钢热处理报告
45#钢热处理工艺检验报告
热处理工艺检验报告
本周对近期生产的45#钢进行了热处理工艺,其中包括正火、退火以及部分的调质处理工艺,以下是对所做各种热处理工艺与钢筋性能的总结:
3月12日热处理工艺
正火处理:
(1)850℃保温30min,室内空冷
调质处理:
(2)840℃淬火+600℃高温回火1h,空冷
3月13日热处理工艺
(1)840℃淬火+400℃中温回火1h,空冷
3月14日热处理工艺
退火处理:
(1)720℃退火(球化退火)
(2)830℃退火(完全退火)
3月15日热处理工艺
正火处理:
(1)880℃保温40min,室外空冷
3月16日热处理工艺
正火处理:
(1)840℃保温40min,室外空冷(2组)
其中组1为2号炉随炉加热的三个试样,组2为5号炉到温加热的三个试样。
(2)840℃保温40min,室内空冷
(3)840℃保温40min,风冷
3月17日热处理工艺
(1)840℃淬火+200℃低温回火1h,空冷
正火处理:
(2)840℃保温40min,室外空冷
(3)840℃保温50min,室外空冷
(4)840℃保温1h,室外空冷
3月18日热处理工艺
调质处理:淬火+高温回火,840℃保温30min
淬火时用的是淬火剂,回火1h,出炉空冷
力学性能见下表:
通过对以上实验数据的分析总结认为,试样的力学性能及金相组织主要决定于温度、保温时间以及冷却方式,针对φ12的45钢,总结认为正火温度应控制在840±10℃,保温时间应控制在35min至40min,采用室外冷却方式,适当加快冷却速度对提高正火后的力学性能有一定作用。
20号钢热处理综合实验报告
实验名称:20号钢热处理组织和硬度综合实验一.实验目的(1)了解并掌握20号钢的热处理工艺、。
(2)掌握20号钢正火的步骤、规范以及硬度的变化。
(3)学会观察20号钢正火后的显微组织结构,分析其性能变化的原因。
(4)学会解决实验过程中的问题,探索最佳20号钢热处理工艺。
二.简述4种基本热处理工艺(退火、正火、淬火及回火)方法及钢热处理后的显微组织特征金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。
钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火:将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
正火:将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
淬火:将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
回火:为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
三.简述洛氏硬度测定的基本原理及应用范围洛式硬度(HR-)是以压痕塑性变形深度来确定硬度值指标。
以0.002毫米作为一个硬度单位。
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59或3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,有HRA,HRB,HRC三种硬度。
HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
碳钢热处理实验
碳钢热处理实验碳钢热处理实验报告专业:班级:组别:组员名单:姓名学号XX⼤学机电⼯程系指导⽼师:20XX年X⽉碳钢的热处理实验1⼀.实验⽬的(1)了解碳钢热处理⼯艺操作。
(2)学会使⽤马⽒体测量材料的硬度性能值。
(3)探讨淬⽕温度、淬⽕冷却速度、回⽕温度对40钢和T12钢的组织和性能的影响。
(4)巩固课堂教学所学相关知识,体会材料的成分—⼯艺—组织性能之间关系。
⼆、概述热处理是⼀种很重要的热加⼯⼯艺⽅法,也是充分发挥⾦属材料性能潜⼒的重要⼿段。
热处理的主要⽬的是改变钢的性能,其中包括使⽤性能及⼯艺性能。
钢的热处理⼯艺特点是将钢加热到⼀定的温度,经⼀定时间的保温,然后以某种速度冷却下来,通过这样的⼯艺过程能使钢的性能发⽣改变。
热处理之所以能使钢的性能发⽣显著变化,主要是由于钢的内部组织结构可以发⽣⼀系列变化。
采⽤不同的热处理⼯艺过程,将会使钢得到不同的组织结构,从⽽获得所需要的性能。
钢的热处理基本⼯艺⽅法可分为退⽕、正⽕、淬⽕和回⽕等。
三.实验原理(1)钢的热处理1.钢的退⽕:钢的退⽕指将钢加热到⼀定温度并保温⼀段时间,然后使它慢慢冷却的过程。
钢的退⽕是将钢加热到发⽣相变或部分相变的温度,经过保温后缓慢冷却的热处理⽅法。
2.钢的正⽕:正⽕,⼜称常化,是将⼯件加热⾄Ac3或Acm以上40~60℃,保温⼀段时间后,从炉中取出在空⽓中或喷⽔、喷雾或吹风冷却的⾦属热处理⼯艺。
其⽬的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应⼒,降低材料的硬度。
3.钢的淬⽕:所谓淬⽕就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放⼊各种不同的冷却介质中( V冷应⼤于V临),以获得马⽒体组织。
碳钢经淬⽕后的组织由马⽒体及⼀定数量的残余奥⽒体所组成。
为了正确地进⾏钢的淬⽕,必须考虑下列三个重要因素:淬⽕加热的温度、保温时间和冷却速度。
24.钢的退⽕:退⽕是⼀种⾦属热处理⼯艺,指的是将⾦属缓慢加热到⼀定温度,保持⾜够时间,然后以适宜速度冷却。
热处理实验报告[5篇范文]
热处理实验报告[5篇范文]第一篇:热处理实验报告篇一:钢得热处理实验报告钢得热处理实验报告一、实验目得 1、了解热处理对材料性能得影响2、了解在相同得热处理状态下材料成分对材料性能得影响3、了解用显微镜观察金相得制样过程二、仪器材料箱式电炉(sx2—4-10、sx—4-10)、硬度测试仪(hr—150a)、30 钢、t10 钢、砂轮(砂纸)三、实验过程1)、金相得制备将一小块金属材料用金相砂纸磨光后进行抛光,去除金相磨面由细磨所留下得细微磨痕及表面变形层,使磨面成为无划痕得光滑镜面,然后用侵蚀剂进行腐蚀,以使组织被显示出来,这样就得到了一块金相样品。
2)、钢得热处理淬火与正火钢得淬火:淬火就就是将钢加热到相变温度以上,保温后放入各种不同得冷却介质中(v 冷应大于v临),以获得马氏体组织。
钢经淬火后得组织由马氏体及一定数量得残余奥氏体所组成。
步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定);再将试样放入箱式电炉中,t10 钢在770℃左右,30 钢在860℃左右分别均匀加热15 分钟;然后迅速在水中冷却,并不断搅拌.将淬火后得试样用砂轮磨平,并测出硬度值(hrc)填入表 1 中。
钢得正火:钢加热到ac3(亚共析钢)或ac1(过共析钢)以上30~50℃以上,保温适当时间后,在自由流动得空气中冷却得热处理工艺。
步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定)。
再将试样放入箱式电炉中,t10 钢在770℃左右,30 钢在860℃左右分别均匀加热 15 分钟,后在空气中缓慢冷却。
将正火后得试样用砂轮磨平,并测出硬度值(hrc)填入表 2 中。
四、结果及讨论1、为什么淬火处理后得硬度值比正火处理后得高?答:因为淬火冷却速度比正火冷却速度快,由过冷奥氏体得连续冷却转变图像可知淬火后得到得就是马氏体组织,而正火后得到得组织主要就是珠光体.马氏体比珠光体晶粒度细晶界面多,使得晶体得位错滑移阻力增大,从而硬度提高。
工程材料综合实验(基础实验+钢的热处理)实验报告
工程材料综合实验(基础实验+钢的热处理)实验报告工程材料综合实验处理报告单位:过程装备与控制工程10-1班实验者: 侯鹏飞学号10042107胡兴文学号10042108李东升学号10042110【实验名称】工程材料综合实验【实验目的】运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论的系统认识,并提高分析问题和解决问题的能力。
通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的仪器和设备:1、研究铁碳合金在平衡状态下的显微组织;2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系;3、了解碳钢的热处理操作;4、研究加热温度、冷却速度、回火温度对碳钢性能的影响;5、观察热处理后钢的组织及其变化;6、了解常用硬度计的原理,初步掌握硬度计的使用。
【实验材料及设备】1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等;2、金相砂纸、水砂纸、抛光布、研磨膏等;3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳钢T10)【实验内容】三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。
1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温时间、冷却方式)。
做实验前完成。
样品加热温度保温时间冷却方式20# 880℃25min 空冷45# 淬火880℃高温回火600℃淬火25min高温回火25min水冷T10 900℃30min 水冷2、选定硬度测试参数,一般用洛氏硬度。
样品20# 45# T10 硬度HRB50 HRC20 HR633、热处理前后的金相组织观察、硬度的测定。
4、分析碳钢成分—组织—性能之间的关系。
样品成分组织性能20# 马氏体F+P冲压性与焊接性良好45# 马氏体F+P经热处理后可获得良好的综合机械性能T10 马氏体+奥氏体P+Fe3C II硬度高,韧性适中【实验步骤】1、观察平衡组织并测硬度:(1)制备金相试样(包括磨制、抛光和腐蚀);(2)观察并拍摄显微组织;(3)测试硬度。
GCr15、2Gr13热处理实验报告
五、实验数据
1.硬度HRC
表1 GCr15钢热处理前后硬度
状态
1 2 3 平均
硬度
原件59.0 59.1 59.3 59.1
淬火后80.1 80.8 80.7 80.5
回火后79.8 79.4 78.9 79.4
表2 2Cr13钢热处理前后硬度
状态
1 2 3 平均
硬度
原件50.3 50.6 50.3 50.4
淬火后73.4 74.3 74.3 74
回火后63.4 63.2 63.3 63.3
六、金相照片及组织分析
1.金相照片
状态
GCr152Cr13 材料
原件
100μm 100μm
淬火后
100μm 100μm
回火后
100μm 100μm
2.组织分析
(1)GCr15钢合金含量较少、具有良好性能,经过淬火加低温回火后具有较高的硬度、均匀的组织、良好的耐磨性、高的接触疲劳性能。
(2)GCr15等温淬火组织为下贝氏体+碳化物+少量马氏体+极少量残余奥氏体,淬火变形很小,强度高,韧性好。
GCr15低温回火,马氏体分解,残余奥氏体转变,碳化物转变工艺特点为强调硬度取下限,强调韧性取上限。
(3)2Cr13属于不锈铁,硬度好,经过淬火处理后可以得到更好的机械性能,具有较好的可加工性,组织形态为马氏体型。
2Cr13处理应为淬火+高温回火,组织应为回火索氏体+未溶块状铁素体,会很大程度上影响该材料使用时耐腐蚀性。
碳钢的热处理实验报告
碳钢的热处理实验报告模块一常用金属材料及热处理项目二钢的热处理任务一: 钢的普通热处理一、实验目的1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。
2、研究冷却条件对碳钢性能的影响。
3、分析淬火及回火温度对碳钢性能的影响。
二、实验原理1、钢的淬火所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30,50?,保温后放入各种不同的冷却介质中( V冷应大于V临 ),以获得马氏体组织。
碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。
为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。
(1)淬火温度的选择选定正确的加热温度是保证淬火质量的重要环节。
淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所示)。
对亚共析钢,其加热温度为,30,50?,若加热温度不足(低于),则淬火组织中将出现铁素体而造成强度及硬度的降低。
对过共析钢,加热温度为,30,50?,淬火后可得到细小的马氏体与粒状渗碳体。
后者的存在可提高钢的硬度和耐磨性。
(2)保温时间的确定淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。
加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。
表1 碳钢在箱式电炉中加热时间的确定工件形状加热圆柱形方形板形温度(?) 保温时间分钟/每毫米直径分钟/每毫米厚度分钟/每毫米厚度700 1.5 2.2 3800 1.0 1.5 2900 0.8 1.2 1.61000 0.4 0.6 0.8(3)冷却速度的影响冷却是淬火的关键工序,它直接影响到钢淬火后的组织和性能。
冷却时应使冷却速度大于临界冷却速度,以保证获得马氏体组织;在这个前提下又应尽量缓慢冷却,以减少钢中的内应力,防止变形和开裂。
为此,可根据C曲线图(如图2所示),使淬火工作在过冷奥氏体最不稳定的温度范围(650,550?)进行快冷(即与C曲线的“鼻尖”相切),而在较低温度(300,100?)时冷却速度则尽可能小些。
45钢的热处理实验报告
45钢的热处理实验报告45钢的热处理实验报告热处理是指通过加热和冷却等工艺手段改变材料的组织结构和性能的过程。
在金属材料加工领域中,热处理是一项重要的工艺,可以显著改善材料的力学性能和耐腐蚀性能。
本实验旨在对45钢进行热处理,并研究其对材料性能的影响。
实验一:淬火处理淬火是一种常用的热处理方法,通过迅速冷却材料,使其产生马氏体组织,从而提高材料的硬度和强度。
本实验中,我们选取了45钢试样,首先将试样加热至800摄氏度,保温一段时间,使其达到均匀的温度分布。
然后,迅速将试样放入冷却介质中进行淬火处理。
实验结果显示,经过淬火处理后,45钢试样的硬度明显提高。
通过显微镜观察,可以看到试样表面形成了典型的马氏体组织,这是由于淬火过程中,高温下的奥氏体转变为马氏体而形成的。
马氏体的形成使得材料的晶格结构发生变化,导致材料硬度增加。
此外,淬火还可以消除材料内部的应力,提高材料的韧性和强度。
实验二:回火处理回火是淬火后的一种处理方法,通过将淬火后的试样加热至适当温度并保温一段时间后冷却,以改善材料的韧性和减轻内应力。
本实验中,我们将淬火后的45钢试样进行回火处理。
实验结果显示,经过回火处理后,45钢试样的硬度有所下降,但韧性和强度得到了提高。
通过显微镜观察,可以看到试样表面的马氏体已经部分转变为回火组织,这是由于回火过程中,马氏体重新分解为奥氏体和残余马氏体而形成的。
回火组织的形成使得材料的硬度降低,但同时也消除了淬火过程中产生的内应力,提高了材料的韧性和强度。
实验三:正火处理正火是一种常用的热处理方法,通过将试样加热至适当温度并保温一段时间后冷却,以改善材料的韧性和强度。
与淬火不同的是,正火处理的冷却速率较慢,不会形成马氏体组织。
本实验中,我们将45钢试样进行正火处理。
实验结果显示,经过正火处理后,45钢试样的硬度较淬火处理有所下降,但韧性和强度得到了进一步提高。
通过显微镜观察,可以看到试样表面形成了典型的珠光体组织,这是由于正火过程中,奥氏体逐渐转变为珠光体而形成的。
钢的热处理及热处理后的显微组织观察实验报告
钢的热处理及热处理后的显微组织观察实验报告罗毅晗2014011673一、实验目的(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。
(2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。
(3)观察碳钢热处理后的显微组织。
二、概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理的基本操作有退火、正火、淬火、回火等。
进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。
三、实验内容加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.0 52.1 52.6 52.2 860℃油冷﹨20.2 23.4 19.1 20.9 860℃空冷﹨94.1 94.6 94.2 94.3 860℃炉冷﹨86.0 85.2 85.7 85.6 860℃水冷200℃51.9 52.0 52.1 52.0 860℃水冷400℃34.8 35.3 35.7 35.3 860℃水冷600℃20.3 21.5 19.6 20.5显微组织观察45钢860℃气冷索氏体+铁素体45钢860℃油冷马氏体+屈氏体45钢860℃水冷马氏体45钢 860℃水冷+600℃回火回火索氏体T12钢 760℃球化退火球化体T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体T12钢 1100℃水冷粗大马氏体+残余奥氏体四、实验分析1.火温度而言,淬火温度越高,硬度越高。
但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。
2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。
3.火温度而言,回火温度越高,硬度越低。
图像:分析原因:①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。
②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。
新版热处理工艺(热处理工艺对碳钢组织和硬度的影响实验报告)
——淬火是将工件加热到AC3或AC1点以上某一温度保持一定时间。
然后以适当速度快速冷却获得马氏体或(和)贝氏体组织的热处理工艺。
目的:就是为了获得马氏体或下贝氏体组织,提高强度硬度,以便在随后不同温度回火后获得所需要的性能。
1、淬火加热温度淬火温度主要是根据Fe—Fe3C相图中钢的临界点确定。
亚共析钢的淬火加热温度:AC3以上30℃~50℃,使钢完全奥氏体化,淬火后获得全部马氏体组织。
共析钢、过共析钢的淬火加热温度:为AC1以上30℃~50℃,得到奥氏体和部分二次渗碳体,淬火后得到马氏体(共析钢)或马氏体加渗碳体(过共析钢)组织。
2、淬火冷却淬火冷却时,要保证获得马氏体组织,必须使奥氏体以大于马氏体临界冷却速度冷却,而快速冷却会产生很大淬火应力,导致钢件的变形与开裂。
因此,淬火工艺中最重要的一个问题是既能获得马氏体组织,又要减小变形、防止开裂。
常用冷却介质:目前应用最广泛的淬火冷却介质是水和油。
实际生产中,使用的冷却介质较多,到目前为止,尚未找到一种介质,能完全符合理想淬火冷却速度的要求。
水具有较强烈的冷却能力,用作奥氏体稳定性较小的碳钢的淬火,水冷却介质最为合适。
油的冷却能力比水小,因此,生产中用油作冷却介质,只适用于过冷奥氏体稳定性较大的合金钢淬火。
常用淬火方法:主要有单介质淬火、双介质淬火、马氏体等温淬火、贝氏体等温淬火。
选择适当的淬火方法可以保证在获得所要求的淬火组织和性能条件下,尽量减小淬火应力,减少工件变形和开裂倾向。
工程材料及成形工艺基础淬火冷却方法(1)单介质淬火是采用一种淬火介质中一直冷却到室温的淬火方法。
这种淬火方法的优点是操作简便,适用于形状简单的碳钢和合金钢工件。
形状简单、尺寸较大的碳钢工件多采用水淬,小尺寸碳钢件和合金钢件一般用油淬。
缺点对大尺寸和或形状复杂的工件,采用水淬变形开裂倾向大,而油淬冷却速度小,淬不硬。
(2)双介质淬火是将工件加热奥氏体化后先浸入冷却能力强的介质,在组织即将发生马氏体转变时,立即转入冷却能力弱的介质中冷却。
6.钢的热处理(3)汇总
2)零件变形与开裂 ➢正确选材、合理设计。 ➢淬火前进行相应的退火或正火,细
化晶粒、均匀组织。
➢严格控制淬火加热温度。 ➢采用适当的淬火方法。 ➢淬火后立即回火。
二、 热处理零件的结构工艺性
设计倒角 避免厚薄悬殊 形状对称
三、 热处理工序位置的安排
退火、正火的工序位置 毛坯生产 退火或正火 机械加工
氮化件的组织和性能
• 高硬度(1000HV~1100HV),高耐磨性、热 硬性(Fe4N,Fe2N)。
• 表面压应力提高疲劳强度。 • 温度低,变形小。 • 耐蚀性好(水、过热蒸汽、碱溶液)。
氮化用钢 35CrAlA,38CrMoAlA,38CrWVAlA 等 应用 发动机汽缸、排气阀、精密机床丝杠、 镗床主轴、气轮机阀门 耐磨性 精度 耐热 耐蚀件。
活塞销
➢ 渗碳方法 气体渗碳
介质: 煤油、苯、甲醇 煤气、天然气
反应: 2CO CO2+[C] H2+CO H2O+[C] CnH2n nH2+n[C]
气体渗碳炉
固体渗碳
介质:
木炭、碳酸盐(BaCO3 Na2CO3) 反应:
BaCO3 CO2+C 2CO 特点:
BaO+CO2 2CO CO2 +[C]
传 动 轴 淬 火
斧子淬火
齿轮、链轮淬火
大模数齿轮单齿淬火
工件内孔淬火
感应加热表面淬火件的技术条件
1、表面硬度 P119表5-1 2、淬硬层深度 表5-2 3、预先热处理要求(调质/正火)
二、火焰加热表面淬火
火焰加热表面淬火特点
设备简单、成本低、灵活性大。 淬硬层2~6mm,太深易过热,质量
6钢的热处理(3)
碳钢的热处理实验报告
碳钢的热处理实验报告一、实验目的1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。
2、研究冷却条件对碳钢性能的影响。
3、分析淬火及回火温度对碳钢性能的影响。
二、实验原理1、钢的淬火所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中(V冷应大于V临),以获得马氏体组织。
碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。
为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。
(1)淬火温度的选择选定正确的加热温度是保证淬火质量的重要环节。
淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所示)。
对亚共析钢,其加热温度为+30~50℃,若加热温度不足(低于),则淬火组织中将出现铁素体而造成强度及硬度的降低。
对过共析钢,加热温度为+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。
后者的存在可提高钢的硬度和耐磨性。
(2)保温时间的确定淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。
加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。
表1 碳钢在箱式电炉中加热时间的确定加热温度(℃)工件形状圆柱形方形板形保温时间分钟/每毫米直径分钟/每毫米厚度分钟/每毫米厚度700 1.5 2.2 3 800 1.0 1.5 2900 0.8 1.2 1.6 1000 0.4 0.6 0.8(3)冷却速度的影响冷却是淬火的关键工序,它直接影响到钢淬火后的组织和性能。
冷却时应使冷却速度大于临界冷却速度,以保证获得马氏体组织;在这个前提下又应尽量缓慢冷却,以减少钢中的内应力,防止变形和开裂。
为此,可根据C曲线图(如图2所示),使淬火工作在过冷奥氏体最不稳定的温度范围(650~550℃)进行快冷(即与C曲线的“鼻尖”相切),而在较低温度(300~100℃)时冷却速度则尽可能小些。
钢的热处理实习报告
钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理气相沉积(PVD)和化学气相沉积(CVD)等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体(A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
珠光体向奥氏体转变示意图a) 形核b) 长大c) 剩余渗碳体溶解d) 奥氏体均匀化(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
影响A晶粒粗大因素1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。
因此,合理选择加热和保温时间。
以保证获得细小均匀的奥氏体组织。
(930~950℃以下加热,晶粒长大的倾向小,便于热处理)2、A中C含量上升则晶粒长大的倾向大。
工程材料综合实验(基础实验+钢的热处理)实验报告
工程材料综合实验(基础实验+钢的热处理)实验报告工程材料综合实验处理报告单位:过程装备与控制工程10-1班实验者: 侯鹏飞学号10042107胡兴文学号10042108李东升学号10042110【实验名称】工程材料综合实验【实验目的】运用所学的理论知识和实验技能以及现有的实验设备,通过自己设计实验方案、独立实验并得出实验结果,达到进一步深化课堂内容,加强对《工程材料》课程理论的系统认识,并提高分析问题和解决问题的能力。
通过做这个实验,使学生们可以充分了解以下知识,并学会操作一些必要的仪器和设备:1、研究铁碳合金在平衡状态下的显微组织;2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系;3、了解碳钢的热处理操作;4、研究加热温度、冷却速度、回火温度对碳钢性能的影响;5、观察热处理后钢的组织及其变化;6、了解常用硬度计的原理,初步掌握硬度计的使用。
【实验材料及设备】1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等;2、金相砂纸、水砂纸、抛光布、研磨膏等;3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳钢T10)【实验内容】三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。
1、设计实验方案:三种碳钢的热处理工艺(加热温度、保温时间、冷却方式)。
做实验前完成。
样品加热温度保温时间冷却方式20# 880℃25min 空冷45# 淬火880℃高温回火600℃淬火25min高温回火25min水冷T10 900℃30min 水冷2、选定硬度测试参数,一般用洛氏硬度。
样品20# 45# T10 硬度HRB50 HRC20 HR633、热处理前后的金相组织观察、硬度的测定。
4、分析碳钢成分—组织—性能之间的关系。
样品成分组织性能20# 马氏体F+P冲压性与焊接性良好45# 马氏体F+P经热处理后可获得良好的综合机械性能T10 马氏体+奥氏体P+Fe3C II硬度高,韧性适中【实验步骤】1、观察平衡组织并测硬度:(1)制备金相试样(包括磨制、抛光和腐蚀);(2)观察并拍摄显微组织;(3)测试硬度。
钢材热处理报告表
钢材热处理报告表1. 引言本文档为钢材热处理过程的报告表,旨在记录钢材热处理的相关数据和结果。
钢材热处理是一种重要的工艺手段,通过控制钢材的加热和冷却过程,可以改变钢材的微观组织,从而达到改善钢材性能的目的。
该报告表将详细记录钢材热处理的参数、结果和分析。
2. 实验参数参数值热处理方式淬火加热温度1000°C保温时间1小时冷却介质水冷却速率快速钢材规格45号钢钢材初始状态非淬火状态3. 实验结果参数值钢材硬度58HRC钢材断裂韧性25MPa·m^(1/2)钢材屈服强度780MPa钢材延伸率10%钢材收缩率5%钢材晶粒尺寸10μm钢材相组成马氏体钢材显微组织纤维状马氏体4. 结果分析通过淬火热处理,钢材的硬度显著提高,达到了58HRC。
硬度的提高可以增加钢材的抗划伤能力和耐磨性。
钢材的断裂韧性也得到了一定程度的改善,达到了25MPa·m^(1/2)。
断裂韧性的改善可以减少钢材在使用过程中的断裂概率。
钢材的屈服强度提高到780MPa,屈服强度的提高可以增加钢材的耐拉伸能力。
钢材的延伸率为10%,延伸率的提高可以增加钢材的可塑性。
钢材的收缩率为5%,收缩率的提高可以减少钢材的变形。
钢材的晶粒尺寸减小到10μm,晶粒尺寸的减小可以增加钢材的强度和硬度。
钢材的相组成主要为马氏体,马氏体的形成可以增加钢材的硬度和强度。
钢材的显微组织为纤维状马氏体,纤维状马氏体的结构可以增加钢材的韧性。
5. 结论通过本次淬火热处理实验,钢材的硬度、断裂韧性、屈服强度、延伸率和收缩率等性能得到了一定程度的改善,晶粒尺寸减小,相组成发生变化,显微组织变得更为均匀。
通过对实验结果的分析,可以得出淬火热处理可以显著改善钢材的性能,提高其硬度、强度和韧性。
在实际生产中,我们可以根据需要调整热处理的参数,以达到更好的效果。
6. 参考文献无注:所有表格数据仅为示例,具体数值应根据实际实验结果填写。
热处理实验报告
热处理实验报告
一、实验目的
1、了解钢的几种热处理操作(正火、淬火、回火等);
2、研究含碳量、加热温度、冷却速度、回火温度对钢热处理后性能的影响;
3、掌握洛氏硬度计的使用方法;
4、观察热处理后钢的组织特征。
二、实验设备和材料
箱式电阻炉、洛氏硬度计、金相显微镜、淬火的水槽、油槽、45、40CrNi、T8
三、实验结果分析
画出45、40CrNi、T8回火温度和硬度的关系图;
分析碳含量对淬火后硬度的影响以及合金元素对回火后材料硬度的影响;
针对本人所用的热处理工艺以及材料分析所得的硬度是否合理,并结合显微组织加以分析。
(在实验报告中附金相照片)。
热处理实验报告
热处理实验报告
近日,我进行了一次热处理实验,探究了钢材在高温下的性能
变化。
通过实验,我深刻认识到了热处理过程对钢材性能的影响,并对热处理技术有了更深刻的理解。
实验一开始,我首先对待测钢材进行了切割,制成多种尺寸不
同的试样。
然后,在准备好的热处理设备中,加热将试样升温至
指定的温度,保温一定时间后将试样冷却至室温。
热处理的整个
过程需要高度精确的控制,以避免钢材的过度热处理或过度冷却。
经过热处理后,我对试样进行了力学性能测试和金相显微镜观察,结果详见下面。
首先是拉伸强度的测试,我选择了不同热处理方式下的两个试
样进行了拉伸强度的测试。
结果表明,经过适当热处理后的钢材
拉伸强度有所提高,这主要是由于热处理产生的晶粒细化和去除
金属中的杂质所致。
其次,我对试样进行了冲击韧性的测试,这是检验钢材抗外力
冲击较好的一项指标。
经过热处理后,试样的冲击韧性明显增强。
经过分析,这是因为热处理可以消除钢材中的缺陷,提高钢材的韧性和塑性。
最后,我在金相显微镜下观察了经过热处理和未经过热处理的两个不同试样的组织结构。
结果表明,热处理后的钢材的晶粒尺寸较小,结构更加致密,且杂质含量较少。
这样的组织结构可以提高钢材的力学性能和耐蚀性能。
总结而言,热处理是一种非常重要的材料加工手段,能够通过改变材料的微观晶粒结构而使其具有更优异的性能。
在今后的工程应用中,我们需要更加深入地理解热处理的过程及其原理,以充分发挥其巨大的优势。
40钢经此热处理后的室温组织为
文章标题:40钢经热处理后的组织结构分析与性能评估在金属材料学中,40钢是一种常见的工程结构钢,具有优异的强度和耐磨性,被广泛应用于机械制造、汽车制造、船舶建造等领域。
而通过热处理后的40钢,在室温下的组织结构如何变化,对于其性能以及适用范围具有至关重要的影响。
1. 初探40钢的基本组织40钢是一种具有较高碳含量的合金钢,主要由铁、碳和少量的合金元素组成。
在未经热处理时,40钢的组织一般呈现为珠光体和少量的铁素体混合组织。
珠光体具有较高的硬度和强度,是40钢优良性能的关键之一。
2. 热处理对40钢组织的影响当40钢经过热处理后,其组织结构将发生明显的变化。
在热处理过程中,先将40钢加热至一定温度,然后进行保温一段时间,最后通过适当的冷却过程使得材料的组织结构发生改变。
正是通过这样的热处理工艺,40钢的机械性能才得以得到提高。
3. 室温组织的变化经过适当热处理后的40钢,在室温下的组织将发生重大变化。
普遍情况下,珠光体将逐渐变细,甚至部分转变为马氏体组织。
这种马氏体组织具有较高的强度和硬度,能够提高40钢的耐磨性和强度。
4. 性能评估热处理后,40钢在室温下的组织结构发生变化,对其性能产生了显著影响。
硬度、强度、韧性等机械性能都得到了提高,使得40钢更适用于承受高强度和耐磨性要求的工程应用中。
总结回顾:通过对40钢经热处理后在室温下的组织结构进行分析,我们可以清楚地认识到热处理对40钢性能的重要影响。
室温下的组织结构变化,不仅提高了40钢的硬度和耐磨性,也增强了其强度和韧性。
在工程实践中,我们需要充分考虑40钢的热处理工艺,以获得更优异的性能表现。
个人观点和理解:40钢经热处理后在室温下的组织结构变化,展现了金属材料学中热处理工艺的重要意义。
这种精细的组织调控,不仅提高了40钢的性能,也使得其在工程领域中具有了更广泛的应用前景。
我们应该不断深化对材料组织结构与性能之间关系的研究,为工程材料的设计和应用提供更多的科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢热处理报告钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提升机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提升钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提升机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理气相沉积(PVD)和化学气相沉积(CVD)等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体(A)的形成奥氏体晶核的形成以共析钢为例A1点则Wc=0.0218%(体心立方晶格F)Wc=6.69%(复杂斜方渗碳体)当T上升到Ac1后Wc=0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
图1珠光体向奥氏体转变示意图a)形核b)长大c)剩余渗碳体溶解d)奥氏体均匀化(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
影响A晶粒粗大因素1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。
因此,合理选择加热和保温时间。
以保证获得细小均匀的奥氏体组织。
(930~950℃以下加热,晶粒长大的倾向小,便于热处理)2、A中C含量上升则晶粒长大的倾向大。
二、钢在冷却时的转变生产中采用的冷却方式有:等温冷却和连续冷却(一)过冷奥氏体的等温转变A在相变点A1以上是稳定相,冷却至A1以下就成了不稳定相。
1、共析碳钢奥氏体等温转变产物的组织和性能图2共析钢过冷奥氏体等温转变曲线的建立示意图1)高温珠光体型转变:A1~550℃(1)珠光体(P)A1~650℃粗层状约0.3μm<25HRC(2)索氏体(S)650~600℃细层状0.1~0.3μm,25~35HRC(3)屈氏体(T)600~550℃极细层状约0.1μm,35~40HRC2)中温贝氏体型转变:550℃~Ms(1)上贝氏体(B上)550~350℃羽毛状40~45HRC脆性大,无使用价值(2)下贝氏体(B下)350~Ms黑色针状45~55HRC韧性好,综合力学性能好(3)低温马氏体型转变:Ms~Mf当A被迅速过冷至Ms以下时,则发生马氏体(M)转变,主要形态是板条状和片状。
(当Wc<0.2%时,呈板条状,当Wc>1.0%呈针片状,当Wc=0.2%~1.0%时,呈针片状和板条状的混合物)(二)过冷奥氏体的连续冷却转变1.共析碳钢过冷奥氏体连续冷却转变产物的组织和性能(1)随炉冷P170~220HBS(700~650℃)(2)空冷S25~35HRC(650~600℃)图3共析碳钢连续冷却转变曲线图4应用等温转变曲线分析奥氏体在连续冷却中的转变2.马氏体转变当冷速>马氏体临界冷却速度VK时,奥氏体发生M转变,即碳溶于α—Fe中的过饱和固溶体,称为M(马氏体)。
1)转变特点:M转变是在一定温度范围内进行(Ms~Mf),M转变是在一个非扩散型转变(碳、铁原子不能扩散),M转变速度极快(大于Vk),M转变具有不完全性(少量的残A),M转变只有α-Fe、γ-Fe 的晶格转变.(2)M的组织形态Wc(%)M形态σb/Mpaσs/MPaδ(%)Ak/JHRC0.1-0.25板条状1020-1530820-13309-1760-18030-500.77片状2350204011066(3)M的力学性能①M的强度与硬度随C的上升M的硬度、强度上升②M的塑性与韧性:低碳板条状M良好;板条状M具有较高的强度、硬度和较好塑性和韧性相配合的综合力学性能;针片状M比板条M具有更高硬度,但脆性较大,塑、韧性较差。
图5第二节钢的退火1、概念:将钢件加热到适当温度(Ac1以上或以下),保持一定时间,然后缓慢冷却以获得近于平衡状态组织的热处理工艺称为退火。
2、目的:(1)降低硬度,提升塑性,(2)细化晶粒,消除组织缺陷(3)消除内应力(4)为淬火作好组织准备3、类型:根据加热温度可分为在临界温度(Ac1或Ac3)以上或以下的退火,前者又称相变重结晶退火,包括完全退火、扩散退火、均匀化退火、不完全退火、球化退火;后者包括再结晶退火及去应力退火。
(1)完全退火:1)概念:将亚共析钢(Wc=0.3%~0.6%)加热到AC3+(30~50)℃,完全奥氏体化后,保温缓冷(随炉、埋入砂、石灰中),以获得接近平衡状态的组织的热处理工艺称为完全退火。
2)目的:细化晶粒、均匀组织、消除内应力、降低硬度、改善切削加工性能。
3)工艺:完全退火采用随炉缓冷可以保证先共析铁素体的析出和过冷奥氏体在Ar1以下较主温度范围内转变为珠光体。
工件在退火温度下的保温时间不仅要使工件烧透,即工件心部达到要求的加热温度,而且要保证全部看到均匀化的奥氏体,达到完全重结晶。
完全退火保温时间与钢材成分、工件厚度、装炉量和装炉方式等因素相关。
实际生产时,为了提升生产率,退火冷却至600℃左右即可出炉空冷。
4)适用范围:中碳钢和中碳合金钢的铸、焊、锻、轧制件等。
(2)球化退火1)概念:使钢中碳化物球状化而进行的退火工艺称为球化退火。
2)工艺:一般球化退火工艺Ac1+(10~20)℃随炉冷至500~600℃空冷。
3)目的:降低硬度、改善组织、提升塑性和切削加工性能。
4)适用范围:主要用于共析钢、过共析钢的刃具、量具、模具等。
(3)均匀化退火(扩散退火)1)工艺:把合金钢铸锭或铸件加热到Ac3以上150~100℃,保温10~15h后缓慢冷却以消除化学成分不均匀现象的热处理工艺。
2)目的:消除结晶过程中的枝晶偏析,使成分均匀化。
因为加热温度高、时间长,会引起奥氏体晶粒严重粗化,因此一般还需要进行一次完全退火或正火,以细化晶粒、消除过热缺陷。
3)适用范围:主要用于质量要求高的合金钢铸锭、铸件、锻件。
4)注意:高温扩散退火生产周期长,消耗能量大,工件氧化、脱碳严重,成本很高。
仅仅一些优质合金钢及偏析较严重的合金钢铸件及钢锭才使用这种工艺。
对于一般尺寸不大的铸件或碳钢铸件,因其偏析水准较轻,可采用完全退火来细化晶粒,消除铸造应力。
(4)去应力退火1)概念:为去除因为塑性变形加工、焊接等而造成的应力以及铸件内存有的残余应力而进行的退火称为去应力退火。
2)工艺:将工件缓慢加热到Ac1以下100~200℃(500~600℃)保温一定时间(1~3h)后随炉缓冷至200℃,再出炉冷却。
钢的一般在500~600℃;铸铁一般在500~550℃超过550℃容易造成珠光体的石墨化;焊接件一般为500~600℃。
3)适用范围:消除铸、锻、焊件,冷冲压件以及机加工工件中的残余应力,以稳定钢件的尺寸,减少变形,防止开裂。
第三节钢的正火1、概念:将钢件加热到Ac3(或Accm)以上30~50℃,保温适当时间后;在静止空气中冷却的热处理工艺称为正火。
2、目的:细化晶粒,均匀组织,调整硬度等。
3、组织:共析钢P、亚共析钢F+P、过共析钢Fe3CⅡ+P4、工艺:正火保温时间和完全退火相同,应以工件透烧,即心部达到要求的加热温度为准,还应考虑钢材、原始组织、装炉量和加热设备等因素。
正火冷却方式最常用的是将钢件从加热炉中取出在空气中自然冷却。
对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢件的冷却速度,达到要求的组织和性能。
5、应用范围:1)改善钢的切削加工性能。
碳的含量低于0.25%的碳素钢和低合金钢,退火后硬度较低,切削加工时易于“粘刀”,通过正火处理,可以减少自由铁素体,获得细片状P,使硬度提升,改善钢的切削加工性,提升刀具的寿命和工件的表面光洁水准。
2)消除热加工缺陷。
中碳结构钢铸、锻、轧件以及焊接件在加热加工后易出现粗大晶粒等过热缺陷和带状组织。
通过正火处理可以消除这些缺陷组织,达到细化晶粒、均匀组织、消除内应力的目的。
3)消除过共析钢的网状碳化物,便于球化退火。
过共析钢在淬火之前要进行球化退火,以便于机械加工并为淬火作好组织准备。
但当过共析钢中存有严重网状碳化物时,将达不到良好的球化效果。
通过正火处理可以消除网状碳化物。
4)提升普通结构零件的机械性能。
一些受力不大、性能要求不高的碳钢和合金钢零件采用正火处理,达到一定的综合力学性能,可以代替调质处理,作为零件的最终热处理。
第四节钢的淬火1、定义:将钢件加热到Ac3或Ac1以上某一温度,保持一定时间。
然后以适当速度冷却获得M或B组织的热处理工艺。
2、目的:显著提升钢的强度和硬度。
3、淬火温度的选择1)碳钢的淬火加热温度由Fe-Fe3C相图来确定,其目的是为了①淬火后得到全部细小的M;②淬火后希望硬度高。
①亚共析钢Ac3+(30~50)℃,可获得细小的均匀的M,如温度过高则有晶粒粗化现象,淬火后获得粗大的M,使钢的脆性增大;如温度过低则淬火后M+F,有铁素体出现,淬火硬度不足。
②共析钢与过共析钢Ac1+(30~50)℃,因为有高硬度的渗碳体和M存有,能保证得到高的硬度和耐磨性。
如果加热温度超过Accm将会使碳化物全部溶入A中,使A中的含碳量增加,淬火后残余奥氏体量增多,降低钢的硬度和耐磨性;淬火温度过高,奥氏体晶粒粗化、含碳量又高,淬火后易得到含有显微裂纹的粗片状马氏体,使钢的脆性增大。
2)合金钢①对含有防碍奥氏体晶粒长大的强碳化物形成元素(如Ti、Nb等),淬火温度可以高一些,以加速其碳化物的溶解,获得较好的淬火效果.②对含有促进奥氏体晶粒长大的元素(如Mn等),淬火加热温度应低一些,以防止晶粒粗大。
理想冷却速度:650℃以上应当慢冷,以尽量降低淬火热应力。
650~400℃之间应当快速冷却,以通过过冷奥氏体最不稳定的区域,避免发生珠光体或贝氏体转变。
400以下至Ms点附近应当缓以尽量减小马氏体转变时产生的组织应力。
具有这种冷却特性的冷却介质可以保证在获得M组织条件下减少淬火应力、避免工件产生变形或开裂。
4、淬火介质淬火介质:钢从奥氏体状态冷至Ms点以下所用的冷却介质。
常用的有三种:水:650~400℃范围内冷却速度较小,不超过200℃/s,但在需要慢冷的马氏体转变温度区,其冷却速度又太大,在340℃最大冷却速度高达775℃/s,很容易引起工件变形和开裂。