变量个数的增加,校正判定系数越来越小于非校正判定系数②虽然未校正判定系数R2总为正,但校正判定系数可能为负13、受限最小二乘法P86-P871受限模型:B2=B3=02非受限模型:包含了所有相关变量3受限最小二乘法:对受限模型用OLS估计参数4非受限最小二乘法:对非受限模型用OLS估计参数5判定对模型施加限制是否有效的F分布公式14、显着性检验1单个多元回归系数的显着性检验①提出零假设和备择假设;②选择适当的显着性水平;③在零假设为真的情况下,计算t统计量;④将t统计量的绝对值|t|同相应自由度和显着性水平下的临界值相比较;⑤如果t统计量大于临界值,则拒绝零假设;该步骤中务必要使用合适的单边或双边检验;2所有偏斜率系数的显着性检验①零假设:H0:B2=B3=...=Bk=0,即所有的偏回归系数均为0;②备择假设:至少一个偏回归系数不为0;③运用方差分析和F检验;④如果F统计量的值大于相应显着性水平下的临界值,拒绝零假设,否则接受;⑤3在1和2中可以不事先选择好显着性水平,只需得到相应统计量的p值,如果p 值足够小,我们就可以拒绝零假设;第五章回归模型的函数形式1、不同的函数形式P121模型形式斜率强性线性双对数对数—线性线性—对数倒数逆对数2、多元对数线性回归模型P104-P1073、线性趋势模型P1104、多项式回归模型P116-P1175、过原点的回归P1186、标准化变量的回归P120第六章虚拟变量回归模型1、虚拟变量P133-P134因变量受到一些定性变量的影响,这类定性变量称为虚拟变量,用D表示虚拟变量,虚拟变量的取值通常为0和12、虚拟变量陷阱P136引入的虚拟变量个数应该比研究的类别少一个,否则就会造成完全多重共线,即通常说的虚拟变量陷阱3、虚拟变量回归模型的类型包含一个定量变量、一个定性变量的回归模型1只影响截距加法模型2只影响斜率乘法模型3同时影响截距与斜率混合模型4、交互效应P142:交互作用虚拟变量5、分类变量和定性变量这类变量的取值不是一般的数据数值变量或定量变量,它们通常代表所研究的对象是否具有的某种特征;6、方差分析模型ANOVA解释变量仅包含定型变量或虚拟变量的回归模型;7、协方差分析模型ANOCVA回归模型中的解释变量有些是线性的,有些是定量的;8、差别截距虚拟变量包含此变量的模型能够分辨被解释变量的均值在不同类别之间是否相同; 9、差别斜率虚拟变量包含此变量的模型能够分辨不同类别之间被解释变量均值变化率的变化范围第七章模型选择:标准与检验1、好的模型具有的性质P164-P1651简约性:模型应尽可能简单;2可识别性:每个参数只有一个估计值;3拟合优度:用模型中所包含的解释变量尽可能地解释应变量的变化;4理论一致性:构建模型时,必须有一定的理论基础;5预测能力:选择理论预测与实践吻合的模型;2、产生设定误差的原因1研究者对所研究问题的相关理论了解不深2研究者没有关注本领域前期的研究成果3研究者在研究中缺乏相关数据4数据测量时的误差3、设定误差的类型P1651遗漏相关变量:“过低拟合”模型P165-P168实际模型:估计模型:后果:①如果遗漏变量X3与模型中的变量X2相关,则a1和a2是有偏的;也就是说,其均值或期望值与真实值不一致;②a1和a2也是不一致的,即无论样本容量有多大,偏差也不会消失;③如果X2和X3不相关,则b32为零,即a2是无偏的,同时也是一致的;④根据两变量模型得到的误差方差是真实误差方差σ2的有偏估计量;⑤此外,通常估计的a2的方差是真实估计量方差的有偏估计量;即使等于零,这一方差仍然是有偏的;⑥通常的置信区间和假设检验过程不再可靠;置信区间将会变宽,因此可能会“更频繁地”接受零假设:系数的真实值为零;2包括不相关变量:“过度拟合”模型P168-169正确模型:错误模型:后果:①过度拟合模型的估计量是无偏的也是一致的;②从过度拟合方程得到的σ2的估计量是正确的;③建立在t检验和F检验基础上的标准的置信区间和假设检验仍然是有效的;④从过度拟合模型中估计的a是无效的——其方差比真实模型中估计的b的方差大;因此,建立在a的标准误上的置信区间比建立在b的标准误上的置信区间宽,尽管前者的假设检验是有效的;总之,从过度拟合模型中得到的OLS估计量是线性无偏估计量,但不是最优先性无偏估计量;3不正确的函数形式P170-171如果选了错误的函数形式,则估计的系数可能是真实系数的有偏估计量;4度量误差①应变量中度量误差对回归结果的影响i. OLS估计量是无偏的;ii. OLS估计量的方差也是无偏的;iii. 估计量的估计方差比没有度量误差时的大,因为应变量中的误差加入到了误差项中;②解释变量的度量误差对回归结果的影响i. OLS估计量是有偏的;ii. OLS估计量也是不一致的;③解决方法:如果解释变量中存在度量误差,建议使用工具变量或替代变量;4、设定误差的诊断1诊断非相关变量P172-P1742对遗漏变量和不正确函数形式的检验P174-P175①判定系数R2和校正后的R2;②估计的t值;③与先验预期相比,估计系数的符号;3在线性和对数线性模型之间选择:MWD检验P175-P176:线性模型:Y是X的线性函数①设定如下假设;HH:对数线性模型:lnY是X或lnX的线性函数1②估计线性模型,得到Y的估计值③估计线性对数模型,得到lnY的估计值④求⑤做Y对X和的回归,如果根据t检验的系数是统计显着的,则拒绝H0⑥求⑦做lnY对X或lnX和的回归,如果的系数是统计显着的,则拒绝H14回归误差设定检验:RESETP177-P178①根据模型估计出Y值;②把的高次幂,,等纳入模型以获取残差和之间的系统关系;由于上图表明残差和估计的Y值之间可能存在曲线关系,因而考虑如下模型③令从以上模型中得到的为,从前一个方程得到的为,然后利用如下F检验判别从以上方程中增加的是否是统计显着的;④如果在所选的显着水平下计算的F值是统计显着的,则认为原始模型是错误设定的;第八章多重共线性:解释变量相关会有什么后果1、完全多重共线性P183-P185回归模型的某个解释变量可以写成其他解释变量的线性组合;设X2可以写成其他某些解释变量的线性组合,即:X 2=a3X3+a4X4…+akXk至少有一个ai≠0,i= 2,3,…k称存在完全多重共线性2、高度多重共线性P185-P187X2与其他解释变量高度共线性,即可以近似写成其他解释变量的线性组合X 2=a3X3+a4X4…+akXk+i至少有一个ai ≠0,i= 2, 3,…k, vi是随机误差项;3、产生多重共线的原因1时间序列解释变量受同一因素影响经济发展、政治事件、偶然事件、时间趋势经济变量的共同趋势2模型设立:解释变量中含有当期和滞后变量4、多重共线性的理论后果P187-P188OLS估计量仍然是最优无偏估计量1在近似共线性的情形下,OLS估计量仍然是无偏的;2近似共线性并未破坏OLS估计量的最小方差性;3即使在总体回归方程中变量X之间不是线性相关的,但在某个样本中,X变量之间可能线性相关;5、多重共线性的实际后果P188-P1891OLS估计量的方差和标准误较大;2置信区间变宽;3t值不显着;4R2值较高;5OLS估计量及其标准误对数据的微小变化非常敏感6回归系数符号有误;7难以评估各个解释变量对回归平方和ESS或者R2的贡献6、多重共线性的诊断P189-P1921观察回归结果R2较高,F很大,但t值显着的不多;多重共线性的经典特征R2较高,F检验拒绝零假设,但各变量的t检验表明,没有或少有变量系数是统计显着的;2简单相关系数法解释变量两两高度相关;变量相关系数比如超过,则可能存在较为严重的共线性;这一标准并不总是可靠,相关系数较低时,也有可能存在共线性3检查偏相关系数不一定可行4判定系数法辅助回归某个解释变量对其余的解释变量进行回归如果判定系数很大,F检验显着,即X与其他解释变量存在多重共线i5方差膨胀因子7、多重共线性的补救P195-P1981从模型中删除引起共线性的变量①找出引起多重共线性的解释变量,将它排除出去最为简单的克服多重共线性问题的方法;②逐步回归法i. 逐步引入如果拟合优度变化显着—新引入的变量是一个独立解释变量;选择解释变量的原则:a. 调整的R2增加,每个∣t∣增加,则保留引入变量;b. 调整的R2下降,每个∣t∣变化不大,则删除引入变量;ii. 逐步剔除①排除变量时应该注意:i. 由实际经济分析确定变量的相对重要性,删除不太重要的变量;ii. 如果删除变量不当,会导致模型设定误差;2获取额外的数据或新的样本3重新考虑模型4先验信息5变量变换将原模型变换为差分模型可有效消除存在于原模型中的多重共线性一般,增量之间的线性关系远比总量之间的线性关系弱得多; 第九章异方差:如果误差方差不是常数会有什么后果1、异方差的定义随机误差项ui 的方差随着解释变量Xi的变化而变化,即:2、异方差的性质P205-P208OLS估计仍是线性无偏,但不具最小方差1线性性2无偏性3方差式1不具有最小方差,式2具有最小方差3、异方差性的后果P209-P210经典模型假定下,OLS估计量是最优线性无偏估计量BLUE;去掉同方差假定:1OLS估计量仍是线性的;2OLS估计量仍是无偏的;3OLS估计量不再具有最小方差性,即不再是最优有效估计量;4OLS估计量的方差通常是有偏的;5偏差的产生是由于,即不再是真实σ2的无偏估计量;6建立在t分布和F分布之上的置信区间和假设检验是不可靠的,如果沿用传统的检验方法,可能得出错误的结论;4、异方差的检验1图形检验P211-P212e2对一个或多个解释变量或Y的拟合值作图; 2帕克检验Park TestP212-P214假定误差方差与解释变量相关形式:步骤:①做OLS估计求平方,取对数②对ei③做辅助回归④检验零假设:B=023格莱泽检验Glejser TestP214假定误差方差与解释变量相关形式:步骤:①做OLS估计②对e求绝对值i③做辅助回归方程=0④检验零假设:B24怀特检验White TestP215-P216和交叉乘积呈线性关系假定误差方差与X、X2步骤:①OLS估计得残差②做辅助回归③检验统计量5、异方差的修正1加权最小二乘法WLSWeighted Least SquaresP217-P222①方差已知原模型:加权后的模型:误差项的方差为:1加权的权数:②方差未知成比例:i. 误差方差与Xi模型变换:ii. 误差方差与Xi2成比例:模型变换:2怀特异方差校正的标准误P222-P223①如果存在异方差,则对于通过OLS得到的估计量不能进行t检验和F检验;②怀特估计方法③大样本情形下回归标准差和回归系数的一致估计量,可以进行t检验和F检验;第十章自相关:如果误差项相关会有什么结果1、自相关的定义P233按时间或空间顺序排列的观察值之间存在的相关关系;2、自相关的性质P233-P2341若古典线性回归模型中误差项ui不存在自相关Covui,uj=Eui,uj=0,i≠j2若误差项之间存在着依赖关系—ui存在自相关Covui,uj=Eui,uj≠0,i≠j3、产生自相关的原因P235-P2361惯性2设定偏误①模型中遗漏了重要变量;②模型选择了错误的函数形式;i. 从不正确的模型中得到的残差会呈现自相关;ii. 检验是否由于模型设定错误而导致残差自相关的方法:3蛛网现象4数据的加工①在用到季度数据的时间序列回归中,这些数据通常来自于每月数据;这种数据加工方式减弱了每月数据的波动而引进数据的匀滑性;②用季度数据描绘的图形要比用月度数据看来匀滑得多;这种匀滑性本身可能使扰动项中出现自相关;③内插法或外推法:用这些方法加工得到的数据都会给数据带来原始数据没有的系统性,这种系统性可能会造成误差自相关;4、自相关的后果P236-P2371OLS估计得到的仍为线性、无偏估计;2OLS估计不再具有有效性;3OLS估计量的方差有偏:低估了估计量的标准差;4通常所用的t检验和F检验是不可靠的;5计算得到的误差方差是真实σ2的无偏估计量,并且很有可能低估了真实的σ2;6通常计算的R2不能测度真实的R27通常计算的预测方差和标准误也是无效的5、自相关的诊断1图形法—时序图P237-P239①误差u并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着t几个正,则呈正自相关;②扰动项的估计值呈循环型,而是相继若干个正的以后跟着几个负的,表明存在正自相关;③扰动项的估计值呈锯齿型一个正接一个负,随时间逐次改变符号,表明存在负自相关;2检验P239-P242①定义值d值近似1 =-1完全负相关d=42 =0无自相关d=23 =1完全正相关d=0②DW检验的判断准则6、自相关的修正ρ的估计主要方法1ρ=1:一阶差分方法P244假定误差项之间完全正相关 Y t = α+βX t +u tu t = u t-1+tY t - Y t-1= βX t -X t-1+t2从DW 统计量中估计ρP244-P245 3从OLS 残差e t 中估计Cochrane-OrcuttP245-P246①e t = e t-1+t②利用OLS 残差,得的估计量 ③迭代,得的收敛值。

计量经济学复习要点

计量经济学复习要点
单整
趋势平稳与差分平稳
协整的概念
协整的检验
误差修正模型
Eviews回归结果界面解释表
英文名称
中文名称
常用计算公式
常用相互关系和判断准则
Variable
变量
Coefficient
系数
标准差
一般是绝对值越小越好
t-statistic
T检验统计量
绝对值大于2时可粗略判断系数通过t检验
Prob
T统计量的P值
第三章习题:1、2、3、4、5、6、7、8、9、10、11、12、13
第四章习题:2、5、6、8、9、10
第五章习题:1、2、3、5、6
第八章习题:1、2、5、6、7、8
1、判断下列表达式是否正确
2、给定一元线性回归模型:
(1)叙述模型的基本假定;
(2)写出参数 和 的最小二乘估计公式;
(3)说明满足基本假定的最小二乘估计量的统计性质;
(1)
⑴写出长期均衡方程的理论形式;
⑵写出误差修正项ecm的理论形式;
⑶写出误差修正模型的理论形式;
⑷指出误差修正模型中每个待估参数的经济意义。
7、简述异方差对下列各项有何影响:(1)OLS估计量及其方差;(2)置信区间;(3)显着性t检验和F检验的使用。
8、假设某研究使用250名男性和280名女性工人的工资(Wage)数据估计出如下OLS回归:
计量经济学复习要点
计量经济学复习要点
参考教材:李子奈潘文卿《计量经济学》
数据类型:截面、时间序列、面板
第二章简单线性回归
回归分析的基本概念,常用术语
现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

计量经济学知识点(超全版)

计量经济学知识点(超全版)

1.经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。

(1分)3.被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。

计量经济学复习知识要点

计量经济学复习知识要点

第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。

计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。

第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。

经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。

统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。

数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。

计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。

因此计量经济学是经济理论、统计学和数学三者的统一。

二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。

2、按研究内容分为理论计量经济学和应用计量经济学。

理论计量经济学的核心内容是参数估计和模型检验。

应用计量经济学的核心内容是模型设定和模型应用。

第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。

2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。

3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。

它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。

4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。

计量经济学知识点汇总

计量经济学知识点汇总

计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。

计量经济学复习资料(重要)

计量经济学复习资料(重要)

一、回归分析的基本方法和原理1、计量经济学的建模分析步骤和要点 (1) 确定模型所包含的变量 (2) 确定模型的数学模式(3) 拟定理论模型中待估参数的理论期望值 二、二、回归分析的含义?回归分析的含义? 回归分析基本概念回归分析基本概念• 变量间的相互关系变量间的相互关系(1)函数关系)函数关系 (2)相关关系)相关关系• 相关分析与回归分析相关分析与回归分析相关分析:主要研究随机变量间的相关形式及相关程度。

相关分析:主要研究随机变量间的相关形式及相关程度。

回归分析:研究存在因果关系的变量间的依存关系。

回归分析:研究存在因果关系的变量间的依存关系。

回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值前一个变量称为被解释变量或因变量,后一个变量成为解释变量或自变量。

三、总体回归函数三、总体回归函数• 在给定解释变量X 的条件下,被解释变量Y 的期望轨迹,称为总体回归线,或总体回归曲线。

其相应的函数则称为总体回归函数回归曲线。

其相应的函数则称为总体回归函数 • 函数一般式:函数一般式: E(Y/X)=f (X )• 总体回归函数表明被解释变量Y 的平均状态随解释变量X 变化的规律。

变化的规律。

• 线性总体回归函数:线性总体回归函数: E(Y/X)=β0+β1x • 总体回归函数引入随机干扰项,总体回归函数引入随机干扰项,则变成计量经济学模型,则变成计量经济学模型,则变成计量经济学模型,也称为总体回归模型。

也称为总体回归模型。

也称为总体回归模型。

即:即:• Y=β0+β1x +μ 四、样本回归函数四、样本回归函数• 由于总体回归函数未知,通过从抽样,得到总体的样本,再以样本的信息来估计总体回归函数。

体回归函数。

• 以样本的资料反映总体的情况,所形成的散点连线,称为样本回归线,其函数形式则称为样本回归函数则称为样本回归函数样本回归函数的随机形式:样本回归函数的随机形式:也称样本回归函数也称样本回归函数 e 的含义的含义• e 为随机干扰项μ的估计值,称为残差项。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R²的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R²=0时,F=0;当R²越大时,F值也越大;当R²=1时,F→∞。

计量经济学复习重点

计量经济学复习重点

计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5。

模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)—-要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量) 注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本次考试题型:1、单项选择题(每小题2分,共20分)2、判断题(每小题1分,共10分)3、简答题(每小题4分,共20分)4、证明题(每小题10分,共10分)5、计算题(每小题10分,共10分)6、分析应用题(每小题10分,共30分)本次考试主要涉及的知识点:第一章1、计量经济学的性质(三门学科的复合体)统计学、经济理论、数学2、计量经济学的建模四步骤(注意先后顺序)一、理论模型的设计1、确定模型所包含的变量2、确定模型的数学形式3、拟定理论模型中待估参数的理论期望值二、样本数据的收集(最为重要)三、模型参数的估计四、模型的检验3、计量经济学的三种常用数据类型时间序列数据、截面数据和虚变量数据时间序列数据:一批按照时间先后排列的统计数据截面数据:一批发生在同一时间截面上的调查数据虚变量数据也称二进制数据,一般取0或14、计量经济学模型必须通过的四级检验1、经济意义检验(具有一票否决权)2、统计检验3、计量经济学检验4、模型预测检验5、计量经济学检验主要包括哪些检验随机干扰项的序列相关性检验异方差性检验解释变量的多重共线性检验6、计量经济学模型有哪些作用一、结构分析经济学中的结构分析就是对经济现象中变量之间相互关系的研究二、经济预测三、政策评价四、检验与发展经济理论第二章1、回归分析的实质通过后者(解释变量X)的已知或设定值,去估计和(或)预测前者(被解释变量Y)的(总体)均值2、为何要引入随机干扰项(P27)3、理解OLS的前四个假设4、一元模型的计算5、理解OLS估计量的性质(与异方差性、序列相关性、多重共线性导致的后果相联系)(P36)在经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。

线性性、无偏性、有效性(最小方差性)6、无偏性的证明过程(P36)7、为何要进行拟合优度检验?判决系数的表达形式判决系数:R^2=ESS/TSS=1-RSS/TSS8、TSS、RSS、ESS三者之间的关系TSS:总离差平方和RSS:残差平方和ESS:回归平方和TSS=RSS+ESS第三章1、多元模型与一元模型的主要区别2、F统计量的表达形式(P68)3、多元模型t统计量的表达形式(P70)4、一元和多元模型随机干扰项μ方差的估计量的表达形式一元(P39)多元(P61)5、利用eviews软件求:(1)回归方程(2)可决系数(判定系数)和调整后的可决系数(3)方程的显著性检验(4)变量的显著性检验(5)是否存在自相关第四章1、什么是异方差性,检验的总体思路;检验的常见方法;容易产生异方差性的数据2、异方差性的后果(P96)3、什么是序列相关性、检验的总体思路;检验的常见方法;容易产生序列相关性的数据4、序列相关性的后果5、D-W统计量的范围;三个临界点的含义;(P109)6、广义差分法和一阶差分法的联系和区别7、什么是多重共线性?检验的总体思路;多重共线性的后果8、什么是随机解释变量问题?随机解释变量产生的后果如果存在一个或多个随机变量作为解释变量,则称原模型存在随机解释变量问题。

分三种情况:1、随机解释变量与随机干扰项独立——后果:得到的参数估计量仍然是无偏一致估计量2、随机解释变量与随机干扰项同期无关但异期相关——后果:得到的参数估计量有偏,但却是一致的3、3、随机变量与随机干扰项同期相关——后果:得到的参数估计量有偏且非一致第五章1、虚变量的设置原则(P145)每一定性变量所需的虚拟变量个数要比该定性变量的类别数少1。

第六章1、为什么要建立联立方程的计量经济学模型第七章1、生产函数是经验的产物(P218)2、广义、狭义、中性技术进步的含义(P221)广义:除了要素质量的提高外,还包括管理水平的提高等对产出量具有重要影响的因素,这些因素是独立于要素之外的。

狭义:仅指要素质量的提高中性:指劳动的产出弹性与资本的产出弹性同步增长3、弹性的定义及在经济分析中的作用4、区间估计的意义简答题复习重点:1、根据普通最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型的拟合优度问题?采用普通最小二乘估计方法,虽然保证了模型最好地拟合了样本观测值,但是,在一个特定的条件下做得最好的并不一定就是高质量的,普通最小二乘法所保证的的最好拟合,是同一个问题内部的比较,拟合优度检验结果所表示的优劣是不同问题之间的比较。

2、为什么计量经济学模型的理论方程中必须包含随机误差项?(P27)在总体回归函数中引入随机干扰项,主要有以下几方面的原因:1、代表未知的影响因素2、代表残缺数据3、代表众多细小影响因素5、代表模型设定误差6、变量的内在随机性3、OLS的前四个经典假设假设1:解释变量Xi是确定性变量,不是随机变量,而且在重复抽样中取固定值。

假设2:随机干扰项具有零均值,同方差,不序列相关性假设3:随机干扰项与解释变量之间不相关假设4:随机干扰项服从零均值,同方差,零协方差的正态分布4、多元线性回归模型与一元线性回归模型的主要联系和区别区别表现如下:1、解释变量的个数不同,2、模型的经典假设不同,多元线性回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关系”的假定,3、多元线性回归模型的参数估计式的表达更为复杂。

联系表现如下:1、两者参数估计的原理相同。

都包括模型的基本假定,模型的估计,模型的检验,模型在预测方面的应用。

2、两者都存在两种表达方式。

随机表达式,确定表达式,3、模型的经典假设有相同的地方。

解释变量与随机干扰项不相关,解释变量非随机,随机干扰性具有零均值、同方差及不序列相关性。

5、什么是异方差性,检验的总体思路;检验的常见方法;容易产生异方差性的数据1、异方差性:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

2、检验的总体思路:检验异方差性,也就是检验随机干扰项的方差与解释变量观测值之间的相关性(P97)3、检验的常见方法:图示检验法、帕克检验与戈里瑟检验、G-Q检验、怀特检验(P95) 4、数据:截面数据。

原因在于在不同样本点上解释变量以外的其他因素的差异较大。

6、异方差性的后果(P96)1、参数估计量非有效(其普通最小二乘法参数估计量仍具有线性性、无偏性,但不具有有效性)2、变量的显著性检验失去意义3、模型的预测失效7、什么是序列相关性、检验的总体思路;检验的常见方法;容易产生序列相关性的数据1、序列相关性:如果模型的随机干扰性违背了相互独立的基本假设,即模型的随机干扰项不再相互独立或相互相关,就称为存在序列相关性2、检验的总体思路:首先采用普通最小二乘法估计模型,以求得随机干扰项的“近似估计量”,然后,通过分析这些“近似估计量”之间的相关性以达到判断随机干扰性是否具有序列相关性的目的。

3、检验的常见方法:图示法、回归检验法、杜宾-瓦森(Durbin-Watson)检验、拉格朗日乘数检验4、数据:时间序列数据。

原因在于:在不同样本点上解释变量以外的其他因素在时间上的连续性,带来它们对被解释变量的影响的连续性。

8、序列相关性的后果1、参数估计量非有效(其OLS参数估计量仍然具有线性无偏性,但不具有有效性)2、变量的显著性检验失去意义3、模型的预测失效9、D-W统计量的范围;三个临界点的含义;(P109)D.W.范围【0,4】D.W.=0,完全一阶正相关D.W.=4,完全一阶负相关D.W.=2,完全不相关10、广义差分法和一阶差分法的联系和区别11、什么是多重共线性?检验的总体思路;多重共线性的后果多重共线性:如果某两个或多个解释变量之间出现了相关性,则称为存在多重共线性检验的总体思路:1、检验多重共线性是否存在2、估计多重共线性的范围多重共线性的后果:1、完全共线性下参数估计量不存在2、近似共线性下普通最小二乘法参数估计量的方差变大3、参数估计量经济含义不合理(出现这种情况,首先怀疑是否存在多重共线性)4、变量的显著性检验和模型的预测功能失去意义12、为什么要建立联立方程计量经济学模型?经济现象是极为复杂的,其中诸原因之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚。

所以,与单方程适用于单一经济现象的研究相比,联立方程计量经济学模型适用于描述复杂的经济现象。

13、弹性分析的意义和在经济分析中的作用是什么?弹性是某一变量的相对变化引起另一变量的相对变化的度量,即变量的变化率之比。

在经济研究中,除了需要研究经济系统中变量绝对量之间的关系,还要掌握变量的相对变化所带来的相互影响,以掌握经济活动的数量规律和有效地控制经济系统。

弹性分析是计量经济学模型结构分析的三个主要分析方法之一。

14、请说明区间估计的意义?区间估计是指寻找一个以未知参数的点估计值为中心的区间,以使真实得未知参数以一定的概率落入该区间内。

区间估计是用来考察参数的点估计值与真实参数间的“接近”程度的。

显然,如果找到的区间越窄,同时真实参数落入区间的概率越大,则说明点估计值越“接近”真实的未知参数。

证明题复习重点:第二章所有曾经在课堂上证明过的问题!计算题复习重点:一元线性回归模型的参数估计应用题复习重点:利用eviews软件分析放宽假设的经典模型。

相关文档
最新文档