磁盘阵列-RIAD技术讲解

合集下载

磁盘阵列系统(RAID)介绍

磁盘阵列系统(RAID)介绍

掌握.有解吗?备援硬盘: Spare Disk如果在数组中,加上备援硬盘.当任一数组硬盘故障时,该备援硬盘可以自动上线,将故障硬盘立即取代,并开始依设定的"重建优先权"作数据重构,就可有效缩短上述的"前往处理"的时间,也可减少因急迫性所造成的压力.不过,这颗备援硬盘,平时是无法拿来作存放空间的.因为一旦作了"可使用"的标记,备援设定会自动消失.所以,回到前述的真理:"安全性"加"速度"建立在成本上的.总体备援硬盘: Global Spare Disk。

就是备援硬盘,但是可以对同一磁盘阵列中的所有"数组组态群"作备援.总是比较省的方式.定时备份"既然重要,为何不备份?"与其在灾害发生时,束手无策,自怨自艾,何不在规定时间作好重要资料的备份,以防万一? 即使使用了磁盘阵列,提高数据的可供应性,备份仍该作的.毕竟,它是重要的资料.RAID控制器型式1. 软件架构:Software Based在多年前, Novell 的Netware就提供了Mirror的功能,即使在今天,相信仍有许网络系统,是采用此一方式.不过这在资料量较大的环境中,其50% 的硬盘使用率,究竟是稍少了些.另外, Cor el 在约五年前,大力推广其Corel RAID!以不到美金一千元的低价,切入市场.然而究竟使用软件的数组架构,会占用到主系统的CPU 及内存资源,而导致系统效率的下降.所以采用非主系统供货商的软件数组产品者,相对是较少的.2. 主机独立式架构: Host Independent数组控制器对主系统,是藉由连接至其存取接口(目前以SCSI 为主)作信道.换言之,它在主系统的存取接口上,是一个独立的直接存取储存体DASD Direct Access Storage Device. 而这个大的储存体内,可以有不只一个的逻辑磁盘LUN Logical Unit Number. 数组控制器,对下管理多颗数组硬盘机们.而主系统是不会看到或直接管理该硬盘的.例如:CMD, EMC, Symbios, Digital StorageWorks, ... 都有相关的产品.。

最全面的服务器的RAID详解

最全面的服务器的RAID详解

最全面的服务器的RAID详解磁盘阵列(Redundant Arrays of Independent Disks,RAID),全称独立磁盘冗余阵列。

磁盘阵列是由很多廉价的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。

利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

利用同位检查(ParityCheck)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

相同的数据存储在多个硬盘的不同的地方的方法。

通过把数据放在多个硬盘上(冗余),输入输出操作能以平衡的方式交叠,改良性能。

因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。

分类:一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件实现。

RAID实现的方式:RAID 0,RAID 1,RAID2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 01,RAID 10,RAID50,RAID 53。

常见的有:RAID 0,RAID 1,RAID 5,RAID 6,RAID 01,RAID 10。

原理剖析:RAID 0:RAID 0又称为Stripe或Striping,中文称之为条带化存储,它代表了所有RAID级别中最高的存储性能。

原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。

这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。

磁盘空间= 磁盘总量= 100%需要的磁盘数≥2读写性能= 优秀= 磁盘个数(n)*I/O速度= n*100%块大小= 每次写入的块大小= 2的n次方= 一般为2~512KB优点:1、充分利用I/O总线性能使其带宽翻倍,读/写速度翻倍。

2、充分利用磁盘空间,利用率为100%。

缺点:1、不提供数据冗余。

40.RAID磁盘阵列简介-RAID0+RAID1+RAID5+RAID6+RAID10+。。。

40.RAID磁盘阵列简介-RAID0+RAID1+RAID5+RAID6+RAID10+。。。

40.RAID磁盘阵列简介-RAID0+RAID1+RAID5+RAID6+RAID10+。

RAID磁盘阵列RAID概念磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独⽴磁盘构成的具有冗余能⼒的阵列”之意。

磁盘阵列是由很多价格较便宜的磁盘,以硬件(RAID卡)或软件(MDADM)形式组合成⼀个容量巨⼤的磁盘组,利⽤多个磁盘组合在⼀起,提升整个磁盘系统效能。

利⽤这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

磁盘阵列还能利⽤同位检查(Parity Check)的观念,在数组中任意⼀个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置⼊新硬盘中注:RAID可以预防数据丢失,但是它并不能完全保证你的数据不会丢失,所以⼤家使⽤RAID的同时还是注意备份重要的数据RAID的创建有两种⽅式:软RAID(通过操作系统软件来实现)和硬RAID(使⽤硬件阵列卡);在企业中⽤的最多的是:raid1、raid5和raid10。

RAID常见类型RAID类型最低磁盘个数空间利⽤率各⾃的优缺点级别说明RAID0条带卷2+100%读写速度快,不容错RAID1镜像卷250%读写速度⼀般,容错RAID5带奇偶校验的条带卷3+(n-1)/n读写速度快,容错,允许坏⼀块盘RAID6带奇偶校验的条带集,双校验4+(n-2)/n读写快,容错,允许坏两块盘RAID10RAID1的安全+RAID0的⾼速450%读写速度快,容错RAID50RAID5的安全+RAID0的⾼速6(n-2)/n读写速度快,容错RAID基本思想:把好⼏块硬盘通过⼀定组合⽅式把它组合起来,成为⼀个新的硬盘阵列组,从⽽使它能够达到⾼性能硬盘的要求RAID有三个关键技术:镜像:提供了数据的安全性;chunk条带:(块⼤⼩也可以说是条带的粒度),它的存在的就是为了提⾼I/O,提供了数据并发性数据的校验:提供了数据的安全Raid相对于单个磁盘优点:RAID⼯作原理.RAID0条带(strping),也是我们最早出现的RAID模式需磁盘数量:2块以上(⼤⼩最好相同),是组建磁盘阵列中最简单的⼀种形式,只需要2块以上的硬盘即可.特点:成本低,可以提⾼整个磁盘的性能和吞吐量。

什么是RAIDRAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID10

什么是RAIDRAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID10

一.什么是RAID:RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。

冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。

RAID磁盘阵列(Redundant Array of Independent Disks)简单地解释,就是将N台硬盘通过RAID Controller(分Hardware,Software)结合成虚拟单台大容量的硬盘使用,其特色是N台硬盘同时读取速度加快及提供容错性Fault Tolerant,所以RAID是当成平时主要访问Data的Storage不是Backup Solution。

在RAID有一基本概念称为EDAP(Extended Data Availability and Protection),其强调扩充性及容错机制,也是各家厂商如:Mylex,IBM,HP,Compaq,Adaptec,Infortrend等诉求的重点,包括在不须停机情况下可处理以下动作:RAID 磁盘阵列支援自动检测故障硬盘;RAID 磁盘阵列支援重建硬盘坏轨的资料;RAID 磁盘阵列支援支持不须停机的硬盘备援 Hot Spare;RAID 磁盘阵列支援支持不须停机的硬盘替换 Hot Swap;RAID 磁盘阵列支援扩充硬盘容量等。

一旦RAID阵列出现故障,硬件服务商只能给客户重新初始化或者REBUILD,这样客户数据就会无法挽回。

因此对RAID0、RAID1、RAID5以及组合型的RAID系列磁盘阵列数据恢复,出现故障以后只要不对阵列作初始化操作,就有机会恢复出故障RAID磁盘阵列的数据。

二.关于RAID的技术规范介绍(1)RAID技术规范简介冗余磁盘阵列技术最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。

磁盘阵列原理

磁盘阵列原理

磁盘阵列原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器合并成一个逻辑单元来提供数据冗余和性能提升的技术。

磁盘阵列利用磁盘级别的冗余来提供数据的备份和恢复能力,并通过将数据分布在多个磁盘上来提高数据访问速度。

在本文中,我们将探讨磁盘阵列的原理以及它是如何工作的。

1. 磁盘阵列的概念和分类磁盘阵列是一种将多个独立的磁盘驱动器组合在一起,形成一个逻辑单元的技术。

根据不同的需求,磁盘阵列可以被划分为多个级别,常见的包括RAID 0、RAID 1、RAID 5、RAID 6等级别。

每个级别都有其特定的数据保护和性能特性。

2. RAID 0RAID 0将数据分块并分布到多个磁盘上,以提高数据的读写性能。

它通过在多个磁盘上同时读取和写入数据来实现并行访问。

然而,RAID 0没有冗余机制,一旦其中一个磁盘损坏,所有数据将会丢失。

3. RAID 1RAID 1通过将数据复制到多个磁盘上来提供冗余能力。

每个数据块都会被复制到两个或更多的磁盘上,以确保数据的完整性。

当其中一个磁盘发生故障时,系统可以从其他磁盘中恢复数据。

4. RAID 5RAID 5采用分布式奇偶校验的方式来提供冗余能力。

它将数据分块并分布到多个磁盘上,同时计算奇偶校验信息并存储在不同的磁盘上。

当其中一个磁盘损坏时,系统可以通过计算奇偶校验信息来恢复数据。

5. RAID 6RAID 6在RAID 5的基础上增加了第二个奇偶校验信息。

这意味着RAID 6可以容忍两个磁盘的故障,提供更高的数据可靠性。

6. 磁盘阵列的工作原理磁盘阵列通过控制器来管理和操作多个磁盘驱动器。

控制器负责将数据分块并分布到多个磁盘上,同时监测磁盘的状态。

当磁盘发生故障时,控制器可以根据不同的级别(如RAID 1、RAID 5等)来执行数据的恢复操作。

7. 磁盘阵列的优势和应用磁盘阵列提供了数据的冗余和性能提升能力,可以提高数据的可靠性和访问速度。

它广泛应用于服务器、存储系统、数据库等需要高可靠性和高性能的场景。

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案RAID(Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起形成磁盘阵列来提高存储性能和数据冗余的技术。

RAID有不同的级别,每个级别都有不同的特点和适用场景。

在本文中,我们将重点讨论几种常见的RAID配置方案,以及它们如何增强性能。

1. RAID 0:大幅提升读写速度RAID 0是最简单的RAID级别之一,它将两个或更多的硬盘组合在一起,并将数据分割成块,然后分别写入每个硬盘。

由于数据的并行读写操作,RAID 0将大幅提升存储系统的读写速度。

然而,RAID 0没有冗余功能,一旦其中一个硬盘出现故障,所有数据都将丢失。

2. RAID 1:提供数据冗余和备份RAID 1使用镜像技术,将相同的数据同时写入两个或多个硬盘。

这样,当其中一个硬盘出现故障时,系统可以从其他硬盘中获取相同的数据。

RAID 1提供了数据的冗余和备份功能,使得系统更加可靠。

然而,RAID 1并不能提升系统的读写速度,因为所有数据都要同时写入多个硬盘。

3. RAID 5:提供读取性能和数据冗余RAID 5是一种将数据分布在多个硬盘上并提供容错能力的RAID级别。

RAID 5至少需要三个硬盘,其中一个硬盘用于存储奇偶校验信息。

奇偶校验信息允许在一个硬盘故障的情况下恢复数据。

RAID 5在读取方面具有良好的性能,但在写入方面可能会稍慢。

4. RAID 10:融合RAID 1和RAID 0的优势RAID 10是将RAID 1和RAID 0结合起来的一种配置方案,它同时提供数据冗余和读写性能的优势。

RAID 10需要至少四个硬盘,它将硬盘分成两组,每组都是一个独立的RAID 1阵列,然后将这两个RAID 1阵列组成一个RAID 0阵列。

这样做的好处是不仅可以提供数据的冗余和备份功能,还可以大幅提升系统的读写性能。

5. RAID 6:提供更高的容错能力RAID 6是在RAID 5基础上进一步增强的配置方案,它使用两个奇偶校验信息来提供更高的容错能力。

raid用法及搭配

raid用法及搭配

RAID(Redundant Array of Independent Disks,独立冗余磁盘阵列)是一种将多块独立的物理硬盘组合成一个硬盘组(逻辑硬盘)的技术,从而提供比单个硬盘更高的存储性能和提供数据备份技术。

常用的RAID级别包括RAID0、RAID1、RAID5、RAID6、RAID1+0等。

RAID0(条带化存储):将N块硬盘并行组合成一个新的逻辑盘,连续以位或字节为单位分割数据,并行读/写于多个硬盘上,因此具有很高的数据传输率,但它没有数据冗余,其中一个磁盘失效将影响到所有数据,不能应用于数据安全性要求高的场所。

RAID1(镜像存储):将N(偶数)块硬盘组合成一组镜像,N/2容量通过磁盘镜像实现数据冗余,在两块硬盘同时出现故障时能保证数据的完整性,需占用双倍的存储空间。

此外,RAID的搭配方式还有RAID5+0、RAID6+0等。

这些不同的RAID级别和搭配方式可以满足不同的存储需求和数据安全要求。

请注意,以上信息仅供参考,如需了解更多关于RAID的用法和搭配信息,建议咨询专业的IT技术人员或查阅相关的技术文档。

磁盘阵列(raid分类介绍)

磁盘阵列(raid分类介绍)

磁盘阵列RAID 概念磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意。

磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。

利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

[1]磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

RAID级别1、RAID 0 最少磁盘数量:2Striped Disk Array without Fault Tolerance(没有容错设计的条带磁盘阵列)原理:RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。

RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。

优点:极高的磁盘读写效率,没有效验所占的CPU资源,实现的成本低。

缺点:如果出现故障,无法进行任何补救。

没有冗余或错误修复能力,如果一个磁盘(物理)损坏,则所有的数据都无法使用。

用途:RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。

2、RAID 1 最少磁盘数量:2Mirroring and Duplexing (相互镜像)原理:RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上。

优点:理论上两倍的读取效率,系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。

缺点:对数据的写入性能下降,磁盘的利用率最高只能达到50%(使用两块盘的情况下),是所有RAID级别中最低的。

RAID

RAID

RAID 4:
• RAID 4同样也将数据条块化并分布于不 同的磁盘上,但条块单位为块或记录。 RAID 4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘,这时奇 偶校验盘会成为写操作的瓶颈,因此 RAID 4在商业环境中也很少使用。
RAID 5:
• RAID 5不单独指定的奇偶盘,而是在所有磁盘 上交叉地存取数据及奇偶校验信息。在RAID 5 上,读/写指针可同时对阵列设备进行操作,提 供了更高的数据流量。RAID 5更适合于小数据 块和随机读写的数据。RAID 3与RAID 5相比, 最主要的区别在于RAID 3每进行一次数据传输 就需涉及到所有的阵列盘;而对于RAID 5来说, 大部分数据传输只对一块磁盘操作,并可进行 并行操作。在RAID 5中有“写损失”,即每一 次写操作将产生四个实际的读/写操作,其中两 次读旧的数据及奇偶信息,两次写新的数据及 奇偶信息。
• 又称数据分块,即把数据分成若干相等大小的小块, 并把它们写到阵列上不同的硬盘上,这种技术又称 “Stripping”(即将数据条带化),这种把数据分布在 多个盘上,在读写时是以并行的方式对各硬盘同时进 行操作。从理论上讲,其容量和数据传输率是单个硬 盘的N倍。N为构成RAID0的硬盘总数。当然,若阵列 控制器有多个硬盘通道时,对多个通道上的硬盘进行 RAID0操作,I/O性能会更高。因此常用于图象,视频 等领域,RAID0 I/O传输率较高,但平均故障时间 MTTF只有单盘的N分之一,因此RAID0可靠性最差。 可靠性是单独一块盘的1/N 同时读磁盘数:N 同时写磁盘数:N 磁盘利用率:N 或 100%
• 为单盘容错并行传输。即采用Stripping技术将数据分块, 对这些块进行异或校验,校验数据写到最后一个硬盘 上。它的特点是有一个盘为校验盘,数据以位或字节 的方式存于各盘(分散记录在组内相同扇区的各个硬 盘上)。当一个硬盘发生故障,除故障盘外,写操作 将继续对数据盘和校验盘进行操作。而读操作是通过 对剩余数据盘和校验盘的异或计算重构故障盘上应有 的数据来进行的。RAID3的优点是并行I/O传输和单盘 容错,具有很高可靠性。缺点:每次读写要牵动整个 组,每次只能完成一次I/O。 所需最少硬盘数:至少3块(一块作校验盘,其它盘作 存贮) 磁盘利用率:N-1 或 N-1/N 或 85%

raid概述

raid概述

raid概述
RAID(Redundant Array of Independent Disks,冗余式阵列)是把几块硬盘组合成一个逻辑磁盘的技术,以此来提供容量、性能和可靠性。

RAID技术分为多种不同的级别,其中比较常用的有RAID 0,RAID 1,RAID 5,RAID 10,RAID 6等,每一种RAID都有其特定的用途和性能。

RAID 0:将多块硬盘组合成一个逻辑磁盘,使用“分割-组合”的方法,把数据分割成更小的数据块,然后在不同的硬盘上进行存储,提供传输效率,但没有数据冗余,可靠性较差。

RAID 1:将多块硬盘组合成一个逻辑磁盘,并且把相同的数据存储到不同的硬盘上,实现数据的冗余,可靠性高,但传输效率低。

RAID 5:将多块硬盘组合成一个逻辑磁盘,使用“分割-组合”和“奇偶校验”的方法,把数据分割成更小的数据块,然后在不同的硬盘上进行存储,并且还存储一份奇偶校验信息,实现数据的冗余,提供较高的传输效率,故障保护能力也较强。

RAID 10:将多块硬盘组合成多个独立的RAID 1组,然后把这些RAID 1组再组合成一个逻辑磁盘,实现数据的冗余,提供较高的传输效率,可靠性也比较高。

RAID 6:与RAID 5相似,都是将多块硬盘组合成一个逻辑磁盘,使用“分割-组合”和“双重校验”的方法,把数据分割成更小的数据块,然后在不同的硬盘上进行存储,并且还存储两份校验信息,实现数据的冗余,提供较高的传输效率,可靠性也比较高。

raid技术的概念

raid技术的概念

景区经营权租赁合同3篇篇1景区经营权租赁合同一、合同双方:甲方:(出租方名称)注册地址:法定代表人:电话:传真:乙方:(承租方名称)注册地址:法定代表人:电话:传真:二、合同项目:甲方将位于(景区名称)内的(景区内具体位置)景区经营权出租给乙方。

具体包括景区内(列举出承租方可以经营的项目或空间,比如商店、景点等)。

三、租赁期限:合同期限为(具体年限),自(开始日期)至(结束日期)止。

甲方在租赁期满时可根据实际情况继续与乙方合作,续租期为(具体年限)。

四、租金及支付方式:乙方应当按照每(具体时间,比如月)支付给甲方(具体金额)的租金。

支付方式为(具体方式,比如银行转账、现金等)。

五、保证金:乙方应当在签订合同之日起(具体天数内)支付给甲方(具体金额)的保证金,保证金在租赁期内不可转让或使用。

租赁期满后,经检查无争议,保证金将在(具体时间)内全额退还给乙方。

六、经营范围:乙方应当按照景区管理方的规定经营承租项目,不得擅自添加或变更,严禁销售假冒伪劣产品,如有违反将被责令停业整顿或解除合同。

七、维护管理:乙方对承租项目的维护管理应当及时有效,保持清洁卫生,确保景区环境整洁有序。

如有损坏或意外事故,应当及时向景区管理方报告并协助处理。

八、其他条款:1. 甲方有权对承租方的经营情况进行监督检查,并提供必要的帮助和支持。

2. 乙方应当遵守景区管理方的各项规章制度,如有违反将面临相应的处罚。

3. 本合同未尽事宜由双方协商解决。

九、违约责任:任何一方未履行本合同规定,均视为违约,对方有权要求违约方立即补正,并承担相应的违约责任。

十、合同终止:本合同在任何一方未按照协议履行或发生违约情况时,对方有权解除合同并要求违约方承担相应的违约责任。

合同期满未续租的,合同自动终止。

十一、争议解决:本合同如发生争议,双方应友好协商解决,协商不成的,应向有管辖权的法院提起诉讼。

十二、本合同一式两份,甲方和乙方各执一份,具有同等法律效力。

存储基础知识RAID及磁盘技术.共50页课件

存储基础知识RAID及磁盘技术.共50页课件

RAID由几块硬盘(物理卷)组成 RAID可以多个硬盘按照指定容量创建一个或多个逻辑卷,便通过LUN(Logic Unit Number)来标识。一个逻辑卷对于主机来说就是一块硬盘(物理卷)
物理卷
物理卷
逻辑卷
逻辑卷
多个物理卷上创建1个逻辑卷
多个物理卷上创建2个逻辑卷
LUN1
LUN2
LUN3
RAID 0 条带存储(Striping)
Internal/External connectivity to disks or arrays
Server A File System A
Server B File System B
Client 1
Client 2
Client 3
Local Area Network
SAN、iSCSI、NAS的特点
CPU运算速度飞速提高,数据读写速度不应该成为计算机系统处理的瓶颈
RAID基本概念 ——条带
分条
条带
硬盘0
硬盘2
硬盘1
硬盘3
大数据块写入RAID时会被分成多个数据块并行写入多块硬盘,这些大小一致的数据块就称为条带。同时数据读取时会并行从多块硬盘读取条带数据,最后完整输出。 条带无疑会大幅度提升整体读写效率。
RAID性能比较
RAID级*
RAID-0
RAID-1
RAID-5
RAID-10
RAID-50
RAID-6
别名
条带
镜象
分布奇偶位条带
镜象阵列条带
分布奇偶阵列条带
分布奇偶条带
容错性
没有





冗余类型
没有

raid技术原理

raid技术原理

raid技术原理RAID(Redundant Array of Independent Disks)是一种存储技术,它将多个独立的硬盘驱动器组合在一起,形成一个逻辑上的单个存储单元。

RAID技术有不同的级别(RAID 0、RAID 1、RAID 5 等),每种级别都有其独特的特性和原理。

以下是一些常见的RAID 级别及其原理:1. RAID 0(条带化):-原理:将数据分成多个块,依次写入不同的硬盘上。

这样,读写操作可以并行进行,提高性能。

-特点:提高性能,但没有冗余,一个硬盘故障会导致数据不可用。

2. RAID 1(镜像):-原理:将相同的数据同时写入两个硬盘,形成镜像。

数据冗余,读操作可以并行进行,写操作会稍慢。

-特点:提供冗余,任何一个硬盘故障都不会导致数据丢失。

3. RAID 5:-原理:将数据和校验信息交错存储在不同硬盘上,通过对数据进行异或运算生成校验信息。

提供读取和写入性能,并提供一定程度的冗余。

-特点:提高性能,允许一个硬盘故障,通过校验信息进行数据恢复。

4. RAID 6:-原理:类似RAID 5,但使用两个校验信息块,通常是对数据块的两次异或运算,提供更高级别的冗余,可以容忍两个硬盘故障。

-特点:冗余性更高,但写入性能相对较低。

5. RAID 10:-原理:将多个硬盘分为两组,每组内采用RAID 1 的镜像方式,然后采用RAID 0 的条带化方式跨组。

-特点:提供了高性能和冗余,但需要更多的硬盘。

RAID 技术的目标通常是提高存储系统的性能、可用性和容错性。

选择哪种RAID 级别取决于应用的要求和对性能与冗余的权衡。

RAID磁盘阵列详解

RAID磁盘阵列详解

RAID磁盘阵列详解(一)核心提示:RAID 1.RAID概述Raid是一种将多块磁盘组成一个阵列整体的技术,我们可以把它当成单个磁盘使用。

Raid磁盘阵列根据其使用的技术不同,可用于提高数据读写效率、提高数据冗余(备份),当阵列中一个磁盘发生故障时,RAID1.RAID概述Raid是一种将多块磁盘组成一个阵列整体的技术,我们可以把它当成单个磁盘使用。

Raid磁盘阵列根据其使用的技术不同,可用于提高数据读写效率、提高数据冗余(备份),当阵列中一个磁盘发生故障时,可以通过校验数据从其它磁盘中进行恢复,大大增强了应用系统数据的读写性能及可靠性。

RAID一般是在SCSI磁盘上实现的,因为IDE磁盘的性能较慢,而且IDE通道最多只能接4个磁盘。

2.RAID的分类硬件RAID:硬件RAID是通过RAID卡来实现的,通过RAID卡把若干同等容量大小的硬盘,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(RAID0,RAID1,RAID5或RAID10……),如果每个硬盘容量不一致,以最小容量的硬盘为基础。

它的成员是整个硬盘。

在企业级应用领域,大部份都是硬件RAID。

软RAID:通过软件来实现的,把若干同等容量大小的硬盘或分区,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(RAID0,RAID1,RAID5或RAID10……),如果每个硬盘或分区容量不一致,以最小容量的硬盘或分区为基础。

软RAID的成员是整个硬盘或分区。

软件RAID由于性价比高,大多被中小型企业所采用。

3.常见的软RAID技术包括以下几种RAID 0:是一种最基本的阵列方式,n(磁盘数)>=2,实际容量=n x单块磁盘(分区)容量。

存取数据时,通过将数据分段同时写入到不同的磁盘中,大大提高了读写速度。

但没有数据冗余,其中任何一块磁盘损坏,都可能导致数据丢失。

所以RAID0常被用于对存储效率要求较高,但对数据安全性要求不高的应用解决方案中。

RAID技术介绍

RAID技术介绍

RAID技术介绍
RAID,即Redundant Array of Inexpensive Disks,即廉价磁盘阵
列冗余技术,是一种使用多个物理硬盘构建虚拟硬盘的技术,其主要目的
在于提高存储系统的可靠性和性能。

RAID是一种硬盘阵列技术,它通过把多个物理硬盘合并成一个虚拟
的磁盘阵列来实现磁盘阵列技术的性能和可靠性,以提高系统的可用性、
容量和吞吐量。

硬盘阵列可以显著提高性能,使系统可以顺利处理更多的
I/O请求,也可以提供更高的数据冗余,从而确保数据的完整性和可靠性。

RAID技术使用RAID级别来描述不同的RAID配置,主要有
RAID0,RAID1,RAID5,RAID6和RAID10,RAID50和RAID60等等。

RAID0是把
几块物理硬盘组成一个虚拟硬盘,它可以拆分大文件并分配到各个硬盘上,从而加快文件读写速度,但不提供数据容错能力。

RAID1把两块硬盘分成
两组,每组之间互相镜像,从而实现数据镜像备份,可提高数据的安全性,但不具有性能优势。

RAID5把多块硬盘组成一个虚拟磁盘,数据项将数据
和校验数据分别存放于不同的磁盘上,因此拥有较高的数据容错能力,可
提高性能,但硬盘容量利用率略低于其他RAID级别。

RAID6则和RAID5
类似,但它使用了两组校验数据,可提高可靠性,但也会增加硬盘的使用
成本。

RAID磁盘阵列技术设置详解

RAID磁盘阵列技术设置详解

开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司(如表2)。
面向个人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA 133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。
RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。

raid方案

raid方案

raid方案RAID 方案:保障数据的冗余与可靠性随着信息技术的迅速发展,数据的重要性越来越被人们所认识和重视。

无论是企业、机构还是普通个人用户,都会面临着海量数据的存储和管理问题。

然而,数据的丢失或损坏是一个无法避免的问题,因此,实施一套有效的数据保护方案变得至关重要。

在这方面,RAID方案是一种备受赞誉的解决方案。

RAID,即磁盘阵列(Redundant Array of Independent Disks),是一种由多个硬盘组成的存储系统。

通过将数据分布在多个硬盘上,RAID 方案可以提供冗余性和高可靠性,以保障数据的安全性。

在实际应用中,RAID方案按照不同的级别被分为RAID 0、RAID 1、RAID 5等几种。

下面将逐一介绍这几种常见的RAID方案,以及其适用场景和优缺点。

RAID 0是一种基本的RAID方案,它通过将数据块分散存储在多个硬盘上,从而提高了数据的读写性能。

RAID 0不提供冗余性,也就是说,如果其中的一个硬盘发生故障,所有的数据都将不可恢复。

尽管如此,由于其出色的性能表现,RAID 0在对速度要求较高且不需要数据备份的场合中得到了广泛应用。

例如,在视频编辑或大规模数据处理中,RAID 0可以提供更高效的工作环境。

相比之下,RAID 1则专注于数据的冗余性。

RAID 1通过实时复制数据,将数据写入两个以上的硬盘中,从而保障在任何一个硬盘故障的情况下,数据仍然可读取。

RAID 1存在着数据备份和读写性能降低的缺点,因为数据需要同时写入多个硬盘。

然而,这种冗余性对于存储关键数据至关重要。

常见的应用场景包括金融机构,医疗机构以及个人用户存储重要文件和相册等。

RAID 5则是RAID方案中更为复杂和成熟的一种形式。

RAID 5通过将数据和奇偶校验位(Parity)分布在多个硬盘上,业务性能不会因磁盘带宽的限制而有所影响。

在发生硬盘故障后,RAID 5可以根据奇偶校验位进行数据的恢复和重建。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁盘阵列 >
RAID
RAID是英文Redundant Array of Independent Disks的缩写,翻译成中文意思是“独立磁盘冗余阵列”,有时也简称磁盘阵列(Disk Array)。

简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。

组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。

数据备份的功能是在用户数据一旦发生损坏后,利用备份信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。

在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。

总之,对磁盘阵列的操作与单个硬盘一模一样。

不同的是,磁盘阵列的存储速度要比单个硬盘高很多,而且可以提供自动数据备份。

RAID技术的两大特点:一是速度、二是安全,由于这两项优点,RAID技术早期被应用于高级服务器中的SCSI接口的硬盘系统中,随着近年计算机技术的发展,PC机的CPU的速度已进入GHz 时代。

IDE接口的硬盘也不甘落后,相继推出了ATA66和ATA100硬盘。

这就使得RAID技术被应用于中低档甚至个人PC机上成为可能。

RAID通常是由在硬盘阵列塔中的RAID控制器或电脑中的RAID 卡来实现的。

RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。

另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。

不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。

但我们最为常用的是下面的几种RAID 形式。

(1) RAID 0
(2) RAID 1
(3) RAID 0+1
(4) RAID 3
(5) RAID 5
a
RAID级别的选择有三个主要因素:可用性(数据冗余)、性能和成本。

如果不要求可用性,选择RAID0以获得最佳性能。

如果可用性和性能是重要的而成本不是一个主要因素,则根据硬盘数量选择RAID 1。

如果可用性、成本和性能都同样重要,则根据一般的数据传输和硬盘的数量选择RAID3、RAID5。

相关术语:
*磁盘阵列
RAID 0
RAID 0又称为Stripe(条带化)或Striping,它代表了所有RAID级别中最高的存储性能。

RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。

这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。

a
如图所示:系统向三个磁盘组成的逻辑硬盘(RADI 0 磁盘组)发出的I/O 数据请求被转化为3项操作,其中的每一项操作都对应于一块物理硬盘。

我们从图中可以清楚的看到通过建立RAID 0,原先顺序的数据请求被分散到所有的三块硬盘中同时执行。

从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。

但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,但是,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。

RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。

RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。

对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。

RAID 1
RAID 1又称为Mirror或Mirroring(镜像),它的宗旨是最大限度的保证用户数据的可用性和可修复性。

RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。

a
如图所示:当读取数据时,系统先从RAID 0的源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。

当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。

由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。

同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而Mirror(镜像)的磁盘空间利用率低,存储成本高。

Mirror虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域.
RAID 0+1
正如其名字一样RAID 0+1是RAID 0和RAID 1的组合形式,也称为RAID 10。

以四个磁盘组成的RAID 0+1为例,其数据存储方式如图所示:RAID 0+1是存储性能和数据安全兼顾的方案。

它在提供与RAID 1一样的数据安全保障的同时,也提供了与RAID 0近似的存储性能。

由于RAID 0+1也通过数据的100%备份功能提供数据安全保障,因此RAID 0+1的磁盘空间利用率与RAID 1相同,存储成本高。

RAID 0+1的特点使其特别适用于既有大量数据需要存取,同时又对数据安全性要求严格的领域,如银行、金融、商业超市、仓储库房、各种档案管理等。

RAID 3
Parallel transfer with parity (并行传输及校验)
RAID 2 等级的缺点相信大家已经很明白了,虽然能进行即时的ECC,但成本极为昂贵。

为此,一种更为先进的即时ECC 的RAID 等级诞生,这就是RAID 3。

RAID 3 是在RAID 2 基础上发展而来的,主要的变化是用相对简单的异或逻辑运算(XOR,eXclusive OR )校验代替了相对复杂的汉明码校验,从而也大幅降低了成本。

XOR 的校验原理如下图1-9:
图1-9 XOR 的校验原理
这里的A 与B 值就代表了两个位,从中可以发现,A 与B 一样时,XOR 结果为0,A 与B 不一样时,XOR 结果就是1,而且知道XOR 结果和A 与B 中的任何一个数值,
就可以反推出另一个数值。

比如A 为1,XOR 结果为1,那么B 肯定为0,如果XOR 结果为0,那么B 肯定为1。

这就是XOR 编码与校验的基本原理。

RAID 3 的结构图如下:
图1-10 RAID-3 结构图解
从图中可以发现,校验盘只有一个,而数据与RAID 0 一样是分成条带(Stripe )存入数据阵列中,这个条带的深度的单位为字节而不再是bit 了。

在数据存入时,数据阵列中处于同一等级的条带的XOR 校验编码被即时写在校验盘相应的位置,所以彼此不会干扰混乱。

读取时,则在调出条带的同时检查校验盘中相应的XOR 编码,进行即时的ECC。

由于在读写时与RAID 0 很相似,所以RAID 3 具有很高的数据传输效率。

RAID 3 在RAID 2 基础上成功地进行结构与运算的简化,曾受到广泛的欢迎,并大量应用。

直到更为先进高效的RAID 5 出现后,RAID 3 才开始慢慢退出市场。

下面让存储工程师总结一下RAID 3 的特点:
RAID 5
RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。

以四个硬盘组成的RAID 5为例,其数据存储方式如图4所示:图中,P0为D0,D1和D2的奇偶校验信息,其它以此类推。

由图中可以看出,RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。

当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。

a
RAID 5可以理解为是RAID 0和RAID 1的折衷方案。

RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。

RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。

同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。

相关文档
最新文档