红外吸收光谱的解析PPT课件

合集下载

红外吸收光谱PPT课件

红外吸收光谱PPT课件

02
红外吸收光谱仪器
红外光谱仪的构造
01
02
03
04
光源
发射一定波长的红外光,常用 光源有碘、溴钨灯等。
单色器
将光源发出的红外光分成单色 光,常用单色器有棱镜和光栅

样品室
放置待测样品,样品可以是气 体、液体或固体。
检测器
检测透过样品的红外光,常用 检测器有热电偶、光电导和光
电二极管等。
红外光谱仪的工作原理
红外吸收光谱的应用
确定物质成分
结构分析
通过比较标准物质的红外吸收光谱,可以 确定未知物质的成分。
红外吸收光谱的峰位置和峰强度可以提供 物质分子的振动和转动信息,有助于分析 分子结构和化学键的类型。
定量分析
反应动力学研究
通过测量样品在不同波长下的透射率或反 射率,可以计算样品中目标成分的浓度。
红外吸收光谱可用于研究化学反应过程中 分子振动和转动能级的跃迁。
特点
具有高灵敏度、高分辨率和高选 择性,能够提供物质分子的振动 和转动信息,广泛应用于化学、 物理、环境和生物等领域。
红外吸收光谱的原理
原理
当红外光与物质分子相互作用时,分 子吸收特定波长的红外光,导致分子 振动和转动能级跃迁,产生红外吸收 光谱。
影响因素
分子结构和化学键的性质决定红外吸 收光谱的特征,不同物质具有独特的 红外吸收光谱。
敏度,适用于复杂样品分析。
微型化红外光谱仪
02
通过集成光学、微电子机械系统等技术,将红外光谱仪小型化,
方便携带和移动检测。
多光谱和超光谱红外光谱仪
03
结合多光谱技术和超光谱技术,可同时获取样品多个波段的红
外光谱信息,提高分析效率。

精品现代材料分析-红外吸收光谱介绍PPT课件

精品现代材料分析-红外吸收光谱介绍PPT课件
H
R1 C
H
H 3040~3010
C R2
R2 3040~3010
C H
1420~1410 1420~1410
895~885
990 910 840~800
965
730~675
1658~1698 1645~1640 1675~1665 1675~1665 1665~1650
(3)炔烃
末端炔烃的C-H伸缩振动一般在3300 cm-1处 出现强的尖吸收带。
对于伸缩振动来说,氢键越强,谱带越宽,吸收强度越 大,而且向低波数方向位移也越大。
对于弯曲振动来说,氢键则引起谱带变窄,同时向高波 数方向位移。
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
苯环取代类型在2000~1667cm-1和 900~650cm-1的图形
邻、间及对位二甲苯的红外光谱
(5)醇和酚
在稀溶液中,O-H键的特征吸收带位于3650~3600 cm-1;在纯液体或固体中,由于分子间氢键的关系, 使这个吸收带变宽,并向低波数方向移动,在 3500~3200 cm-1处出现吸收带。
~17ห้องสมุดไป่ตู้0
~1760(游离态)
(5)芳环、C=C、C=N伸缩振动区 1675~1500cm-1
① RC=CR′ 1620 1680 cm-1 强度弱, R=R′(对称)时,无红外活性。
② 芳环骨架振动在1600~1450 cm-1有二到四 个中等强度的峰,是判断芳环存在的重要标 志之一。

红外吸收光谱分析通用课件

红外吸收光谱分析通用课件
光转换为电信号。
光源和样品室
提供样品所需的红外光,并保 持样品在分析过程中的稳定性 。
检测系统
用于检测电信号并转换为光谱 数据。
控制和数据处理系统
控制仪器操作,处理和显示光 谱数据。
红外吸收光谱仪器的使用与维护
仪器操作
按照操作手册正确设置和使用仪 器,确保安全性和准确性。
样品准备
根据分析需求准备样品,注意样品 的纯度和浓度。
根据样品类型选择适当的 制样方法,并按照操作步 骤进行样品制备。
将制备好的样品放入光谱 仪的样品仓中,设置合适 的扫描参数,如扫描范围 、分辨率等。
对光谱数据进行处理和分 析,提取所需的信息。
开始扫描,记录红外光谱 数据。
实验数据分析方法
峰位分析
峰形分析
通过分析红外光谱的峰位,确定特定官能 团或化学键的振动频率。
傅里叶变换红外光谱仪
基于傅里叶变换技术,具有高分辨率和灵敏度,广泛应用于化学 、物理和材料科学等领域。
差分移动红外光谱仪
通过差分技术消除背景干扰,适用于气体和液体的分析。
光声红外光谱仪
利用光声效应,适用于痕量气体和低浓度样品的分析。
红外吸收光谱仪器的结构与原理
干涉系统
是傅里叶变换红外光谱仪的核 心部分,通过干涉原理将红外
通过分析药物与生物大分子相互作用时的红外光 谱变化,可以研究药物的作用机制。
生物活性分子结构分析
分析
红外光谱可以用于检测药物代谢产物的结构和性 质。
06
红外吸收光谱分析在环境科学中的应 用
大气污染物的红外吸收光谱分析
总结词
大气污染物种类繁多,红外吸收光谱分析能够快速准确地检测出不同污染物的 成分和浓度。

红外吸收光谱PPT课件

红外吸收光谱PPT课件
红外光谱主要由分子的振动能级跃迁产生 分子的振动能级差远大于转动能级差 分子发生振动能级跃迁必然同时伴随转动能级跃迁
2. 产生条件
物质吸收红外辐射应满足两个条件:
辐射光具有的能量与发生振动跃迁时所需的能 量相等;
• 当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和外界红外辐射的频率一致
分子振动 方程
m = m1 m2
m1 m2
c —光速 k —键力常数 u —折合质量
=
N1/ 2 A
k
2c M
M = M1 M2 M1 M2
影响基本振动频率的直接因素是相对原子质量 和化学键的力常数
C-C k 4~6 σ 1190
C=C 8~12 1683
C≡C 12~18 N/cm 2062 cm-1
辐射与物质之间有偶合作用。 实质是外界辐射迁移它的能量到分子中去
偶极矩的变化
偶极矩μ
HCl
d
H
Cl
+q
-q
H2O
H +q
-q O
d
H +q
m=qd
由于分子内原子处于在其平衡位置不断地振动的状态, 在振动过程中d 的瞬时值亦不断地发生变化,因此分 子的μ也发生相应的改变,分子也就具有确定的偶极 矩变化频率;
图 亚甲基的伸缩振动
弯曲振动(或变形振动):基团键角发生周期变化 而键长不变的振动称为变形振动,用符号δ表示。 弯曲振动又分为面内和面外弯曲振动。
亚甲基的弯曲振动
基本振动的理论数
基本振动的数目称为振动自由度,每个振动自由度相 应于红外光谱图上一个基频吸收峰。
每个原子在空间都有三个自由度,如果分子由n 个原 子组成,其运动自由度就有3n 个;

红外光谱-全ppt课件

红外光谱-全ppt课件
1905年科伯伦茨发表了128种有机和无机化合物的 红外光谱,红外光谱与分子结构间的特定联系才被确 认。
到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
较高频率。
C-H弯曲振动:1475-1300 cm-1 ,甲基的对称变形 振动出现在1375 cm-1处 ,对于异丙基和叔丁基,
吸收峰发生分裂。
亚甲基平面摇摆:800-720cm-1对判断-(CH2)n-的碳
链长度有用, n>4 725,
n=3 729-726,
n=2 743-734, n=1 785-770
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
1610cm-1 3040cm-1
1565cm-1 3060cm-1
精选课件
21
氢键效应(X-H):
形成氢键使电子云密度平均化(缔合态),使体系 能量下降,基团伸缩振动频率降低,其强度增加但峰形 变宽。
如: 羧酸 RCOOH (RCOOH)2
(5)所需样品用量少,且可以回收。红外光谱分析一次 用样量约1~5mg,有时甚至可以只用几十微克。
精选课件
5
红外光谱基本原理
化学键的振动与频率:
双原子分子中化学键的振动可按谐振子处理。
m1
m2
用虎克定律来表示振动频率、原子质量和键力常数之间的关系:
υ= 1 2
若用波数取代振动频率,则有下式:
μ为折合原子量
μ=
M1M2 M1 M2

红外吸收光谱法课件PPT

红外吸收光谱法课件PPT

02 红外吸收光谱仪的组成与 操作
红外吸收光谱仪的组成
01
02
03
04
光源
发射特定波长的红外光,为样 品提供能量。
干涉仪
将红外光分成两束,分别经过 样品和参比,再合并形成干涉

检测器
检测干涉后的红外光,转换为 电信号。
数据处理系统
处理检测器输出的电信号,生 成红外吸收光谱。
红外吸收光谱仪的操作流程
多光谱融合
将红外光谱与其他光谱技 术进行融合,实现多维度、 多角度的物质成分和结构 分析。
云平台与大数据
利用云平台和大数据技术, 实现红外光谱数据的共享、 挖掘和分析,推动科研合 作与成果转化。
感谢您的观看
THANKS
检查部件
定期检查仪器各部件是否正常 工作,如光源、干涉仪、检测 器等。
定期校准
为保证测试结果的准确性,应 定期对仪器进行校准。
数据备份
对测试结果进行备份,以防数 据丢失。
03 红外吸收光谱法的实验技 术
样品的制备与处理
样品制备
将待测物质研磨成粉末,以便更 好地分散在测试介质中。
样品处理
根据实验需求,对样品进行纯化 、干燥等预处理,以消除干扰因 素。
用于检测大气和水体中 的污染物,如挥发性有 机化合物、重金属等。
用于研究生物大分子的 结构和功能,如蛋白质、
核酸等。
红外吸收光谱法的历史与发展
历史
红外吸收光谱法自19世纪中叶被发现以来,经历了多个发展阶段,不断完善和 改进。
发展
随着仪器的改进和计算机技术的发展,红外吸收光谱法的应用范围不断扩大, 分析精度和灵敏度也不断提高。未来,红外吸收光谱法将继续在各个领域发挥 重要作用。

《红外光谱》PPT课件

《红外光谱》PPT课件

(cm-1) = 104 / λ (μ m)
纵坐标:吸光度(A)或透光率(T) 多以百分透光率T%来表示
*
T = I / I0 (遵守Lambert-Beer定律

A = lg (1 / T)
IR中,“谷”越深(T越小),吸光 度越大,吸收强度越强。
*
二、红外光谱基本原理
满足两个条件: (1)辐射能满足物质产生振动能级跃迁所需的能量; (2)伴随净的偶极矩的变化。
*
对称伸缩振动s 非对称伸缩振动as 剪式振动
面内摇摆
*
面外摇摆
扭曲振动
分子振动自由度
研究多原子分子时,常把复杂振动分解为许多简单的基本振动, 这些基本振动数目称为分子的振动自由度,简称分子自由度。
原子在三维空间的位置可用x,y,z表示,即3个自由度。
含N个原子的分子,分子自由度的总数为3N个。
分子总的自由度3N=平动自由度+转动自由度+振动自由度
非线性分子:3N-6 (平动3、转动3) 线性分子:3N-5 (平动3、转动2)
*
峰位、峰数与峰强
(1)峰位 化学键的力常数K越大,原子折合质量越小,键的
振动频率越大,吸收峰将出现在高波数区(短波长区);反之, 出现在低波数区(高波长区)。
(2)峰数 峰数与分子自由度有关。无瞬间偶极距变化时, 无红外吸收。
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越 大(极性越大),吸收峰越强。
(4)由基态跃迁到第一激发态,产生一个强吸收峰,基频峰。
(5)由基态跃迁到第二激发态或更高激发态,产生的弱的吸收 峰,倍频峰。
*
影响吸收谱带位置的主要因素(内部因素)
1. 诱导效应(I效应)

第三章 红外吸收光谱完整版本ppt课件

第三章 红外吸收光谱完整版本ppt课件

解析完后,进行验证,不饱和度与计 算值是否相符,性质与文献值是否一致, 与标准图谱进行验证
谱图对照应注意:所用的仪器在分辨 率和精确度一致;测定的条件一致;杂质 引进的吸收带应仅可能避免。
.
三、红外光谱解析实例C8H16
例一:未知物分子式为C8H16,其红外图谱如 下图所示,试推其结构。
.
解:由其分子式可计算出该化合物不饱和度为1, 即该化合物具有一个烯基或一个环。
C C 2100
H 763 ,694(双峰)
CO 1638 C(C 芳环)1597 ,1495 ,1445
.

解:
U
2
29
1
7
7
可能含有苯环
2
1638cm1强吸收 为 CO 3270cm1有吸收 NH 1132353123003300ccccmmmm( ( 1111吸强 强收) ) C N含 含NHCCCH 13023608ccmm11 为CH H 1597 ,1495 和 1445cm(1 三峰) 为 C(C 芳环) 763 和 694cm(1 双峰) 为 H(单取代)
❖ 3387、3366 cm-1 :NH2的伸缩振动; ❖ 1624 cm-1 : NH2弯曲振动; ❖ 1274 cm-1 :C-N伸缩振动;
❖综合上述信息及分子式,可知该化合物为:
邻苯二胺
.
图谱解析实例 例1 某化合物,测得分子式为C8H8O,其红外
光谱如下图所示,试推测其结构式。
C8H8O红外光谱图
1查找基团时先否定以逐步缩小范围2在解析特征吸收峰时要注意其它基团吸收峰的干扰3350和1640cm1处出现的吸收峰可能为样品中水的吸收3吸收峰往往不可能全部解析特别是指纹区4掌握主要基团的特征吸收

红外光谱谱图解析实例53385ppt课件

红外光谱谱图解析实例53385ppt课件
3300附近 3010— 3040 3030附近
2960±5 2870±10 2930±5 2850±10
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
伸缩 伸缩 伸缩
反对称伸缩 对称伸缩 反对称伸缩 对称伸缩
吸 收 强 度
m, sh s,b m s,b
s s s
s s s s
说明
判断有无醇类、酚类和有机酸的重 要依据
3、 C=O (1850 1600 cm-1 )碳氧双键的特征峰,强度大, 峰尖锐。 4、单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
.
各种官能团的吸收频率范围
从第一区域到第四区域,4000cm-1到400cm-1各种官能团的特征吸收频 率范围。
区 域
基团
—OH(游离)
—OH(缔合)
例: C9H8O2 = (2 +29 – 8 )/ 2 = 6
.
主要官能团的吸收频率范围
1、—O—H 3650 3200 cm-1 确定 醇,酚,酸
2、不饱和碳原子上的=C—H( C—H )
苯环上的C—H 3030 cm-1 =C—H 3010 2260 cm-1 C—H 3300 cm-1
—NH2,—NH(游离)

—NH2,—NH(缔合) —SH
C—H伸缩振动
不饱和C—H
一 ≡C—H(叁键)
═C—H(双键) 苯环中C—H
饱和C—H

—CH3
—CH3

—CH2 —CH2
吸收频 率
(cm-1 )
3650— 3580 3400— 3200 3500— 3300 3400— 3100 2600— 2500
.

红外吸收光谱分析(共27张PPT)

红外吸收光谱分析(共27张PPT)
这里弹簧的k值就的原子不是静止不动的,原子在其平衡位置做相 对运动,从而产生振动!原子与原子之间的相对运动无非有 两种情况,即:键长发生变化(伸缩振动),键角发生变化 (弯曲振动)
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其

红外吸收光谱的解析PPT(完整版)

红外吸收光谱的解析PPT(完整版)

~3300
3100~3000
3050~3010
但分子量不同的聚合物IR光谱无明显差异。
但分子量不同的聚合物IR光谱无明显差异。
如分子量为100000和分子量为15000的聚苯乙烯,两者在4000~650 cm-1的一般红外区域找不到光谱上的差异。
双峰强度约相等(1:1)
峰强度比1:2
S
S
S
S
S
S
S
S
峰的强度 不定
不定 不定
S S
7、X-H面内弯曲振动及X-Y伸缩振动区(1475—1000 cm-1)
键的振动类型
烷基δas δs
-CH3 -C(CH3)2 -C(CH3)3
醇νC-O 伯醇 仲醇 叔醇 酚νC-O
醚νC-O 脂肪醚 芳香醚 乙烯醚
酯 胺νC-N
波数/cm-1
1460
峰的强度
1380 1385及1375双峰 1395及1365双峰
但分子量不同的聚合物IR光谱无明显差异。
2260~2120
S
R-N=N=N 经验 “四先、四后、一抓法”
饱和脂肪醛
2160~2120
S
R-N=C=N-R α,β-不饱和脂肪醛
芳香醛
2155~2130
S
饱和脂肪酮
-C=C=C- α,β-不饱和脂肪酮
α-卤代酮
~1950
S
-C=C=O 芳香酮
脂环酮(四员环)
S
S
S
S
经验 “四先、四后、一抓法”
五、解析谱图注意事项
特别注意两点:一是所用仪器与标准谱图是否一致;
2960及2870
二、指纹区和官能团区
从第1-6区的吸收都有一个共同点,每一红外吸收 峰都和一定的官能团相对应,此区域从而称为官能团 区。官能团区的每个吸收峰都表示某一官能团的存在, 原则上每个吸收峰均可以找到归属。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7和第8区和官能团区不同,虽然在此区域内的 一些吸收也对应着某些官能团,但大量的吸收峰仅仅 显示该化合物的红外特征,犹如人的指纹,指纹区的 吸收峰数目较多,往往大部分不能找到归属,但大量 的吸收峰表示了有机化合物的具体特征。不同的条件 也可以引起不同的指纹吸收的变化。
指纹区中650-910区域又称为苯环取代区,苯环的ቤተ መጻሕፍቲ ባይዱ
波数/cm-1
1460
峰的强度
1380 1385及1375双峰 1395及1365双峰
1200~1000 1065~1015 1100~1010 1150~1100 1300~1200 1220 ~1130 1275~1060 1150~1060 1275~1210 1225~1200 1300~1050 1360~1020
3550~3450 3500~3200 3500~2500 3570~3450
VS,尖锐吸收带 S,宽吸收带 VS,宽吸收带
VS,尖锐吸收带
1
基团类型ν νN-H 游离 缔合 酰胺
VS:很强 S:强 m:中等
波数/cm-1
峰的强度
3500~3300 3500~3100 3500~3300
W,尖锐吸收带 W,尖锐吸收带
§5 红外吸收光谱的解析
一、红外吸收光谱中的重要区段 1、O-H、N-H伸缩振动区(3750—3000 cm-1)
基团类型ν
νO-H 游离νO-H 分子间氢键 二分子缔合 多分子缔合 羧基υO-H 分子内氢键
2021/3/12
波数/cm-1
3700~3200 3700~3500
峰的强度
VS VS,尖锐吸收带
双峰强度约相等(1:1) 峰强度比1:2
S
S
S
S
S
S
S
S
S
S
S
S
7
8、C-H面外弯曲振动区(1000—650 cm-1)
2021/3/12
8
二、指纹区和官能团区
从第1-6区的吸收都有一个共同点,每一红外吸收 峰都和一定的官能团相对应,此区域从而称为官能团 区。官能团区的每个吸收峰都表示某一官能团的存在, 原则上每个吸收峰均可以找到归属。
饱和脂肪醛 α,β-不饱和脂肪醛
芳香醛 饱和脂肪酮 α,β-不饱和脂肪酮
α-卤代酮 芳香酮 脂环酮(四员环) (五员环) (六员环) 酯(非环状) 六及七员环内酯 五员环内酯
酰卤 酸酐 酰胺
2021/3/12
波数/cm-1
1740~1720 1705~1680 1715~1690 1725~1705 1685~1665 1745~1725 1700~1680 1800~1750 1780~1700 1760~1680 1740~1710 1750~1730 1780~1750 1815~1720 1850~1800 1780~1740 1700~1680(游离) 1660~1640 (缔合)
2、某些吸收峰不存在,可以确信某基团不存在;相反, 吸收峰存在并不是该基团存在的确认,应考虑杂质的干 扰。
3、在一个光谱图中的所有吸收峰并不能全部指出其归 属,因为有些峰是分子作为一个整体的特征吸收,而 有些峰则是某些峰的倍频或组频,另外还有些峰是多 个基团振动吸收的叠加。
波数/cm-1
2960及2870 2930及2850
2890 2720
峰的强度
VS VS W W
2021/3/12
3
4、叁键和累积双键区(2400—2100 cm-1)
基团类型ν
R-C≡C-H RC≡CR` RC≡CR R-C≡N R-N=N=N R-N=C=N-R -C=C=C-C=C=O -C=C=N O=C=O R-N=C=O
峰的强度 不定
不定 不定
S S
2021/3/12
6
7、X-H面内弯曲振动及X-Y伸缩振动区(1475—1000 cm-1)
键的振动类型
烷基δas δs
-CH3 -C(CH3)2 -C(CH3)3
醇νC-O 伯醇 仲醇 叔醇 酚νC-O
醚νC-O 脂肪醚 芳香醚 乙烯醚
酯 2021/3/12 胺νC-N
波数/cm-1
2140~2100 2260~2190
无吸收 2260~2120 2160~2120 2155~2130
~1950 ~2150 ~2000 ~2349 2275~2250
峰的强度 m
可变
S S S S
S
2021/3/12
4
5、羰基的伸缩振动区(1900—1650 cm-1)
基团类型ν
峰的强度
S S S S S S S S S S S S S S S
5
6、双键伸缩振动区(1690—1500 cm-1)
基团类型ν
-C=C苯环骨架
-C=N -N=N= -NO2
波数/cm-1
1680~1620 1620~1450 1690~1640 1630~1575 1615~1510 1390~1320
2021/3/12
13
谱图具体解析步骤如下: (1)、了解样品的来源、纯度(要求98%以上)外观; (2)、收集相关信息; (3)、由IR光谱确定基团及其结构 ; (4)、推测可能的结构式; (5)、查阅标准谱图; (6)、确定可能的结构。
2021/3/12
14
五、解析谱图注意事项
1、IR光谱是测定化合物结构的,只有分子在振动的状 态下伴随有偶极矩变化者才能有红外吸收。对映异构体 具有相同的IR光谱,不能用IR光谱来鉴别这类异构体。
不同取代会在这个区域内有所反映。
2021/3/12
9
指纹区和官能团区对红外谱图的分析有所帮助。 从官能团区可以找出该化合物存在的官能团;指纹 区的吸收则用来和标准谱图进行分析,得出未知的 结构和已知结构相同或不同的确切结论。官能团区 和指纹区的功用正好相互补充。
2021/3/12
10
三、谱图解析的方法
1、直接法
特别注意两点:一是所用仪器与标准谱图是否一致; 二是测定的条件(样品的物理状态、样品的浓度及溶 剂等)与标准谱图是否一致 。
2、否定法
3、肯定法
2021/3/12
11
四、谱图解析的步骤
2021/3/12
12
经验 “四先、四后、一抓法”
即先特征,后指纹;先最强峰,后次强峰,再中强峰;先
粗查,后细查;先肯定,后否定;一抓是抓一组相关峰。
可变
W:弱 VW:很弱
w:宽
2021/3/12
2
2、C-H伸缩振动区(3300—3000 cm-1)
基团类型ν
-C≡C-H -C=C-H
Ar-H
波数/cm-1
~3300 3100~3000 3050~3010
峰的强度
VS M M
3、C-H伸缩振动区(3000—2700 cm-1)
基团类型ν
-CH3 -CH2≡C-H -CHO
相关文档
最新文档