精密播种机毕业设计说明书

合集下载

毕业设计说明书 - 玉米播种机的设计

毕业设计说明书 - 玉米播种机的设计

前言农作技术与农机是农业生产中必不可少,又相互作用,前者是后者产生的前提并依靠后者来完成;后者为前者的实现而存在并能促进前者的发展。

耕作播种一体耕作技术是农机和农业结合的改革,现在全世界使用开展示与推广。

现实表明,耕作具有增加土壤肥力、保墒、增加农民收入和降低作业成本等是获得良好的成果。

现在,大力推广和使用耕作技术的核心是各种先进的播种机。

因为耕作拥有着他不可替代的作用,提出了更高的要求用以针对北方旱地的农业播种,为此,研发播种效果好、节水成果明显、灭草彻底等共同作业的农机拥有很重要的意义。

首先,比较成熟的播种机技术的发展,使得秸秆不缠绕开沟器等工作部件,杂草等对机具不拥堵,为耕作提供了较为可靠的实现保障。

其次,覆盖于地面的小麦残茬和玉米秸秆等,可以使地表土壤的有机质增多、地力加强,同时可以省时省工,有较为明显增产效果。

本文设计的玉米播种机集耕作、施肥、播种等一体化作业。

其中行距可以调、株距等亦可调,对于施肥量的也是可调的,不仅能实现免耕播种一些性能,还能实现精量播种。

本课题设计的主要内容是玉米播种机的设计。

主要通过对原始数据的分析、方案的论证比较与选择,完成了免耕播种机的总体设计,倾斜圆盘式排种器的设计,破茬装置的设计,施肥装置的设计及整体机架的设计等内容。

在此基础上对玉米播种机的结构尺寸、驱动转轴的结构尺寸等进行了详细的计算和说明,并且对轴承以及轴承盒的型号作了选择。

使本方案有了初步的设计应用价值。

关键词:播种机;排种器;精量播种;玉米;耕作目录1绪论 (1)1.1课题研究的目的与意义 (1)1.2国内外发展状况 (1)1.3对课题的任务要求及目标的分析 (2)1.4本课题需要重点研究的关键的问题及解决的思路 (2)1.5完成本课题需要的工作条件及解决的办法 (3)1.6工作条件及解决方法 (3)2玉米播种机总体设计 (3)2.1播种机整机设计原则 (3)2.2免耕播种机总体结构 (3)2.3播种机工作特点 (4)3玉米播种机排种器的设计 (4)3.1倾斜圆盘式排种器 (4)3.2排种盘外形的确定 (5)3.3排种盘直径的确定 (6)3.4排种盘倾角的确定 (6)3.5型孔结构及尺寸确定 (6)3.6排种盘外侧边缘厚度的确定 (8)3.7孔间距的确定 (8)4玉米播种机破茬装置的设计 (9)4.1玉米播种机破茬装置的设计运动原理 (9)4.2传动装置与工作装置 (9)5玉米播种机开沟器的设计 (10)5.1设计原理 (10)5.2设计参数 (10)6排肥器的设计 (10)6.1 排肥器的结构及工作原理 (10)6.2排肥器主要技术参数的确定 (11)7轴的校核 (11)7.1按扭矩初算轴径 (11)7.2轴的校核 (12)总结 (13)致谢 (14)参考文献 (15)1绪论1.1课题研究的目的与意义传统耕作虽然带来了经济效益,但对地面的保护减少了,从而使得土壤发生严重的水蚀与风蚀;耕作使得土壤破碎,良好的种床被制造了出来,与此同时土层中的微生物与蚯蚓被大范围的消灭了,从而让土壤的活性下降相当严重。

精密播种机毕业设计说明书

精密播种机毕业设计说明书

.目录摘要 (I)Abstract (II)第1章精密播种机发展现状与趋势 (1)1.1 我国精密播种机发展现状 (1)1.2 精密播种机的发展前景 (1)第2章播种机概述 (5)2.1 播种机类型 (5)2.2 播种机主要结构及功能 (5)2.3 总体配置 (6)第3章中耕作物精密播种排种器 (9)3.1 排种器的技术要求 (9)3.2 精密播种机的发展前景 (9)3.3 立式排种器的特点 (18)第4章排肥器 (13)4.1 排肥器的要求 (13)4.2 排肥器的类型、特点和适用围 (13)第5章开沟器及其起落机构 (16)5.1 开沟器的要求 (16)5.2 开沟器的结构类型 (16)5.3 开沟器使用行距与前后列距离 (18)5.4 芯铧式开沟器 (18)第6章输种管、覆土器、镇压轮及筑埂器 (21)6.1 输种管 (21)6.1.1 输种管的类型 (21)6.1.2 输种管的主要参数 (21)6.2 覆土器 (21)6.3 镇压轮 (22).6.3.1 镇压轮的结构类型和特点 (23)6.3.2 镇压轮直径的确定 (24)第7章其他工作部件和机构 (25)7.1 种子、肥箱 (25)7.1.1 种子、肥料箱容量计算 (25)7.1.2 种子、肥料箱结构特点 (26)7.2 仿形机构 (26)7.2.1 仿形机构类型 (26)7.2.2 仿形机构主要参数 (27)第八章保养与保管 (29)第九章播种机使用及注意事项 (30)第十章安全规则 (32)第十一章常见故障与排除…………………………………………………33第十二章经济效益分析……………………………………………………34结论……………………………………………………………………………35致 (36)参考文献………………………………………………………………………37附录1专题轴加工工艺 (38)附录2外文(汉) (42)附录3外文(英) (47).摘要本设计是根据国外播种机的发展趋势,通用性和适应性不断提高以及本着结构简单操作灵活的原则,而设计的一种能同时完成播种施肥工作的小型多功能精密播种机。

机械毕业设计1630原茬小麦精少量播种机的设计说明书

机械毕业设计1630原茬小麦精少量播种机的设计说明书

摘要播种机播种质量的优劣直接影响到农作物的产量以及农产品的成本,因此研制高质量的播种机械是现代农业的迫切要求。

尽管我国大部分地区早已实现播种机械化,但目前的播种机质量还不能满足高产的要求。

现在大面积麦田普遍存在着植株疏密不匀,出苗参差不齐,单株个体之间性状也表现较大差异等问题,限制了小麦产量的进一步提高。

生产实践证明,解决这一问题的关键在于实行均匀播种。

本课题的目的是针对现有小麦播种机播种中存在缺苗烧苗现象严重,存在疙瘩苗,设计制造了一种装配有种肥分施开沟器的小麦播种机,该小麦播种机能够显著提高小麦播种的均匀性,实现种肥分施,达到了节种、增产的目的。

关键词:小麦播种机;开沟器;排种器AbstractThe quality of sowing machine affects the outputs and the costs of the agricultural products directly , therefore it is urgent for modern agriculture to develop the high quality sowing machine. Although most areas in our country have already realized the sowing mechanization, the quality of the present sowing machine can not satisfy the demand of high yield . At present there are some problems restricting future improvement of wh eat yield in most areas ,such as ,different interspace among plants ,various sizes between seedlings and distinctive traits in individuals .Through production practices ,the key to solve this problem lies in implementing balance sowing .the main purpose of this subject is design a kind of wheat sowing machine assembling with equalizing device and furrow opener to replace the existing wheat sowing machine that result to severe absence and burning of the seedlings .this sort of wheat sowing machine in this book can improve significantly and remarkably the balance of wheat sowing and realize higher productivity.Key words: Wheat seeder;Furrow opener;Seed metering目录摘要 (I)ABSTRACT (II)1绪论................................................................................................................................... - 1 -1.1小麦播种机的国内外研究现状及发展趋势 (1)1.2小麦播种机的介绍 (6)2小麦播种机的设计 ............................................................................................................ - 7 -2.1小麦播种机的结构特点 (7)2.2小麦播种机的机构设计 (7)2.2.1机架的设计......................................................................................................... - 7 -2.2.2排种器的设计 ..................................................................................................... - 7 -2.2.3排肥器的设计 ................................................................................................... - 10 -2.2.4开沟器及其起落机构的设计 .............................................................................. - 10 -2.2.5输种管、覆土器、镇压轮的设计 ....................................................................... - 14 -2.2.6其他工作部件的设计.......................................................................................... - 15 -2.2.7播种机的连接器 ............................................................................................... - 18 -2.2.8播种机的总体设计与配置 ................................................................................ - 19 -3小麦播种机的使用 .......................................................................................................... - 21 -3.1播种机使用应掌握的技巧 (21)3.2播种机常见故障及排除方法 (21)总结.................................................................................................................................... - 22 -参考文献 ............................................................................................................................ - 23 -致谢.................................................................................................................................... - 24 -1绪论1.1小麦播种机的国内外研究现状及发展趋势①国外小麦播种机的研究现状麦类作物精密播种是一个世界性难题.上世纪60~70年代,苏联、英国、德国等欧洲发达国家曾先后起步试验研究小麦等精密播种技术。

播种机毕业设计

播种机毕业设计

目录1 播种机发展现状与趋势 (1)1.1 我国播种机发展现状 (1)1.2 播种机的发展前景 (2)1.2.1 单粒精密播种机迅速发展 (2)1.2.2 播种机的通用性和适应性不断提高 (2)1.2.3 播种机向高速宽幅发展 (3)1.2.4 广泛采用联合作业 (3)1.2.5 新技术的应用不断普及 (3)2 播种机概述 (5)2.1 播种机类型 (5)2.2 播种机主要结构 (5)2.3 总体配置 (6)2.3.1 主要技术参数 (7)3 播种排种器 (8)3.1 排种器的技术要求 (8)3.2 立式圆盘排种器的特点 (9)3.3 排种器参数设计 (9)3.4 壳体造型 (10)3.5 种子的充填 (10)3.5.1 排种器种子充填力学分析 (10)3.5.2 充种过成 (13)4 排肥器 (15)4.1 排肥器的要求 (15)4.2 排肥器选择 (15)5 开沟器及其起落机构 (18)5.1 开沟器的要求 (18)5.2 开沟器的结构类型 (18)5.3 开沟器使用行距与前后列距离 (19)5.4 芯铧式开沟器 (19)6 输种管、覆土器、镇压轮 (21)6.1 输种管 (21)6.1.1 输种管的类型 (21)6.1.2 输种管的主要参数 (21)6.2 覆土器 (22)6.3 镇压轮 (22)6.3.1 镇压轮的结构类型和特点 (23)6.3.2 镇压轮直径的确定 (24)6.3.2 镇压弹簧参数设计 (25)7 其他工作部件和机构 (27)7.1 种子、肥箱 (27)7.1.1 种子、肥料箱容量计算 (27)7.1.2 种子、肥料箱结构特点 (28)7.2 仿形机构 (28)7.2.1 仿形机构类型 (28)7.2.2 仿形机构主要参数 (29)8 播种机组工作阻力与作业幅宽 (32)8.1 工作阻力P与作业幅宽B (32)8.2 播种机机组功率消耗N (32)9 保养与保管 (33)10 使用及注意事项 (34)11 安全规则 (36)12 常见故障与排除 (37)13 经济效益分析 (38)14 结论 (39)致谢 (40)参考文献 (41)附录A (42)附录B (51)附录 C (64)辽宁工程技术大学毕业设计(论文)1 播种机发展现状与趋势播种机是农业生产过程中六大关键作业环节之一,播种机械化是农业机械化过程中最为复杂也最为艰巨的工作。

玉米播种机的设计(毕业论文doc)

玉米播种机的设计(毕业论文doc)

玉米播种机的设计(毕业论文doc)目录第一章绪论 (1)1.1课题来源 (1)1.2本课题的项目背景及研究意义 (1)1.2.1国内发展概况 (3)1.2.2 国外发展概况 (4)1.3课题研究的主要内容 (5)1.3.1主要内容 (5)1.3.2技术要求 (5)1.3.3关于题目的具体要求 (5)1.4关键问题及解决思路 (5)1.4.1关键问题 (5)1.4.2解决思路及设计方案 (5)1.5设计方法和技术路线 (7)第二章播种机的结构设计 (9)2.1转动部分的设计 (9)2.1.1行走地轮的设计 (9)2.1.2鸭嘴的选用 (10)2.1.3接种漏斗的设计 (11)2.2内部固定部分的设计 (12)2.2.1固定部分外壳的设计 (12)2.2.2播种机构的工作原理 (13)2.2.3排种轮的设计 (13)2.2.4毛刷轮的设计 (17)2.2.5各零件位置配合的设计 (18)2.2.6固定部分外壳的继续设计 (19)2.2.7排种盘的设计 (19)2.3中心轴承的选择 (23)2.4轴的设计和校核 (23)2.5地轮与轴连接方式的设计 (23)2.6链轮和链条的选用 (24)2.7推杆和连接部分的设计 (25)2.8本章小结 (25)第三章播种监控装置的设计 (24)3.1红外发射接收装置的选用及安装 (27)3.2无线信号收发模块的选用及安装 (29)3.3单片机的选用及安装 (30)3.4蜂鸣器的选用 (30)3.5电路图及程序设计思路 (31)3.6整合 (32)3.7本章小结 (32)总结 (30)致谢 (31)参考文献 (36)第一章绪论1.1课题来源本课题来源于北华大学机械工程学院和桦甸市宏昌机械厂的校企合作项目。

1.2国内外发展概况我国玉米主要种植地区在黑龙江、吉林、辽宁、北京、河北、山东、河南、内蒙古、西北等地。

播种机是农业生产中关键作业环节,必须在较短的播种农时内,根据农业技术要求,将种子播到田地里去,使作物获得良好的发育生长条件。

小麦精密播种机的设计_毕业设计说明书

小麦精密播种机的设计_毕业设计说明书

本科生毕业论文(设计)题目:小麦精密播种机的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

电磁振动棉花精密播种装置的设计资料

电磁振动棉花精密播种装置的设计资料

目录1. 绪论 (1)1.1 研究的目的和意义 (1)1.2 常见的几种精密播种装置 (3)1.3 课题主要研究内容 (4)2. 电磁振动式棉花精密播种装置的设计 (4)2.1 电磁振动播种装置的整体设计方案 (4)2.2 机架的设计 (6)2.3 电磁振动排种器的设计 (6)2.3.1 电磁振动排种器的工作原理 (6)2.3.2 种子的受力分析 (8)2.3.3 种子的运动分析 (10)2.3.4 电磁振动式棉花精密排种器主要参数的设计 (11)2.3.5 排种盘基本结构尺寸 (12)2.4 分流回收装置的设计 (14)2.4.1 分流通道的基本结构及动作过程 (15)2.4.2 孔的设计 (16)2.4.3 电磁铁和弹簧的选择 (18)2.5 钵盘输送机构的设计 (19)2.6 其它附属设备 (20)3. 结论 (20)结束语 (21)参考文献 (22)致谢 (23)分流式电磁振动棉花精密排种装置的设计学生:万子明指导教师:刘永洪摘要:棉花营养钵育苗移栽是具有中国特色的植棉手段之一,在我国内陆棉区已得到较大规模的推广应用。

实现棉花机械化精密播种是进行棉花工厂化制钵育苗的关键,但是近些年来,对棉花种子尤其是光籽棉种机械化精播的研究及相关设备几乎是空白。

本课题在对多种播种装置的比较研究的基础上,提出了电磁振动式棉花精密播种的思想。

为了实现光籽棉种的单粒精播,设计了电磁振动式棉花精密播种装置,该装置主要包括电磁振动排种器、分流回收装置和钵盘输送机构。

通过对电磁振动排种器工作原理的分析,得出了实现种子连续前移的条件,在此基础上完成了对电磁振动排种器的参数选择,在保证棉种单列有序排列的前提下,完成了排种盘基本结构尺寸的结构设计;根据棉种的形状尺寸设计出了孔的形状尺寸和分流装置的结构形式。

实现了种子的单粒精密播种,单粒率达到了90%以上。

关键词:棉花,电磁振动,精密播种,控制Design of Diffluence Electromagnetic Vibration CottonPrecision Seeding DeviceStudent:wanziming Teacher:liuyonghong Abstract:Growing and transplanting seedling of cotton, which is one of Chinese cotton planting methods has been widely applied and popularized throughout the cotton planting areas in our country. The key process of industrialized bowl-making and growing of cotton is the realization of mechanically precision seeding, but the study on the technology and equipment of mechanically precision seeding of cottonseed is still blank. In this paper, electromagnetic vibration precision theory used in cotton precision seeding was put forward firstly.Electromagnetic vibration cotton precision seeder was designed to realize precision seedling of bare cottonseed. This seeder was composed of three parts, which were electromagnetic vibration feeder, diffluent device and bowl feeding device. Through theory analysis of the feeder, the continuous slippage condition of cottonseed was gained, which provided theory base for the design of electromagnetic vibration feeder. And on the base of ordinal single-line of cottonseed the structure dimensions of electromagnetic vibration feeder were got. According to the figure and dimension of cottonseed, the figure and dimension of hole and diffulent device was designed. Precision seeding was achieved and rate of holes withsingle seed is over 90%.Key words: cotton, electromagnetic vibration, precision seeding, control前言棉花是我国重要的经济作物,种植历史已有5000年之久,但长久以来种植方式仍然是人工播种,效率低,方式落后,还要占用大量的人力资源。

机械毕业设计(论文)-气吸式胡萝卜精密播种机的设计(全套图纸)

机械毕业设计(论文)-气吸式胡萝卜精密播种机的设计(全套图纸)

青岛农业大学毕业论文(设计)题目:气吸式胡萝卜精密播种机的设计姓名:学院:2012 年06 月18 日毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得青岛农业大学或其他教育机构的学位或证书使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。

本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。

本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为青岛农业大学。

论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1气吸式胡萝卜精密播种机的设计背景 (1)1.3研究气吸式胡萝卜精密播种机的目的及意义 (4)1.4气吸式胡萝卜精密播种机的主要研究内容及设计要求 (5)2方案选择与概述 (7)2.1排种器的方案设计 (7)2.2起垄装置的方案设计 (9)2.3风机及传动装置配置方式的方案设计 (11)3气吸式排种器的设计 (13)3.1气吸式排种器的性能分析 (13)3.2气吸式排种器的技术要求 (13)3.3气吸式排种器的结构特征 (13)3.4气吸式排种器的外部尺寸确立 (15)3.5气吸式排种器排种盘的设计 (15)4 单体播种系统的设计 (17)4.1传动方案的分析 (17)4.2地轮地面附着力与功率产生的分析 (18)4.3动力传动的设计与传动链轮链条的选择 (19)5 起垄旋耕机装置的设计 (23)5.1 起垄旋耕机的设备选型 (23)5.2起垄旋耕机的改进设计 (24)6 风机配置方案与传动的设计 (25)6.1风机配置方案的设计 (25)6.2风机传动方案的设计 (25)6.3风机传动带轮的设计计算 (27)7 气吸式胡萝卜精密播种机整机结构设计 (29)8总结 (31)参考文献 (32)致谢.......................................................................................... 错误!未定义书签。

精量播种机设计

精量播种机设计

毕业设计学生姓名:马云鹏学号: ********* 学院:机械工程学院专业:机械设计制造及其自动化题目:精量播种机设计指导教师:张戌社(教授)评阅教师:陈继荣(副教授)2017 年 6 月本科毕业设计第1 页共40页毕业设计中文摘要毕业设计外文摘要目录第一章引言 (5)1.1我国精量播种机发展背景 (5)1.2 精量播种机研究意义 (5)1.3精量播种机的发展前景 (6)第二章精量播种机的概述 (8)2.1播种机的类型 (8)2.2播种机主要机构以及功能 (8)第三章精量播种机的排种器 (11)3.1精量排种器的发展前景 (11)3.2排种器的技术要求 (11)3.3排种器的选择 (12)3.4勺轮式排种器的设计 (12)3.5勺轮式排种器驱动的选择 (14)3.6滚子链的计算 (14)第四章开沟器的设计 (18)4.1开沟器的技术要求 (18)4.2开沟器不同的类型分析和分析 (18)4.3开沟器的使用行距和前后距离 (20)4.4芯铧式开沟器设计 (20)4.5开沟器转轴的设计 (22)4.6播种行距的调节和计算 (22)4.6.1 行距的调整 (22)4.6.2 播种量的调整和实验 (22)第五章配套部件的设计 (24)5.1输种管 (24)5.2镇压轮的设计 (24)5.2.1镇压轮直径的确定 (26)5.2.2镇压弹簧的参数设计 (26)5.3种箱以及肥箱 (27)5.3.1肥箱 (27)5.3.2种箱 (27)5.4覆土器 (29)5.5变速箱的选用 (29)第六章排肥器 (31)6.1排肥器的不同类型 (32)6.2排肥器的选择 (32)第七章剩余部件的设计 (33)7.1洒水系统 (33)7.2覆膜 (33)7.3悬挂系统 (34)第八章经济性分析 (37)结论 (38)致谢 (39)参考文献 (40)第一章引言1.1我国精量播种机发展背景中国是一个古国,根据文物推断,我们的祖先在几千年前就已经造出了播种工具瓤种,瓤种是目前世界上已知最早的播种器具。

播种机设计

播种机设计

摘要本设计是根据国内外播种机的发展趋势,通用性和适应性不断提高以及本着结构简单操作灵活的原则,而设计的一种能同时完成播种施肥工作的小型多功能精密播种机。

该机结构上优点,使之能适应各种田地的播种。

小到1-2分大的田块,大到上百亩的田块,不管是平坝、还是浅丘地区;无论是板结的土质,还是疏松的土质都能适应。

还可以根据用户的不同需求,配置合适的播种器。

通过调节犁铧和种子储存孔的行距,能够轻松地播种小麦、大麦、高粱、大豆、玉米等旱粮作物。

本例着重对播种机排种器、排肥器、开沟器、覆土器以及镇压轮等结构进行设计选择。

关键词:精密播种播种机播种施肥AbstractThe design is based on the development trends and seeder, interoperability and adaptability in a constantly improving the structure and operation of flexible simple principles designed to simultaneously accomplish a small planting fertilization work multifunctional sophisticated seeder. This structural advantages so that they can adapt to a variety of fields planting. Applicable to all sizes of land; Whether plains or hills; Whether hard soil or loose soil. We can select the planting machine according to the different needs of users. By regulating platoon of vehicles and plow can easily sow wheat, barley, sorghum, soybean, corn and other crops. This example focuses on the design seeder platoon of vehicles, fertilization devices, trenching vehicles structure.Key words:precision planting seeder planting fertilization目录摘要 (I)Abstract (II)第1章精密播种机发展现状与趋势 (1)1.1 我国精密播种机发展现状 (1)1.2 精密播种机的发展前景 (1)第2章播种机概述 (5)2.1 播种机类型 (5)2.2 播种机主要结构及功能 (5)2.3 总体配置 (6)第3章中耕作物精密播种排种器 (9)3.1 排种器的技术要求 (9)3.2 精密播种机的发展前景 (9)3.3 立式排种器的特点 (18)第4章排肥器 (13)4.1 排肥器的要求 (13)4.2 排肥器的类型、特点和适用范围 (13)第5章开沟器及其起落机构 (16)5.1 开沟器的要求 (16)5.2 开沟器的结构类型 (16)5.3 开沟器使用行距与前后列距离 (18)5.4 芯铧式开沟器 (18)第6章输种管、覆土器、镇压轮及筑埂器 (21)6.1 输种管 (21)6.1.1 输种管的类型 (21)6.1.2 输种管的主要参数 (21)6.2 覆土器 (21)6.3 镇压轮 (22)6.3.1 镇压轮的结构类型和特点 (23)6.3.2 镇压轮直径的确定 (24)第7章其他工作部件和机构 (25)7.1 种子、肥箱 (25)7.1.1 种子、肥料箱容量计算 (25)7.1.2 种子、肥料箱结构特点 (26)7.2 仿形机构 (26)7.2.1 仿形机构类型 (26)7.2.2 仿形机构主要参数 (27)第八章保养与保管 (29)第九章播种机使用及注意事项 (30)第十章安全规则 (32)第十一章常见故障与排除 (33)第十二章经济效益分析 (34)结论 (35)致谢 (36)参考文献 (37)附录1专题轴加工工艺 (38)附录2外文(汉) (42)附录3外文(英) (47)第一章精密播种机发展现状与趋势播种机是农业生产中关键作业环节,必须在较短的播种农时内,根据农业技术要求,将种子播到田地里去,使作物获得良好的发育生长条件。

精密播种器校准单元的设计和开发说明书

精密播种器校准单元的设计和开发说明书

D ESIGN AND D EVELOPMENT OF C ALIBRATIONU NIT FOR P RECISION P LANTERTejminder Kaur1, Dilip Kumar21,2Academic and Consultancy Services-DivisionCentre for Development of Advanced Computing(C-DAC), Mohali, India12A BSTRACTThe critical parameters for plant population with desired planting geometry include uniform distribution and precision placement of seeds. R&D efforts in metering of single seeds at predetermined intervals are carried in this paper. Proximity sensor technique based seed spacing evaluation system that measure time intervals between seeds and transmission ratio between two velocities is use to determine planter seed spacing uniformity. The calibration unit includes frame light barrier sensor that consists of square cross-section window including transmitter and receiver with innovative microcontroller technology in its casing along with the inductive type gear tooth sensor that calculates rpm of roller. For acquiring the data serially to personal computer the system includes circuitry to interface the sensors with the AT89S52 microcontroller. Mechanical mechanism of motor/roller/ SMU is controlled using V/F drive through PC itself. Calibration of whole system is based on ISO defined standard parameters that are Quality of feed index, multiple index and Miss index. This calibration unit can be used instead of grease belt stand to rapidly obtain quantitative evaluations of planter seed spacing uniformity in the laboratory.K EYWORDSFrame light barrier sensor, gear tooth sensor, SMU, 1 hp AC motor, Yaskawa J1000 AC drive, RS232 and USB communication.1.I NTRODUCTIONState-of-art designs of pneumatic precision planters are lacking. As of now, no manufacturer in India is engaged in commercial production of precision planters which can be used for direct seeding of vegetables. R&D efforts are required to develop a pneumatic precision planter which can be used for a variety of vegetable seeds. Seed spacing is important particular for vegetable crops where seed spacing uniformity has been demonstrated to be a significant factor in yield. With uniform spacing crop can grow to maximum size and fill the row space, without being pushed out of the row. The distance between plants within row influenced by a number of factors including variability of seed metering unit and seed dropping, failure of a seed to be dropped and multiple seed drop at the same time. Due to the individual volumes of wheel metering systems each holding more than one seed, seed meters provide random seed distribution. Performance of a planter has remarkable influences on yield in agriculture products and especially its seeding uniformity is a crucial index in estimation of seeders quality.There are several techniques for determining the planter performance (jasa and dickey, 1982; brooks and church, 1987; kachman and smith, 1995; karayal et al, 2005; S.Ebrahimian, H.R Gassemzadeh, 2011).DOI : 10.5121/ijcsea.2013.33021112Janke and Erbach (1985) used manual method of determining space by making direct measurement from removed soil of marked section of row. Singh et al (2005) used grease belt method for manually measuring the seed spacing but it imposed some limitations on timing constraints as it is time consuming and data acquiring constraint as data obtained will be limited by length of belt. Few field based performance were also made. Kepner et al. (1987) measured the distance between the plants after growth and performance indices were calculated .M. F. Kocher,Y. Lan, C. Chen, J. A. Smith (1998) describes an opto-electronic seed spacing evaluation system that measured time intervals between seeds and detected front-to-back location of seed drop events relative to the planter was used to rapidly determine planter seed spacing uniformity in the laboratory. Raheman and Singh (2003) developed a sensor based on light interference technique for sensing the seed droppings from planter. D. Karayel, M. Wiesehoff, A.Ozmerzi, J. Muller (2005) describes a high-speed camera system for evaluating seed spacing uniformity and velocity of fall of seeds. The performance of the high-speed camera system in terms of seed spacing evaluation was compared with a sticky belt test stand, used as a reference. Coefficient of variation of seed spacing, velocity of fall and coefficient of variation of velocity of fall of seeds decreased as the speed of the metering rollers increased. Wei Li, Jiachun Lin (2006), a testing approach for seeding precision was developed which was an integrated technology of machine vision, pattern recognition, and automatic control. A machine vision based test-bed was developed for performance tests of grain seeders and a corresponding software package was compiled to capture the images of the deposited seeds, to segment the seeds from the background of the image, and to calculate the spacing between two seeds after precision seeding, the number of seeds per length after drill seeding, and the distance between hills and the number of seeds per hill after hill-drop seeding.Most of the test beds were designed for testing a certain type of seeder. For example, the precision planter tester was used for testing drill seeders, a hill drop planter and a seeder. In this paper a new approach had been done for testing planter performance based on seeds by calibrating its performance on based of few parameters which include quality of feed index, miss index and multiple index .2.C IRCUIT DIAGRAMVariable frequency drive, 1 HP motor, roller, smu, frame light barrier sensor, proximity gear tooth sensorand ATMEL microcontroller are the main component of calibration unit.Figure 1.Block diagram of Calibration unit133.MATERIALS AND METHODS3.1SeedsMustard seeds were being used for this study. The specification for the diameter of this seed was between 1.5 mm to 4 mm.3.2Calibration unit setupA sticky belt stand was used as a reference to monitor seed spacing of seed metering unit (Figure.2). An ac motor of 1 hp was used to drive the roller on which belt was being mounted. The seed meter mechanism was driven by the belt test stand to provide the theoretical seed spacing via the meter-to-belt transmission ratio. The seed drill unit was positioned over the sticky belt. A pair of gear tooth sensors was being attached to roller and SMU unit respectively for calculating RPM of roller and SMU for calculating transmission ratio. Frame light barrier sensor was used for calculating time interval between falling seeds.During the test process, roller was driven by a motor, which made the belt move forward. The rotation speed of the motor was adjusted by software via V/F j1000 Yaskawa drive. Roller then provides rotation speed to SMU through the mechanism of gear tooth and sprocket used to driveSMU.Figure 2.Planter Rig test3.3Embedded hardwareDi-Soric Frame light barrier (OGWSD 25 P3K-TSSL)and two FUZI inductive type (12 mm diameter) proximity gear tooth sensors combination was used to detect time interval between falling seeds from the SMU , roller and SMU speed respectively and the working mechanism of sensors was controlled by combination of ATMEL 8051C microcontroller and relays using external and timer interrupts . The sensed data of sensors was then transmitted serially to PC for further analysis.3.4Computer softwareYaskawa engineering tool Drive Wizard Plus helps managing specific drive settings on the PC.The advanced functionality of DriveWizard Plus is window-based application that assists all users with powering up the drive, test running the application, or performing maintenance (Figure3).V/F Driver settings were done with the help of this software through which we drive the motor by changing relevant frequency parameter which further provide speed to SMU.14The data acquisition portion of the program that include acquiring data from sensors was written in assembly language in order to be fast enough to detect every passing seed and accurately measure rpm. Flash magic is window based application that helps in acquiring data frommicrocontroller through USB serial interface (Figure. 4).Figure 3.DriveWizard SoftwareFigure 4.Software for Acquiring Microcontroller Data3.5Calibration procedureA number of measures based on the theoretical spacing for the planter were defined by the International Organization for Standardization in ISO Standard 7256/1-1984 (E) (ISO, 1984).These measures included the quality of feed index, multiples index and miss index. The theoretical spacing is the spacing that would occur if there were no misses, multiples, or variability. In this study, target spacing was determined from the planter drive rotational speed and the drive speed ratio, and used as the theoretical spacing. Normally sown seeds as defined in15the ISO standard are those having seed spacings within the range from one-half times the theoretical spacing to 1.5 times the theoretical spacing.Yaskawa j1000 VFD was being used to provide variable frequencies to motor for acquiring initial conditions .SMU unit got its speed through motor via roller and gear mechanism. Transmission ratio between roller and SMU was changed using sprockets that were attached to SMU. We selected three pairs of sprockets for it having teeth combinations (15, 15), (15, 19), (15, 21), (15,23), (15, 25). VFD was controlled through PC using serial communication using S232/J component.The SMU having fixed number of holes i.e. 30 and all open was positioned over the roller belt.The roller speed on which the belt mounted was actually duplicating the tractor wheel speed in normal planter conditions. The frame light barrier sensor was positioned under the seed tube and just above the belt. The sensor was attached to the set up stand to minimize relative motion between the SMU and sensor. For calculating actual RPM Two proximity sensor named gear tooth sensors were attached to gear having 40 teeth that was fixed to the shaft connecting to the roller so that it provide same rpm as roller and to the gear also having 40 teeth attached to upper sprockets of SMU respectively .The SMU, sticky belt and sensors combination with a simulated roller travel with the speed as set by frequency parameter using VFD was run with wheat seeds. The setup was started and run for 20 s or so to reach steady-state operating conditions before the sensor system was signalled to start recording time interval along with rpm measuremnets.theoretical distance between seeds was being calculated from the planter drive rotational speed and the drive speed ratioThe sensor system was being signalled one by one using electronic hardware to calculate actual spacing. As soon as the frame light barrier system recorded the time interval for 25 seeds, the setup was stopped at the same time. Sensed data was being assessed by microcontroller and was transmitted to PC side by side and was being analysed. Each time the roller/SMU/electronic sensor system was run, it yielded about 25 seed spacings for which different spacing measurements can be compared.4.A NALYSIS AND RESULTSThe system was capable of varying the speed of planting by using a VFD system.As the frequency was being changed using software the speed of motor also varies. The line graph shows the variations in motor speed in terms of RPM with change in VFD frequency (Hz)through PC(Figure 5).Figure 5. Variation of motor rpm with change in VFD frequency.16The gear tooth sensor system worked well in obtaining the rpm of roller and SMU unit with only 1 to 2% deviation from theoretical calculations that is being acceptable in speed dimensions.Frame light barrier sensor provided the actual seed intervals between fallen seeds that were afterwards converted to distance.While calibrating the unit we come to notice that changing the sprocket ratio of SMU also changes the theoretical spacing and so the actual spacing when measured. Increasing the number of teeth in sprocket attached to SMU increases the theoretical spacing. Figure 6shows the effect on theoretical spacing when the transmission ratio between the sprockets was changed at constantfrequency of 5.4 Hz (randomly selected for calibrating) to motor which gives 50 rpm to roller.Figure 6.Theoretical spacing variations with sprocket teeth ratio .Providing fixed vacuum to SMU, calibration unit was tested for mustard seeds at frequency provided by VFD to motor that gives theoretical spacing of 11cm. The frequency of occurrence to seed spacing graph (Figure 7) shows the distribution of seed spacing to regions that were defined by ISO for quality of feed index, multiples and misses.ISO defined the region (0.5x to 1.5x) asquality of feed index where x is theoretical spacing.Figure 7.Distribution of seed spacings in regionsBy analysing the acquired data we got that 90% of quality of feed index that shows that the actual spacings were close to theoretical spacings. The peak in red line shows the theoretical spacing that is near about 11cm, blue bar defines the seed spacing the fall into different regions. The17region inside 2 yellow lines depicts the region (0.5x to 1.5x)for quality of feed index.The region (0.0.5x)is for misses and the region above 1.5 x depicts multiples.5.C ONCLUSIONSFrame light barrier sensor provides high resolution from 0.7 mm diameter, short response time of 0.1 ms and is shock resistive. It improves the electronic measurement of seed spacing.The calibration unit incorporates information of seed drop events relative to the planter with seed interval timing and planter travel speed to obtain the seed spacing data. The ISO standard normal seed spacing measurements achieved with the sensor system using seed time interval, proves the accurate designing and development of calibration unit .R EFERENCES[1]M.F.Kocher, n, C.Chen, J.A.Smith, “Opto -electronic sensor system for rapid evaluation of planter seed spacing uniformity” Vol. 41(1):pp. 237-245, 1998.[2]H. Navid, S. Ebrahimian, H.R. Gassemzadeh, M.J. Mousavi nix,” Laboratory evaluation of seed metering device using image processing method” Australian journal of agriculture engineering Vol 2(1) pp. 1-4,2011[3]D.Karayel, M.Wiesehoff, A.Ozmerzi, J.Muller, “Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system” Computers and Electronics in Agriculture. pp. 89–96, 2006[4]W.Li, J.Lin, “Seeding Precision Test Based on Machine Vision” 2006.[5]P.Rohrbach, R.D.Brazee, H.J.Barre, “On Spacing Statistics of Plant Populations Produced by UnIform Seed-placement Devices” pp. 210-225, 1969.[6]M.R.Maleki, J.F.Jafari, M.H. Raufat, A.M. Mouazen, J. De Bae rdemaeker, “Evaluation of Seed Distribution Uniformity of a Multi-flight Auger as a Grain Drill Metering device” , Biosystems Engineering Vol. 94(4), pp. 535–543, 2006.[7]I. Ozturk, Y. Yildirim, S. Hinislioglu, B. Demir and E. Kus, “Optimization of se ed flow evennessof Scientific Research and Essays Vol. 7(1), pp. 78-85, 2012AUTHORS BIOGRAPHYDilip Kumar received his PhD in Engineering and Technology from MaharishiMarkandeshwar University (MMU), Ambala,India in 2010, ME in Electronics ProductDesign and Technology from PEC University of Technology (formerly PunjabEngineering College), Chandigarh in 2003, and BE in Electronics andTelecommunication Engineering from Army Institute of Technology, University of Pune,India in 2000. He is currently a Senior Engineer at Centre for Development of AdvancedComputing, a premier Research and Development Institute of Ministry of Information Technology,Government of India. His research interests include wireless sensor networks, fault tolerance and embedded system. He has published more than 90 papers in international journal/conferences.Tejminder kaur has received the B.Tech. (Electronics and Communication Engineering)degree from the Lovely School of Sciences, Phagwara affiliated to Lovely ProfessionalUniversity, Phagwara in 2010, and presently she is doing M.Tech (Embedded Systems)degree from Centre for development of Advanced Computing (CDAC), Mohali andworking onher thesis work.。

小麦精密播种机的设计毕业设计说明书

小麦精密播种机的设计毕业设计说明书

青岛农业大学海都学院本科生毕业论文(设计)题目:小麦精密播种机的设计姓名:唐耀明系别:工程系专业:机械设计制造及其自动化班级:2008.06学号: 200801176指导教师:江景涛年月日目录摘要 (I)Abstract (II)第一章绪论 (1)1.1选题的目的和意义 (1)1.2 精密播种机国内外研究现状及前景 (1)第二章总体方案的设计 (3)2.1方案的选择 (3)2.2主要技术参数 (6)第三章排种器 (8)3.1 排种器的技术要求 (8)3.2 排种器的设计 (9)3.3播种量的计算 (12)第四章开沟器 (15)4.1 开沟器的要求 (15)4.2 开沟器的设计 (15)第五章其他工作部件和机构 (18)5.1输种管的设计 (18)5.2地轮的设计 (18)5.3地轮轴的选择与校核 (19)5.4 镇压轮 (21)5.5种子箱的设计 (21)5.6种子箱容量计算 (22)5.7机架的设计 (23)第六章传动机构 (24)6.1 动力传递方式的选择 (24)6.2 传动比和链条节数的计算 (24)6.3链轮的基本参数的设计 (27)第七章结论 (28)参考文献 (29)致谢 (30)小麦精密播种机的设计摘要从古至今,人类赖以生存的食物就是粮食,而小麦又是主要的粮食作物,在我国,小麦的种植面积非常得广。

从寒冷的大东北到夏日炎炎的南方,从地势高低不平的大西北到广阔无垠大华北平原。

播种就是小麦生产过程中关键的一步我们要根据农业技术要求,将种子种到地里,能够使作物获得良好的生长条件。

但是随着科学种植技术的发展,以及我们对农艺技术要求的不断提高,对于小麦播种机的研究不能只停留在传统的机械化播种的方向上,更要追求精密化播种。

小麦精密播种,就是使生长出来的小麦苗匀、苗齐、苗壮,能够保证种子的田间分布最合理,播下的种子量精确,株距均匀,行距一致,株距也一致,播深一致,为种子的生长发育创造最佳条件。

这样可以大量节省种子,增强种子的使用率,保证作物稳产高产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.目录摘要 (I)Abstract (II)第1章精密播种机发展现状与趋势 (1)1.1 我国精密播种机发展现状 (1)1.2 精密播种机的发展前景 (1)第2章播种机概述 (5)2.1 播种机类型 (5)2.2 播种机主要结构及功能 (5)2.3 总体配置 (6)第3章中耕作物精密播种排种器 (9)3.1 排种器的技术要求 (9)3.2 精密播种机的发展前景 (9)3.3 立式排种器的特点 (18)第4章排肥器 (13)4.1 排肥器的要求 (13)4.2 排肥器的类型、特点和适用围 (13)第5章开沟器及其起落机构 (16)5.1 开沟器的要求 (16)5.2 开沟器的结构类型 (16)5.3 开沟器使用行距与前后列距离 (18)5.4 芯铧式开沟器 (18)第6章输种管、覆土器、镇压轮及筑埂器 (21)6.1 输种管 (21)6.1.1 输种管的类型 (21)6.1.2 输种管的主要参数 (21)6.2 覆土器 (21)6.3 镇压轮 (22).6.3.1 镇压轮的结构类型和特点 (23)6.3.2 镇压轮直径的确定 (24)第7章其他工作部件和机构 (25)7.1 种子、肥箱 (25)7.1.1 种子、肥料箱容量计算 (25)7.1.2 种子、肥料箱结构特点 (26)7.2 仿形机构 (26)7.2.1 仿形机构类型 (26)7.2.2 仿形机构主要参数 (27)第八章保养与保管 (29)第九章播种机使用及注意事项 (30)第十章安全规则 (32)第十一章常见故障与排除 (33)第十二章经济效益分析 (34)结论 (35)致谢 (36)参考文献 (37)附录1专题轴加工工艺 (38)附录2外文(汉) (42)附录3外文(英) (47).摘要本设计是根据国外播种机的发展趋势,通用性和适应性不断提高以及本着结构简单操作灵活的原则,而设计的一种能同时完成播种施肥工作的小型多功能精密播种机。

该机结构上优点,使之能适应各种田地的播种。

小到1-2分大的田块,大到上百亩的田块,不管是平坝、还是浅丘地区;无论是板结的土质,还是疏松的土质都能适应。

还可以根据用户的不同需求,配置合适的播种器。

通过调节犁铧和种子储存孔的行距,能够轻松地播种小麦、大麦、高粱、大豆、玉米等旱粮作物。

本例着重对播种机排种器、排肥器、开沟器、覆土器以及镇压轮等结构进行设计选择。

关键词:精密播种播种机播种施肥.AbstractThe design is based on the development trends and seeder, interoperability and adaptability in a constantly improving the structure and operation of flexible simple principles designed to simultaneously accomplish a small planting fertilization work multifunctional sophisticated seeder. This structural advantages so that they can adapt to a variety of fields planting. Applicable to all sizes of land; Whether plains or hills; Whether hard soil or loose soil. We can select the planting machine according to the different needs of users. By regulating platoon of vehicles and plow can easily sow wheat, barley, sorghum, soybean, corn and other crops. This example focuses on the design seeder platoon of vehicles, fertilization devices, trenching vehicles structure.Key words:precision planting seeder planting fertilization第一章精密播种机发展现状与趋势.全套图纸及更多设计请联系QQ:360702501播种机是农业生产中关键作业环节,必须在较短的播种农时,根据农业技术要求,将种子播到田地里去,使作物获得良好的发育生长条件。

播种质量的好坏,将直接影响到作物的出苗、苗全和苗壮,因而对产量的影响很大。

由于精密播种可以保证种子在田间最合理分布,播种量精确,株距均匀,播深一致,为种子的生长发育创造最佳条件,可以大量节省种子,减少田间间苗用工,保证作物稳产高产。

因此,现代农业对精密播种机械的要求越来越迫切。

1.1 我国精密播种机发展现状我国从80年代末便开始研制精密播种机械。

由于种子质量、整地条件、机械制造水平及机器价格等因素制约,我国80年代主要是推广半精量播种。

为适应农村生产责任制的要求,大量推广了小型单体播种机。

90年代以来,我国逐步推广精密播种机,有10多个企业生产了20多种型号的精密播种机。

精密播种机以作物种类分为玉米及大豆精密播种机、谷物(小麦)精密播种机、甜菜精密播种机;以配套动力分为小型(5.8~13.2kw)、中型(16.2~36.8kw)和大型播种机(40.4kw以上)精密播种机;以排种器形式分为机械式和气力式两大类精密播种机;机械式中又可分为垂直圆盘式、垂直窝眼式、锥盘式、纹盘式、水平圆盘式、带夹式等形式精密播种机。

1.2 精密播种机的发展前景1.单粒精密播种机迅速发展在国外,中耕作物如甜菜、玉米、棉花和某些蔬菜、豆类的播种都已大量采用精密播种,主要采用机械式和气力式两种精密播种机。

由于气力式播种机对种子尺寸要求不严,不需精选分级,容易达到单粒精播,而且通用性较好,又能适合较高速播种,因此使用气力式播种机越来越多。

为了达到单粒精播,提高株距均匀性,大多采用可精调的刮种器,将多余的种子清除掉;为了降低投种高度,减小种子下抛速度与前进速度之间的相对速差,而设置导种轮或导种管。

但是,精密播种受高速作业的影响很大。

现有的精密播种机试验结果表.明,一般作业速度在4~8 km/h时,其株距合格率达80%以上;而作业速度提高到11~12 km/h时,株距合格率下降到60%以下。

可见高速精密播种机还有待进一步发展、完善。

2.播种机的通用性和适应性不断提高大多数精密播种机都可以播多种作物,通过更换不同孔径的排种盘(轮)或排种滚筒,使排种器能适应多种作物种子的播种要求。

改变型孔大小或增加成穴机构,使之能达到穴播的要求;改变排种器工作转速以达到不同株距的要求。

所有这些均提高了播种机的通用性。

为了适应不同地区、不同土壤、不同整地条件的要求,大多数播种机上配有多种类型的开沟器(双圆盘式、滑刀式等)和镇压轮(橡胶轮、钢板冲压轮、铸铁轮、宽轮、窄轮等),供选用。

同一型号的精密播种机又成系列,有多种行距和行数的变型。

如美国CYCLO气压式播种机有牵引式和悬挂式,有4、6、8、12、16行等共16种机型,可为多种功率的拖拉机配套。

3.精密播种机向高速宽幅发展为了在最适宦的农业技术条件下、用最短的时间做到适时播种,以及随着拖拉机功率不断增大,为了充分利用其功率,因此要求提高播种机作业的生产率。

影响提高播种机组生产率的因素很多。

除了提高机组的工作可靠性、减少故障、简化操作以减少辅助作业时间、提高纯工作时间的利用率外,提高生产率的最主要途径是增大播种机的工作幅宽和提高作业速度。

增大播种机工作幅宽虽能直接有效地提高生产率,但加大工作幅宽使机体庞大,消耗金属多,成本高。

同时,庞大的机体将受到田块大小、地头转弯以及道路运输的限制,使用不方便。

因此,国外很重视提高作业速度的研究。

70年代,中耕作物播种机作业速度一般从4~6km/h提高到8~10km /h。

如西德AermoatⅡ型气力式播种机、法国Pneumasem气吸式播种机和美国7000型指夹式播种机的作业速度为8~10 km/h,作业质量仍能符合要求。

.但是,播种机高速作业带来一些问题,如排种性能下降,开沟深度变浅,种子在沟里弹跳、滚动加剧,以及驾驶条件恶化等等。

因此,目前作业速度不能太高。

中耕作物播种机的工作幅宽,一般单机都由3~4 m增大到5~6 m有的工作幅宽更大,如美国CYCLO气压式播种机系列中的16行播种机,其幅宽达11.68 m。

加大幅宽使播种机结构庞大笨重,使悬挂式播种机组纵向稳定性变坏,还受到地块大小、道路运输的限制。

4.广泛采用联合作业播种同时进行联合作业的方式发展很快,形式也比较多,主要有两种:一是在大多数中耕作物精密播种机上都配置排肥器、施肥开沟器以及施撒农药和除莠剂的装置。

如西德、法国和美国的几种精密播种机都可以在播种同时施化肥、撒农药和除莠剂。

二是播前整地和播种联合作业,如旋耕播种机、犁播机以及有的在开沟器前方加波形圆盘或锄铲进行灭茬播种或少耕法播种,以减少耕作次数,提高生产率,降低作业成本,还可以减少土壤风蚀和起到保墒的作用。

5.新技术的应用不断普及为了提高播种机作业性能和工作可靠性,简化操作、减轻劳动强度、减少辅助作业时间、提高生产率,播种机上越来越多地采用新技术。

如用液压油缸来升降和调节开沟器、划行器、折叠机架;采用液压马达驱动风机或装肥搅龙;采用信号装置、电子监视装置或监控装置来及时报警故障的发生,显示播量或自控凋节排种量大小;开沟器装备一次润滑的滚动轴承;行走轮采用无胎充气轮;快速挂接装置;宽幅播种机加装横向运输轮等。

在工艺材料方面,播种机上采用塑料或尼龙的零件更多了,如排种盘、排肥盘、轴套、输种管等;采用铝金压铸排种轮、排种器体壳,提高了零件精度,减轻了重量;播种机机架和各种杆件采用薄钢板冷压成异形断面以代替扁钢、角钢和槽钢,增加了刚度和强度,又减轻了重量。

第二章播种机概述.播种机的功用是以一定的播量或株穴距,将其均匀地播入一定深度的种沟,覆以适量的细湿土,同时也可施种肥并适当镇压,有时还喷洒农药和除草剂,为种子发芽提供良好条件,以达到高产稳产,提高播种作业的劳动生产率,减轻使用者的劳动强度。

全套图纸及更多设计请联系QQ:3607025012.1 播种机类型播种机的类型很多,有多种分类方法。

按播种方法可分为撒播机、条播机、点(穴)播机;按联合作业可分为施肥播种机、播种中耕通用机、旋耕播种机、铺地膜播种机;按牵引动力可分为畜力播种机和机引播种机,而机引播种机中,根据和拖拉机不同的连接方式,可分为牵引式、悬挂式和半悬挂式;安排中原理可分为气力式播种机和离心式播种机。

相关文档
最新文档