不等式综合复习试题(3)2014,4,30
最新版初中七年级数学题库 第11章 一元一次不等式单元测试题
第11章一元一次不等式组(满分150分 时间120分钟) 姓名一、选择题(每题3分,共36分)1、已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A . a +c <b +cB . a -c >b -cC . ac <bcD . ac >bc2、不等式组11x x ≤⎧⎨>-⎩的解集是( ) A . x >-1 B . x ≤1 C . x <-1 D . -1<x ≤13、若不等式00x b x a -<⎧⎨+>⎩的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24、下列说法中,错误..的是( ) A . 不等式2<x 的正整数解中有一个;B . 2-是不等式012<-x 的一个解C . 不等式93>-x 的解集是3->x ;D . 不等式10<x 的整数解有无数个5、在数轴上与原点的距离小于8的点对应的x 满足( )A .x <8B .x >8C .<-8或x >8D .-8<x <86、已知(x +3)2+m y x ++3=0中,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m >-9D .m <-97、已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x -y <0,则k 的取值范围是 ( )A .-1<k <-12 B .0<k <12 C .0<k <1 D .12<k <1 8、若15233m m +>⎧<⎪⎨-⎪⎩,化简│m +2│-│1-m │+│m │得 ( ) A .m -3 B .m +3 C .3m +1 D .m +19、若不等式组1+240x a x >⎧⎨-⎩≤有解,则a 的取值范围是( ) A .a ≤3 B .a <3 C .a <2 D .a ≤210、某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A .5B .6C .7D .811、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人12、某大型超市从生产基地购进一批大樱桃,运输过程中质量损失10%,假设超市不计其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高 ( )A . 30% B .33.3% C . 33.4% D .40%二、填空题(每空3分,共45分)13、不等式x 41-≤-8的解集是___________ 14、当a 时,不等式(a —1)x >1的解集是x <11-a 。
精品 九年级数学 方程与不等式综合复习
方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
解方程:求方程的解或方判断方程无解的过程叫做解方程。
一元一次方程一元一次方程的标准形式:ax+b=0方程与不等式复习一元一次方程 二元一次方程(组)一元一次不等式(组)例1.若12x m =是方程21423x m x m---=的解,求代数式 ()211428142m m m ⎛⎫-+--- ⎪⎝⎭的值.例2.解下列方程(组):(1)1)23(2151=--x x (2)⎩⎨⎧=-=+52332y x y x例3.解下列一元一次不等式,并把解集在数轴上表示出来。
(1)24)2(28-<+-x x ; (2)312211--≥--x x例4.求不等式组:⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x 的非负整数解.例5.已知关于x 的不等式a x a ->-10)2(的解集是x>3,求a 的值. 方程组的解:方程组中各方程的公共解叫做方程组的解。
解方程组:求方程组的解或判断方程组无解的过程叫做解方程组二元一次方程组: 一般形式:⎨⎧=+=+222111c y b x a c y b x a 12121,,,,,c c b b a a例6.某部队奉命派甲连跑步前往90千米外的A 地,1小时45分后,因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快28千米,恰好在全程的31处追上甲连.求乙连的行进速度及追上甲连的时间?例7.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A 度,那么这个月这户只需交 10 元用电费,如果超过A 度,则这个月除了仍要交10元用电费外,超过部分还要按每度0.5元交费.①该厂某户居民2月份用电90度,超过了规定的A 度,则超过部分应该交电费多少元(用A 表示)? ②下表是这户居民3月、4月的用电情况和交费情况:根据上表数据,求电厂规定A 度为多少?例8.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元,甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少? 列方程(组)解应用题的一般步骤审题: 设未知数; 不等式与不等式的性质 不等式:表示不等关系的式子。
高考数学复习不等式问题的题型与方法试题
卜人入州八九几市潮王学校高考数学复习不等式问题的题型与方法一.复习目的:1.在纯熟掌握一元一次不等式(组)、一元二次不等式的解法根底上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,进步学生分析问题、解决问题的才能以及计算才能;2.掌握解不等式的根本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵敏的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等根本数学思想方法证明不等式的才能;5.能较灵敏的应用不等式的根本知识、根本方法,解决有关不等式的问题.6.通过不等式的根本知识、根本方法在代数、三角函数、数列、复数、立体几何、解析几何等各局部知识中的应用,深化数学知识间的融汇贯穿,从而进步分析问题解决问题的才能.在应用不等式的根本知识、方法、思想解决问题的过程中,进步学生数学素质及创新意识..二.考试要求:1.理解不等式的性质及其证明。
2.掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
三.教学过程:〔Ⅰ〕根底知识详析1.解不等式的核心问题是不等式的同解变形,不等式的性质那么是不等式变形的理论根据,方2.整式不等式(主要是一次、二次不等式)的解法是解不等式的根底,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的根本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解亲密相关,要擅长把它们有机地联络起来,互相转化和互相变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或者根本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类HY更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最根本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵敏多样,内容丰富、技巧性较强,这对开展分析综合才能、正逆思维等,将会起到很好的促进作用.在证明不等式前,要根据题设和待证不等式的构造特点、内在联络,选择适当的证明方法.通过等式或者不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因〞,后者是“由因导果〞,为沟通联络的途径,证明时往往结合使用分析综合法,两面夹击,相辅相成,到达欲证的目的.6.证明不等式的方法灵敏多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的根本方法.要根据题设、题断的构造特点、内在联络,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7.不等式这局部知识,浸透在数学各个分支中,有着非常广泛的应用.因此不等式应用问题表达了一定的综合性、灵敏多样性,这对同学们将所学数学各局部知识融会贯穿,起到了很好的促进作用.在解决问题时,要根据题设、题断的构造特点、内在联络、选择适当的解决方案,最终归结为不等式的求解或者证明.不等式的应用范围非常广泛,它始终贯串在整个数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域确实定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着亲密的联络,许多问题,最终都可归结为不等式的求解或者证明。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)
人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
高三数学函数、三角函数、不等式综合复习
函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。
会证明函数的奇偶性,周期性和单调性。
会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。
教学重点:综合应用函数知识和分析问题及解决问题的能力。
教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。
解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。
2.已知函数的反函数为,。
(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。
解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。
3.已知函数是奇函数,当时有最小值2,且。
(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。
若存在,求出这两点的坐标,若不存在说明理由。
解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。
∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。
4.设函数的定义域为R,对任意实数x1,x2恒有,且,。
(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。
解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。
由,∴,即(3)设,则∵且在上∴,,即时恒有。
设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。
5.已知函数,x∈R。
不等式_分式计算应用题综合复习
1不等式、分式计算应用题综合复习卷一、选择题1. (2010 山东省泰安市) 若关于x 的不等式0721x m x -<⎧⎨-⎩,≤的整数解共有4个,则m 的取值范围是( ) A .67m << B .67m <≤ C .67m ≤≤ D.67m <≤2. (2010 湖南省益阳市) 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 3. (2010 黑龙江省大庆市) 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( )A .4804804(150%)x x -=+B .4804804(150%)x x -=-C .4804804(150%)x x-=+ D .4804804(150%)x x -=- 4. (2011 辽宁省沈阳市) 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( ) A .253010(180%)60x x -=+ B .253010(180%)x x -=+ C .302510(180%)60x x -=+ D .302510(180%)x x-=+5. (2011 山东省威海市) 如果不等式组()2131x x x m ->-⎧⎪⎨<⎪⎩,的解集是2x <,那么m 的取值范围是( ) A .2m = B .2m > C .2m < D .2m ≥ 6. (2011 黑龙江省绥化市) 分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为( ) A .0和3 B .1 C .1和2- D .37. (2011 重庆市綦江县) 在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( ) A .1050x 10000x 10000=+- B .10x 1000050x 10000=-- C .1050x 10000x 10000=-- D .10x1000050x 10000=-+二、填空题8. (2011 湖北省襄阳市) 关于x 的分式方程3+=111m x x--的解为正数,则m 的取值范围是 .2三、计算题9. (2010 浙江省嘉兴市) (1)解不等式:423+>-x x ; (2)解方程:211=-++xx x x .10. (2011 宁夏) 解方程:31.12x x x -=-+ 11. (2011 宁夏) 解不等式组7132832x x x -⎧-⎪⎪⎨+⎪->⎪⎩≤,.12. (2011佛山) 解不等式组1(1)2(31)5(2)x x x x ⎧-<⎪⎨⎪---⎩, ≥. 13. (2011 山东) 解方程:233011x x x +-=--.14. (2011 四川省成都市) 解不等式组:20312123x x x +⎧⎪-+⎨<⎪⎩≥,.并写出该不等式组的最小整数解.315. (2011 四川) 求不等式组201211233x x x -⎧⎪--⎨-<⎪⎩≥的整数集. 16. (2011 四川) 解方程:2212525x x x -=-+.17. (2011昆明) 解方程:3122x x +=-- 18. (2011 湖北)解关于x 的方程:2131x x x =++-.四、应用题19. (2011 山东省聊城市) 徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?20. (2011 广东省清远市) 某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元..,今年销售额只有4万元... (1)问去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元..且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台2000元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?21. (2011 广西桂林市) 某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示)(2)该敬老院至少有多少名老人?最多有多少名老人?22. (2011 广西南宁市) 南宁市五象新区有长为24000米的新建道路要铺上沥青.(1)写出铺路所需时间t(单位:天)与铺路速度v(单位:米/天)的函数关系式;(2)负责铺路的工程公司现有的铺路机每天最多能铺路400米,预计最快多少天可以完成铺路任务?(3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机,现有甲、乙两种机器可供选择,其中每种机器的价格和每台机器日铺路的能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原预计的时间提前10天完成任务.问:有哪几种购买方案?请你通过计算说明选择哪种方案所用资金最少.4。
中考数学总复习 第二章 方程与不等式综合测试题(含答案)
方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。
自学初中数学资料 不等式综合复习(资料附答案)
自学资料一、不等式综合复习【错题精练】例1.已知关于x的不等式ax<b的解为x>﹣2,则下列关于x的不等式中,解为x<2的是()A. ax+2<﹣b+2B. ﹣ax﹣1<b﹣1C. ax>bD.【解答】由已知不等式的解集确定出a为负数,确定出所求不等式即可.解:∵关于x的不等式ax<b的解为x>﹣2,∴a<0,则解为x<2的是﹣ax﹣1<b﹣1,故选:B.【答案】B例2.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 1<a≤7B. a≤7C. a<1或a≥7D. a=7【解答】求出不等式2x<4的解,求出不等式(a﹣1)x<a+5的解集,得出关于a的不等式,求出a即可.本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于a的不等式是解此题的关键.解:解不等式2x<4得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,∴a﹣1>0,x,∴≥2,﹣2≥0,≥0,≥0,∵a﹣1>0,∴解得:1<a≤7,故选:A.【答案】A例3.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是__________ .第2页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】1<z<11例4.若不等式x<a只有5个正整数解,则a的取值范围.【答案】5<a≤6.例5.定义新运算:对于任意实数a,b都有:a⊕b=a(a−b)+1.如:2⊕5=2×(2﹣5)+1=﹣5,那么不等式3⊕x<13的解集为.【答案】x>−1.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为..【答案】1132.我们把称作二阶行列式,规定他的运算法则为,如:,如果有,则x__________ .第3页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】解:列不等式得:2x﹣(3﹣x)>0,整理得:2x﹣3+x>0,解得:x>1.故答案为:x>1.【答案】x>13.不等式组无解,则a的取值范围是__________.【解答】二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF的度数为()A. 45°∠AB. 90∠AC. 90°﹣∠AD. 180﹣∠A【解答】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,第4页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=90°﹣∠A.故选:B.【答案】B例2.如图∠BAC的平分线AD与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=22,AC=10,则BE=.【答案】6.例3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC的度数.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45∘,又∵AB=AC,∴∠ABC=12(180∘−∠BAC)=12(180∘−45∘)=67.5∘,∴∠CBE=∠ABC−∠ABE=67.5∘−45∘=22.5∘,∵AB=AC,AF⊥BC,∴BF=CF,第5页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴BF=EF,∴∠BEF=∠CBE=22.5∘,∴∠EFC=∠BEF+∠CBE=22.5∘+22.5∘=45∘.【答案】45°.例4.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55∘,∠BCD=155∘,则∠BPD的度数为.【答案】130°.【举一反三】1.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC第6页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=180∘−12=90∘−1∠A2(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D(∠A+2∠1),∠3=∠4,∴∠1=∠2,∠5=12在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.【答案】略.2.如图,△ABC中,∠ACB=90∘,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22∘,则∠BDC等于()A. 44°;B. 60°;C. 67°;D. 77°.【答案】C3.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60∘到△CBP′,已知∠AP′B=150∘,P′A:P′C=2:3,求PB:P′A.图一图二第7页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页 共25页 自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞 非学科培训【解答】、(1)证明:在△ABC 和△BAD 中,{AC =BD∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ),∴∠C =∠D ,在△ACE 和△BDE 中,{∠AEC =∠BED∠C =∠D AC =BD,∴△ACE ≌△BDE (AAS ),∴AE =BE ;(2)解:①四边形ACBF 为平行四边形,理由如下:由(1)得AE =BE ,∴∠EAB =∠EBA ,∵△ABF 与△ABD 关于直线AB 对称,∴∠EAB =∠BAF 且AD =AF ,∴∠EBA =∠BAF ,又∵△ABC ≌△BAD ,∴BC =AD ,∴BC =AF ,∴四边形ACBF 为平行四边形;②由题意得∠DAB =∠FAB =30∘,∴∠DAF =60∘,过E 作EG ⊥AF 于G ,∵AE =5,DE =3,∴AD =8,∴AF =8,AG =52,GE =5√32,∴GF =112, ∴EF =√EG 2+BF 2=7.【答案】(1)略;(2)平行四边形;7.例2.如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A. ①②③;B. ①②④;C. ①③④;D. ③④⑤.【答案】C例3.在△ABC中,AB=AC,∠BAC=90∘,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90∘.求证:△ABE≌△ACF;(2)在(1)的条件下,求证:CF⊥BD;(3)由(1)我们知道∠AFB=45∘,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘∴∠BAE=∠CAF在△ABE和△ACF中第10页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训{AB =AC∠BAE =∠CAF AE =AF∴△ABE ≌△ACF (SAS )(2)证明: ∵∠BAC =90∘∴∠ABE +∠BDA =90∘,由(1)得△ABE ≌△ACF∴∠ABE =∠ACF∴∠BDA +∠ACF =90∘又∵∠BDA =∠CDF∴∠CDF +∠ACF =90∘∴∠BFC =90∘∴CF ⊥BD(3)解:∠AFB =45∘不变化,理由如下:点A 作AF 的垂线交BM 于点E ,∵CF ⊥BD∴∠BAC =90∘∴∠ABD +∠BDA =90∘同理∠ACF +∠CDF =90∘∵∠CDF =∠ADB∴∠ABD =∠ACF同(1)理得∠BAE =∠CAF在△ABE 和△ACF 中{∠BAE =∠CAFAB =AC ∠ABD =ACF∴△ABE ≌△ACF (ASA )∴AE =AF∴△AEF 是等腰直角三角形∴∠AFB =45∘.【答案】(1)略;(2)略;(3)∠AFB =45∘不变化,理由:略.【举一反三】1.在△ABC 中,AB =AC ,∠BAC =90∘,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE =AF ,∠EAF =90∘.求证:△ABE ≌△ACF ;(2)在(1)的条件下,求证:CF ⊥BD ;(3)由(1)我们知道∠AFB =45∘,如图2,当点D 的位置发生变化时,过点C 作CF ⊥BD 于F ,连接AF .那么∠AFB 的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘,∴∠BAE=∠CAF,在△ABE和△ACF中{AB=AC∠BAE=∠CAFAE=AF∴△ABE≌△ACF(SAS);(2)证明:∵∠BAC=90∘,∴∠ABE+∠BDA=90∘,由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90∘,又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90∘,∴∠BFC=90∘,∴CF⊥BD;(3)解:∠AFB=45∘不变化,理由如下:过点A作AF的垂线交BM于点E,∵CF⊥BD,∴∠BAC=90∘,∴∠ABD+∠BDA=90∘,同理:∠ACF+∠CDF=90∘,∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得:∠BAE=∠CAF,在△ABE和△ACF中{∠BAE=∠CAF AB=AC∠ABD=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45∘.【答案】略.2.如图,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90∘,∠ADB=90∘,又∵E为AB的中点,∴CE=12AB,DE=12AB,∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,E为AB的中点,∴DE⊥AB,已知EF=3,DE=4,∴DF=5,过点E作EH⊥CD,∵∠FED=90∘,EH⊥DF,∴EH=EF⋅EDDF =125,∴DH=√DE2−EH2=165,∵△ECD是等腰三角形,∴CD=2DH=225.【答案】(1)略;(2)225.3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AE=AF;(2)若AB+AC=16,S△ABC=24,∠EDF=120∘,求AD的长.【解答】(1)证明:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90∘,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF;(2)解:∵△ADE≌△ADF,∴DE=DF,∴S△ABC=12⋅AB⋅DE+12⋅AC⋅DF=12⋅DE(AB+AC)=24,∵AB+AC=16,∴DE=3,∵∠ADE=∠ADF=60∘,∴∠DAE=30∘,∴AD=2DE=6.【答案】(1)略;(2)6.4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90∘,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS);(2)解:BD=CE,BD⊥CE,理由如下:由(1)知:△BAD≌△CAE,∴BD=CE,∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45∘,∴∠ACE+∠DBC=45∘,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90∘,则BD⊥CE.【答案】(1)略;(2)BD=CE,BD⊥CE.5.如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图1中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.(2)将图1中的△OAB绕点O顺时针旋转90∘角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.【解答】(1)解:在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;(2)解:(1)中结论仍成立;证明如下:如图延长CA交BD于点E,∵等腰直角三角形OAB和OCD,∴OA=OB,OC=OD.∵AC2=AO2+CO2,BD2=OD2+OB2,∴AC=BD.∴△DOB≌△COA(SSS).∴∠CAO=∠DBO,∠ACO=∠BDO.∵∠ACO+∠CAO=90∘,∴∠ACO+∠DBO=90∘,则∠AEB=90∘,即直线AC,BD相交成90∘角.(3)解:结论仍成立;如图延长CA交OD于E,交BD于F,∵∠COD=∠AOB=90∘,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB.∵CO=OD,OA=OB,∴△COA≌△DOB(SAS).∴AC=BD,∠ACO=∠ODB.∵∠CEO=∠DEF,∴∠COE=∠EFD=90∘.∴AC⊥BD,即直线AC,BD相交成90∘角.【答案】见解答.四、全等三角形综合复习【错题精练】例1.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由:在△ABE和△DBC中,{AB=DB∠ABD=∠DBCEB=CB,∴△ABE≌△DBC(SAS).∴∠BAE=∠BDC.∴AE=CD.∵M,N分别是AE,CD的中点,∴AM=DN.在△ABM和△DBN中,{AB=DB∠BAM=∠BDNAM=BN,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∵∠ABD=∠DBC,∠ABD+∠DBC=180∘,∴∠ABD=∠ABM+∠MBE=90∘.∴∠MBE+∠DBN=90∘.即BM⊥BN.∴BM=BN,BM⊥BN.【答案】BM=BN,BM⊥BN.例2.如图,在Rt△ABC中,∠B=90∘,AC=10,∠C=30∘,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值)【解答】(1)解:∵DF⊥BC,∴∠CFD=90∘,在Rt△CDF中,∠CFD=90∘,∠C=30∘,CD=2t,∴DF=12CD=t.(2)证明:∵∠CFD=90∘,∠B=90∘,∴DF∥AB.∴∠AED=∠FDE.在△AED和△FDE中,{AE=FD=t∠AED=∠FDEED=DE,∴△AED≌△FDE(SAS).(3)解:∵△AED≌△FDE,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90∘−∠C=60∘,∴AD=AE.∵AE=t,AD=AC−CD=10−2t,∴t =10−2t .∴t =103. ∴当t 为103时,△DEF 是等边三角形.(4)解:∵△AED ≌△FDE ,∴当△DEF 为直角三角形时,△EDA 是直角三角形.当∠AED =90∘时,AD =2AE ,即10−2t =2t .解得:t =52;当∠ADE =90∘时,AE =2AD ,即t =2(10−2t ).解得:t =4.综上所述:当t 为52或4时,△DEF 为直角三角形.【答案】(1)t ;(2)略;(3)103;(4)52或4.【举一反三】1.如图,△ABC 中,∠ABC =45∘,AD ⊥BC 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与AD 相交于点G ,DF ⊥AB 于F ,交BE 于H .下列结论:①AD =BD ;②CE =BH ;③AE =12BG ;④CD +AG =BD .其中正确的序号是_________.【答案】①③④2.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90∘,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∵BM=BE.∴∠BME=45∘,∴∠AME=135∘.∵CF是外角平分线,∴∠DCF=45∘,∴∠ECF=135∘.∴∠AME=∠ECF.∵∠AEB+∠BAE=90∘,∠AEB+∠CEF=90∘,∴∠BAE=∠CEF∴△AME≌△BCF(ASA).∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE.∴∠N=∠PCE=45∘.四边形ABCD是正方形,∴AD∥BE.∴∠DAE=∠BEA.∴∠NAE=∠CEF.∴△ANE≌△ECF(ASA).∴AE=EF.3.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.【解答】(1)解:如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60∘,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形CF,BF=PB∴DF=CD=12∵P是AB的中点,即PB=1AB=3,2∴BF=3∴;(2)解:分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60∘,∴∠B=∠PMC=60∘,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM−DM=12BM−12CM=12(BM−CM)=12BC=3综上所述,线段ED的长度保持不变.【答案】(1);(2)线段ED的长度保持不变.1.已知(a-)<0,若b=2-a,则b的取值范围是__________.【解答】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2-a的范围即可得解.2.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是__________.【解答】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.3.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值是__________ .【解答】【答案】14.如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A. AD=CD;B. BE>CD;C. ∠BEC=∠BDC;D. BE平分∠CBD.【答案】D.5.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35;B. 45;C. 23.D. √32【答案】B.6.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D 面积的大小变化情况是()A. 一直减小;B. 一直不变;C. 先减小后增大;D. 先增大后减小.【答案】D7.如图,△ABC中,点D在AC的延长线上,E、F分别在边AC和AB上,∠BFE和∠BCD的平分线相交于点P,若∠B=80∘,∠FEC=70∘,则∠1−∠2=°;∠P=°.【答案】15,95.。
新人教(七下)第9章不等式与不等式组综合测试题AB卷(含参考答案)
ACDB第9章不等式与不等式组AB卷(含参考答案)第9章不等式与不等式组综合测试题A一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( )A. “x的3倍与1的和是正数”,表示为3x+1>0.B. “m的15与n的13的差是非负数”,表示为15m-13n≥0.C. “x与y的和不大于a的12”,表示为x+y≤12a.D. “a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④3.解不等式3x-32<2x-2中,出现错误的一步是( )A.6x-3<4x-4B.6x-4x<-4+3C.2x<-1D.x>-1 24.不等式12,39xx-<⎧⎨-≤⎩的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a中,正确的是( )A.①②B.①③C.②③D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( )A.2场B.3场C.4场D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2) 273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x Q 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元第9章不等式与不等式组综合检测题B一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米 B.7千米 C.8千米 D.15千米10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x x x x ->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x ≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x +≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1.20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.。
高考数学一轮复习《不等式的性质》综合复习练习题(含答案)
高考数学一轮复习《不等式的性质》综合复习练习题(含答案)一、单选题1.已知01,0a b <<<,则下列大小关系正确的是( ) A .21ab a b << B .21ab a b << C .21ab a b << D .21a b ab <<2.如果a bc c>,那么下列不等式中,一定成立的是( ) A .22ac bc >B .a b >C .a c b c ->-D .ac bc >3.如果,,,R a b c d ∈,则正确的是( ) A .若a >b ,则11a b <B .若a >b ,则22ac bc >C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd4.若a >b ,c >d ,则下列不等式中一定正确的是( ) A .a d b c +>+ B .a d b c ->- C .ad bc >D .a b d c> 5.若,R a b ∈,下列命题正确的是( ) A .若a b >,则22a b > B .R c ∈,若a b >,则22ac bc > C .若33a b ->-,则a b <D .0a ≠,0b ≠,若a b >,则11a b <6.已知,a b R ∈且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8]7.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( ) A .11a b<B .ac bc >C .()20a b c -≥D .b c ba c a+>+ 8.设a ,b ∈R ,0a b <<,则( ) A .22a b <B .b a a b> C .11a b a>- D .2ab b >9.若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤10.设0a b <<,给出下列四个结论:①a b ab +<;②23a b <;③22a b <;④a a b b <.其中正确的结论的序号为( ) A .①②B .①④C .②③④D .①②③11.若向量a 、b 、c 满足0a b c ++=,且222a b c <<,则a b ⋅、b c ⋅、a c ⋅中最大的是( ) A .a b ⋅B .b c ⋅C .a c ⋅D .不能确定12.已知0a b >>,且1a b +=,则下列结论正确的是( ) A .n 0()l a b ->B2C .a b b a >D .114a b+>二、填空题13.已知25,21a b a b ≤+≤-≤-≤,则3a b -的取值范围是___________.14.若2312a b <<<<,,则2a b -的取值范围是____. 15.已知12,03a b ≤≤≤≤,则2+a b 的取值范围为__________. 16.若23a -<<,12b <<,则2a b -的取值范围是____________.三、解答题17.比较(x -2)(x -4)与(x -1)(x -5)的大小关系.18.求解下列问题:(1)已知a ∈R ,比较()()37a a ++和()()46a a ++的大小; (2)已知0x y <<,比较1x与1y 的大小.19.(1)已知022a b <-<,123a b <+<,求a b +的取值范围; (2)已知x ,y ,z 都是正数,求证:222x y z xy xz yz ++≥++.20.对于四个正数m n p q 、、、,若满足mq np <,则称有序数对(),m n 是(),p q 的“下位序列”. (1)对于2、3、7、11,有序数对()3,11是()2,7的“下位序列”吗?请简单说明理由;(2)设a b a d 、、、均为正数,且(),a b 是(),c d 的“下位序列”,试判断a c a c b d b d ++、、之间的大小关系.21.请选择适当的方法证明. (1)已知0a >,0b >,且ab ,证明:3322a b a b ab +>+;(2)已知x ∈R ,22a x =-,23b x =-+,证明:a ,b 中至少有一个不小于0.22.已知关于x 的不等式2260ax x a -+<的解集为A ,集合(2,3)B =. (1)若A B ⊆,求实数a 的取值范围; (2)若B A ⊆,求实数a 的取值范围.23.求证下列问题:(1)已知a b c ,,均为正数,求证:bc ac aba b c++a b c ≥++. (2)已知0xy >,求证: 11x y>的充要条件是x y <.24.已知定义在R 的偶函数()f x 和奇函数()g x 满足:()()3x f x g x +=. (1)求(),()f x g x ,并证明:22()()(2)f x g x f x +=;(2)若存在1,12x ⎡⎤∈⎢⎥⎣⎦,使得不等式2(2)2()10f x ag x ++≤成立,求实数a 的取值范围。
集合与常用逻辑用语,不等式测试题
《集合、逻辑、不等式》测试(满分150分)姓名 得分一、选择题:每小题5分.1.已知全集U 和集合A ,B 如图所示,则(∁U A )∩B ( )A .{5,6}B .{3,5,6}C .{3}D .{0,4,5,6,7,8}2.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( ) A .4 B .3C .2D .13.已知M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为( )A .1B .-1C .1或-1D .0或1或-14.设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R }.若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2,或a ≥4}C .{a |a ≤0,或a ≥6}D .{a |2≤a ≤4}5.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为( )A .0B .6C .12D .186.已知命题p :∀x ∈R ,x >sin x ,则p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC . ∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x 7.已知关于x 的不等式x 2−ax −b <0的解集是{x ∣2<x <3},则a +b 的值是( )A.−11B.11C.−1D.18.已知a,b ∈R ,则“a +b <0”是“a ∣a ∣+b ∣b ∣<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二.多选题(每题5分)9.下列关系中正确的为() (1){};00∈(2)Ø⊆{0};(3){0,1}⊆{(0,1)};(4){(a,b )}={(b,a)};(5){a,b}={b,a}.A. (1)(2)B. (2)(3)C. (3)(4)D. (1)(5)10.下列命题中假命题是( )A.∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数三.填空题(每题5分)13.已知集合{0,-1,a2}={0,a,b},则a2021+b2021的值为()14.已知函数f(x)=x2−2x+3a,g(x)=2x−1,若对任意x1∈[0,3],总存在x2∈[2,3],使得∣f(x1)∣≤g(x2)成立,则实数a的值为__________.15.已知集合A={x|x2=1},B={x|mx=1},若B⊆A,则m的取值个数为()16.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.四.解答题17.(10分)设全集U=R,A={x|2512xx+<-},B={x|x2-5x≤0,且x≠5}.求(1)∁U(A∪B);(2)(∁U A)∩(∁U B).18.(12分)已知集合A={x|-2<x ≤5},(1)若B ⊆A,B={x|m+1≤x ≤2m-1},求实数m 的取值范围; (2)若A ⊆B,B={x|m-6≤x ≤2m-1},求实数m 的取值范围.19.(12分)已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围..(12分) 20.12 0,0, 24,..1x y x y x y >>+=++若求的最小值21.(12分)解不等式12x2-ax>a2(a∈R).。
方程组与不等式组单元检测试题
方程(组)与不等式(组)单元检测试题一、填空题深邃1.若代数式13x x +-的值等于13,则x = .2.方程x x 21)32(2-=-与方程)1(28+=-x a x (a 是常数)有相同的解,则a 的值是 .3.已知二元一次方程组 23,32x y x y +=-=的解满足21x my -=-,则m 的值为 .4.满足不等式)1(3x -≤)9(2+x 的负整数解是 .5.已知3=x 是方程122-=--x a x 的解,那么不等式31)52(<x a -的解集是 .6.若二次三项式5)1(222+++-k x k x 是一个完全平方式,则k = .7.已知方程0242=--k x x 的一个根为α,比另一根β小4,则βα、、k 的值分别为 .8.若a 、b 、c 是△ABC 的三条边长,那么方程04)(2=+++c x b a cx 的根的情况是 .9.某种商品经过两次降价,使价格降低了19%,则平均每次降价的百分数为 .10.若代数式224x x +的值为4,则x 的取值是 . 11.已知菱形ABCD 的边长是5,两条对角线交于O ,且AO 、BO 的长分别是关于x 的方03)12(22=++-+m x m x 的两根,则m 等于 .12.某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费. 如果某户居民在某月所交水费的平均价为每立方米1.5元,那么这户居民这个月共用了 立方米的水.二、选择题1.与方程232x x +=-有相同解的方程是( )A .2311x +=B .321x -+=C .213x -=D .211233x x +=-2.若2,1x y =-⎧⎨=⎩是方程组1,7ax by bx ay +=⎧⎨+=⎩的解,则))((b a b a -+的值为( )A .335-B .335C .16-D .16 3.如果关于x 的方程5432b x a x +=+的解不是负值,则a 、b 的关系是( )A .a >b 53B .b ≥a 35C .5a ≥3bD .5a =3b4.已知三角形两边长分别为4和7,第三边的长是方程066172=+-x x 的根,则第三边的长为( )A .6B .11C .6或11D .75.关于x 的方程20x mx n ++=的一个根为0,一个根不为0,则m ,n 满足( )A .0,0m n ==B .0,0m n ≠≠C .0,0m n ≠=D .0,0m n =≠6.以1- )A .2220x x --=B .2320x x +-=C .2220y y -+=D .2320y y -+=7.关于方程21233x x x -=---的解,下列判断正确的是( )A .有无数个解B .有两个解C .有唯一解D .无解8.要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么共有换法为( )A .4种B .6种C .8种D .10种9.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件成本价是( )A .120元B .125元C .135元D .140元10.某村有一块面积为58公顷的土地,现计划将其中的41土地开辟为茶园,其余的土地种粮食和蔬菜.已知种粮食的土地面积是种蔬菜的土地面积的4倍,若设种粮食x 公顷,种蔬菜y 公顷,则下列方程中正确的是( )A .4,1584x y x y =⎧⎪⎨+=-⎪⎩B .4,1584x y x y =⎧⎪⎨+=-⎪⎩C .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩D .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩ 三、解答题1.解方程(1)11()1322x x ++=; (2) 2)1(3122=+-+x x x x .2.解不等式(组),并把解集在数轴上表示出来.(1)231123x x ++->; (2)3(1)42,1.23x x x x ++⎧⎪-⎨⎪⎩>>3.关于x 的方程121532-=--+m x m x 的解是非负数,求m 的取值范围.4.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由5.(1)已知,如下表所示,方程1,方程2,方程3,……是按照一定规律排列的一列方程.解方程1,并将它的解填在表中的空白处:(2)若方程11=--bxxa(a>b)的解是61=x,102=x,求a、b的值.该方程是不是(1)中所给出的一列方程中一个方程?如果是,它是第几个方程?(3)请求出这列方程中的第n个方程和它的解,并验证所写出的解适合第n 个方程.6.为了庆祝我国足球队首次进入世界杯,曙光体育器材厂赠送一批足球给希望小学足球队,若足球队每人领一个,则少6个球,每两人领一个,则余6个球.问这批足球共有多少个?小明领到足球后十分高兴,就仔细的研究足球上的黑白块,结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块共有多少块?7.某校组织甲、乙两班学生参加“美化校园”的义务劳动.若甲班做2小时,乙班做3小时,则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作有乙班单独完成,则以班所用时间恰好比甲班单独完成全部工作的时间多1小时.问单独完成这项工作,甲、乙两班各需多少时间?8.个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元而不高于4000元,缴纳超过800元部分稿费的14%;(3)稿费超过4000元的,缴纳全部稿费的11%.张老师得到一笔稿费,缴纳个人所得税420元,问张老师的这笔稿费是多少元?9.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运,经与某物资公司联系,得知用A 型汽车若干辆刚好装完,用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B 型汽车比A 型汽车每辆车可多装15台,求A 、B 两种型号的汽车各装计算机多少台?(2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元,若运送这批计算机同时用这两种型号的汽车,其中B 型汽车比A 型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A 、B 两种型号的汽车各多少辆?运费多少元?方程(组)与不等式(组)单元检测试题答案:一.1.1; 2.74; 3.3; 4.-3,-2,-1; 5.19x <; 6.2; 7.0,4,0;8.有两个不相等的实数根;9.10%; 10. 11.-3; 12.32. 二.1.B ;2.C ;3.C ;4.A ;5.C ;6.A ;7.D ;8.B ;9.B ;10.D . 三.1.(1)x =1; (2)32,3221-=+=x x .2.(1)14x >-;(2)12<<x -.解集在数轴上表示略. 3.解:∵121532-=--+m x m x ,∴9411m x -=.∵x ≥0,∴9411m -≥0,即94m ≤.4.(1)k <41且k ≠0;(2)不存在.若存在,则由原方程两个实数根互为相反数可得:0122=--k k ,解得21=k .此时k 的值不满足△>0的条件,所以不存在这样的k 值.5.(1)3,4,8;(2)a =12,b =5;该方程是(1)中所给出的一列方程中的第4个方程;(3)第n 个方程为:1)1(1)2(2=+--+n x x n ,它的解为22,221+=+=n x n x .6.(1)设这批足球共有x 个,根据题意,得 )6(26-=+x x ,解得x =18.(2)设白皮共有x 块,则白皮共有6x 条边,因为每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边,所以5123⨯=x ,解得:20=x .7.解:设单独完成这项工作,甲班需要x 小时,乙班需要y 小时,根据题意,得: ⎪⎪⎩⎪⎪⎨⎧=++=+.112,2132y x x y x 整理得0892=+-x x .解得 1,821==x x ,∴8,12.x y =⎧⎨=⎩或1,2.x y =⎧⎨=-⎩(不合题意,舍去).答:单独完成这项工作,甲班需要8小时,乙班需要12小时.8.解:∵(4000-800)×14%=448>420.∴ 设张老师的这笔稿费为x 元,则800<x <4000.根据题意,得(x -800)×14%=420. 解得 x =3800.∴ 张老师的这笔稿费为3800元.9.(1)设A 型汽车每辆可装计算机x 台,则B 型汽车每辆可装计算机(x +15)台,根据题意得:11530270270+++=x x ,解得:90,4521-==x x (不合题意,舍去).∴A 型汽车每辆可装计算机45台, B 型汽车每辆可装计算机60台.(2)由(1)知,若单独用A 型汽车,需车6辆,运费为2100元;若单独用B 型汽车,需车5辆,运费为2000元.若按题设要求同时使用A 、B 两种型号的汽车运送,设需用 A 型汽车y 辆,则需B 型汽车(y +1)辆.根据题意,得不等式:)1(400350++y y <2000.解这个不等式得 y <1532.因汽车辆数为正整数,所以y =1或2.当y =1时,y +1=2,则45×1+60×2=165(台)<270(台),不合题意;当y =2时,y +1=3,则45×2+60×3=270,此时运费为1900元.方程思想在解决实际问题中的作用方程和方程组是解决实际问题的重要工具.在实际问题中,只要有等量关系存在,我们就可以用方程的思想加以解决.在我们的生活中,只要我们善于用数学知识去观察和分析问题,就能随时随地都看到方程的影子,体会到数学的价值.因此,近几年在各省市的中考试题中,考查学生用方程思想解决实际问题能力的试题都占到了相当大的比例.下面结合2004年中考试题进行说明.一、发生在自己身边的问题例1 (2004浙江绍兴中考题)初三(2)班的一个综合实践活动小组去A ,B 两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”期间的销售额.分析:本例考查学生从图表中搜集数据和运用方程解决实际问题的能力. 解:设A 、B 两个超市去年“五一节”期间的销售额分别为x 万元和y 万元,根据图表信息知,A 、B 两个超市今年 “五一节”期间的销售额分别为(1+15%)x 万元和(1+10%)y 万元,根据题意,得150,(115%)(110%)170.x y x y +=⎧⎨+++=⎩ 解得100,50.x y =⎧⎨=⎩∴(1+15%)x =115,1+10%)y =55.答:A 、B 两个超市去年“五一节”期间的销售额分别为115万元和55万元. 评析:本题以学生对话的方式,把我们日常生活中经常光顾的超市的经营情况,以图文框的形式呈现给大家,彻底改变了传统的列方程(组)解应用题的说教模式,给学生以亲切、自然之感,体现了新课标的基本理念.同步链接:请同学们尝试完成下面问题:1.2004江苏南京中考题某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.2.2004陕西中考题足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场才能达到预期目标?提示:1.每盒茶叶的进价为40元.2.(1)设这个球队胜x场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17.解得x=5.所以前8场比赛中,这个球队共胜了5场.(2)打满14场比赛,最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标.∴在以后的比赛中这个球队至要胜3场.二、涉及国计民生的政策性问题例2(2004湖北郴州中考题)今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?解:(1)设降低的百分率为x,则今年后的第一年人均上缴农业税为25(1-x)元,第二年人均上缴农业税为25(1-x)-25(1-x)x=225(1)x-元,根据题意,得2-=16.解得x25(1)x=0.2=20%,x2 =1.8(舍去).1(2)明年小红全家少上缴的农业税为 25×20%×4=20(元).(3)明年全乡少上缴的农业税为 16000×25×20%=80000(元).评析:本题以我国政府关于减轻农民负担的政策为依据,结合具体实例提出问题.既起到了宣传国家政策方针的目的,又培养了学生应用方程思想解决实际问题的能力.此类问题是今后中考命题的发展方向之一.同步链接:请同学们尝试完成下面问题:1.2004江苏徐州中考题我市某乡规定:种粮的农户均按每亩年产量750公斤、每公斤售价1.1元来计算每亩的年产值.年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业税附加”(“农业税附加”主要用于村级组织的正常运转需要).(1)去年我市农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?(2)今年,国家为了减轻农民负担,鼓励种粮,降低了农业税税率,并且每亩水稻由国家直接补贴20元(可抵缴税款).王老汉今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可以比去年少缴497元.”请你求出今年我市的农业税的税率是多少?(要有解题过程)2.2004山东青岛中考题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.提示:1.(1)693元;(2)4%.2.可设该市去年居民用水的价格为x元/m3,则今年用水价格为(1+25%)x元/m 3,根据题意,得36186(125%)x x -=+. 解得:x =1.8.经检验:x =1.8是原方程的解. (125%) 2.25x ∴+=.三、优选方案类问题例3 (2004湖北武汉中考题)某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标.竞标资料上显示:若由两对合作,6天可以完成,共需工程费用10200元;若单独完成此项工程,甲队比乙队少用5天,但甲队每天的工程费用比乙队多300元.工程指挥部决定从这两个队中选一个队单独完成此项工程,从节省资金的角度考虑,应选择哪个工程队?为什么?解:设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x +5)天,根据题意,得 11156x x +=+.化简,得27300x x --=.解得x 1=10,x 2=-3(不合题意,舍去).∴甲队单独完成此项工程需10天,则乙队单独完成此项工程需15天.设甲队每天的工程费用为a 元,乙队每天的工程费用为b 元,根据题意,得6610200,300.a b a b +=⎧⎨-=⎩ 解得1000,700.a b =⎧⎨=⎩∴ 甲队单独完成此项工程的费用为:1000×10=10000(元);乙队单独完成此项工程的费用为:700×15=10500(元).∵10000<10500,∴从节省资金的角度考虑,应选择甲工程队.例4 (2004哈尔滨中考题)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.解:(1)设甲种型号手机要购买x 部,乙种型号手机购买y 部,丙种型号手机购买z 部,根据题意,得40,180060060000.x y x y +=⎧⎨+=⎩ 解得 30,10;x y =⎧⎨=⎩或40,1800120060000.x z x z +=⎧⎨+=⎩ 解得 20,20;x z =⎧⎨=⎩或40,600120060000.y z y z +=⎧⎨+=⎩ 解得 20,60.y z =-⎧⎨=⎩(不合题意,舍去).答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,丙种手机购买20部.(2)根据题意,得 40,1800600120060000,68.x y z x y z y ++=⎧⎪++=⎨⎪≤≤⎩解得 26,6,8;x y z =⎧⎪=⎨⎪=⎩ 或27,7,6;x y z =⎧⎪=⎨⎪=⎩或28,8,4.x y z =⎧⎪=⎨⎪=⎩答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部.评析:单纯列方程解应用题的试题在各省市中考试卷中越来越少,但是,运用方程思想,结合其他数学知识,设计优选方案的问题却屡见不鲜.此两道例题几乎涉及到了初中阶段所有方程的类型,是综合运用各种方程(组)的知识解决经济类的综合性试题,比较好地考查了学生灵活运用方程思想解决实际问题的能力.同步链接:请同学们尝试完成下面问题:2004山东潍坊中考题 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?提示:设甲、乙两件服装的成本分别是x 元和y 元,则甲服装的定价为(1+50%)x =1.5x 元,乙服装的定价为(1+40%)y =1.4y 元,根据题意,得500,0.9(1.5 1.4)500157.x y x y +=⎧⎨+=+⎩ 解得300,200.x y =⎧⎨=⎩所以甲、乙两件服装的成本分别是300元和200元.。
高一数学基本不等式综合复习
第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当时取等号.(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当时,x+y有最小值是.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当时,xy有最大值是.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________.8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.考点3基本不等式中的恒成立问题典例1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是()A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.考点4基本不等式与其他专题综合典例1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中a+b2称为正数a,b的算术平均数,ab称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是s24.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .2【答案】D【解析】因为33ba b ++=≥,当且仅当33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++,当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C的最大值为4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥ 1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;22224⎡⎤≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[答案]A[解析]由x >0,xx 2+3x +1=1x +1x+3,令t =x +1x ,则t ≥2x ·1x=2,当且仅当x =1时,t 取得最小值2.x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()4433112153131y x x x x =+=-++≥=--,当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5.故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694.故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++884222222,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥,∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确;对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()21122123321212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎣⎦++++⎝⎭当且仅当()21212++=++x x y x x y ,即1==x y时,等号成立,所以32x y +≥+,故C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确;对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥.记u =,则0u >,所以211336u a b =++++≤+=,所以u <≤≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误.故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________.【答案】6-63+【解析】 a ,b 为正实数,且2a b +=,222221111a b b a a b a b +-+∴+=+++2111a b a b =++-++2111a b =+++()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331b a a b ⎛⎫+=+++ ⎪+⎝⎭(1133≥++当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-63+8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.【答案】9【解析】()()()()41414411911x y x y x y x y x y xy y x y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++⎪⎢⎥---⎣⎦⎝⎭≥,当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>Q ,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n +≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________.【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭.因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23.故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(324≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274. 考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.【解】(1)()()2222244a b ab c abc a b acab bc abc++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥,当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝()19322222=+++=,当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.【解】(1)因为24a a+24=322a a a ++≥=,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥,所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>,又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号.即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.【解】(1)111abc abc abc bc ac ab a b c a b c++=++=++222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立.(2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=,当且仅当b c =时等号成立.所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号.又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a bc a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥. 考点3基本不等式中的恒成立问题1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥ ⎪--⎝⎭,()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a ba b b c --=++≥+=+--故得到211,n n N +≥∈则n 的最大值是4.故选:C.[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥.故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫-≥ ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++,当a b =时,不等式恒成立;当a b¹时,222aba ba b aba bλ+≥+-+12,a b=时等号成立,a b¹12<,故12λ≥.故选:C.3.(多选)(2022·全国·高三专题练习)当0x>,0y>,Rm∈时,2222y x m m kx y+>-++恒成立,则k的取值可能是()A.2-B.1-C.1D.2【答案】AB【解析】因为0x>,0y>,所以222y xx y+≥=,当且仅当2x y=时,等号成立.因为()222111m m k m k k-++=--++≤+.若2222y x m m kx y+>-++恒成立,则12k+<,解得1k<.故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a ax y z++-++≤对任意正数x,y,z恒成立,则a的最大值是__________.【答案】1【解析】因为222222212222xy yz xy yz xy yzx y z x y y z xy yz+++==++++++≤,当x y z==时取等号,所以2222xy yzx y z+++的最大值是12,即211122a a+-≥,解得112a-≤≤,所以a的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x,y,恒有()2222x y a x xy y+-+≤,则实数a的最小值是___________.【答案】2【解析】解:因为0,0x y>>,则()2220x xy y x y xy-+=-+>,则()2222x y a x xy y +-+≤,即2222x y a x xy y +-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+,即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭,所以2a ≥,即实数a 的最小值是2.故答案为:2.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.【答案】2【解析】()()22=22x a x y x x x y x y ++∴++++ ,当且仅当=2x y 时取等号,0,0x y >> 0x y ∴+>()x a x y ++maxa ∴≥⎝⎭222x yx y +≤=+max=2a ∴≥⎝⎭,a ∴的最小值为2故答案为:2考点4基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.【答案】[]33-【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin 33a x x ≤+,当sin 0x =时,则203≤成立,R a ∈,当sin 0x >时,42sin 33sin a x x ≤+,而4221sin (2sin )33sin 3sin x x x x +=+≥当且仅当12sin sin x x =,即sin 2x =时取“=”,则有3a ≤,当sin 0x <时,42sin 33sin a x x ≥+,而4221sin [(2sin )]33sin 3sin x x x x +=--+≤--当且仅当12sin sin x x -=-,即sin x =时取“=”,则有a ≥综上得,33a -≤≤所以实数a 的取值范围是[]33-.故答案为:,33⎡-⎢⎣⎦2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.[答案]1[解析]由题意知x >0,∴(x 2018+1)(1+x 2+x 4+…+x 2016)≥2x 2018·1×12(21·x 2016+2x 2·x 2014+…+2x 2016·1)=2018x 2017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 1289696962612x x x PMQ x x x x x x x -∠=-===≤=++⋅+⋅βα,当且仅当96x x =,即96x =9610≈,所以BM 大约为10米.故选:C.[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+3300022306010Q Q≥⋅⨯=,当且仅当3300010Q Q=,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=,两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误.故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】448【解析】解:设BM x =,则34x x AN =+,则123AN x=+,则()1248433242448AMPN S x x x x ⎛⎫=++=+++= ⎪⎝⎭,当且仅当483xx=,即4x=时等号成立,故矩形花坛的AMPN面积最小值为48.即当4BM=时,矩形花坛的AMPN面积最小,最小面积为48.故答案为:4;48.。
非学科数学学培训 不等式综合复习(资料附答案)
自学资料一、不等式及其基本性质【知识探索】1.不等式性质:(1)不等式性质1:不等式的两边同时加上(或减去)同一个数或同一个含字母的式子,不等号的方向不变.即:①如果,那么(或);②如果,那么(或).(2)不等式性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变.即:①如果,,那么(或);②如果,,那么(或).(3)不等式性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.即:①如果,,那么(或);②如果,,那么(或).第1页共16页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【说明】不等式两边同时乘以0,则原不等式变为等式.【错题精练】例1.若a>b,且c为任意实数,下列各式:①ac≥bc;②ac≤bc;③ac2>bc2;④ac2≥bc2;⑤,一定成立的有()A. 1个B. 2个C. 3个D. 4个【答案】A例2.已知x=1满足不等式组{3x−5≤2x−4a3(x−a)<4(x+2)−5,求a的取值范围.【答案】解:将x=1代入3x-5≤2x-4a,得4a≤4,解得a≤1;将x=1代入3(x-a)<4(x+2)-5,得a>-43.不等式组{3x−5≤2x−4a3(x−a)<4(x+2)−5解集是-43<a≤1,a的取值范围是-43<a≤1.【举一反三】1.解不等式组:{2(x+1)<3x+44x3−3x−14≤2.,并把解集在数轴上表示出来.【答案】解:由2(x+1)<3x+4,得-x<2.第2页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第3页 共16页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训解得x >-2. 由4x3−3x−14≤2,得7x≤21. 解得:x≤3.在数轴上可表示为:所以,原不等式组的解集为-2<x≤3. 在数轴上画出不等式组的解集正确.2.不等式组{x +9<5x +1x >a +1的解集是x >2,则a 的取值范围是( )A. a≤2B. a≥2C. a≤1D. a >1【解答】解:{x +9<5x +1①x >a +1②,∵解不等式①得:x >2, 解不等式②得:x >a+1,又∵不等式组的解集是x >2, ∴a+1≤2, ∴a≤1. 故选:C .【答案】C二、一元一次不等式(组)【知识探索】1.解一元一次不等式的一般步骤: (1)去分母; (2)去括号; (3)移项; (4)化为(或)的形式(其中); (5)两边同时除以未知数的系数,得到不等式的解集. 2.解一元一次不等式组的一般步骤: (1)求出不等式组中各个不等式的解集; (2)在数轴上表示各个不等式的解集;(3)确定各个不等式解集的公共部分,就得到这个不等式组的解集.【错题精练】例1.已知不等式3x ﹣a≤0的正整数解恰是1,2,3,4,那么a 的取值范围是( ) A. a >12 B. 12≤a≤15 C. 12<a≤15D. 12≤a<15【答案】D例2.根据图2和图3所示,对三种物体的重量判断不正确的是()A.B.C.D.【解答】略【答案】C例3.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为()A.B.C.D.【答案】C例4.对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,﹣2)=4.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.第4页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第5页 共16页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【答案】解:(1)根据题意得:①+②得:3a=9,即a=3, 把a=3代入①得:b=2, 故a ,b 的值分别为3和2;(2)根据题意得:由①得:m≤ 由②得:m >p ﹣3,∴不等式组的解集为p ﹣3<m≤∵不等式组恰好有2个整数解,即m=0,1, ∴﹣1≤p ﹣3<0, 解得≤p <2,即实数P 的取值范围是≤p <2.例5.是否存在这样的整数m ,使方程组{x +y =m +24x −5y =6m +3的解x 、y 为非负数,若存在,求m 的取值;若不存在,则说明理由.【答案】解:解方程组{x +y =m +24x −5y =6m +3得:{x =11m+139y =5−2m 9∵x ,y 为非负数,即{x ≥0y ≥0.∴{11m+139≥05−2m 9≥0解得-1311≤m≤52 ∵m 为整数第6页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴x>ab,∴x>2,故答案为x>2.【答案】x>2【举一反三】1.已知关于x的不等式组只有四个整数解,则实数a的取值范是__________ .【答案】﹣3<a≤﹣22.使代数式4x﹣的值不大于3x+5的值的x的最大整数值是()A. 4B. 6C. 7D. 8【答案】B3.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A. 36B. 40C. 45D. 46【答案】B4.解关于x的不等式组:{a(x−2)>x−39(a+x)>9a+8.第7页共16页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第8页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页共16页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第10页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∵y 、z 都是正整数,∴x 是偶数,∴有以下几种方案:方案一:甲22台,乙15台,丙3台,方案二:甲24台,乙10台,丙6台,方案三:甲26台,乙5台,丙9台;(3)设获利W 元,则W=200x+150×140−5x 2+100×3x−602, =200x+10500-375x+150x-3000,=-25x+7500,∵-25<0,∴W 随x 的增大而减小,∴选取方案一,即当x=22时,获利最大,最大获利为-25×22+7500=6950元.1.若a <b <0,把1,1-a ,1-b 这三个数按由小到大的顺序用“<”连接起来:______【解答】解:若a <b <0,把1,1-a ,1-b 这三个数按由小到大的顺序用“<”连接起来:1<1-b <1-a . 故填1<1-b <1-a .【答案】1<1-b <1-a2.解不等式,并把它的解集在数轴上表示出来.(1)1-3(x-1)<8-x ;(2)2x−13-9x+26≤1.【答案】解:(1)去括号,得:x-3x+3<8-x ,移项、合并同类项,得:-x <5,则x >-5;(2)去分母,得:2(2x-1)-(9x+2)≤6,去括号,得:4x-2-9x-2≤6,移项,得:4x-9x≤6+2+2,合并同类项,得:-5x≤10,系数化成1得:x≥-2.3.关于x 的不等式x-a >0有2个负整数解,则a 的取值范围是______.【解答】解:∵x-a >0,∴x >a ,∵不等式x-a >0恰有两个负整数解,∴-3≤a <-2.故答案为-3≤a <-2.【答案】-3≤a <-24.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,0,2}=−1+0+23=13;min{-1,0,2}=-1;min{-1,0,a}={a (a ≤−1)−1(a >−1).如果M{2,x+1,2x}=min{2,x+1,2x},则x 的值是______.【解答】解:∵M{a ,b ,c}表示这三个数的平均数,∴2+x+1+2x3=x +1,∵min{a ,b ,c}表示这三个数中最小的数,且M{2,x+1,2x}=min{2,x+1,2x},∴{x +1≤2x x +1≤2, 即{x ≥1x ≤1, ∴x=1.故答案为:1.【答案】15.若关于x 的不等式组{x−123≥2+x x >2m −1,有且仅有三个整数解,则m 的取值范围是______.【解答】解:由x−123≥2+x ,解得:x≤-9,由关于x 的不等式组{x−123≥2+xx >2m −1,有且仅有三个整数解, 解得:-12≤2m -1<-11,解得-5.5≤m <-5,65≤7x+7≤70≤x≤9解得:587∵x是整数,∴x=9答:共有9人.(2)设共有x人,由题意得7x+7=10(x-1)+8解得x=3则7x+7=28答:这些书有28本,共有3人.(3)设共有x人,由题意得{7x+7>10(x−1)7x+7<10(x−1)+5解得:4<x<173∵x是整数,∴x=57x+7=42答:这些书有42本,共有5人.● 1、不等式的求解方法2、特别注意含参不等式处理时的注意点以及含不含等号的判断3、注意不等式的实际应用中字母所代表的实际量的数学意义和实际意义。
不等式填空题
不等式综合复习题(二)一•填空题(共28小题)1. ________________________________________________ (2015春?玉田县期末)如果avb.那么3- 2a ______________________________________ 3-2b.(用不等号连接)2.(2015春?淮南期末)已知关于x的不等式组无解,贝U实数a的取值范围是 ____________.3.(2014春?广安区校级期末)若不等式组* 、的解集是空集,则a, b的大小关系是 ____________.4.(2014春?富顺县校级期末)不等式组里每个不等式的解集表示在同一数轴上如图,则此不等式组的解集用x表示为 _____________ .5.(2013春?新沂市校级月考)当a 时,不等式ax> 1的解集是xV .d6.(2012春?崇安区期中)若关于x的不等式组卩[°无解,则m的取值范围是 ____________.{覽E爻+瓦、的解集是x > 1,则m的取值范x>ir^l围是8.设a>b,用“V”或“〉”填空:①2a- 5 ___________ 2b- 5; ②-3.5b+1 ___________ - 3.5a+1 .9.已知吕(m+4 x|m| -3+6>0是关于x的一元一次不等式,则m _______________ .10.若不等式(k - 1) ..-:+2> 是一元一次不等式,则k= .X 311.(2015?成都校级模拟)不等式(m- 2)x>2 -m的解集为x V- 1,则m的取值范围是 .12 . (2015春?天水期末)关于x的不等式2x- aw- 1的解集如图所示,则a的值是 ____________.13 . (2015秋?醴陵市校级期末)若av b,那么-2a+9 ___________ -2b+9(填或“=”).14 . (2015春?铁力市校级月考)不等号填空:若av bv 0,则-卡______________ 卡;5 5二丄;2a -1 _______________ 2b- 1 .a b15 . (2014?番禺区一模)已知不等式x+8>4x+m (m是常数)的解集是xv 3,贝U m=誓I* "I16.(2014春?石城县校级期末)若不等式组* 无解,则a的取值范围s<2a - 1是____________ .17.(2013春?新干县期末)图中是表示以x为未知数的一元一次不等式组的解集,那么这个一元一次不等式组可以是______________ .18.(2008秋?南阳期中)如图:(用等号或不等号填空)a+b ___________ 0, a-b ______ 0.19.(2014春?江阴市校级期中)构造一个一元一次不等式组,使它的解集是- 「wxv ',2 3这个不等式组是_____________ .- 120.(2005?三明)已知不等式组•:的解集如图所示,则不等式组的整数解为____________ .21.(2000?山东)若av bv 0,把1,1-a,1-b这三个数按由小到大的顺序用“v”连接起来:22.(2013?宁夏)若不等式组卩+玄>? 有解,则a的取值范围是1-2葢>工-2 -----------23._______________________________________________ (2014春?安庆期中)某药品说明书上标明药品保存的温度是(10± 4)C,设该药品合适的保存温度为t,则温度t的范围是_____________________________________________________ .24.(2014春?宜宾县校级期中)若-1vxv0,则x,x2,的大小关系为(用“v”连x接)___________ .25.________________________________________________ (2014春?张店区校级月考)若avbv0,则ab _________________________________________ a2.26. (2014春?海淀区校级期末)不等式(a- 1)xv 1 - a的解集是x>- 1,则a的取值范围是____________ .27. (2015春?安图县期末)若关于x的不等式3m+Q5的解集是x>2,则m的值是____________ .28.若-2a+23v- 2b+23,则a ______________ b (填“〉”或“v” 或“二”).参考答案与试题解析一 .填空题(共28小题)1 . (2015春?玉田县期末)如果av b.那么3- 2a > 3 - 2b .(用不等号连接)【分析】根据不等式的性质3,可得-2a>- 2b,根据不等式的性质1,可得3-2a与3- 2b的大小关系.【解答】解::av b,两边同乘-2得:-2a>- 2b,不等式两边同加3得:3 -2a> 3 - 2b,故答案为:〉.fy>32.(2015春?淮南期末)已知关于x的不等式组* ”"无解,则实数a的取值范围是_ aW3 .【分析】根据不等式组无解,可得出a<3.【解答】解:•••关于x的不等式组无解,•••根据大大小小找不到(无解)的法则,可得出a< 3. 故答案为:a< 3.3.(2014春?广安区校级期末)若不等式组•、的解集是空集,则a, b的大小关系是l x>ba<b .【分析】因为不等式组・]的解集是空集,利用不等式组解集的确定方法即可求出答案.【解答】解:•••不等式组小的解集是空集aw b.故答案为:aw b.4.(2014春?富顺县校级期末)不等式组里每个不等式的解集表示在同一数轴上如图,则此不等式组的解集用x表示为无解.【分析】数轴的某一段上面,表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集•实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左•四个不等式的公共部分就是不等式组的解集.【解答】解:由图示可看出,从-2出发向右画出的折线且表示-2的点是空心圆,表示x >-2;从0出发向右画出的折线且表示0的点是实心圆,表示x>0. 从1出发向左画出的折线且表示1的点是空心圆,表示XV 1;从3出发向右画出的折线且表示3的点是实心圆,表示x>3;故答案为:无解.5.(2013春?新沂市校级月考)当a V0时,不等式ax> 1的解集是xV .a【分析】根据不等式的性质3,不等式的两边都除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式ax> 1的解集是x V,av 0,故答案为:v.6. (2012春?崇安区期中)若关于x的不等式组无解,则m的取值范围是••• m> 4,故答案为:m>4.m>4【分析】根据不等式组解集的确定方法:大大小小找不着可得解: •••关于x的不等式组无解,m> 4.时95+5的解集是x > 1,则m 的取值范 z>n^l 围是 m^0【分析门求出不等式组的解集,再与已知不等式的解集相比较即可求出 m 的取值范围. x>l•••原不等式组的解集为x > 1,m+K 1, 解得mK 0.8•设a >b ,用“v”或“〉”填空: ① 2a - 5 > 2b - 5;②-3.5b+1>- 3.5a+1 .【分析】①根据不等式的基本性质2和性质1,两边都乘以2再减去5,不等号的方向不变; ② 根据不等式的基本性质3和性质1,两边都乘以-3.5,不等号的方向改变,再加上1,不 等号的方向不变.【解答】解:①:a >b,A 2a >2b , 2a - 5>2b - 5;② T a> b, •- 3.5a v- 3.5b , ••- 3.5a+1 v- 3.5b+1 . ••- 3.5b+1 >- 3.5a+1 .故应填:>,>.9•已知2 (m+4 x |m| -3+6>0是关于x 的一元一次不等式,则 m= 4.3【分析】根据一元一次不等式的定义,|m| - 3=1, m+4^0,分别进行求解即可. 【解答】解:根据题意|m| - 3=1, m+4^0解得|m|=4 , 4 所以m=410. 若不等式(k - 1) :,-: +2>二是一兀一次不等式,则k= - 1 .【分析】根据一元一次不等式的定义,k 2=1且(k - 1)工0,分别进行求解即可.【解答】解:根据题意k 2=1且(k - 1)工0 解得k=±l 且〜1,所以k= - 1.11. ( 2015?成都校级模拟)不等式(m- 2) x >2 -m 的解集为x v- 1,则m 的取值范围是_mv 2 .【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变, 可得答案.【解答】解:不等式(m- 2) x > 2-m 的解集为x v- 1,• m - 2v0, m< 2,故答案为:mv 2.12. ( 2015春?天水期末)关于x 的不等式2x - aK- 1的解集如图所示,则a 的值是_- 1 .【分析】首先解不等式2x - aK- 1可得厂,根据数轴可得XK- 1,进而得到—L = -1,再解方程即可.7.( 2011春?池州校级期中)一元一次不等式组*1+9<5宁①,由①得,x > 1,故原不等式组可化为彳1 ②【解答】解:【解答】解:2x- aK- 1,2x < a - 1, xw「,2 •/x <- 1,•- =-1,解得:a= - 1, 故答案为:-1.13. ( 2015秋?醴陵市校级期末)若avb ,那么-2a+9 > - 2b+9 (填 或“=”).【分析】不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等 式两边乘或除以一个负数,不等号的方向改变. 【解答】解::av b , ••- 2a >- 2b , •••- 2a+9>- 2b+914. (2015春?铁力市校级月考)不等号填空:若avbv0,则-迢 >-上;丄 > 丄;55 a b2a- 1 v 2b- 1.【分析】由题意可知:avbv0,再根据不等式的基本性质1、基本性质2和基本性质3即 可判断各式的大小关系.【解答】解::av bv0, ••- a >- b ;根据不等式两边乘(或除以)同一个正数,不等号的方向不变, 即不等式-a >- b 两边同时除以5,不等号方向不变, 所以-=>-';5 5 • >';■- > ■;再根据不等式两边乘(或除以)同一个正数,不等号的方向不变和不等式两边加(或减)同 一个数(或式子),不等号的方向不变可得:2a- 1v 2b- 1.15. (2014?番禺区一模)已知不等式x+8>4x+m (m 是常数)的解集是xv3,则m= - 1.【分析】先把未知数与常数项合并到不等式的两边,再结合不等式的解集进行解答. 【解答】解:由原式可得-3x > m- 8, x v ^—', 已知原不等式的解集为:x v 3, 故- =3,得 m=- 1. 故答案为:-1.【分析】根据不等式的解集大于大的,不等式的解集小于小的,不等组无解,可得答案.x>a+lX 脣1无解,16. (2014春?石城县校级期末)若不等式组〕丄汨]无解,则a 的取值范围是亠2【解答】解;不等式组*得 a+1>2a - 1, 解得a < 2, 故答案为:a < 2.17.(2013春?新干县期末)图中是表示以x 为未知数的一元一次不等式组的解集,那么这【分析】表示解集的两个式子就是不等式,这两个不等式组成的不等式组就满足条件.【解答】解:由图示可看出,从1出发向右画出的折线且表示1的点是空心圆,表示x > 1; 从4出发向左画出的折线且表示 4的点是实心圆,表示x <4. 所以这个不等式组为(弓18.( 2008秋?南阳期中)如图:(用等号或不等号填空) a+b V 0,a - b > 0. 【分析】易得bv0, a >0,|a| V |b|,计算的结果和0比较即可. 【解答】 解::bv - 1 v0vav 1,二 a+bv 0,a - b >0.19.(2014春?江阴市校级期中)构造一个一元一次不等式组,使它的解集是- '<xv :,23【分析】本题为开放性题,按照口诀大小小大中间找列不等式组即可•如:根据“大小小大 中间找”可知只要写2个一元一次不等式x <a ,x > b ,其中a > b 即可.20.( 2005?三明)已知不等式组 「的解集如图所示,则不等式组的整数解为 -1,0 .【分析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等 式组的解集.整数解就是数轴上-1以及1之间的数中的整数. 【解答】解:观察数轴,在- Kxv 1之间的整数只有-1、0.因而不等式组的整数解为-1, 0.21.( 2000?山东)若av bv 0,把1, 1-a , 1-b 这三个数按由小到大的顺序用“v”连 接起来: 1v 1- bv 1- a【分析】根据不等式的性质分析判断.【解答】解:若avbv0,把1, 1-a , 1-b 这三个数按由小到大的顺序用“v”连接起 来:1v 1 -个一元一次不等式组可以是.L'1 o 512 3^ 1 5【解答】解:根据解集是-三xv ;, 这个不等式组是这个不等式组是故答案为:12•答案不唯bv 1 - a.故填1 v 1 - bv 1 - a.22.(2013?宁夏)若不等式组有解,则a的取值范围是a>- 1 .1 - 2x>x -2 ---------【分析】先解出不等式组的解集,根据已知不等式组P+a>° 有解,即可求出a的取1 - 2x>x- 2值范围.【解答】解:•••由①得x>- a,由②得xv1,故其解集为-a< xv 1,•°.- av 1,即a>- 1,•'•a的取值范围是a>- 1. 故答案为:a>- 1.23.(2014春?安庆期中)某药品说明书上标明药品保存的温度是(10± 4)C,设该药品合适的保存温度为t,则温度t的范围是6〜14 .【分析】根据正数和负数的定义即可得出答案.【解答】解:某药品说明书上标明药品保存的温度时(10± 4)C,说明在10C的基础上,再上下4C, 即6C〜14C之间;故答案为:6〜14.24.(2014春?宜宾县校级期中)若-1vxv0,则x, x2,的大小关系为(用“v”连接)x1 2-vxvx. .X【分析】运用x的取值确定x, x2,的大小即可..【解答】解:•••- 1 vxv0,•x2是正数,x与】是负数且「的绝对值大,X X1 2•—v x v x .X故答案为:丄v xv x2.25.(2014春?张店区校级月考)若avbv0,则ab v a2.【分析】运用不等式的基本性质求解即可.【解答】解::av bv0,•abv a2.故答案为:v.26.(2014春?海淀区校级期末)不等式(a- 1)x v 1 - a的解集是x >- 1,则a的取值范围是av 1 .【分析】运用不等式的性质求解即可.【解答】解::(a- 1)x v 1 - a的解集是x >- 1,二a- 1v 0,•av 1.故答案为:av 1.27.(2015春?安图县期末)若关于x的不等式3m+x>5的解集是x>2,则m的值是1 .【分析】先求得不等式的解集(用含m的式子表示),然后列出关于m的方程即可求得m的值.【解答】解;由3m+x>5得;x>5 -3m•••不等式的解集为x>2,••• 5- 3m=2解得:m=1.故答案为:1.28.若-2a+23v- 2b+23,则a > b (填“〉”或“v” 或“=”).【分析】首先根据等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得-2av- 2b;然后根据不等式的两边同时乘以(或除以)同一个负数, 不等号的方向改变,可得a> b,据此解答即可.【解答】解:I - 2a+23v- 2b+23,•- 2a+23- 23v- 2b+23- 23,即-2av- 2b,•- 2a十(-2)>- 2b- (- 2),即a> b,所以若-2a+23v- 2b+23,则a>b.故答案为:〉.。
方程与不等式综合复习—知识讲解及经典例题解析
中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。
一元一次不等式分解因式及分式的全面复习含经典例题
个性化教学辅导教案学科: 任课教师:刘老师授课时间:2013 年月日(星期) 姓名年级:初二教学课题前三章综合复习阶段基础()提高()强化()课时计划第()次课共()次课教学目标知识点:不等式、不等关系、分解因式、分式考点:不等式及其性质综合运用、分解因式、分式计算方法:讲练法重点难点重难点:不等式及其性质、分解因式的常用方法、分式基本性质教学内容与教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________一、作业检查与分析二、知识梳理第一章一元一次不等式和一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,cbca>.(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cbca<※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0三. 不等式的解集※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四. 一元一次不等式※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3. 解一元一次不等式的步骤:①去分母; ②去括号; ③移项;④合并同类项;⑤系数化为1(不等号的改变问题)※4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定. ※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.一元一次不等式 解集 图示叙述语言表达 ⎩⎨⎧>>b x ax x>bba两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. ※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+※2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ ※3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. ※2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.※4. 运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++※2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. ※3. 注意: 分组时要注意符号的变化. 五. 十字相乘法※1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= ,21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ ※2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++ab q ba p =+=※3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. ba 11(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.※2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.)0(,≠÷÷=⨯⨯=M MB M A B A M B M A B A※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即: BDAC D C B A =⋅, C B D A C D B A D C B A ⋅⋅=⋅=÷※2. 分式乘方,把分子、分母分别乘方.即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.※3. 分子与分母没有公因式的分式,叫做最简分式.三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. ※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减. (1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:CBA CBC A ±=±(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±※3. 概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小则首先对多项式进行因式分解. 四. 分式方程※1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2. 列分式方程解应用题的一般步骤:①审清题意; ②设未知数;③根据题意找相等关系,列出(分式)方程; ④解方程,并验根; ⑤写出答案.【课堂讲解】1. 当x= _____ 时,分式x+21有意义; 分解因式:a x 2-4ax+4a =______________;2. 不等式组⎩⎨⎧--≥)7(321,1x x x 的整数解集是3. 一次函数y= —x+2中,若y ﹥0,则x 的取值范围是 4. 若43==d c b a 则=++db c a 226.如果关于x 的方程31132--=-ax 有增根,则a 的值为7.如果不等式组 m x x x >-<+148 的解集是x>3,则m 的取值范围是( )A m ≥3B m ≤3C m=3D m <38.简便计算:。
(完整版)初一数学下册不等式试卷(含答案) 培优试题
一、选择题1.如图,在数轴上,已知点A ,B 分别表示数1,23x -+,那么数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边D .数轴的任意位置 2.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本 3.若a b >,则下列不等式一定成立的是( ) A .ac bc < B .21a b ->- C .11a b -<- D .||||a b > 4.若关于x 的不等式0ax b ->的解集是12x <,则关于x 的不等式bx a <的解集是( ) A .2x <-B .2x <C .2x >-D .2x > 5.若关于x 的不等式31x m 的正整数解是1,2,3,则整数m 的最大值是( )A .10B .11C .12D .13 6.喜迎建党100周年,某校举行党史知识竞赛,共30道题,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于80分得奖,那么得奖至少应选对的题数是( )A .23B .24C .25D .267.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,下列结论:①[0)=0;②[x )-x 的最小值是0;③[x )-x 的最大值是1;④存在实数x ,使[x )-x =0.5成立,其中正确的是( )A .①②B .③④C .①②③D .②③④8.若不等式组5231x a x x >⎧⎨+<+⎩的解集为x >4,则a 的取值范围是( ) A .a >4 B .a <4 C .a ≤4 D .a ≥49.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至多可以答错的试题道数为( )A .5B .6C .7D .810.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法: ①如果它的解集是1<x ≤4,那么a =4;②当a =1时,它无解;③如果它的整数解只有2,3,4,那么4≤a <5;④如果它有解,那么a ≥2.其中说法正确的个数为( )A .1个B .2个C .3个D .4个二、填空题11.某校七年级有4个班,共180人,(1)班至(4)班的人数分别a ,b ,c ,d ()a b c d <<<.已知(1)班的人数不少于41人,且b c a d +>+,则(4)班人数为______.12.已知实数a ,b ,满足14a b ≤+≤,01a b ≤-≤且2a b -有最大值,则82021a b +的值是__________.13.对非负实数x “四舍五入”到个位的值记为x <>,即:当n 为非负整数时,如果1122n x n -<+,则x n <>=.如:0.480<>=, 3.54<>=.如果43x x <>=,则x =___________.14.若不等式组01x a x a -⎧⎨-⎩-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.15.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____. 16.若关于x 的不等式组{2x 713x a 12-≤->的整数解共有6个,则a 的取值范围是______. 17.在关于x 、y 的方程组2728x y m x y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y >0,那么m 的取值范围是_________________.18.对于任意实数m 、n ,定义一种运算m ※n =mn ﹣m ﹣n +3,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有三个整数解,则整数a 的取值可以是_________.19.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则()a b +的立方根是______. 20.已知不等式组()32215233x a x x x ⎧+<+⎪⎨-<+⎪⎩的整数解有3个,则a 的取值范围为______. 三、解答题21.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ; (3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围. 22.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.请阅读求绝对值不等式3x <和3x >的解的过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.24.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.23=,[]55=,[]2.13-=-,那么,[]x x a =+,其中01a ≤<.例如,[]3.2 3.20.2=+,[]550=+,[]2.1 2.10.9-=-+.请你解决下列问题:(1)[]4.8=__________,[]6.5-=__________;(2)如果[]5x =,那么x 的取值范围是__________;(3)如果[]5231x x -=+,那么x 的值是__________;(4)如果[]x x a =+,其中01a ≤<,且[]41a x =+,求x 的值.25.如图所示,在平面直角坐标系xOy 中,点A ,B ,C 的坐标为()0,a ,(),0b ,(),b c ,其中a ,b ,c 满足()23210a b a b -+-+=,40c -≤.(1)求a ,b ,c 的值;(2)若M 在x 轴上,且12COM ABC S S =△△,求M 点坐标; (3)如果在第二象限内有一点()1,1P m -,m 在什么取值范围时,AOP 的面积不大于ABC 的面积?求出在符合条件下,AOP 面积最大值时点P 的坐标.26.若关于x 的方程ax +b =0(a ≠0)的解与关于y 的方程cy +d =0(c ≠0)的解满足﹣1≤x ﹣y ≤1,则称方程ax +b =0(a ≠0)与方程cy +d =0(c ≠0)是“友好方程”.例如:方程2x ﹣1=0的解是x =0.5,方程y ﹣1=0的解是y =1,因为﹣1≤x ﹣y ≤1,方程2x ﹣1=0与方程y ﹣1=0是“友好方程”.(1)请通过计算判断方程2x ﹣9=5x ﹣2与方程5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y 是不是“友好方程”.(2)若关于x 的方程3x ﹣3+4(x ﹣1)=0与关于y 的方程32y k ++y =2k +1是“友好方程”,请你求出k 的最大值和最小值.27.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x ﹣3=1与不等式x +3>0,当x =2时,2x ﹣3=2×2﹣3=1,x +3=2+3=5>0同时成立,则称x =2是方程2x ﹣3=1与不等式x +3>0的“理想解”.(1)已知①1322x ->,②2(x +3)<4,③12x -<3,试判断方程2x +3=1的解是否是它们中某个不等式的“理想解”,写出过程;(2)若00x x y y =⎧⎨=⎩是方程x ﹣2y =4与不等式31x y >⎧⎨<⎩的“理想解”,求x 0+2y 0的取值范围. 28.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长40cm ,宽34cm 的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒200元购进一批茶叶,按进价增加18%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了6元,售价仍不变,已知在整个买卖过程中共盈利1800元,求这批茶叶共进了多少盒?29.材料1:我们把形如ax by c +=(a 、b 、c 为常数)的方程叫二元一次方程.若a 、b 、c 为整数,则称二元一次方程ax by c +=为整系数方程.若c 是a ,b 的最大公约数的整倍数,则方程有整数解.例如方程342,735,426x y x y x y +=-=+=都有整数解;反过来也成立.方程6310421x y x y +=-=和都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.材料2:求方程56100x y +=的正整数解. 解:由已知得:1006100520555y y y y x y ---===--……① 设5y k =(k 为整数),则5y k =……② 把②代入①得:206x k =-.所以方程组的解为2065x k y k=-⎧⎨=⎩ , 根据题意得:206050k k ->⎧⎨>⎩. 解不等式组得0<k <103.所以k 的整数解是1,2,3. 所以方程56100x y +=的正整数解是:145x y =⎧⎨=⎩,810x y =⎧⎨=⎩,215x y =⎧⎨=⎩. 根据以上材料回答下列问题:(1)下列方程中:① 3911x y +=,② 15570x y -=,③ 63111x y +=,④ 27999x y -=,⑤ 9126169x -=,⑥ 22121324x y +=.没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程3438x y +=的正整数解;(3)若要把一根长30m 的钢丝截成2m 长和3m 长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程) 30.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x ] .例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x =[x ]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]= ,[-6.5]= ;(2)如果[x ]=3,那么x 的取值范围是 ;(3)如果[5x -2]=3x +1,那么x 的值是 ;(4)如果x =[x ]+a ,其中0≤a <1,且4a = [x ]+1,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;根据不等式的性质,可得点在A 点的右边,根据作差法,可得点在B 点的左边.【详解】解:由数轴上的点表示的数右边的总比左边的大,得:-2x +3>1,解得x <1;-x >-1.-x +2>-1+2,解得-x +2>1.所以数轴上表示数-x +2的点在A 点的右边;作差,得:-2x +3-(-x +2)=-x +1,由x <1,得:-x >-1,-x +1>0,-2x +3-(-x +2)>0,∴-2x +3>-x +2,所以数轴上表示数-x +2的点在B 点的左边,点A 的右边.故选B .【点睛】本题考查了一元一次不等式,解题的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式.2.D解析:D【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩ 故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.3.C解析:C【分析】根据不等式的性质逐项判断即可;【详解】解:A .a b >,当0c 时,ac bc =,所以A 选项不符合题意;B .当0a =,1b =-,21a b -=-,所以B 选项不符合题意;C .a b >,则a b -<-,11a b -<-,所以C 选项符合题意;D .0a =,1b =-,则||||a b <,所以D 选项不符合题意.故选:C .【点睛】本题主要考查了不等式的基本性质,准确分析判断是解题的关键.4.D解析:D【分析】由题意可知,a 、b 均为负数,且可得a =2b ,把a =2b 代入bx <a 中,则可求得bx <a 的解集.【详解】由0ax b ->得:ax b >∵不等式0ax b ->的解集为12x <∴a <0∴12b x a <= ∴a =2b∴b <0由bx a <,得2bx b <∵b <0∴x >2故选:D .【点睛】本题考查了解一元一次不等式,关键是由条件确定字母a 的符号,从而确定a 与b 的关系,易出现错误的地方是求bx <a 的解集时,忽略b 的符号,从而导致结果错误. 5.D解析:D【分析】先解不等式得到x <()113m -,再根据正整数解是1,2,3得到3<()113m -≤4时,然后从不等式的解集中找出适合条件的最大整数即可.【详解】解不等式31x m 得x <()113m -, 关于x 的不等式31x m 的正整数解是1,2,3,∴ 3<()113m -≤4,解得10 < m ≤ 13, ∴整数m 的最大值为13.故选:D .【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.6.B解析:B【分析】设选对x 道题,则不选或选错(30﹣x )道题,根据得分=4×选对题目数-2×不选或选错题目数结合得分不低于80分,即可得出关于x 的一次不等式,解之取得最小值即可得出结论.【详解】解:设选对x 道题,则不选或选错(30﹣x )道题,依题意,得:4x ﹣2(30﹣x )≥80,解得:x ≥703. ∵x 为正整数,∴要得奖至少应选对24道题,故选:B .【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确的列出一元一次不等式是解题的关键.7.B解析:B【分析】利用题中的新定义计算即可求出值.【详解】解:由题意可知:∵[x )表示大于x 的最小整数,∴设[x )=n ,则n -1≤x <n ,∴[x )-1≤x <[x ),∴0<[x )-x ≤1,∴①[0)1=,故①错误;②[)x x -可无限接近0,但取不到0,无最小值,故②错误;③[)x x -的最大值是1,当x 为整数时,故③正确;④存在实数x ,使[)0.5x x -=成立,比如x =1.5,故④正确,故选:B .【点睛】此题考查了解一元一次不等式,读懂新定义,并熟练掌握运算法则是解本题的关键. 8.C解析:C【分析】分别解两个不等式,根据不等式组的解集即可求解.【详解】5231x a x x ⎧⎨++⎩>①<②, 解不等式①得,x a >,解不等式②得,4x >,∵不等式组的解集是4x >,∴a ≤4.故选:C .【点睛】本题考查不等式组的解集,掌握“同大取大,同小取小,大小小大取中间,大大小小无解了”取解集是解题的关键.9.B解析:B【分析】-道,根据题意列出一元一次不设小玉答对了x道题目,则答错或不答的题目一共为(20)x等式求解即可;【详解】-道,解:设小玉答对了x道题目,则答错或不答的题目一共为(20)x由题意可得,x x-->,105(20)95x>,解得13∴小玉至少要答对14道题目,至多答错20146-=(道),故选:B.【点睛】本题主要考查了一元一次不等式的应用,准确列式计算是解题的关键.10.C解析:C【分析】分别求出每个不等式的解集,再根据各结论中a的取值情况逐一判断即可.【详解】解:由x﹣1>0得x>1,由x﹣a≤0得x≤a,①如果它的解集是1<x≤4,那么a=4,此结论正确;②当a=1时,它无解,此结论正确;③如果它的整数解只有2,3,4,那么4≤a<5,此结论正确;④如果它有解,那么a>1,此结论错误;故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题11.47或48人【分析】根据题意令,满足,由于,得,又根据,得,可得,当①时,,枚举出所有情况;同理当②时,,同理,,,,,,枚举出所有的情况,选出满足条件的情况即可.【详解】解:,令(),解析:47或48人【分析】根据题意令41,41,41,41a b c d a m b m c m d m =+=+=+=+,满足0a b c d m m m m ≤<<<,由于180a b c d +++=,得+16a b c d m m m m ++=,又根据b c a d +>+,得b c a d m m m m +>+,可得1682a d m m +<=,当①7a d m m +=时,9bc m m +=,枚举出所有情况;同理当②6ad m m +=时,10b c m m +=,同理,5a d m m +=,4a d m m +=,3a d m m +=,2a d m m +=,1a d m m +=,枚举出所有的情况,选出满足条件的情况即可.【详解】解:41,a a b c d ≥<<<,∴令41,41,41,41a b c d a m b m c m d m =+=+=+=+(0a b c d m m m m ≤<<<),由于180a b c d +++=,故有414++180a b c d m m m m ⨯++=,得+16a b c d m m m m ++=,又b c a d +>+,故41+4141+41+b c a d m m m m ++>+,b c a d m m m m ∴+>+,而+16a b c d m m m m ++=,1682a d m m ∴+<=, 当①7a d m m +=时,9bc m m +=,根据0a b c d m m m m ≤<<<,枚举一下,只有下列情况满足,141,44,47,48a b c d ︒====,241,45,46,48a b c d ︒====,342,45,46,47a b c d ︒====,②6a d m m +=时,10b c m m +=,根据0a b c d m m m m ≤<<<,即使0,6a d m m ==,由于0a b c d m m m m ≤<<<,c m ∴最大取5,而此时1055b m =-=,有c b m m =,不符合要求,故此时没有情况满足,同理,5a d m m +=,4a d m m +=,3a d m m +=,2a d m m +=,1a d m m +=,均没有情况满足,综上所述,(4)班的人数为47或48人,故答案是:47或48人.【点睛】本题考查了不等式在生活中的应用,解题的关键是掌握不等式的性质,进行分类讨论,也体现了同学的枚举能力.12.8【分析】把变形得,故可求出有最大值时,a ,b 的值,代入故可求解.【详解】设=∴a-2b=(m+n )a+(m-n)b∴,解得∴=∵,∴,∴∴有最大值1此时,解得a=1,b=解析:8【分析】把2a b -变形得()()1322a b a b -++-,故可求出2a b -有最大值时,a ,b 的值,代入82021a b +故可求解.【详解】设2a b -=()()m a b n a b ++-∴a -2b =(m +n )a +(m -n )b∴12m n m n +=⎧⎨-=⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩∴2a b -=()()1322a b a b -++- ∵14a b ≤+≤,01a b ≤-≤ ∴()11222a b -≤-+≤-,()33022a b ≤-≤ ∴221a b -≤-≤∴2a b -有最大值1 此时()1122a b -+=-,()3322a b -= 解得a =1,b =0∴82021a b +=8故答案为:8.【点睛】此题主要考查不等式组的应用与求解,解二元一次方程组,解题的关键是根据题意把把2a b -变形得()()1322a b a b -++-,从而求解. 13.0或或【分析】根据的定义可得一个关于的一元一次不等式组,解不等式组、结合为非负整数即可得.【详解】解:由题意得:,即,解不等式①得:,解不等式②得:,则不等式组的解集为,为非负实数解析:0或34或32 【分析】根据x <>的定义可得一个关于x 的一元一次不等式组,解不等式组、结合43x 为非负整数即可得.【详解】解:由题意得:41413232x x x -<+≤, 即41324132x x x x ⎧-≤⎪⎪⎨⎪<+⎪⎩①②, 解不等式①得:32x ≤, 解不等式②得:32x >-, 则不等式组的解集为3322x -<≤, x 为非负实数, 302x ∴≤≤, 4023x ∴≤≤, 43x 为非负整数, 403x ∴=或413x =或423x =, 解得0x =或34x =或32x =, 故答案为:0或34或32. 【点睛】本题考查了一元一次不等式组的应用,理解x <>的定义是解题关键.14.a≤1或a≥5【分析】解不等式组,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组的解集为:a <x <a+1,∵任何一个x 的值均不在2解析:a ≤1或a ≥5【分析】解不等式组01x a x a ->⎧⎨-<⎩,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组01x a x a ->⎧⎨-<⎩的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x≤5范围内,∴x <2或x >5,∴a+1≤2或a≥5,解得,a≤1或a≥5,∴a 的取值范围是:a≤1或a≥5,故答案为:a≤1或a≥5.【点睛】本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.15.k≥1【详解】解不等式2x+9>6x+1可得x <2,解不等式x-k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1.故答案为k≥1.解析:k≥1【详解】解不等式2x+9>6x+1可得x <2,解不等式x-k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1.故答案为k≥1.16.-18≤a<-15【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式组,从而得出a 的范围.【详解】解不等式,得:解析:-18≤a<-15【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式组,从而得出a 的范围.【详解】解不等式271x -≤,得:4x ≤,解不等式312x a ->,得:123a x +>, 因为不等式组的整数解有6个,所以12213a +-≤<-, 解得:1815a -≤<-,故答案为1815a -≤<-.【点睛】本题主要考查了一元一次不等式组的整数解.利用不等式组的整数解个数来列出关于a 的不等式组是解题的关键.17.-2≤m <3【解析】【分析】先解方程组求出方程组的解,然后根据x≥0,y >0列出关于m 的不等式组,解不等式组即可得.【详解】解方程组,得,由x≥0,y >0则有,解得:-2≤m <3,故答案解析:-2≤m <3【解析】【分析】先解方程组求出方程组的解,然后根据x≥0,y >0列出关于m 的不等式组,解不等式组即可得.【详解】解方程组2728x y m x y m +=+⎧⎨+=-⎩,得23x m y m =+⎧⎨=-⎩, 由x≥0,y >0则有2030m m +≥⎧⎨->⎩, 解得:-2≤m <3,故答案为:-2≤m <3.【点睛】本题考查了一元一次不等式组,二元一次方程组的解,熟练掌握解法是关键. 18.【分析】利用题中的新定义列出不等式组,求出解集即可确定出a 的范围.【详解】根据题中的新定义化简得:a≤4x -4−x +3<7,整理得: ,即<x <,由不等式组有3个整数解,即为2,1,解析:4,3,2---【分析】利用题中的新定义列出不等式组,求出解集即可确定出a 的范围.【详解】根据题中的新定义化简得:a ≤4x -4−x +3<7,整理得:31731x x a -<⎧⎨->⎩, 即13a +<x <83, 由不等式组有3个整数解,即为2,1,0, 所以1103a +-≤< 解得-4<a <-1所以a 可取的正数解有:-4,-3,-2故答案为:-4,-3,-2【点睛】此题考查了一元一次不等式组的整数解,实数的运算,以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.19.-1【分析】先求出两个不等式的解集,再结合不等式组的解集列出关于a 、b 的方程,求出a 、b 的值,继而代入再求解立方根即可.【详解】解:解不等式,得:,解不等式,得:,∵不等式组的解集为,解析:-1【分析】先求出两个不等式的解集,再结合不等式组的解集列出关于a 、b 的方程,求出a 、b 的值,继而代入再求解立方根即可.【详解】解:解不等式2x a ->,得:2x a +>,解不等式20b x ->,得:2x b <, ∵不等式组的解集为11x -<<,∴21a +=-,12b =, 解得3a =-,2b =,∴()a b +1-,故答案为:-1.【点睛】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及实数的运算.20.【分析】先求出不等式组的解集,然后根据不等式组的整数解有3个,可得到关于 的不等式组,即可求解.【详解】解不等式①,得: ,解不等式②,得: ,∵不等式组的整数解有3个,∴,解得:解析:12a ≤<【分析】先求出不等式组的解集,然后根据不等式组的整数解有3个,可得到关于a 的不等式组,即可求解.【详解】()32215233①②⎧+<+⎪⎨-<+⎪⎩x a x x x 解不等式①,得:4x a <-+ ,解不等式②,得:1x >- ,∵不等式组的整数解有3个,∴243a <-+≤,解得: 12a ≤<.故答案为:12a ≤<.【点睛】本题主要考查了一元一次不等式组的整数解,熟练掌握解求不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.三、解答题21.(1)﹣3,2.5;(2)﹣4<m <﹣2或0<m <2;(3)1≤a <2.【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a 的不等式组,解不等式组即可求得答案.解:(1)设点P 表示的数是x ,则11x -≤≤,若点Q 表示的数是﹣3,由2PQ =可得()32x --=,解得:x =﹣1或﹣5,所以﹣3是连动数;若点Q 表示的数是0,由2PQ =可得02x -=,解得:x =2或﹣2,所以0不是连动数; 若点Q 表示的数是2.5,由2PQ =可得 2.52x -=,解得:x =﹣0.5或4.5,所以2.5是连动数;所以﹣3,0,2.5是连动数的是﹣3,2.5,故答案为:﹣3,2.5;(2)解关于x 的方程2x ﹣m =x +1得:x =m +1,∵关于x 的方程2x ﹣m =x +1的解满足是连动数,∴112112m m ---<⎧⎨-->⎩或112112m m +-<⎧⎨++>⎩, 解得:﹣4<m <﹣2或0<m <2;故答案为:﹣4<m <﹣2或0<m <2;(3)()112123x x a +⎧>-⎪⎨⎪+-≤⎩①②, 解不等式①,得x >﹣3,解不等式②,得x ≤1+a ,∵不等式组()112123x x a +⎧>-⎪⎨⎪+-≤⎩的解集中恰好有4个解是连动整数, ∴四个连动整数解为﹣2,﹣1,1,2,∴2≤1+a <3,解得:1≤a <2,∴a 的取值范围是1≤a <2.【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键.22.(1)A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A 型电风扇a 台的一个取值范围,从而得出a 的最大值;(3)将B 型电风扇用(30-a)表示出来,列写A 、B 两型电风扇利润为1400的等式方程,可求得a 的值,最后在判断求解的值是否满足(2)中a 的取值范围即可解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3518004103100x y x y +=⎧⎨+=⎩,解得:250210x y =⎧⎨=⎩, 答:A 、B 两种型号电风扇的销售单价分别为250元、210元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台.依题意得:200a+170(30-a )≤5400,解得:a≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250-200)a+(210-170)(30-a )=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解23.(1)x >5或x <1;(2)9;(3)m =-3或m =-2或m =-1【分析】(1)由绝对值的几何意义即可得出答案;(2)由|21|x a -<知21a x a -<-<,据此得出1122a a x -+<<,再结合3b x <<可得出关于a 、b 的方程组,解之即可求出a 、b 的值,从而得出答案;(3)两个方程相加化简得出1x y m +=--,由||2x y +知22x y -+,据此得出212m ---,解之求出m 的取值范围,继而可得答案.【详解】解:(1)根据绝对值的定义得:32x ->或32x -<-,解得5x >或1x <;(2)|21|x a -<,21a x a ∴-<-<, 解得1122a a x -+<<, 解集为3b x <<, ∴12132a b a -⎧=⎪⎪⎨+⎪=⎪⎩, 解得52a b =⎧⎨=-⎩, 则2549a b -=+=;(3)两个方程相加,得:3333x y m +=--,1x y m ∴+=--,||2x y +,22x y ∴-+,212m ∴---,解得31m -,又m 是负整数,3m ∴=-或2m =-或1m =-.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的能力.24.(1)4,-7;(2)56x ≤<;(3)53;(4)1x =-或14或112或324 【分析】(1)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(2)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(3)由材料中“[]x x a =+,其中01a ≤<”得出315232x x x +-<+,解不等式,再根据3x +1为整数,即可计算出具体的值;(4)由材料中的条件[]41a x =+可得[]14x a +=,由01a <,可求得[]x 的范围,根据[]x 为整数,分情况讨论即可求得x 的值.【详解】(1)[]4.84=,[]6.57-=-.故答案为:4,-7.(2)如果[]5x =. 那么x 的取值范围是56x <.故答案为:56x <.(3)如果[]5231x x -=+,那么315232x x x +-<+. 解得:322x < ∵31x +是整数. ∴53x =. 故答案为:53. (4)∵[]x x a =+,其中01a <,∴[]x x a =-,∵[]41a x =+,∴[]14x a +=.∵01a <,∴[]1014x +<,∴[]13x -<,∴[]1x =-,0,1,2.当[]1x =-时,0a =,1x =-;当[]0x =时,14a =,14x =; 当[]1x =时,12a =,112x =; 当[]2x =时,34a =,324x =; ∴1x =-或14或112或324. 【点睛】本题考查了新定义下的不等式的应用,关键是理解题中[]x 的意义,列出不等式求解;最后一问要注意不要漏了情况.25.(1)2a =,3b =,4c =;(2)3,02⎛⎫- ⎪⎝⎭或3,02⎛⎫ ⎪⎝⎭;(3)m 的范围51m -≤<;P 的坐标是()6,1-.【分析】(1)根据乘方、算术平方根的性质,通过列二元一次方程组并求解,得a 和b 的值;根据绝对值的性质,列一元一次方程并求解,从而得到答案;(2)设(),0M t ,根据题意列方程,结合绝对值的性质求解,得t 的值;再根据坐标的性质分析,即可得到答案(3)P 在第二象限以及AOP 的面积不大于ABC 的面积,通过列一元一次不等式并求解,即可得到m 的范围,再根据1APO S m =-△的变化规律计算,即可得到答案.【详解】(1)∵()2320a b -=, ∴10320a b a b -+=⎧⎨-=⎩ 解得:23a b =⎧⎨=⎩ ∵40c -≤∴40c -=∴4c =;(2)根据题意,设(),0M t ∵14362ABC S ∆=⨯⨯= ∴1422CMO S t t =⨯=△∴23t = ∴32t =±∴M 点坐标为3,02⎛⎫- ⎪⎝⎭或3,02⎛⎫ ⎪⎝⎭; (3)11121122APO S AO m m m =-=⨯-=-△ ∵P 在第二象限 ∴10m -<∴1APO S m =-△∵B 、C 的横坐标相同,∴//BC y 轴1143622ABC S BC OB =⋅=⨯⨯=△ ∵AOP ABC S S ≤∴16m -≤5m ≥-∵P 点在第二象限∴10m -<∴1m <∴m 的范围为51m -≤<∵当1m <时,APO S △随m 的增大而减小;∴当5m =-时,AOP S 的最大值为6∴P 的坐标是()6,1-.【点睛】本题考查了算术平方根、乘方、二元一次方程组、一元一次方程、一元一次不等式、直角坐标系、绝对值的知识;解题的关键是熟练以上知识,从而完成求解.26.(1)是;(2)k 的最小值为﹣23,最大值为83 【分析】(1)分别解出两个方程,得到x ﹣y 的值,即可确定两个方程是“友好方程”;(2)分别解两个方程为x =1,325k y +=,再由已知可得﹣1≤3215k +-≤1,求出k 的取值范围为即可求解.【详解】解:(1)由2x ﹣9=5x ﹣2,解得x =73-, 由5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y ,解得y =﹣3,∴x ﹣y =23,∴﹣1≤x ﹣y ≤1,∴方程2x ﹣9=5x ﹣2与方程5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y 是“友好方程”; (2)由3x ﹣3+4(x ﹣1)=0,解得x =1, 由3212y k y k ++=+,解得325k y +=, ∵两个方程是“友好方程”,∴﹣1≤x ﹣y ≤1,∴﹣1≤3215k +-≤1, ∴2833k -≤≤ ∴k 的最小值为﹣23,最大值为83. 【点睛】本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)2x +3=1的解是不等式12x -<3的理想解,过程见解析;(2)2<x 0+2y 0<8 【分析】(1)解方程2x +3=1的解为x =﹣1,分别代入三个不等式检验即可得到答案; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式解得﹣12<y 0<1,再结合x 0=2y 0+4,通过计算即可得到答案.【详解】(1)∵2x +3=1∴x =﹣1, ∵x ﹣12=﹣1﹣12=﹣32<32∴方程2x +3=1的解不是不等式1322x ->的理想解; ∵2(x +3)=2(﹣1+3)=4,∴2x +3=1的解不是不等式2(x +3)<4的理想解; ∵12x -=112--=﹣1<3, ∴2x +3=1的解是不等式12x -<3的理想解; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式组31x y >⎧⎨<⎩,得002431y y +>⎧⎨<⎩; ∴﹣12<y 0<1,∴﹣2<4y 0<4,∵00000422244x y y y y =+=+++。
一元一次不等式、分解因式及分式的全面复习含经典例题
个性化教学辅导教案学科: 任课教师:刘老师授课时间:2013 年月日(星期) 姓名年级:初二教学课题前三章综合复习阶段基础()提高()强化()课时计划第()次课共()次课教学目标知识点:不等式、不等关系、分解因式、分式考点:不等式及其性质综合运用、分解因式、分式计算方法:讲练法重点难点重难点:不等式及其性质、分解因式的常用方法、分式基本性质教学内容与教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________一、作业检查与分析二、知识梳理第一章一元一次不等式和一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,cbca>.(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cbca<※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0三. 不等式的解集※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四. 一元一次不等式※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3. 解一元一次不等式的步骤:①去分母; ②去括号; ③移项;④合并同类项;⑤系数化为1(不等号的改变问题)※4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. ※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.一元一次不等式 解集 图示叙述语言表达 ⎩⎨⎧>>b x ax x>bba两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找⎩⎨⎧><b x ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. ※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+※2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ ※3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. ※2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.※4. 运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++※2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. ※3. 注意: 分组时要注意符号的变化. 五. 十字相乘法※1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= ,21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ ※2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++ab q b a p =+= ※3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. ba 11(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.※2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.)0(,≠÷÷=⨯⨯=M MB MA B A M B M A B A ※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即: BD AC D C B A =⋅, CB D ACD B A D C B A ⋅⋅=⋅=÷※2. 分式乘方,把分子、分母分别乘方.即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.※3. 分子与分母没有公因式的分式,叫做最简分式.三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. ※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减. (1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:CBA CBC A ±=±(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±※3. 概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小则首先对多项式进行因式分解. 四. 分式方程※1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2. 列分式方程解应用题的一般步骤:①审清题意; ②设未知数;③根据题意找相等关系,列出(分式)方程; ④解方程,并验根; ⑤写出答案.【课堂讲解】1. 当x= _____ 时,分式x+21有意义; 分解因式:a x 2-4ax+4a =______________;2. 不等式组⎩⎨⎧--≥)7(321,1x x x 的整数解集是3. 一次函数y= —x+2中,若y ﹥0,则x 的取值范围是 4. 若43==d c b a 则=++db c a 226.如果关于x 的方程31132--=-ax 有增根,则a 的值为7.如果不等式组 m x x x >-<+148 的解集是x>3,则m 的取值范围是( )A m ≥3B m ≤3C m=3D m <38.简便计算:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. <v< D.v=
解析:设从甲地到乙地距离为 ,则全程的平均时速 ,因为 ,
,故选A.
8.设 ,则 的最小值是( ).
A. B. C. D.
解: ,
当且仅当
, 时等号成立.如取 , 满足条件.选D.
9.若A,B,C为△ABC的三个内角,则 + 的最小值为.
A B C D
解∵A+B+C= ,且(A+B+C)·( + )=5+4· + ≥5+ =9,因此 + ≥ ,当且仅当4· = ,即A=2(B+C)时等号成立.
∴f(x)min=3,∴a<3.
得最小
15.设 且 ,求 的最大值.
解:∵ ,∴ .
又 ,∴ ,即
16.已知α、β都是锐角,且sinβ=sinαcos(α+β).
(1)当α+β=,求tanβ的值;(2)当tanβ取最大值时,求tan(α+β)的值.
[解析](1)∵由条件知,sinβ=sin,整理得sinβ-cosβ=0,
解:∵a、b是正实数,∴①a+b≥2⇒1≥⇒≥.当且仅当a=b时取等号,∴①不恒成立;②a+b>|a-b|⇒a>|a-b|-b恒成立;③a2+b2-4ab+3b2=(a-2b)2≥0,当a=2b时,取等号,∴③不恒成立;④ab+≥2=2>2恒成立.答案:D
3.已知 则 的最小值是().
A B C 2 D 1
由=4a1,得2m+n-2=24,即m+n=6.故+=(m+n)(+)=+(+)≥+=,当且仅当n=2m时等号成立.答案:
(5)
14.对于任意x∈R,不等式2x2-a+3>0恒成立,求实数a的取值范围.
解:原不等式可化为a<==2+恒成立.
问题转化为求f(x)=2+的最小值.令u=≥1
而函数f(u)=2u+在[1,+∞)上单调递增,∴f(u)≥f(1)=2+1=3,
10.已知x>0,y>0,且3x+4y=12,则lgx+lgy的最大值____________及此时,X=______y=________的值.
析∵x>0,y>0,3x+4y=12,∴ ≤ ,
∴lgx+lgy=lgxy≤lg3.由 解得
∴当x=2,y= 时,lgx+lgy取得最大值lg3.
11.设a、b、c∈R+,则(a+b+c) 的最小值为.
解:记 ,则 , ,(当且仅当 时取等号).故选A.
4.如果正数a,b,c,d满足a+b=cd=4,那么().
(A)ab≤c+d,且等号成立时a,b,c,d的取值惟一
(B)ab≥c+d,且等号成立时a,b,c,d的取值惟一
(C)ab≤c+d,且等号成立时a,b,c,d的取值不惟一
(D)ab≥c+d,且等号成立时a,b,c,d的取值不惟一
解析:(a+b+c) = 答案:4
12.若 ,且 恒成立,则 的最小值是________
解:∵ ,∴只要 ,又∵
∵ ,∴ ,∴ ,∴
(4)求 在 下的最小值
13.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则+的最小值为________.
解:设正项等比数列{an}的公比为q,由a7=a6+2a5,得q2-q-2=0,解得q=2.
只有选项C中的不等式当x=1时不成立.答案:C
2.设a,b,c,d,m,n都是正实数,P=+,Q=·,则P、Q的大小关系为.P≤Q
解:Q=·=≥==+=:①>;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+>2恒成立的序号为()
A.①③B.①④C.②③D.②④
不等式综合复习试题
1.下列不等式不一定成立的是()
A.a2+b2≥2ab(a,b∈R) B.a2+3>2a,(a,b∈R)
C.|x+|>2(x>0) D.≤(a,b∈R)
解:由重要不等式知,A中不等式成立;由于a2+3-2a=(a-1)2+2>0,B中的不等式恒成立;根据()2=≤⇒≤||≤,选项D中的不等式恒成立;
∵β为锐角,∴tanβ=.
(2)由已知得sinβ=sinαcosαcosβ-sin2αsinβ,
∴tanβ=sinαcosα-sin2αtanβ,∴tanβ==
==≤=.
当且仅当=2tanα时,取“=”号,
∴tanα=时,tanβ取得最大值,
此时,tan(α+β)==.
解:A∵a+b=cd=4,∴ab≤==4,当且仅当a=b=2时等号成立;c+d≥2=2=4,当且仅当c=d=2时等号成立,∴ab≤c+d,当且仅当a=b=c=d=2时等号成立.
5.(2012福建理)下列不等式一定成立的是( )
A. B.
C. D.
解:由基本不等式得 ,答案C正确.
6.(2012贵州文科)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()
A.(-∞,-1) B.(-∞,2-1) C.(-1,2-1) D.(-2-1,2-1)
解:由f(x)>0得32x-(k+1)·3x+2>0,
解得k+1<3x+,而3x+≥2,∴k+1<2,k<2-1.答案B
7(2012陕西文)小王从甲地到乙地的时速分别为a和b(a<b),其全程的平均时速为v,则( )