人教高中生物必修一第五章第四节-光合作用速率的测定方法

合集下载

高中生物讲义:必修I-5-4能量之源----光与光合作用

高中生物讲义:必修I-5-4能量之源----光与光合作用

第5章细胞的能量供应和利用第4节能量之源----光与光合作用一、实验:绿叶中色素的提取和分离1、原理:(1) 利用色素溶于有机溶剂而不溶于水的性质,可以用无水乙醇、丙酮等有机溶剂提取绿叶中的色素。

(2) 利用各种色素在层析液中溶解度不同,随层析液在滤纸上扩散速度不同的原理可以使各种色素在滤纸上相互分离,溶解度高的随层析液在滤纸上扩散得快,反之则慢。

2、实验流程:(1) 提取色素:称重:称取5g新鲜绿叶剪碎:去掉叶柄和粗的叶脉研磨:加入少许SiO2、CaCO和10mL无水乙醇过滤:漏斗基部放单层尼龙布收集滤液:用棉塞将试管口塞严(2) 制备滤纸条:①将干燥的滤纸剪成略大于试管长度,略小于试管宽度的滤纸条,并在一端剪去两角②在距剪去两角的一端1cm处用铅笔画一条细的直线(3) 画滤液细线:①用毛细吸管吸取少量滤液,沿铅笔画线处均匀地画一条直的滤液细线②干燥后,重复画2-3次(4) 色素分离:①烧杯中倒入3 mL层析液② 将滤纸条有滤液细线的一端插入层析液中 ③ 用棉塞塞紧试管口(5) 观察结果:滤纸条上色素带有四条,分别是 素b 。

二、光合作用的发现:1.1771年普利斯特利实验 本实验缺点:缺乏空白对照,实验结果的说服力不强。

2.1864年萨克斯实验(1) 本实验中黑暗处理的目的:消耗掉叶片中原有的淀粉,避免干扰。

(2) 本实验为自身对照,自变量为是否照光(一半曝光与另一半遮光),因变量为叶片是否制造出淀粉,是否出现颜色变化(出现深蓝色)。

(由上到下)橙a ,黄绿色的叶绿3.1880年恩格尔曼实验⑴本实验的实验组为极细光束照射处的叶绿体,对照组为黑暗处的叶绿体和完全曝光的叶绿体。

(2)本实验中为自身对照,自变量为光照(照光处与不照光处;黑暗与完全曝光),因变量为好氧细菌分布。

4.1941年鲁宾、卡门实验(1)本实验方法为同位素标记法。

⑵本实验为相互对照,自变量为标记物质(H218O与C18C2),因变量为Q的放射性。

光合速率测定方法

光合速率测定方法

光合速率测定方法光合速率是指单位时间内植物进行光合作用所固定的二氧化碳量。

测定光合速率对于了解植物光合作用的进行和效率具有重要意义。

下面将介绍三种常用的光合速率测定方法:测量氧气释放法、测量二氧化碳消耗法和测量光合产物累积法。

1.测量氧气释放法:该方法是通过测量植物产生氧气的速率来间接测定光合速率。

实验原理是将一株植物放置在一个密闭的反应室中,并通过光合作用释放的氧气推动一个玻璃管。

玻璃管一端固定在一个刻度尺上,另一端通过一根橡胶管与反应室连接。

当植物进行光合作用时,氧气通过管子进入反应室,并透过管子在尺度上移动一段距离。

测量其中一时间段内氧气移动的长度,并计算氧气释放速率,即可得到光合速率。

2.测量二氧化碳消耗法:该方法是通过测量植物消耗二氧化碳的速率来间接测定光合速率。

实验原理是将一株植物置于一个密闭的反应室中,并用一定浓度的二氧化碳作为初始浓度。

在一定时间段内,通过测量反应室中二氧化碳浓度的变化来计算光合速率。

可以使用气体分析仪或使用化学方法(例如色谱法)来测定二氧化碳的浓度变化。

3.测量光合产物累积法:该方法是直接测量光合作用产生的光合产物的累积量来测定光合速率,常用的产物包括葡萄糖、淀粉和氨基酸等。

实验原理是将一株植物置于含有标记同位素的二氧化碳的环境中,一段时间后,通过收集和分析植物组织的光合产物,来确定光合速率。

例如,可以使用放射性同位素标记的二氧化碳,然后通过放射性测定仪测定葡萄糖或淀粉的放射性计数,从而确定光合速率。

每种测定方法都有其特点和适用范围,可以根据实验的目的和研究对象的需要选择适合的方法进行测定。

需要注意的是,在进行光合速率的测定时,应控制光照强度、温度和二氧化碳浓度等环境因素以获得可靠的结果。

光合速率的测定方法例析

光合速率的测定方法例析

光合速率的测定方法例析光合速率是植物在光照条件下进行光合作用的速度,它是衡量光合作用效率的重要指标之一、光合速率的测定方法有很多种,本文将对其中的几种常用方法进行示范和解析。

1.放光合作用速率法:这种方法是通过测量光合作用前后溶液中氧气浓度的变化来计算光合速率。

实验步骤如下:1)准备一束适当强度的光线照射一定时间后,将一片光照叶片置于含有酵母液(富含酵母的葡萄糖溶液)的烧瓶中封闭,然后再用蓖麻油封闭烧瓶并用热胶密封烧瓶口以防止气体泄漏。

2)在光照叶片开始进行光合作用时,在烧瓶中注入100%氧气(预先准备好的)到烧瓶底部。

3)在一段时间后(如10分钟),提取烧瓶中的气体,并用碘化钾溶液将其中的氧气转化为氧气库依靠三氯化铁的氯化铁根铁离子与氧气产生的蓝色沉淀以间接检测氧气的变化量,从而计算出光合速率。

2.利用峰值高度法测定水中溶解氧的变化:这种方法通过测量光照叶片对水中溶解氧的释放量来计算光合速率。

实验步骤如下:1)准备一片光照叶片,将其悬置在不含溶解氧的酵母液中,使叶片表面与液面紧密接触。

2)在光照叶片开始进行光合作用时,使用溶解氧电极直接测量酵母液中溶解氧的变化。

根据溶解氧的浓度变化曲线,计算出光合速率。

3.碳同位素示踪测定光合速率:这种方法是通过测量光照叶片中光合产物中13CO2的含量变化来计算光合速率。

1)准备一片光照叶片,将其置于一个密闭的玻璃试管中,试管中注入一定浓度的13CO2气体,同时将试管与光源连接,以提供光合作用所需的光线。

2)在一定时间后,用封装好的收集罩吸收试管中产生的气体,并用气相色谱仪测定其中的13CO2含量。

通过对比初始的13CO2含量和收集物中的13CO2含量,计算出光合速率。

这些光合速率测定方法有各自的优点和适用范围,可以根据实验目的和条件选择合适的方法进行测定。

无论使用哪种方法,都需要严格控制实验条件,如光照强度、温度和湿度等,以提高测定的准确性和可靠性。

同时,注意实验过程中的安全操作,遵守实验室的相关规定。

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法
光合作用是指植物通过光能、水和二氧化碳等物质产生有机物质的生物化学过程。

在野外研究中,测定植物的光合速率是十分重要的。

本文将阐述常用的测定光合速率的方法。

方法一:测定氧气释放量法
在此方法中,将水生植物置于水中,通过陶瓷坩埚、流量计和氧气电极等装置测定植物消耗二氧化碳和产生氧气的量,来计算出光合速率。

该方法的优点是操作简单,准确性较高。

方法二:紫外吸收法
该方法可以测定光合作用中色素分子的吸收强度,从而计算出光合速率。

该方法需要将植物组织或细胞置于紫外线光源下,并通过紫外-可见光谱仪来测定样品在不同波长下的吸收强度,从而计算出光合速率。

这种方法操作简单,但需要一定的专业知识。

方法三:同位素追踪法
该方法通过给植物提供包含放射性同位素碳(如14C)的二氧化碳,并追踪碳的转移路径来测定光合速率。

在此方法中,利用液闪计数器等装置,测定植物在光照下吸收并转化二氧化碳的速率,从而计算出光合速率。

该方法测定的光合速率准确性较高,但需要特殊的技术支持。

以上三种方法都可以用于测定光合速率,但各自具有不同的优缺点。

实际应用中,可以根据不同的研究要求和条件选择适合的测定方法。

光合速率测量方法

光合速率测量方法

光合速率测定是植物生理学的基本研究方法之一,在作物丰产生理、作物生态、新品种选育、以及光合作用基本理论研究方面都有着广泛的用途。

根据光合作用的总反应式C022H2O→ (CH2O)O2H2O光合强度原则上可以用任何一反应物消耗速度或生成物的产生速度来表示。

由于植物体内水分含量很高,而且植物随时都在不断地吸水和失水,水参与的生化反应又特多,即体内水分含量经常变动,所以实际上不能用水的含量变化来测定光合速率。

在科学实验中可用以下方法方式来测定和表示光合速率(表9—1),其中最常用的方法有:改良半叶法,红外线CO-2分析法,和氧电极法。

以下介绍主要介绍“改良半叶法”。

改良半叶法原理同一叶片的中脉两侧,其内部结构,生理功能基本一致。

将叶片一侧遮光或一部分取下置于暗处,另一侧留在光下进行光合作用,过一定时间后,在这叶片两侧的对应部位取同等面积,分别烘干称重。

根据照光部分干重的增量便可计算光合速率。

为了防止光合产物从叶中输出,可对双子叶植物的叶柄采用环割,对单子叶植物叶片基部用开水烫,或用三氯醋酸(蛋白质沉淀剂)处理等方法来损伤韧皮部活细胞,而这些处理几乎不影响水和无机盐分向叶片的输送。

器材与试剂器材:FS剪刀、分析天平、称量皿(或铝盒)、烘箱、刀片、金属(有机玻璃也可)模板(或打孔器)、纱布、热水瓶或其他可携带的加热设备、夹子、有盖搪瓷盘等。

试剂:fs三氯乙酸、石蜡。

方法与步骤表9-2用改良半叶法测定光合速率的记载表1.选择测定样品:实验可在晴天上午8—9点钟开始,预先在田间选定有代表性的叶片(如叶片在植株上的部位、年龄、受光条件等)10张,挂牌编号。

2.叶子基部处理:(1)棉花等双子叶植物,可用刀片将叶柄的外皮环割0.5cm左右,切断韧皮部运输。

(2)小麦、水稻等单子叶植物,可用刚在开水中浸过的用纱布或棉花包裹的夹子将叶片基部烫20秒左右,伤害韧皮部。

也可用110—120℃的石蜡烫。

(3)5%—10%的三氯乙酸进行化学环割,杀伤筛管活细胞。

5.4 光合作用的原理与应用 呼吸速率和光和速率的测定 【新教材】人教版(2019)高中生物必修一

5.4 光合作用的原理与应用 呼吸速率和光和速率的测定 【新教材】人教版(2019)高中生物必修一
测定组织细胞呼吸速率的装置 测定组织细胞呼吸速率的装置
模型-4.光合速率的测定
• 3.实验误差的校正
模型-4.光合速率的测定
2.黑白瓶法
瓶身
是否放入长势 良好的植物
放入适 宜水深
测定时间 测定项目
取值表示量
A 黑瓶
不放
相同
放入时测定 水中溶氧量为: 水中溶氧量 初始值
B 黑瓶
放入
相同
一段时间后测定 与初始值的差值 水中溶氧量 为:有氧呼吸量
光合速率测定Βιβλιοθήκη 模型-4.光合速率的测定• 真正光合速率=呼吸速率+净光合速率
模型-4.光合速率的测定
1.净光合速率的测定方法
(1)条件:整个装置必须在光下,光是植物进行 光合作用的条件。 (2)NaHCO3溶液作用:烧杯中的NaHCO3溶液保证 了容器内CO2浓度的恒定,满足了绿色植物光合 作用的需求。 (3)植物光合速率测定指标:植物光合作用释放 氧气,使容器内气体压强增大,毛细管内的有 色液滴右移。单位时间内有色液滴右移的体积
C 白瓶
放入
相同
与B瓶相同时间后 与初始值的差值 测定水中溶氧量 为:净光合量
例题-4
针对训练-2
即表示: 净光合速率。
模型-4.光合速率的测定
2.测定组织细胞呼吸速率
(1)细胞呼吸速率:常用单位时间CO2释放 量或O2吸收量来表示。
(2)原理:组织细胞呼吸作用吸收O2,释放 CO2,CO2被NaOH溶液吸收,使容器内气体压 强减小,刻度管内的有色液滴左移。单位时
间内液滴左移的体积即表示: 呼吸速率。

人教高中生物必修一第五章第四节-光合作用速率的测定方法

人教高中生物必修一第五章第四节-光合作用速率的测定方法

光合作用速率的测定方法一、“半叶法”-测光合作用有机物的生产量。

即单位时间、单位叶面积干物质的量【例1】某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。

其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理(见图1),并采用适当的方法(可先在叶柄基部用热水或热石蜡液烫伤,或用呼吸抑制剂处理)阻止两部分的物质和能量转移。

在适宜光照下照射6h后,在A、B的对应部位截取同等面积的叶片。

烘干称重,分别记为M A—M B,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg (dm2·h)。

问题:若M=M B—M A,则M表示____ 。

【解析】如图l所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。

另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。

设初始质量为a,呼吸作用消耗质量为b,净光合质量为b,则:M A=a—b,M B=a+c,所以:M=M B -M A=c+b,即M表示总光合作用质量。

这样,真正光合速率(单位:mg/dm2.h)就是M值除以时间再除以叶面积。

【答案]B叶片被截取部分在6h内光合作用合成的有机物总量二、气体体积变化法—一测光合作用O2产生(或CO2消耗)的体积【例2】某生物兴趣小组设计了如图2所示的装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。

(1)测定植物的呼吸作用强度:在该装置的小烧杯中放入适宜浓度的NaOH溶液适量;将玻璃钟罩遮光处理,放在适宜温度的环境中;th后记录红墨水滴移动的方向和刻度,得X值。

(2)测定植物的净光合作用强度:在该装置的小烧杯中放入NaHCO3缓冲溶液适量;将装置放在光照充足、温度适宜的环境中;1h后记录红墨水滴移动的方向和刻度,得Y值。

请你预测在植物生长期红墨水滴最可能移动的方向并分析原因,并将结果填入表中:项目红墨水滴移动原因分析测定植物呼吸作用 a. C.测定植物净光合作 b. d.【解析】(1)测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用。

人教版高中生物必修一第五章第4节《能量之源---光与光合作用》 教案

人教版高中生物必修一第五章第4节《能量之源---光与光合作用》 教案

能量之源--光与光合作用一、教材分析本节是人教版高中生物必修1:《分子与细胞》第5章第4节的内容。

在此前章节中,我们已经学习了细胞中的有机物、细胞的结构和细胞器等知识。

这为本节知识的学习打下基础。

绿色植物通过光合作用合成有机物,为地球上多姿多彩的生命提供了氧气和养料。

因此,光合作用是细胞能量代谢中的重要学习内容,在高中生物知识体系中占有重要地位。

二、教学目标1、知识与能力阐述光合作用的基本过程分析影响光合作用的因素2、过程与方法通过探究活动不断提升获取信息、理解信息、分析、推理、评价及实验探究的能力3、情感态度价值观通过对光合作用影响因素的分析,形成把理论付诸实践,用知识服务社会的意识三、重难点1、重点植物光合作用的基本过程2、难点对影响光合作用因素的分析四、教法学法教师提供问题情境,引导学生自主思考后,小组成员讨论完善。

小组代表展学,其他成员补充完善。

注意利用典型例题即时强化巩固。

五、教学过程(一)导入1、据估计,地球上的自养植物一年中通过光合作用合成约4--5千亿吨有机物。

2、这些有机物中所含能量相当于10,000,000亿千瓦时的电能。

3、三峡电站2012年的发电量为1000亿千瓦时。

(通过数据,吸引学生兴趣,突出光合作用的重要性,引起学生对本节知识的重视)(二)光合作用的定义绿色植物通过_____,利用_____,把_________________转化成储存能量的_______,并释放出_______的过程。

播放flash动画,展示“光合作用的过程”(学生通过动画在头脑中形成整体印象,为分析过程打下基础)(三)光合作用的过程学生完成导学案“探究一光合作用的过程”相应内容1.完善光合作用的图解2.辨析光反应和暗反应过程光反应暗反应图解条件场所物质转化能量转化联系小组代表展示学习成果,其他成员进行补充、完善课后作业:结合光合作用的基本过程分析C3、C5、ATP、[H]在不同条件下的含量变化。

光合速率的测定方法

光合速率的测定方法

光合速率的测定方法湖南邵东三中杨连进光合作用是高考的重点内容,如何提高光合作用总产量,是科研人员一直要解决的与人类社会和生活息息相关的生物学问题,而提高光合作用总产量的关键是提高光合作用速率(简称光合速率)。

光合速率指单位时间、单位叶面积的CO2的吸收量或者是O2的释放量;也可以用单位时间、单位叶面积干物质积累数表示。

通常以每小时每平方分米叶面积吸收二氧化碳毫克数表示(mg/ dm2·h),一般测定光合速率的方法都没有考虑叶子的呼吸作用,所以测定的结果实际是光合作用速率减去呼吸作用速率的差数,叫做表观光合速率或净光合速率。

若能测出其呼吸速率,把它加到表观光合速率上去,则可测得真正光合速率,真正光合速率=表观光合速率+呼吸速率。

光合速率常见的测定方法有哪些呢?光合速率又是如何计算的呢?请看以下几种光合速率的测定方法。

1.―改良半叶法‖---测光合作用有机物的生产量,即单位时间、单位叶面积干物质产生总量植物进行光合作用形成有机物,而有机物的积累可使叶片单位面积的干物重增加,但是,叶片在光下积累光合产物的同时,还会通过输导组织将同化物运出,从而使测得的干重积累值偏低。

为了消除这一偏差,必须将待测叶片的一半遮黑,测量相同时间内叶片被遮黑的一侧单位面积干重的减少值,作为同化物输出量(和呼吸消耗量)的估测值。

这就是经典的―半叶法‖测定光合速率的基本原理。

测定时须选择对称性良好、厚薄均匀一致的两组叶片,一组叶片用于测量干重的初始值,另一组(半叶遮黑的)叶片用于测定干重的终了值,不但手续烦琐,而且误差较大。

―改良半叶法‖采用烫伤、环割或化学试剂处理等方法来损伤叶柄韧皮部活细胞,以防止光合产物从叶中输出(这些处理几乎不影响木质部中水和无机盐向叶片的输送),仅用一组叶片,且无须将一半叶片遮黑,既简化了手续,又提高了测定的准确性。

实验可在晴天上午7~8点钟开始。

预先在田间选定有代表性的叶片(如叶片在植株上的部位、年龄、受光条件等应尽量一致)10张,挂牌编号。

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法
测定光合速率是研究植物光合作用的重要方法之一,可以用来评估植物的光合能力和光合效率。

常用的光合速率测定方法包括测定气体的释放、测定光合色素的变化以及测定光合产物的累积等。

下面将对这些方法进行详细的探讨。

一、测定气体的释放
光合作用中产生的氧气和二氧化碳是重要的测定指标,可以通过测定释放的气体量来间接测定光合速率。

常用的方法有:
1. 氧气电极法:利用氧气电极测定光合作用释放的氧气量,这种方法精准度高,但需要专业仪器和较高的实验技术。

2. 二氧化碳吸收法:将植物样品以开放式的方式暴露在一定浓度的二氧化碳中,通过测定二氧化碳浓度的变化来间接测定光合速率。

这种方法操作简单,但测定精准度较低。

三、测定光合产物的累积
光合作用产生的光合产物如糖类、蛋白质等可以通过测定其累积量来间接测定光合速率。

常用的方法有:
1. 光度法:利用特定波长下的吸光度变化来测定光合产物的累积量,常用于测定光合作用产物的含量和浓度。

2. 吸附法:将光合产物吸附到特定的吸附剂上,再通过量化吸附剂的重量变化来测定光合产物的累积量。

这种方法操作较简单,但对吸附剂的选择和处理要求较高。

测定光合速率的常用方法分为测定气体的释放、测定光合色素的变化以及测定光合产物的累积等。

每种方法都有其优缺点,选择合适的方法需要考虑实验目的、样品特点和实验条件等因素。

在使用这些方法测定光合速率时,需要严格控制实验条件和技术操作,以确保测定结果的准确性和可重复性。

光合作用速率的测定方法

光合作用速率的测定方法

光合作用速率的测定方法光合作用是绿色植物和一些细菌利用光能转化为化学能的过程,是生物体存在和发展的基础。

光合作用的速率主要指单位时间内单位面积光合产物(如氧气)的生成量。

测定光合作用速率的方法有很多种,以下将介绍一些常用的方法。

1.查表法查表法是一种间接测量光合作用速率的方法。

通过研究者事先测量得出的实验数据与已知数据进行对比,可以得到目标实验条件下的光合作用速率。

这种方法的优势在于相对简单方便,不需要进行实验操作。

2.收集气体法收集气体法是一种常用的测量光合作用速率的方法。

通过收集光合作用产生的气体(通常是氧气)的数量来间接测量光合作用速率。

这种方法通常需要使用氧气电极或通过气体容积计等设备来测量气体的生成量。

3.气体交换法气体交换法是一种通过测量光合作用过程中的氧气转化和二氧化碳释放的方法来确定光合作用速率。

该方法需要使用气体分析仪器,如红外线CO2分析仪、激光多通道气体分析仪等来测量氧气和二氧化碳的浓度变化。

4.荧光法荧光法是一种通过测量叶片的荧光特性来间接测定光合作用速率的方法。

光合作用过程中光能的吸收和释放会产生可测量的荧光信号,通过测量荧光信号的强度和特征参数,可以推断出光合作用速率的大小。

5.放射性同位素法放射性同位素法是一种通过添加带有放射性同位素的化合物来测定光合作用速率的方法。

常用的放射性同位素包括14CO2和32PO4等。

通过观察放射性同位素在光合作用过程中的代谢和转化情况,可以计算出光合作用的速率。

以上是几种常用的测定光合作用速率的方法,每种方法都有其适用的场合和操作要求。

选择合适的方法需要综合考虑实验条件、设备和实验目的等因素。

在实际应用中,通常会根据具体情况选择一种或多种方法进行测量,以获得准确和可靠的数据。

光合速率的测定

光合速率的测定

如何测定叶片从 外界吸收的 CO2量?
CO2传感器
较强光照下 将植物的一片叶子放入一个 密闭透 明的容器内,用 CO2传感器测量容器内 CO2的浓度为 N1,一段时间后再测量一次 CO2浓度为 N2。 N1-N2:这段时间内叶片 ___吸__收__的__C_O__2量____
CO2的固定量 = CO2吸收量 + 呼吸产生 CO2量
积的叶片,烘干称重,分别记为 MA、MB,获得相应数据,则可计 算出该叶片的光合作用强度,其单位是 mg/(dm2·h)。
分析:假设两侧原叶重为 M0
A侧遮光,只进行细胞呼吸,有机物被
分解,重量减轻; M0 - 呼吸 = MA
B侧有光,同时进行细胞呼吸和光合作用。
在适宜光照下,光合大于呼吸,有机物会积累,重量增加。
温度/℃
暗处理呼前吸/后mg量重量变化
光照前净后光重合量变量化/mg
总光合量 实验期间积累量
27 -1 +4 5 5-2=3
28 —2 +5 7 7-4=3
29 —3 +6 9 9-6=3
30 —1 +2 3 3-2=1
不能得出的结论是( A )
A.27℃时该绿叶在整个实验期间积累的有机物是 2mg B.28℃时该绿叶光照整个后实比验暗期处间理积前累重的有量机增物加 3mg C.29℃是该绿叶进行光合作用和呼吸作用的最适温度 D.30℃时该绿叶经光合作用合成有总机光物合的量总量是 3mg/h
BC段:随着光照强度不断增大,光合作用强度也不断 增强,到 C点以后不再加强了。此时光合强度 ﹥呼吸 强度 。C点对应的光照强度称 为光饱和点 。
小结:
在光合作用与细胞呼吸同时进行时,测 定的实际结果,实质是:光合作用减去细胞 呼吸的差值,即净(表观)光合速率,

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法光合速率是指光合作用在单位时间内能够产生的生物质量。

测定光合速率的方法有很多种,下面将介绍几种常用的方法。

1. 色素消失法色素消失法是通过测定叶绿素含量的变化来测定光合速率的方法。

在叶片中,光照时,叶绿素分子会处于激发状态,在光合作用中,叶绿素会被加速消耗,因此通过检测叶绿素的消失量可以判断光合速率的大小。

运用色素消失法能够测定光合速率的最大值。

2. 密闭法密闭法是用密闭的容器将植物样品和空气一并封闭在其中,然后暴露在光源下一段时间,同时记录容器内氧气和二氧化碳的含量变化。

光合作用会消耗二氧化碳,释放氧气,因此可以通过检测氧气浓度的增加和二氧化碳浓度的下降来测定光合速率。

该方法常常被运用于无机炭素供应有限的环境的光合作用研究中。

改良版密闭法是在普通密闭法的基础上改进的,它会在容器底部加入小颗粒氧气传感器和二氧化碳传感器,精度相对较高,而且实验操作比较方便。

4. 改良版水稻叶片法改良版水稻叶片法是通过切取一定数量的水稻叶片,然后把它们放在特定大小的容器中,在光照下测定容器内氧气和二氧化碳浓度的变化,从而算出光合速率。

改良版水稻叶片法测定光合速率速度快,准确性较高,常常被用于大量测定的实验中。

5. 净光合速率法净光合速率法是将植物样品置于光源下一定时间,然后分析容器内氧气和二氧化碳浓度的变化量,得出光合速率。

通过净光合速率法能够测出光合作用的实际效果,具有较强的实际意义。

以上方法只是测定光合速率的一部分,电极法、荧光法、同位素标记法、光合活性计法等方法也都有较高的应用价值。

使用不同的方法会对测定结果产生影响,因此在实验中,需要按照需求选择合适的测定方法,以获得准确的数据。

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法光合作用是植物生长和发育的基础,它是植物通过光能合成有机物质的过程,是维持地球生态平衡的重要环节。

而光合速率则是衡量光合作用强弱的指标,它直接影响着植物的生长和产量。

测定光合速率是植物生理学研究中非常重要的一环。

在这篇文章中,我们将浅谈测定光合速率的常用方法,介绍它们的原理和操作步骤。

一、测定光合速率的原理测定光合速率的方法有很多种,但它们的基本原理都是通过测量光合作用的产物和废物来推断光合速率。

光合作用的产物是氧气和葡萄糖,而废物是二氧化碳。

通过测量氧气释放量或二氧化碳吸收量,就可以间接地了解光合速率的情况。

1. 氧气电极法氧气电极法是一种常用的测定光合速率的方法。

它通过将叶片置于水中,并将氧气电极插入水中,测量叶片产生的氧气量来推断光合速率。

这种方法的优点是操作简单,结果准确,适用于各类植物。

操作步骤:将植物叶片放置在含有一定浓度的二氧化碳溶液中,将氧气电极置于叶片周围,记录产氧速率的变化,就可以得出光合速率的大小。

2. 二氧化碳吸收法二氧化碳吸收法是另一种常用的测定光合速率的方法。

它通过测量植物叶片吸收二氧化碳的速率来推断光合速率。

这种方法的优点是适用于各种植物,而且在温室条件下具有一定的实用性。

3. 放射性同位素标记法放射性同位素标记法是一种高灵敏度、高准确度的测定光合速率的方法。

它通过向植物组织中引入放射性同位素标记物质,然后测量其产物的放射性活度来推断光合速率。

这种方法的优点是能够对微小植物组织进行测定,且结果非常准确。

操作步骤:将植物组织浸泡在含有放射性同位素标记物质的溶液中,然后测量产物的放射性活度,就可以得出光合速率的大小。

4. 色素标记法操作步骤:将光敏感染料均匀涂抹在植物叶片表面,然后测量染料消失的速率,就可以得出光合速率的大小。

总结测定光合速率是植物生理学研究中非常重要的一环。

通过本文介绍的几种常用方法,我们可以了解到,测定光合速率的方法有很多种,它们各有特点,适用于不同类型的植物和不同研究需求。

植物光合作用速率的测定方法

植物光合作用速率的测定方法

新教师教学课例研究光合作用是人教版高中生物必修一第五章第四节的内容,它是高中生物中的主干知识和历年高考命题的热点,高考考纲的要求是:(1)光合作用的过程(2)影响光合作用的环境因素(3)叶绿体中色素的提取和分离实验。

对影响光合作用的环境因素的考查大多以表格或坐标曲线图的形式出现,学生解决这类题的难点主要是无法准确的判断题干中的总光合作用强度,净光合作用强度和呼吸作用强度。

为了帮助学生更好的理解这三个量,在复习过程中我选择了通过植物光合作用速率的测定并把实验结果绘制成坐标曲线图的方式进行突破,同时使学生明确:光合作用速率的衡量指标是单位时间内单位面积叶片的二氧化碳变化量、氧气变化量、有机物的变化量,而这三个量的变化不仅和光合作用有关也和呼吸作用有关,因此,结合细胞内的气体代谢图分析可知,在植物光合作用速率的测定过程中,单位时间内单位面积叶片的二氧化碳变化量、氧气变化量、有机物的变化量均只能代表呼吸作用和光合作用的综合结果,也就是植物(叶片)与环境之间的二氧化碳或氧气的吸收量或释放量,即净光合作用强度。

通过这种方式处理效果是肯定的。

在本文中我对植物光合作用的测定方法总结如下:一、叶圆片上浮法叶片在正常情况下,组织细胞间隙间充满空气,可采取真空渗入法,即排除间隙内的空气,充以水分,使叶片沉于水中,然后在光合作用的过程中,利用不断产生的氧气在细胞间隙中的积累,致使下沉的叶片又不断上浮,通过观测单位时间内被抽去空气的小圆形叶片上浮的数量或者是浮起相同数量的叶片所用时间长短来衡量光合作用的强度。

1.在黑暗环境下,叶片只进行呼吸作用,不进行光合作用,产生的二氧化碳溶于水,叶片沉在水底。

2.在弱光下,叶片既进行光合作用也进行呼吸作用,而且光合作用强度小于呼吸作用强度,所以叶片细胞间隙间中仍然没有氧气积累,所以叶片沉在水底。

3.在较强光照条件下,叶片既进行光合作用也进行呼吸作用,而且光合作用强度大于呼吸作用强度,所以叶片细胞间隙间中有氧气积累并释放到细胞外,所以叶片上浮。

光合速率的测定方法归纳总结

光合速率的测定方法归纳总结

光合速率的测定方法归纳总结光合速率是指单位时间内光合作用所产生的化学能量的量,也是衡量植物光合能力的重要指标之一、光合速率的测定方法主要有以下几种。

1.显微法显微法是最早也是最常用的测定光合速率的方法之一、它通过观察显微镜下植物组织光合作用的实时过程,然后计算单位时间内产生氧气的量来测定光合速率。

显微法可以直接观察到氧气在叶片气孔中的排出以及植物细胞中叶绿素的变化,具有直观、准确的优点。

2.电极法电极法是一种通过电极测定气体(如氧气、二氧化碳等)浓度的变化从而间接测定光合速率的方法。

一般采用氧气电极和二氧化碳电极来测定单位时间内氧气产生和二氧化碳消耗的量,从而计算光合速率。

电极法可以在实验条件下获得准确的气体浓度变化数据,但需要使用专业的设备和技术。

3.重量法重量法是利用植物在光合作用过程中吸收二氧化碳并释放出氧气的特性,通过测定植物在光照条件下的重量变化来间接测定光合速率。

首先将植物控制在恒定的光照和温度条件下生长,然后在不同时间段内测量植物的重量变化,通过计算单位时间内的重量变化来得出光合速率。

重量法简单易行,适用于大规模实验,但需要较长的施测周期。

4.追踪法追踪法是一种利用放射性同位素标记物质追踪光合产物运动过程的方法来测定光合速率。

常用的追踪标记物质有放射性同位素标记的二氧化碳、水、氧气等。

首先将标记物质注入植物体内,然后追踪标记物质在植物体内的运动轨迹,并通过测定标记物质的浓度变化来计算光合速率。

追踪法可以直接观察到标记物质在植物体内的流动过程,但需要专业的设备和技术,并且对实验环境有较高的要求。

总结起来,光合速率的测定方法主要有显微法、电极法、重量法和追踪法。

这些方法各有优劣,可以根据实验需要和条件灵活选择使用。

在进行光合速率的测定时,需要注意控制光强度、温度、二氧化碳浓度等实验条件的一致性,以获得准确的测定结果。

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法光合作用是植物生命活动的基础,其核心是光合速率。

测定光合速率可帮助人们更深入地理解植物的生长和发育,以及环境因素对其产生的影响。

本文将介绍几种测定光合速率的常用方法。

第一种方法是利用光合热测定法。

该方法利用光能来加热水,从而测算光合速率。

具体操作步骤如下:首先,将一定量的叶片放入一块测量仪器中,然后将叶片完全浸入水中。

随后,将这些叶片置于所需的光强下照射,并通过追溯温度的变化确定光合速率。

由于此方法操作简单,便于使用,常被广泛采用。

第二种方法是静止气象学测试法。

这种方法可以在较短时间内测量出光合速率与CO2浓度的变化关系,来了解植物对CO2浓度变化的反应。

使用这种方法测定光合速率时,需要将叶子置于一个密闭的容器中,其中包含氧气和二氧化碳的混合物。

然后,采用红外线探测器进行检测,以测算容器内CO2浓度的变化,从而确定光合速率。

第三种方法是测定叶绿素荧光的方法。

叶绿素在光合作用过程中,会向外辐射荧光,决定荧光强度的主要因素是光合生成的能量量。

因此,在测量荧光的同时,也可以测量光合速率。

对于采用这种方法的测量仪器通常具有高精度的光谱仪,能够测量荧光引起的发光强度,并将其转换为光合速率。

第四种方法是以氧气测量为基础的方法。

该方法利用反应器中氧气含量的变化,以测量光合速率。

其操作步骤如下,首先将一定量的叶片放入任意形状的反应器中,随后,在该反应器内加入核质底物并用氧气灌注。

紧接着,在所需的光强下照射叶片,测定反应器中氧气含量的变化,以此来确定光合速率。

总之,测量光合速率的方法有很多,但主要的方法仍包括使用光合热测定法、静止气象学测试法、测定叶绿素荧光的方法和以氧气测量为基础的方法。

在实际操作中,需要根据具体的采样要求和测量目的进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光合作用速率的测定方法
一、“半叶法”-测光合作用有机物的生产量。

即单位时间、单位叶面积干物质的量
【例1】某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。

其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理(见图1),并采用适当的方法(可先在叶柄基部用热水或热石蜡液烫伤,或用呼吸抑制剂处理)阻止两部分的物质和能量转移。

在适宜光照下照射6h后,在A、B的对应部位截取同等面积的叶片。

烘干称重,分别记为M A—M B,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg (dm2·h)。

问题:若M=M B—M A,则M表示____ 。

【解析】如图l所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。

另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。

设初始质量为a,呼吸作用消耗质量为b,净光合质量为b,则:M A=a—b,M B=a+c,所以:M=M B -M A=c+b,即M表示总光合作用质量。

这样,真正光合速率(单位:mg/dm2.h)就是M值除以时间再除以叶面积。

【答案]B叶片被截取部分在6h内光合作用合成的有机物总量
二、气体体积变化法—一测光合作用O2产生(或CO2消耗)的体积
【例2】某生物兴趣小组设计了如图2所示的装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。

(1)测定植物的呼吸作用强度:在该装置的小烧杯中放入适宜浓度的NaOH溶液适量;将玻璃钟罩遮光处理,放在适宜温度的环境中;th后记录红墨水滴移动的方向和刻度,得X值。

(2)测定植物的净光合作用强度:在该装置的小烧杯中放入NaHCO3缓冲溶液适量;将装置放在光照充足、温度适宜的环境中;1h后记录红墨水滴移动的方向和刻度,得Y值。

请你预测在植物生长期红墨水滴最可能移动的方向并分析原因,并将结果填入表中:项目红墨水滴移动原因分析
测定植物呼吸作用 a. C.
测定植物净光合作 b. d.
【解析】(1)测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用。

植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体体积减小,压强减小。

红色液滴向左移动,向左移动的距离X就代表植物进行有氧呼吸消耗的O2量,即有氧呼吸产生的CO2量。

(2)测定植物的净光合作用强度:装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中。

又处在植物的生长期,其光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致使装置内气体量增加,红色液滴向右移动,向右移动的距离Y就代表表观光合作用释放的O2量,也就是表观光合作用吸收的CO2量。

故,依据实验原理:真正光合速率=呼吸速率+表观光合速率,就可以计算出光合速率。

【答案】a.向左移动c.将玻璃钟罩遮光处理,绿色植物只进行呼吸作用,植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体压强减小,红色液滴向左移动b.向右移动d.装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中,在植物的生长期,光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致装置内气体量增加,红色液滴向右移动
三、黑白瓶法——测溶氧量的变化
【例3】某研究小组从当地一湖泊的某一深度取得一桶水样,分装于6对黑白瓶中,从剩余的水样中测得原初溶解氧的含量为10 mg/L,白瓶为透明玻璃瓶.黑瓶为黑布罩住的玻璃瓶。

将它们分别置于6种不同的光照条件下,分别在起始和1h后以温克碘量法测定各组培养瓶中O2的含量,记录数据如表所示:
光照强度(klx) 黑暗 a b C d e
白瓶溶氧量(mg/L) 3 IO 16 24 30 30
黑瓶溶氧量(mg/L) 3 3 3 3 3 3
(1)黑瓶中溶解氧的含量降低为3 mg/L的原因是。

该瓶中所有生物细胞呼吸消耗的O2量为mg/L·h。

(2)当光照强度为c时,白瓶中植物光合作用产生的O2量为mg/L·h。

(3)光照强度至少为(填字母)时,该水层产氧量才能维持生物正常生活耗
氧量所需。

【解析】黑白瓶法常用于水中生物光合速率的测定。

白瓶是透光瓶,里面可进行光合作用和呼吸作用;黑瓶是不透光瓶,只能进行呼吸作用。

在相同条件下培养一定时间,黑瓶中所测得的数据可以得知正常的呼吸耗氧量,白瓶中含氧量的变化可以确定表观光合作用量,然后就可以计算出总的光合作用量。

(l)黑瓶中溶解氧的含量降低为3 mg/L的原因是:黑瓶不透光,植物不能进行光合作用产生O2,其中的生物呼吸消耗O2,该瓶中所有生物细胞呼吸消耗的O2量为:原初溶解氧-lh后含氧量,即10 - 3-7 (mg/L·h)。

(2)当光照强度为c时,表观光合速率的大小为:1h后氧含量一原初溶解氧,即24 - 10=14 (mg/L·h)。

呼吸速率为10—3=7 (mg/L·h)。

真正光合速率为14+7=21 (mg/L·h)。

(3)黑暗时,黑白瓶都是3 mg/L·h。

说明水中生物呼吸速率为10—3=7 (mg/L·h)。

所以光照强度至少为a时,净光合速率为10—3=7 (mg/L·h),才能维持该水层中生物正常生活耗氧量所需。

【答案】(1)黑瓶中植物不能进行光合作用产生O2,生物呼吸消耗O27 (2) 21 (3)a 四、小叶片浮起数量法——定性比较光合作用强度的大小
【例4]探究光照强弱对光合作用强度的影响,操作过程如表所示:
步骤操作方法说明打孔
取生长旺盛的菠菜叶片,用直径为l cm的打
孔器打出小圆形叶片30片
注意避开大的叶脉
材料处理抽气
将小圆形叶片置于注射器内,并让注射器吸入
清水,待排出注射器内残留的空气后,用手堵
住注射器前端的小孔并缓缓拉动活塞,使小圆
形叶片内的气体逸出
这一步骤可重复多次
沉底
将内部气体逸出的小圆形叶片放入黑暗处盛
有清水的烧杯中待用。

叶片细胞间隙充满水,小叶片全都
沉入水底
分组取3只小烧杯,标记为A、B、C,分别倒入20
mL富含C02的清水。

分别向3只小烧杯中各
放入10片小圆形叶片
之前可用口通过玻璃管向清水内吹

对照
用3盏40 W台灯分别向A、B、C3个实验装置
进行强、中、弱3种光照光照强弱(自变量)可通过调节①来决定
观察观察并记录叶片浮起的数量(因变量)
实验预期:②烧杯中的小叶片
浮起的数目最多本实验除通过观察相同时间内叶片上浮数量的多少来反映光合作用速率的大小,还可
以通过3个烧杯中上浮相同叶片数量所用时间的长短进行描述,但该实验方法只能比较大
小,无法测出具体的量变。

【答案】①台灯与实验装置间的距离②A
五、红外线CO2传感器——测量装置中CO2浓度的变化
由于CO2对红外线有较强的吸收能力,CO2的多少与红外线的降低量之间有一定的线性关系,因此CO2含量的变化即可灵敏地反映在检测仪上,常用红外线CO2传感器来测量CO2浓度的变化。

【例5】为测定光合作用速率,将一植物幼苗放人大锥形瓶中,瓶中安放一个CO2传感器来监测不同条件下瓶中CO2浓度的变化,如图3所示。

相同温度下,在一段时间内测得结果绘制成曲线,如图4所示。

请据图回答:
(1)在60-120 min时间段内,叶肉细胞光合作用强度的变化趋势为,理由是____ 。

(2)在60-120 min时间段,瓶内CO2浓度下降的原因是___ _。

此时间段该植物光合速率为ppm/min。

【解析】(1)在60-120min时间段内,叶肉细胞光合作用强度的变化趋势为逐渐降低,理由是CO2的浓度逐渐降低。

(2)在60-120 min时间段,瓶内CO2浓度下降的原因是:植物的光合作用强度大于呼吸作用强度,CO2不断减少。

用瓶中安放的CO2传感器来监测瓶中CO2浓度,60 min内的变化是1500 - 500-1000 (ppm).该数值是60 min内净光合作用消耗的CO2量。

在0-60 min时间段,瓶内CO2浓度上升的原因是:植物在黑暗条件下只进行呼吸作用,60 min内植物呼吸释放CO2量是l500 -1000=500 (ppm)。

所以,此时间段该植物光合速率为(1000+500) /60=25 (ppm/min)。

【答案】(1)逐渐降低CO2的浓度逐渐降低(2)植物光合作用强度大于呼吸作用强度25。

相关文档
最新文档