高中生物必修一光合作用的知识点
高中生物光合作用知识要点总结
高中生物光合作用知识要点总结高中生物光合作用知识要点总结光合作用是生物最基本的物质代谢和能量代谢,是所有生物直接或间接的物质和能量来源,光合作用的知识点也是高中生物的重点。
下面是店铺为大家整理的高中生物必备知识,希望对大家有用!高中生物光合作用知识一、光合作用的概念、反应式及其过程1.概念及其反应式光合作用是指绿色通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。
总反应式:CO2+H2O───→(CH2O)+O2反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)“─→”不能写成“=”。
对光合作用的概念与反应式应该从光合作用的场所——叶绿体、条件——光能、原料——二氧化碳和水、产物——糖类等有机物和氧气来掌握。
2.光合作用的过程①光反应阶段:a、水的光解:2H2O→4[H]+O2(为暗反应提供氢);b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3;;b、C3化合物的还原:2 C3+[H]+ATP→(CH2O)+ C5复习光合作用过程,应注意:一是光合作用两个阶段的划分依据——是否需要光能;二是应理清两个反应阶段在场所、条件、原料、结果、本质上的区别与联系(下表)。
二、光合作用的意义1.生物进化方面:一是光合作用产生的O2为需氧型生物的出现提供了可能;二是O2在一定条件下形成的臭氧(O3)吸收紫外线,减弱太阳辐射对生物的影响为水生生物到达陆地提供了可能;三是光合作用产生的大量有机物为较高级异养型生物的出现提供了可能。
2.现实意义:提高光合作用效率,解决粮食短缺问题。
主要应满足光合作用所需条件,内部条件——植物所需的各种矿质元素、光合作用的面积(适当密植),外部条件——充足的原料(CO2和H2O)、适宜的光照、较长的光合作用时间。
高中生物基础知识生态工程的实例和发展前景1、生态工程的.实例分析类型主要原理注意问题农村综合发展型生态工程物质循环再生原理、整体性原理、物种多样性原理①核心:沼气工程②优点:农林牧副渔全面发展;开发可更新资源,减少环境污染小流域综合治理整体性原理、协调与平衡原①“综合”表现在同时考虑到生态效益和经济效益生态工程理、工程学原理②不同气候带、不同自然条件和不同经济发展水平的地区,生态工程模式应各具特色大区域生态系统恢复工程物种多样性原理、协调与平衡原理、整体性原理工程建设中应注意的问题:①考虑树种生态适应性问题,种植适宜品种②考虑树种多样性,保证防护林体系稳定③不同地区应根据当地情况采取不同策略湿地生态恢复工程协调与平衡原理、整体性原理主要措施:退耕还林主要困难:解决迁出湖区居民的生计问题矿区废弃地的生态恢复工程系统学和工程学原理①种植耐旱的灌木、草和树②确定合理载牧量③改良表土城市环境生态工程协调与平衡原理、整体性原理①解决大气污染措施:禁止使用有铅汽油②水污染:减少或禁止污水排放,进行污水净化2、生态工程的发展前景(1)“生物圈2号”生态工程实验启示:使人类认识到与自然和谐共处的重要性,深化了我们对自然规律的认识,即自然界给人类提供的生命支持服务是无价之宝。
高中生物光合作用知识点总结
高中生物光合作用知识点总结定义:光合作用是绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。
反应场所:主要在叶绿体的类囊体薄膜上进行,而暗反应(碳反应)则在叶绿体基质中进行。
光反应:水的光解:在光下,叶绿体中的色素吸收光能,将水分解为氧气和[H]。
ATP的生成:在光反应中,利用光能合成ATP,提供暗反应所需的能量。
色素吸收光能:叶绿素和类胡萝卜素主要吸收红光和蓝紫光,将光能传递给少数特殊状态的叶绿素a分子,引发光反应。
暗反应(碳反应):CO₂的固定:在暗反应开始时,CO₂与五碳化合物(C₅)结合生成两个三碳化合物(C₃)。
C₃的还原:在光反应中生成的[H]和ATP作用下,C₃被还原为三碳糖(C₃H₆O₃),并释放出能量。
五碳化合物的再生:三碳糖的一部分合成五碳化合物(C₅),完成五碳化合物的再生。
糖类的合成:三碳糖的另一部分转化为葡萄糖或其他糖类。
光暗反应的联系:光反应产生的[H]和ATP是暗反应的原料,暗反应产生的五碳化合物是光反应的产物。
二者相互依存,缺一不可。
影响因素:光照强度:直接影响光反应速率,间接影响暗反应速率。
CO₂浓度:直接影响暗反应速率。
温度:通过影响酶的活性来影响光合作用速率。
矿质元素和水:矿质元素是叶绿素的组成成分,水是光合作用的光反应和暗反应的原料。
光合作用的意义:为生物圈提供有机物和氧气。
维持大气中氧和二氧化碳的平衡。
对生物的进化有重要作用,对地球的温室效应有重要影响。
以上仅为光合作用的基础知识点总结,更深入的理解和掌握可能需要通过更多的学习和实践来实现。
高中生物光合作用的知识点
高中生物光合作用的知识点高中生物学中,光合作用是一项至关重要的知识点。
光合作用是指将光能转化为化学能,并将二氧化碳转化为葡萄糖等有机物,同时释放出氧气的过程。
光合作用是维持地球生态系统稳定的关键环节之一。
1. 光合作用的化学方程式光合作用的化学方程式为:6CO2 + 6H2O + 光能=C6H12O6 + 6O2。
这个化学方程式可以简单地理解为,二氧化碳和水在光的作用下合成糖分和氧气。
2. 光合作用的反应过程光合作用的反应过程分为两个阶段:光反应和暗反应。
光反应发生在植物叶绿体膜上的光合色素复合物中,需要光的能量才能进行。
在光反应中,光能被吸收并转化为化学能,从而将水分子分解为氧气和电子,同时释放出大量的能量。
暗反应则发生在叶绿体的基质中,不需要光能就可以进行。
在暗反应中,植物利用光反应阶段所产生的电子和ATP能源,将二氧化碳转化为糖分等有机物,并再次释放出氧气。
3. 光合色素的作用光合色素是植物中最重要的一种色素,它们主要存在于植物叶片的叶绿体中。
光合色素能够吸收光能,并将其转化为化学能。
植物叶片中常见的光合色素包括叶绿素、类胡萝卜素等。
除了吸收光能的作用外,光合色素还参与了光反应中电子转移的过程,推动了化学反应的进行。
4. 光合作用对环境的影响光合作用对环境的影响非常深远。
首先,光合作用是维持大气中碳循环的关键环节之一,它能够将大气中的二氧化碳转化为有机物质,从而控制了二氧化碳浓度的上升。
此外,光合作用还能够产生氧气。
全球生态系统中的氧气来源,就是由各种植物通过光合作用所释放的氧气。
5. 光合速率与环境因素光合速率指单位时间内光合作用所转化的光能量。
不同环境因素会对光合速率产生不同的影响。
温度是影响光合速率的重要因素之一。
高温会使光合酶受损,从而影响光合速率;但过低的温度却会降低光合作用的进行。
光照程度也是决定光合速率的因素之一。
越强的光线,植物的光合速率越高。
另外,二氧化碳浓度也会影响光合速率。
高中生物必修一光合作用笔记
一、光合作用
1. 概念:光合作用是指在生物体内,利用太阳光能,将水分子及二氧化碳分子分解成高能的有机物质(如糖)和氧气的一种物质代谢过程。
2. 作用:光合作用是生物体存在和发展的重要基础,因此被称为生物体的“生命之源”,是植物体内的一种自然反应,也是植物体的重要生命活动,是植物体的“维生素”,是植物体的“呼吸”,是植物体“摄食”的主要途径。
3. 光合作用过程:光合作用分为光反应和呼吸反应,其中光反应是将水分子和二氧化碳分子分解为糖及其他有机物质,而呼吸反应则是将糖等有机物质分解为水和二氧化碳,从而达到光合作用的目的。
二、光合作用的过程
1. 光合反应:光合反应是光合作用的主要过程,是植物体在细胞内利用太阳光能将二氧化碳分子和水分子分解成糖及其他有机物质的过程,是光能转化为化学
能的过程。
2. 呼吸反应:呼吸反应是在生物体内利用氧化糖及其他有机物质产生能量的反应,是光合作用的另一个重要组成部分,呼吸反应是糖类有机物质被氧化分解为水和二氧化碳的过程,是将化学能转化为光能的过程。
高中生物必修一-光合作用详细知识点整理(含部分题型)
第四节能量之源——光与光合作用一、捕获光能的色素和结构1、色素的种类和功能功能:少部分叶绿素a吸收、传递和转化光能,大部分叶绿素a和全部的叶绿素b、胡萝卜素和叶黄素可以吸收并传递光能。
(解释了叶片为什么是绿色的:色素最不易吸收绿光)2、叶绿体与光合作用3、※【实验】绿叶中色素的提取和分离(1)实验原理:①提取:绿叶中的色素能够溶解在有机溶剂无水乙醇中,可以用无水乙醇提取绿叶中的色素;②分离:不同色素在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散的快,反之则慢。
用纸层析法可以使色素随着层析液的扩散在滤纸上分散开。
(2)实验材料:新鲜的绿叶(如菠菜叶)、滤纸、研钵等;实验试剂:无水乙醇、层析液、二氧化硅和碳酸钙(3)实验步骤:A.色素的提取①称取5g绿叶,剪碎,放入研钵中;②向研钵中加入少许二氧化硅(作用:有助于研磨充分)和碳酸钙(作用:防止研磨中色素被破坏),再加入10ml无水乙醇,进行迅速、充分的研磨;③将研磨液迅速倒入玻璃漏斗中进行过滤,将滤液收集到试管中,及时用棉塞将试管口塞严。
B.制备滤纸条①将干燥的定性滤纸剪成略小于试管长与直径的滤纸条,并剪去滤纸条一端的两个角(使滤纸上的层析速率保持稳定);②在距离剪角一端1cm处用铅笔画一条细的横线。
C.画滤液细线①用毛细吸管吸取少量滤液,沿铅笔线均匀地画一条直的滤液细线;(细、直、齐)②待滤液干后,再重复画一两次。
D.色素分离①将适量的层析液倒入试管(或烧杯)中;②将滤纸条(有滤液细线的一端朝下)轻轻插入层析液中;③用棉塞塞紧试管口(或用培养皿盖盖住小烧杯)[注]:不能让滤液细线触及层析液,否则色素会被层析液溶解,影响实验结果。
E、观察并记录结果(4)实验现象和结果滤纸条上出现四条色带,从上到下依次是:(如下图的排序、宽窄)二、光合作用的探索历程 1、1771年 [英]普利斯特利实验情况:①密闭玻璃罩+绿色植物+点燃蜡烛→蜡烛不熄灭 ②密闭玻璃罩+绿色植物+小鼠→小鼠不易窒息死亡 实验结论:植物可以更新空气。
最新高中生物必修一光合作用的知识点
高中生物必修一光合作用的知识点一、应牢记知识点1、追根溯源,绝大多数活细胞所需能量的最终源头是太阳光能.2、将光能转换成细胞能利用的化学能的是光合作用.3、叶绿体中的色素及吸收光谱⑴、叶绿素(含量约占3/4)①、叶绿素a ——蓝绿色——主要吸收蓝紫光和红光②、叶绿素b ——黄绿色——主要吸收蓝紫光和红光⑵、类胡萝卜素(含量约占1/4)①、胡萝卜素——橙黄色——主要吸收蓝紫光②、叶黄素——黄色——主要吸收蓝紫光4、叶绿体中色素的提取和分离⑴、提取方法:丙酮做溶剂.⑵、碳酸钙的作用:防止研磨过程中破坏色素.⑶、二氧化硅作用:使研磨更充分.⑷、分离方法:纸层析法⑸、层析液:20份石油醚:2份酒精:1份丙酮混合⑹、层析结果:从上到下——胡黄ab⑺、滤液细线要求:细、均匀、直⑻、层析要求:层析液不能没及滤液细线.5、叶绿体中光和色素的`分布——叶绿体类囊体薄膜上6、光合作用场所——叶绿体叶绿体是光合作用的场所;叶绿体基粒类囊体膜上,分布着与光化作用有关的色素和酶.7、光合作用概念:是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程.8、光合作用反应式:光能CO2 + H2O ——→ (CH2O)+ O2叶绿体光能6CO2 + 12H2O ——→C6H12O6 + 6H2O + 6O2叶绿体9、1771年,英国科学家普利斯特利(J .Priestly,1773—1804)实验证实:植物能更新空气.10、荷兰科学家英格豪斯(J .Ingen – housz)发现:只有在阳光照射下,只有绿叶才能更新空气.11、1785年明确了:绿叶在光下吸收二氧化碳,释放氧气.12、1845年,各国科学家梅耶(R .Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来.13、1864年,德国科学家萨克斯(J .von .Sachs,1832——1897)实验证明:光合作用产生淀粉.⑴、饥饿处理——将绿叶置于暗处数小时,耗尽其营养.⑵、遮光处理——绿叶一半遮光,一半不遮光.⑶、光照数小时——将绿叶放在光下,使之能进行光合作用.⑷、碘蒸汽处理——遮光的一半无颜色变化,暴光的一侧边蓝绿色.14、1939年,美国科学家鲁宾(S .Ruben)卡门(M .Kamen)同位素标记法实验证明:光合作用释放的氧气来自水.⑴、同位素标记法三要点:①、用途:指用放射性同位素追踪物质的运行和变化规律.②、方法:放射性同位素能发出射线,可以用仪器检测到.③、特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢.⑵、用18O标记H2O和CO2,得到H218O和C18O2.⑶、将植物分成两组,一组提供H218O,另一组提供C18O2.⑷、在其他条件都相同的情况下,分别检测植物释放的O2.⑸、结果,只有提供H218O时,植物释放出18O2.15、卡尔文循环——卡尔文(M .Calvin,1911——)实验⑴、用14C标记CO2得14CO2⑵、向小球藻提供14CO2,追踪光和作用过程中C的运动途径. 14CO2 —→14C3—→14C6H12O6⑶、结论:16、光合作用过程⑴、光合作用包括:光反应、暗反应两个阶段.⑵、光反应:①、特点:指光合作用第一阶段,必须有光才能进行.②、主要反应:色素分子吸收光能;分解水,产生[ H ]和氧气;生成ATP.③、场所:叶绿体基粒囊状膜上.④、能量变化:光能转变成ATP中活跃化学能.⑶、暗反应①、特点:指光合作用第二阶段,有光无光都能进行.②、主要反应:固定二氧化碳生成三碳化合物;[ H ]做还原剂,ATP提供能量,还原三碳化合物,生成有机物和水.③、场所:叶绿体基质中.④、能量变化:活跃化学能转变成有机物中稳定化学能.⑷、过程图(P-103图5-15)二、应会知识点1、光合作用中色素的吸收峰(P-99图5-10)2、叶绿体结构(P-99图5-11)⑴、具有内外双层膜.⑵、具有基粒——由类囊体色素.⑶、二氧化硅作用:使研磨更充分.3、化能合成作用⑴、概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用.⑵、典型生物:硝化细菌、铁细菌、瘤细菌等.⑶、硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚硝酸(HNO2)或硝酸(HNO3)释放的化学能,将二氧化碳和水合成为糖类.⑷、能进行化能合成作用的生物也是自养生物。
高中生物呼吸作用和光合作用知识点
高中生物呼吸作用和光合作用知识点
高中生物呼吸作用和光合作用知识点
一、呼吸作用:
1、呼吸作用是指生物体维持正常的代谢过程中消耗氧、产生二氧化碳的一种作用。
2、呼吸作用的主要过程包括氧合作用、氧化还原反应和三碳(糖)酸循环。
3、氧合作用是指生物体在细胞内将氧与有机物的氢结合,产生水和活性碳酸根,放出能量的一种生物反应。
4、氧化还原反应是指在细胞内氧化有机物,消耗氧,释放能量的一种生物反应。
5、三碳酸循环是指在呼吸中水分子拆分,产生二氧化碳,消耗多种烃、酮和醛,放出能量的一种生物反应。
二、光合作用:
1、光合作用是指植物在光照作用下,将水分子拆分,同时将二氧化碳和水转化为有机物,释放出能量的一种重要生物作用。
2、光合作用的主要过程包括光捕猎反应,光补充反应,光水分解反应以及光照脱碳反应四个步骤。
3、光捕猎反应是指植物质细胞内的光合系统将外界的光能转换成生物的化学能的一种反应。
4、光补充反应是指植物利用光捕猎反应获得的光能,运用ATP 和NADPH将二氧化碳合成为有机物的一种反应。
5、光水分解反应是指植物利用光能将水分子拆分成氢和氧的一种反应。
6、光照脱碳反应是指植物利用光能把光合作用脱离反应和光补充反应产生的有机物,放出大量能量的一种反应。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是生物体利用光能将无机物转化为有机物的过程,是维持地球生态平衡的重要途径。
下面将对高中生物光合作用的相关知识点进行总结。
一、光合作用的基本概念光合作用是指植物和一些单细胞生物在光的作用下,将二氧化碳和水转化为有机物和氧气的化学反应。
这个过程主要发生在植物叶绿体的内膜系统中,包括光合色素的吸收光能、光能转化为化学能、化学能合成有机物等多个步骤。
二、光合作用的反应方程式光合作用的反应方程式可以用化学式表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2其中,CO2代表二氧化碳,H2O代表水,C6H12O6代表葡萄糖,O2代表氧气。
三、光合作用的两个阶段光合作用可以分为光能捕获和光能转化两个阶段。
1. 光能捕获阶段:光合色素吸收光能的过程。
光合色素主要包括叶绿素a、叶绿素b等,它们能吸收不同波长的光。
其中,叶绿素a 的吸收峰在蓝光和红光的波长范围内,而叶绿素b的吸收峰在橙光和蓝绿光的波长范围内。
光合色素吸收光能后,激发电子进入光化学反应中心。
2. 光能转化阶段:光合色素激发的电子经过一系列的传递过程,最终被NADP+接受并还原为NADPH。
同时,光能转化为化学能,用于合成ATP。
这个过程称为光化学反应。
四、光合作用的影响因素光合作用的速率受到多个因素的影响,主要包括光强、温度和二氧化碳浓度。
1. 光强:光合作用的速率随光强的增加而增加,但达到一定光强后会趋于饱和,即光合作用速率不再增加。
2. 温度:适宜的温度可以促进光合作用的进行,但过高或过低的温度都会抑制光合作用的进行。
3. 二氧化碳浓度:二氧化碳是光合作用的底物之一,二氧化碳浓度的增加可以促进光合作用的速率。
五、光合作用的产物和作用光合作用的产物主要包括葡萄糖和氧气。
葡萄糖是植物的主要有机物质,可以被植物用来产生能量和合成其他有机物。
而氧气则释放到大气中,供动物呼吸所需。
光合作用不仅提供了植物的能量和有机物质,还维持了地球上大气中氧气和二氧化碳的平衡。
高中生物光合作用的知识点3篇
高中生物光合作用的知识点
第一篇:光合作用的基本概念和反应类型
光合作用是指绿色植物和一些藻类在光的作用下,将光能转化为化学能,合成有机物质的过程。
绿色植物和藻类是光合作用的主要执行者,它们利用叶绿素等色素吸收太阳光能,将CO2和水转化为有机物质,并放出氧气。
光合作用的反应类型分为光反应和暗反应。
光反应是在光的作用下进行的,其基本反应方程式为:
2H2O + 2NADP+ + 3ADP + 3Pi + 光能→ O2 + 2NADPH + 3ATP
该反应发生在叶绿体中的光系统Ⅰ和光系统Ⅱ中,主要作用是将太阳能转化为电能和化学能。
其中,光系统Ⅱ负责产生ATP和氧气,光系统Ⅰ负责产生NADPH。
暗反应是在光照的条件下和黑暗条件下进行的,其基本反应方程式为:
3CO2 + 9ATP + 6NADPH + 6H+ → C3H6O3-Phosphate + 6NADP+ + 9ADP + 8Pi + H2O
该反应发生在叶绿体中的基质中,主要作用是将光反应中产生的ATP和NADPH利用起来,将CO2转化为C3H6O3-Phosphate,最终产生葡萄糖。
总的来说,光合作用是植物生長的关键步骤,能夠将太阳能转化为有机物质,为植物生长提供充足的能量。
所以说,光合作用是生态系统中非常重要的一环。
高中生物光合作用的知识点
高中生物光合作用的知识点高中生物光合作用的知识点光合作用是指植物、藻类及一些细菌利用太阳光能转换成化学能,将二氧化碳和水合成有机物质的生化过程。
光合作用是地球上所有生命的基础,对维持生物圈的平衡、维护大气层中氧气和二氧化碳的含量有着十分重要的作用。
一、光合作用的公式光合作用公式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在光合作用中,二氧化碳和水分别发生还原和氧化反应,最终形成葡萄糖和氧气。
二、光合作用的两个阶段光合作用可以分为光反应和暗反应两个阶段。
1.光反应光反应是指在光合作用中,光能被光合色素或色素体吸收、转换为化学能的过程。
光反应在色素体(光合色素包裹的复合物)中发生,包括光化作用和光解水的反应。
光化作用是指光合色素吸收光能后激发电子,经过电子传递过程,在色素体的反应中心将ADP和磷酸转化为ATP分子。
光解水是指光能促使水分子中的水氧化酶释放氧分子,同时生成电子供光化作用所需的电子传递。
2.暗反应暗反应也称为光独立反应,其过程中不需光能,主要发生在叶绿体的基质中。
暗反应分为碳固定和碳还原两个阶段。
碳固定是指植物吸收大气中的CO2,将其加入到有机物分子里的过程;碳还原则使得这些有机物分子被还原为葡萄糖。
同时,暗反应中还需要ATP和NADPH的合成。
三、影响光合作用的因素1.光照强度光照强度是影响植物光合速率和产物的重要因素。
在光强不变的情况下,当光强增加时,光合速率也会增加;反之,光照强度减弱时,光合速率也会降低。
2.温度温度对光合速率有着明显的影响,但是温度的影响因植物而异。
在夏季高温环境下,温度会抑制光合作用的速率。
温度过高会引起叶绿素分子结构的改变,从而阻碍光反应的进行。
而在低温环境下,光合速率也会下降。
一些植物适应较低的温度,这些植物有着更高的光合速率。
3.二氧化碳浓度二氧化碳是植物进行光合作用的重要原料。
二氧化碳浓度的升高可以增加光合速率,而在CO2浓度缺乏的情况下则会降低光合速率。
高中生物知识点:光合作用
高中生物知识点:光合作用
1. 光合作用的定义
光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。
它是地球生物圈中最为重要的能量转化过程之一。
2. 光合作用的反应方程式
光合作用的反应方程式如下:
光合作用:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2
该方程式表示,光合作用将光能转化为葡萄糖(C6H12O6)和氧气(O2),同时消耗二氧化碳(CO2)和水(H2O)。
3. 光合作用的过程
光合作用可以分为光能捕捉和光化学反应两个阶段。
光能捕捉阶段
光能捕捉阶段发生在叶绿素分子中的光合色素复合物中。
在这个阶段中,叶绿素分子吸收光能并将其转化为化学能,进而激发电子。
光化学反应阶段
光化学反应阶段发生在叶绿体中的光合体系中。
在这个阶段中,激发的电子经过光合色素分子间的传递,最终用于还原NADP+和
生成ATP。
4. 光合作用的条件
光合作用需要一定的条件才能正常进行:
- 光能:光合作用依赖于阳光提供的光能,因此只能在光照充
足的环境中进行。
- 光合色素:植物细胞内的叶绿素是光合作用的关键色素,它
能够吸收光能并驱动光合作用的进行。
- 二氧化碳和水:光合作用需要二氧化碳和水作为反应物质。
二氧化碳在植物叶片的气孔中进入叶绿体,水则从植物根部吸收,
并通过管道输送到叶绿体中。
生物光合作用知识点(6篇)
生物光合作用知识点(6篇)生物光合作用学问点1一、天竺葵的试验1、暗处理:把天竺葵放到黑暗处一昼夜。
目的:把叶片中的淀粉全部转运和消耗。
2、对比试验:用黑纸将叶片的一部分从上下两面遮盖,然后移到阳光下照耀。
目的:做对比试验,看看照光的部位和不照光的部位是不是都产生淀粉。
3、几小时后,摘下叶片,去掉遮光的纸片。
4、脱色:把叶片放入盛有酒精的小烧杯中,隔水加热。
目的:溶解叶片中的叶绿素。
5、染色:用清水漂洗叶片,再把叶片放到培育皿里,向叶片滴加碘液。
6、现象;遮光部分不变蓝,未遮光部分变蓝。
7、结论:绿叶在光下制造有机物。
二、光合作用1、概念:绿色植物利用光供应的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
2、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满意了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物供应了基本的食物来源、氧气来源、能量来源。
生物光合作用学问点2(1)叶是光合作用的主要器官------叶(2)叶绿体是光合作用的场所-----叶绿体(3)光合作用的实质A.概念:绿色植物通过叶绿体,利用光能,把二氧化碳和水转变成贮存能量的有机物,并且释放出氧气的过程叫做植物的光合作用。
B.光合作用制造淀粉:试验:绿叶在光下制造淀粉,试验步骤:取材——暗处理——遮光——取叶——脱色——漂洗——滴碘液——冲洗——观看留意事项:a、暗处理的目的是将叶片内储存的有机物耗尽。
b、脱色是使叶绿体中的叶绿素溶解到酒精中。
试验结果:遮光部分不变蓝,未遮光部分变蓝。
试验结论:a、绿叶只有在光下才能制造有机物。
b、绿叶在光下制造有机物——淀粉。
C.光合作用产生氧气试验结果:带火星的细木条插入试管内能重新燃烧起来,说明光合作用产生了氧气。
D.光合作用需要二氧化碳。
E.光合作用的原料、产物和条件:条件产物生物光合作用学问点31、光合作用概念:绿色植物利用光供应的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
高中生物光合作用知识点
高中生物光合作用知识点一、引言光合作用是生物学中的一个核心概念,它是植物、藻类以及某些细菌通过太阳能将二氧化碳和水转化为有机物和氧气的过程。
本文将总结高中生物课程中关于光合作用的关键知识点。
二、光合作用的基本理解1. 光合作用的定义:光合作用是生物体利用太阳光能将无机物质(二氧化碳和水)转化为有机物质(如葡萄糖)并释放氧气的过程。
2. 光合作用的重要性:光合作用是地球上生命存在的基础,它不仅为植物自身提供能量,而且是几乎所有生物能量的来源。
三、光合作用的类型1. 光依赖性反应(光反应):发生在叶绿体的类囊体膜上,依赖光能进行。
2. 光合磷酸化:在光反应中,通过电子传递链产生ATP的过程。
3. 光独立性反应(暗反应):发生在叶绿体的基质中,不依赖光能,通过固定二氧化碳合成有机物。
四、光合作用的过程1. 光反应:- 光系统II(PSII):水分子分解产生氧气、质子和电子。
- 电子传递链:电子通过一系列载体传递,产生ATP和NADPH。
- 光系统I(PSI):利用NADP+和ADP生成NADPH和ATP。
2. 暗反应(Calvin循环):- 二氧化碳的固定:通过RuBisCO酶将二氧化碳与RuBP结合形成3-磷酸甘油酸。
- ATP和NADPH的消耗:用于将3-磷酸甘油酸转化为葡萄糖等有机物。
五、光合作用的效率1. 光合作用效率的影响因素:光照强度、二氧化碳浓度、温度、水分等。
2. 光饱和点:光照强度达到一定水平后,光合作用速率不再增加。
3. 光补偿点:植物进行光合作用与呼吸作用相抵消时的光照强度。
六、光合作用的应用1. 农业生产:通过控制光照、温度和二氧化碳浓度提高作物产量。
2. 生态系统研究:了解不同生态系统中光合作用的变化,评估生态系统的生产力。
3. 气候变化研究:研究植物对气候变化的适应性和反馈机制。
七、结论光合作用是维持地球生态系统平衡的关键过程,对人类生活和生产具有重要意义。
了解光合作用的基本原理和过程,有助于我们更好地利用自然资源,保护生态环境,促进可持续发展。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是植物体内发生的一种重要的生物化学反应,它是植物生长发育和生存的基础。
光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程。
下面我们来总结一下高中生物中关于光合作用的相关知识点。
一、光合作用的基本反应方程式:一般来说,光合作用的基本反应方程式可用如下的化学方程式表示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2这个方程式表示了光合作用的整体过程,即将6分子二氧化碳和6分子水在光照的条件下,经过一系列生物化学反应,形成1分子葡萄糖和6分子氧气。
这个方程式可以分解为两个子反应方程式:1、光反应:在叶绿体的类囊体膜内,光能被叶绿体色素吸收后,激发电子从叶绿体光系统Ⅱ(PSⅡ)经过一系列传递,最终被叶绿体色素I(PSⅠ)捕获。
在这一过程中,光能被转化为了化学能,同时释放氧气。
反应式如下:2H2O → 4H+ + 4e- + O2↑2、暗反应(Calvin循环):PSⅠ中的激发电子最终被用于将二氧化碳还原为葡萄糖。
暗反应的化学方程式如下:6CO2 + 12NADPH + 18ATP + 12H2O → C6H12O6 + 12NADP+ + 18ADP + 18Pi + 6H2O这两个子反应方程式共同构成了光合作用的整体过程。
二、光合色素:光合作用中起到捕获光能的关键作用的是光合色素,其中叶绿素是最重要的光合色素之一。
叶绿素分子有两个重要的部分,一个是色素分子本身,能够吸收光能,另一个是辅助基团,能够保持叶绿素分子的结构稳定和在光合作用中传递电子。
在植物体内,还存在其他的光合色素,比如叶黄素和类胡萝卜素等。
它们都能够吸收不同波长的光能,并参与光合作用的过程。
三、光合作用的影响因素:光合作用的效率受到许多因素的影响,主要包括光照、二氧化碳浓度和温度等因素。
1、光照:光合作用是一种依赖光能的生物化学反应,因此光照是光合作用最基本的影响因素。
光照充足时,光合作用效率较高;光照不足时,光合作用效率较低。
高中生物光合作用知识点总结
高中生物光合作用知识点总结一、引言光合作用是生物学中的一个核心概念,它是植物、藻类和某些细菌将光能转化为化学能的过程,同时制造出生命所需的基本物质——有机物。
本文旨在总结高中生物课程中关于光合作用的主要知识点,以便于学生更好地理解和掌握这一重要生物过程。
二、光合作用的基本理解1. 定义:光合作用是绿色植物利用太阳光能,在叶绿体中将水(H2O)和二氧化碳(CO2)转化为有机物(如葡萄糖)和氧气(O2)的过程。
2. 重要性:光合作用是生态系统中能量流动和物质循环的基础,为其他生物提供能量和氧气。
三、光合作用的类型1. 有氧光合作用:大多数植物和藻类进行的光合作用类型,产物为有机物和氧气。
2. 无氧光合作用:某些细菌进行的光合作用,不产生氧气,产物可能为有机物和硫化氢(H2S)等。
四、光合作用的阶段1. 光反应(光依赖反应):- 发生在叶绿体的类囊体膜上。
- 利用光能将水分解,产生氧气、ATP(能量单位)和NADPH(还原力)。
2. 暗反应(光合磷酸化):- 发生在叶绿体的基质中。
- 不直接依赖光,利用ATP和NADPH将二氧化碳转化为有机物,如葡萄糖。
五、光合作用的关键要素1. 叶绿体:光合作用的场所,含有叶绿素和其他色素。
2. 叶绿素:吸收光能,启动光合作用。
3. 光:光合作用的能源,主要吸收红光和蓝光。
4. 水和二氧化碳:光合作用的原料。
六、光合作用的效率1. 光合作用效率受多种因素影响,包括光照强度、温度、二氧化碳浓度等。
2. 植物通过调整气孔开合、叶绿体结构等方式来适应环境变化,提高光合作用效率。
七、光合作用的实验观察1. 通过实验可以观察光合作用的速率和产物。
2. 常用的实验方法包括测定氧气产生量、二氧化碳吸收量和有机物积累量。
八、光合作用的应用1. 农业生产:通过改善光照、施肥等措施提高作物的光合作用效率,增加产量。
2. 生态保护:保护植物资源,维持生态系统中光合作用的平衡。
九、结论光合作用是生命活动的基础,对于维持地球生态系统的平衡至关重要。
高中生物必修一光合作用知识点复习
高中生物必修一光合作用知识点复习光合作用是历年高中考试的重点、难点,所以学好,复习好光合作用是必需的,下面是店铺给大家带来的高中生物必修一光合作用知识点复习,希望对你有帮助。
高中生物光合作用知识点一、要点梳理(一)叶绿体中的色素1.分布:叶绿体基粒的囊状结构。
2.功能:吸收光能,传递光能,转化光能(只有较少数处于特殊状态的叶绿素a分子)。
3.特性:不溶于水,能溶于酒精、丙酮和石油醚等。
4.分类及层析后位置色素种类吸收光谱滤纸条上的位置叶绿素叶绿素a(蓝绿色)红光和蓝紫光叶绿素b(黄绿色)红光和蓝紫光类胡萝卜素胡萝卜素(橙黄色)蓝紫光叶黄素(黄色)蓝紫光5.“叶绿体中色素的提取和分离”实验(1)实验中几种化学物质的作用:丙酮作为提取液,可溶解叶绿体中的色素;层析液用于分离色素;二氧化硅破坏细胞结构,使研磨充分;碳酸钙可防止研磨过程中色素被破坏。
(2)实验的关键之处:研磨要迅速、充分,叶绿素不稳定,易被破坏,充分研磨是为了提取较多的色素;滤液收集后,要及时用棉塞将试管口塞紧,以防止滤液挥发;滤液细线不仅要细、直,而且要含有较多的色素,因此要在滤液干后,重复画2~3次;滤纸上的滤液细线不能触到层析液,否则会使滤液中的色素溶解于层析液中,滤纸条上得不到色素带。
(3)色素提取液颜色淡的原因分析:研磨不充分,色素未能充分提取出来;未加CaC03,叶绿素分子被破坏;剪取叶片太少或加入丙酮太多,色素提取液浓度过低。
(二)光合作用的过程根据反应过程是否需要光能,将光合作用分为光反应和暗反应两个阶段。
对于这两个阶段,可以采用“列表”比较的方法,加强对知识的理解与掌握。
1.区别物质:光反应阶段产生的[H],在暗反应阶段用于还原C3。
能量:光反应阶段生成的ATP,在暗反应阶段中将其储存的化学能释放出来,帮助C3形成糖类,ATP中的化学能则转化为储存在糖类中的化学能。
(三)影响光合作用的因素及在生产上的应用(四)影响光合作用的某个条件在短时间内对叶绿体中某些化合物含量(产生速率)的影响当光照强度、CO2浓度突然发生改变时,短时间内会直接影响C3、C5、[H]、ATP及(CH2O)生成量,进而影响叶肉细胞中这些物质的含量。
高中生物必修一光合作用知识点
高中生物必修一光合作用知识点高中生物必修一光合作用知识点归纳在临近考试的时候,很多高三学生在做生物题的时候容易出错,这种错误出现的原因并不是因为不会,而是“不小心”犯错,也就是学生们常说的马虎。
下面是小编为大家整理的高中生物必修一光合作用知识点,希望对您有所帮助!高中生物光合作用知识点名词:1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
语句:1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。
②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。
过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。
证明:绿色叶片在光合作用中产生了淀粉。
③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。
证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。
第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。
光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b( ;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素。
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)②暗反应阶段: a、CO2的固定:CO2+C5→2C3 b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C55、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
高中生物必修一光合作用总结
高中生物必修一光合作用总结光合作用是高中生物这门课程中的一个重要内容,下面是店铺给大家带来的高中生物必修一光合作用总结,希望对你有帮助。
高中生物光合作用知识点一、捕获光能的色素叶绿体中的色素有4种,他们可以归纳为两大类:叶绿素(约占3/4):叶绿素a(蓝绿色)叶绿素b(黄绿色)类胡萝卜素(约占1/4):胡萝卜素(橙黄色)叶黄素(黄色)叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。
白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。
因为叶绿素对绿光吸收最少,绿光被反射出来,所以叶片呈绿色。
二、实验——绿叶中色素的提取和分离1 实验原理:绿叶中的色素都能溶解在层析液(有机溶剂如无水乙醇和丙酮)中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。
2 方法步骤中需要注意的问题:(步骤要记准确)(1)研磨时加入二氧化硅和碳酸钙的作用是什么?二氧化硅有助于研磨得充分,碳酸钙可防止研磨中的色素被破坏。
(3)滤纸上的滤液细线为什么不能触及层析液?防止细线中的色素被层析液溶解。
(4)滤纸条上有几条不同颜色的色带?其排序怎样?宽窄如何?有四条色带,自上而下依次是橙黄色的胡萝卜素,黄色的叶黄素,蓝绿色的叶绿素a,黄绿色的叶绿素b。
最宽的是叶绿素a,最窄的是胡萝卜素。
三、捕获光能的结构——叶绿体结构:外膜,内膜,基质,基粒(由类囊体构成)。
与光合作用有关的酶分布于基粒的类囊体及基质中。
光合作用色素分布于类囊体的薄膜上。
吸收光能的四种色素和光合作用有关的酶,就分布在类囊体的薄膜上。
类囊体在基粒上。
叶绿体是进行光合作用的场所。
它内部的巨大膜表面上,不仅分布着许多吸收光能的色素分子,还有许多进行光合作用所必须的酶。
四、光合作用的原理1、光合作用的探究历程:光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。
高中生物光合作用的知识点
高中生物光合作用的知识点光合作用是生命活动中非常重要的一个过程,它使绿色植物、蓝藻、叶绿体等能够将阳光转化为化学能,为生命提供能量。
以下是高中生物光合作用的知识点。
1. 光合作用的定义和概念光合作用是一种生物化学过程,是指绿色植物、藻类和一些细菌利用光能将二氧化碳和水转化为有机物,并且产生氧气的过程。
光合作用的公式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2。
光合作用的化学方程式表示了光合作用所需的反应物、产物和光能的作用。
2. 光合作用的反应过程光合作用可以分为两个阶段:光能转化和化学反应。
其中,光能转化是指光能被吸收,通过叶绿体内的色素分子传递,最终转化为 ATP 和 NADPH;化学反应则是指利用 ATP 和NADPH,将二氧化碳和水通过碳同化作用和光合综合作用合成糖类等有机物。
具体地说,光合作用的反应过程包括以下几个步骤:(1)色素吸收光能:光合作用能够进行的前提是光能能够被吸收。
这一过程是通过叶绿体内存在的光合色素实现的,如叶绿素、类胡萝卜素、叶黄素、茄红素等。
(2)光能转化为 ATP 和 NADPH:吸收到光能的光合色素通过一系列电子传递过程,将光能转化为能量相对较高的ATP 和 NADPH。
这一过程被称作光能转化阶段,也被称为光反应。
(3)二氧化碳固定和糖合成:这一过程又称碳同化作用,是指将二氧化碳转化为有机物。
碳同化作用通过酶催化,将二氧化碳和 NADPH 转化为糖类,其中最重要的酶就是叶绿素。
(4)产生氧气:光合作用最终的产物包括了糖类和氧气。
光合作用释放出的氧气,在维持生命过程中扮演着至关重要的角色。
同时,能量不足时也可以利用糖类进行呼吸作用,将其转化为 ATP。
3. 光合作用与生态系统光合作用是维持生态系统稳定的重要因素。
在环境破坏、自然灾害等情况下,光合作用会受到极大的影响。
例如,空气污染会导致光合作用产生的氧气质量下降,影响人类的呼吸系统健康。
同时,地球磁层失衡、太阳风暴等因素也会影响光合作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物必修一光合作用的知识点
高中生物必修一光合作用的知识点
高中生物必修一光合作用的知识点
2019-11-16
高中生物必修一光合作用的知识点
一、应牢记知识点 1、追根溯源,绝大多数活细胞所需能量的最终源头是太阳光能. 2、将光能转换成细胞能利用的化学能的是光合作用. 3、叶绿体中的色素及吸收光谱⑴、叶绿素(含量约占3/4)①、叶绿素a ——蓝绿色——主要吸收蓝紫光和红光②、叶绿素 b ——黄绿色——主要吸收蓝紫光和红光⑵、类胡萝卜素(含量约占1/4)①、胡萝卜素——橙黄色——主要吸收蓝紫光②、叶黄素——黄色——主要吸收蓝紫光 4、叶绿体中色素的提取和分离⑴、提取方法:丙酮做溶剂. ⑵、碳酸钙的作用:防止研磨过程中破坏色素. ⑶、二氧化硅作用:使研磨更充分. ⑷、分离方法:纸层析法⑸、层析液:20份石油醚:2份酒精:1份丙酮混合⑹、层析结果:从上到下——胡黄ab ⑺、滤液细线要求:细、均匀、直⑻、层析要求:层析液不能没及滤液细线. 5、叶绿体中光和色素的分布——叶绿体类囊体薄膜上 6、光合作用场所——叶绿体叶绿体是光合作用的场所;叶绿体基粒类囊体膜上,分布着与光化作用有关的色素和酶.
7、光合作用概念:是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程. 8、光合作用反应式:光能 CO2 + H2O ——→ (CH2O)+ O2 叶绿体光能 6CO2 + 12H2O ——→C6H12O6 + 6H2O + 6O2 叶绿体 9、1771年,英国科学家普利斯特利(J .Priestly,1773—1804)实验证实:植物能更新空气. 10、荷兰科学家英格豪斯(J .Ingen – housz)发现:只有在阳光照射下,只有绿叶才能更新空气. 11、1785年明确了:绿叶在光下吸收二氧化碳,释放氧气. 12、1845年,各国科学家梅耶(R .Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来. 13、1864年,德国科学家
萨克斯(J .von .Sachs,1832——1897)实验证明:光合作用产生淀粉. ⑴、饥饿处理——将绿叶置于暗处数小时,耗尽其营养. ⑵、遮光处理——绿叶一半遮光,一半不遮光. ⑶、光照数小时——将绿叶放在光下,使之能进行光合作用. ⑷、碘蒸汽处理——遮光的一半无颜色变化,暴光的一侧边蓝绿色. 14、1939年,美国科学家鲁宾(S .Ruben)卡门(M .Kamen)同位素标记法实验证明:光合作用释放的氧气来自水. ⑴、同位素标记法三要点:①、用途:指用放射性同位素追踪物质的运行和变化规律. ②、方法:放射性同位素能发出射线,可以用仪器检测到. ③、特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢. ⑵、用18O标记H2O和CO2,得到H218O和C18O2. ⑶、将植物分成两组,一组提供H218O,另一组提供C18O2. ⑷、在其他条件都相同的情况下,分别检测植物释放的O2. ⑸、结果,只有提供H218O时,植物释放出18O2. 15、卡尔文循环——卡尔文(M .Calvin,1911——)实验⑴、用14C标记CO2得14CO2 ⑵、向小球藻提供14CO2,追踪光和作用过程中C的’运动途径. 14CO2 —→14C3—→14C6H12O6 ⑶、结论: 16、光合作用过程⑴、光合作用包括:光反应、暗反应两个阶段. ⑵、光反应:①、特点:指光合作用第一阶段,必须有光才能进行. ②、主要反应:色素分子吸收光能;分解水,产生[ H ]和氧气;生成ATP. ③、场所:叶绿体基粒囊状膜上. ④、能量变化:光能转变成ATP中活跃化学能. ⑶、暗反应①、特点:指光合作用第二阶段,有光无光都能进行. ②、主要反应:固定二氧化碳生成三碳化合物;[ H ]做还原剂,ATP提供能量, 还原三碳化合物,生成有机物和水. ③、场所:叶绿体基质中. ④、能量变化:活跃化学能转变成有机物中稳定化学能. ⑷、过程图(P-103图5-15)二、应会知识点 1、光合作用中色素的吸收峰(P-99图5-10) 2、叶绿体结构(P-99图5-11)⑴、具有内外双层膜. ⑵、具有基粒——由类囊体色素. ⑶、二氧化硅作用:使研磨更充分. 3、化能合成作用⑴、概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用. ⑵、典型生物:硝化细菌、铁细菌、瘤细菌等. ⑶、硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚硝酸(HNO2)或硝酸(HNO3)释放的化学能, 将二氧化碳和水合成为糖类. ⑷、能进行化能合成作用的生物也是自养生物。