13-9大学物理

合集下载

大学物理课本答案习题 第十三章习题解答

大学物理课本答案习题 第十三章习题解答

习题十三13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。

已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。

导线框长为a ,宽为b ,求导线框中的感应电动势。

解:无限长直电流激发的磁感应强度为02IB rμ=π。

取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。

取回路的绕行正方向为顺时针。

由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。

通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。

13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。

圆形线圈可绕通过圆心的轴O 1O 2转动,转速1600r min n -=⋅。

求圆线圈自图示的初始位置转过题图13-1题图13-2解图13-1/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 圆心处磁感应强度。

大物书后习题答案整理(杨晓峰版)-习题13

大物书后习题答案整理(杨晓峰版)-习题13

习题 13-9 解答: 两个圆环形导体垂直放置,a 导体产生的磁场与 b 导体所在线圈的法线相互
垂直,即 b 中的磁通量为零,同理 a 中的磁通量也为零,两个线圈中不会产生互 感电动势,因此没有互感。但是由于自身电流的变化,在每个线圈中产生自感电 流。
习题 13-10 解答: 电流和电压的均方根值等于它们瞬时值的平方在一个周期内的积分的平均
0 2π (x + d )
负号表示棒上动生电动势的方向与 dx 的方向相反,即由 B 到 A 。
习题 13-13 解答: 金属线框平面的法线和磁场方向相互垂直,因此金属框在旋转过程中通过它
的磁通量没有变化,因此回路中的感应电动势为零。a、c 两点间的电势差只要 通过求解 ac 棒中的感应电动势即可得到。
习题 13-5 解答: 感应电场电场线是闭合的,感生电场是非保守力场,且在闭合曲线上 EK 不
一定相等,故(A)、(B)、(C)排除,又由于电势的概念是根据静电场力是保守力而 引入,故答案为(D)。
习题 13-6 解答: 联结 OA 、OB ,构成闭合回路 OBAO(三角型)或 OBCAO(扇型),由于 OA
t2 t1
Iidt
1 R
2 d
1
1 R
(2
1 )
可知,线圈中通过的电荷与时
间无关,又2
1
BS
cos 60
BS
1 2
BS
,则电荷与线圈面积成正比。
习题 13-3 解答:
当 aOc 以速度v 沿 x 轴正向运动时, 选定 aoc 为正方向,根据动生电动势的
定义 i
b (v
a
B) dl
,可得 co
得到金属棒上产生的动生电动势。

大学物理学第3版(课后答案)习题十三

大学物理学第3版(课后答案)习题十三

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝、首尾两点向方向发出的衍射线的光程差用来划分.对应于第级明纹和第级暗纹,单缝处波面可分成个和个半波带.∵由13-4 在单缝衍射中,为什么衍射角愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角愈大则值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应,而空气中为,∴,即,水中同级衍射角变小,条纹变密.如用来测光的波长,则应是光在水中的波长.(因只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由知,衍射角变大,条纹变稀; (2)变大,保持,不变,则衍射角亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时;斜入射时,,保持,不变,则应有或.即原来的级条纹现为级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为,描述的是两路相干波叠加问题,其波程A B ϕ2λ3478272)132(2)12(sin λλλϕ⨯=+⨯=+=k a 284sin λλϕ⨯==a ϕϕϕsin a ),2,1(2)12(sin =+±=k k a λϕ='='λϕk a sin n k λλϕk a =sin ϕϕ'=sin sin n ϕϕ'=n )12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k ϕsin a λϕk a =sin ϕλa k ϕλϕk a =sin λθϕk a '=-)sin (sin a λk k >'k k <'k k 'k k a 2sin ==λϕ2λϕλθk d =sin差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数成正比,所以明纹很亮;又因为在相邻明纹间有个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即可知,当时明纹缺级.(1)时,偶数级缺级;(2)时,级次缺级;(3),级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由,对同一值,衍射角. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为当时, 时,重合时角相同,所以有得13-12 单缝宽0.10mm ,透镜焦距为50cm ,用的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为半角宽度为(1)空气中,,所以2N )1(-N ⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕk a ba k '+=a b a 2=+⋅⋅⋅=,6,4,2k a b a 3=+⋅⋅⋅=,9,6,3k a b a 4=+⋅⋅⋅=,12,8,4k λϕk b a =+sin )(k λϕ∞οA )12(sin +=k a ϕ2λ6000=λoA 2=k x λλ=3=k ϕ)132(26000)122(sin +⨯=+⨯=ϕa 2xλ4286600075=⨯=x λoA 5000=λo A fnax λ2=∆na λθ1sin -=1=n(2)浸入水中,,所以有13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于点是明纹,故有,由故当,得,得 (2)若,则点是第级明纹;若,则点是第级明纹.(3)由可知,当时,单缝处的波面可分成个半波带; 当时,单缝处的波面可分成个半波带.13-14 用的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:由知,最多见到的条纹级数对应的,所以有,即实际见到的最高级次为.13-15 波长为5000的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m 33101100.51010.0105000sin ----⨯=⨯⨯=θrad 33.1=n 33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θrad P 2)12(sin λϕ+=k a ⋅⋅⋅=3,2,1k ϕϕsin tan 105.34004.13≈=⨯==-f x 3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 3=k 60003=λoA4=k 47004=λoA 60003=λoA P 347004=λoA P 42)12(sin λϕ+=k a 3=k 712=+k 4=k 912=+k 5900=λoA 5001=+b a mm 3100.2-⨯=mm 4100.2-⨯=oA λϕk b a =+sin )(m ax k2πϕ=39.35900100.24max ≈⨯=+=λba k 3max =k oA线成30°斜入射时,中央明条纹的位移为多少?解:(1)由光栅衍射明纹公式,因,又所以有即(2)对应中央明纹,有正入射时,,所以斜入射时,,即因,∴故这就是中央明条纹的位移值.13-16 波长的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在与处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>>-90°范围内,实际呈现的全部级数. 解:(1)由式 对应于与处满足:得(2)因第四级缺级,故此须同时满足解得取,得光栅狭缝的最小宽度为 (3)由当,对应3100.52001-⨯==+b a mm 6100.5-⨯m λϕk b a =+sin )(1=k f x==ϕϕtan sin λ=+f x b a 1)(62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ2100.6-⨯=m 6=cm 0=k 0sin )(=+ϕb a 0sin =≈ϕϕ0)sin )(sin (=±+θϕb a 0sin sin =±θϕ︒=30θ21tan sin ±==≈f x ϕϕ22103010602121--⨯=⨯⨯==f x m 30=cm 6000=λoA 20.0sin =ϕ30.0sin =ϕϕλϕk b a =+sin )(20.0sin 1=ϕ30.0sin 2=ϕ101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a 6100.6-⨯=+b a m λϕk b a =+sin )(λϕk a '=sin k k b a a '⨯='+=-6105.141='k 6105.1-⨯m λϕk b a =+sin )(λϕsin )(b a k +=2πϕ=max k k =∴因,缺级,所以在范围内实际呈现的全部级数为共条明条纹(在处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为(2)由缺级条件知即缺级.中央明纹的边缘对应,所以单缝衍射的中央明纹包迹内有共条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度∴ 爱里斑半径 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式∴13-20 已知入射的X 射线束含有从0.95~1.30范围内的各种波长,晶体的晶格常数为2.75,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射?解:由布喇格公式得时满足干涉相长当时, 10106000100.6106max =⨯⨯=+=--λba k 4±8±︒︒<<-9090ϕ9,7,6,5,3,2,1,0±±±±±±±=k 1510±=k ︒±=90k oA 02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm λϕk a '=sin λϕk b a =+sin )(k k a b a k k '='=+'=502.01.0⋅⋅⋅=',2,1k ⋅⋅⋅=,15,10,5k 1='k 4,3,2,1,0±±±±=k 9oA 47105.302.010500022.122.1--⨯=⨯⨯==D λθ5.1105.30500tan 24=⨯⨯=≈=-θθf f dmm oA D λθ22.1=86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm oA oA λϕk d =sin 2k d ϕλsin 2=1=k 89.345sin 75.22=⨯⨯=︒λoA时,时,时,故只有和的射线能产生强反射.2=k 91.1245sin 75.22=⨯⨯=︒λoA 3=k 30.1389.3==λoA 4=k 97.0489.3==λoA 30.13=λo A 97.04=λoA X。

大学物理2,13.第十三章思考题

大学物理2,13.第十三章思考题

1、如图13-9所示,薄膜介质的折射率为n 1,薄膜上下介质的折射率分别为n 1和n 3,并且n 2比n 1和n 3都大。

单色平行光由介质1垂直照射在薄膜上,经薄膜上下两个表面反射的两束光发生干涉。

已知薄膜的厚度为e , λ1为入射光在折射率为n 1的介质中的波长,则两束反射光的光程差等于多少? 【答案:22112λn e n S -=∆】 详解:由于入射光在上表面从光疏介质投射到光密介质上存在半波损失,因此反射光一的光程为21λ=S由于入射光在下表面从光密介质投射到光疏介质上没有半波损失,因此反射光二的光程为e n S 222=两束反射光的光程差为22212λ-=-=∆e n S S S其中λ为光在真空的波长,它与介质1中的波长的关系为λ=n 1λ1,因此22112λn e n S -=∆ 2、在双缝干涉实验中,两缝分别被折射率为n 1和n 2、厚度均为e 的透明薄膜遮盖。

波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差等于多少? 【答案:λϕen n )(π212-=∆】详解:设从双缝发出的两束光到屏中央处的距离为r ,依题意它们到达屏中央处的光程分别为)(11e r e n S -+= )(22e r e n S -+=它们的光程差为12S S S -=∆e n n )(12-=因此,在屏中央处两束相干光的相位差为n 3图13-9λϕS∆=∆π2λen n )(π212-=3、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取哪些办法?【答案:增大双缝与屏之间的距离D 、增大入射光波长λ、减小双缝间距d 、减小折射率n 】详解:双缝干涉条纹间距为dnD x λ=∆ 因此,为使屏上的干涉条纹间距变大,可以增大双缝与屏之间的距离D 、改用波长λ较长的光进行实验、将两缝的间距d 变小、将实验装置放在折射率n 较小的透明流体中。

4、如图13-10所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹。

大学物理9~13课后作业答案

大学物理9~13课后作业答案

第八章8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P E ϖd 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,02π4ε∑=q r E 当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p =3(r )3内r - ∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ0 d q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则rlE S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE ϖϖ)(21210σσε-=1σ面外, nE ϖϖ)(21210σσε+-=2σ面外, nE ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030r E ερ=ϖ;(2) ρ+在O '产生电场'd π4d 3430301E ερπ='ϖ ρ-球在O '产生电场002='E ϖ∴ O ' 点电场003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ(如题8-13(b)图)则03ερrE PO ϖϖ=,03ερr E O P '-='ϖϖ,∴0003'3)(3ερερερd OO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距,A 与C 相距 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴AB AB AC AC E E d d =∴ 2d d 21===ACABAB AC E E σσ且 1σ+2σS q A= 得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εεϖϖ(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R q R q U εε8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅qS D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞ϖϖ外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞r r E E U 外内rd r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴rl QD π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r QW W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== 8-34 半径为1R = 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =和3R =,当内球带电荷Q =×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ=3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r QW εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RI B 1202μ=,方向垂直向里 CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理学热力学基础练习题

大学物理学热力学基础练习题

《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸况是 ( )(A )b 1a 过程放热、作负功,b 2a (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。

问在状态A 论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于ABTT <,必有AB EE <;而功、热量是过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( )(A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理)不能相交】 13-5.一台工作于温度分别为327℃和( )(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。

【卡诺热机的效率为211T T η=-,W Qη=,可求得300150%600η=-=,则1000W Q J η==】13-6.根据热力学第二定律( )(A )自然界中的一切自发过程都是不可逆的; (B )不可逆过程就是不能向相反方向进行的过程;(C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(D )任何过程总是沿熵增加的方向进行。

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。

试写出它的运动方程,并做出x--t图、v--t 图和a--t图。

13-1分析弹簧振子的振动是简谐运动。

振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A、ϕ已知外,ω可通过关系式ω=2π确定。

振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。

解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。

13-2分析可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。

解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。

(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。

大学物理第13章习题解答

大学物理第13章习题解答

引言概述:大学物理第13章是力学的一个重要章节,主要介绍了质点系和刚体的运动学和动力学问题。

习题作为巩固章节知识和培养解决问题能力的重要手段,对于学生的学习具有重要的意义。

本文将对大学物理第13章的习题进行解答,以帮助读者更好地理解和掌握力学的相关知识。

正文内容:1.质点系的运动学问题1.1相对位矢和质心位矢的关系1.2质心速度的计算方法1.3质心加速度的计算方法1.4相对位矢和质心位矢之间的关系1.5相对位矢和质心位矢的运动规律2.质点系的动力学问题2.1质点间相互作用力的计算方法2.2质点系受到的合外力和合内力的关系2.3质点系统的动量守恒定律2.4质点系的动量定理2.5质点系的冲量和动量变化的关系3.刚体的运动学问题3.1刚体的转动轴和转动角速度的关系3.2刚体的几何中心和质心的关系3.3刚体的角速度和线速度的关系3.4刚体的力矩和角加速度的关系3.5刚体的运动规律和动能的计算方法4.刚体的动力学问题4.1刚体的力矩和合外力的关系4.2刚体的力矩定理和动力学定理的关系4.3刚体的动量矩定理4.4刚体的角动量守恒定律4.5刚体的角动量定理和动能定理的关系5.刚体的平衡问题5.1刚体的平衡条件5.2刚体的平衡方程的推导和应用5.3刚体的平衡条件和力矩定理的关系5.4刚体的平衡问题和静力学问题的区别和联系5.5刚体的平衡问题和静态平衡问题的应用总结:大学物理第13章习题解答了质点系和刚体的运动学和动力学问题,并深入探讨了质点系和刚体的平衡问题。

通过解答这些习题,我们可以更好地理解和掌握力学的相关知识,提高解决问题的能力和方法。

同时,我们也应该注重理论与实际结合,将所学的知识应用到实际问题中,不断提高自己的应用能力和创新能力。

希望读者通过本文的阐述,能够对大学物理第13章有更深入的理解,并能够在学习和解题中取得更好的成绩。

大学物理课后习题答案13电磁感应习题

大学物理课后习题答案13电磁感应习题
结束 目录
(2) v = at
(3)
e =0.2t(V)
e
=0
0.2 (4) I = = =0.1 t (A) 2 R
e
结束 目录
13-5 在两平行导线的平面内,有一矩 形线圈,如图所示。如导线中电流I随时间 变化,试计算线圈中的感生电动势。
l2 I I d1
l1
d2
结束 目录
已知: I, I1, I2, d1, d2 。 求:ei 解: Φ =Φ 1 Φ 2 m I I1 d1+ I2 m I I1 d2+ I2 ln ln = 2 2 π π d1 d2 m I I1 d1+ I2 d2+ I2 ln ln = 2 π d1 d2 m I I1 ( d1+ I2 )d2 ln = 2 ( d2+ I2 )d1 π m I1 ( d1+ I2 )d2 d I d Φ ln ei = d t = 2 ( d2+ I2 )d1 d t π
结束 目录
已知:Φ = 6t2+7t+1(Wb) 求:e (t =2s) 解: Φ e= d = -(12 t +7) ×10-3 dt
t =2
× × × × × × × × × × × × × × × × × × ×
e = -(12×2+7)×10
=-3.1×10 (V)
-2
-3
× × ×

×
0 0 0 0
目录
2 dy 2 r m I π R 3 e dt 2y 4 y d 将 y=NR 及 v = 代入得到: dt 2 r m I π e = 32R2N 4 v
d Φ = dt =

大学物理课后习题及答案 第13章

大学物理课后习题及答案 第13章

第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。

利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。

*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。

利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。

13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。

光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。

13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。

若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)
第 13 章 稳恒磁场
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R

(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,

大学物理第13章

大学物理第13章

第 13章振动13-1如图13-23所示,质量为m 的密度计,放在密度为的液体中。

已知密度计圆管的直径为 d 。

试证明:推动密度计后,证明它在竖直方向的振动为简谐振动,并计算其振动周期。

解:平衡位置:当 F 浮=G 时,平衡点为 C 处。

设此时进入水中的深度为 a:gSa mg可知浸入水中为 a 处为平衡位置。

以水面作为坐标原点O,以向上为x 轴,质心的位置为x,则:分析受力:不管它处在什么位置,其浸没水中的部分都可以用a-x 来表示,所以力Fg(a x) S gaS gSx kxF gSx d 2 x令 2 gS g d 2am dt 2 m 4m m可得到: d 2 x 2 x 0 可见它是一个简谐振动。

dt 2周期为:T 2/4 md g13-2证明图13-24所示系统的振动为简谐振动。

其频率为:1k1k22( k1k2 ) m图 13-24 习题 13-2 图证明:两根弹簧的串联之后等效于一根弹簧,所以仍为简谐振动(证明略),其劲度系数满足: K 1 x1 K 2 x2 Kx 和 x1 x2 x可得:11 1 所以: K K1K2 K K 1 K 2 K 1 K 2代入频率计算式,可得:1 k 1 k1k22 m 2 (k1 k2 )m13-3如图13-25所示,有一截面积为S 的空心管柱,配有质量为 m 的活塞,活塞与管柱间的摩擦略去不计。

在活塞处于平衡状态时,柱内气体的压强为p,气柱高为h。

若使活塞有一微小位移,活塞将上下振动,证明它在竖直方向的振动为简谐振动,并计算其振动频率。

设气体温度不变。

图 13-25 习题 13-3 图解:在静平衡时:p0 S mg pS当活塞下降x (任意位置 )时:p0S p1 S mg d 2 xm2dt由上两式得到:pS p1 S m d2x dt 2过程是等温的pV p1V1即: phS p1 (h x)S得出: p1 ph p 1 (1 x) p (x h)h x x h1h所以pS (1 x) pS m d 2 x 或 d 2 x pS x 0h dt 2 dt 2 hm说明活塞的上下振动为简谐振动,其振动频率pS p0 S mghm hm13- 4 设地球是一个半径为R 的均匀球体,密度 5.5 103 kg m-3。

大学物理课后习题详解(第十三章)中国石油大学

大学物理课后习题详解(第十三章)中国石油大学

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此a I B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此rI a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

大学物理课后题答案13

大学物理课后题答案13

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()a I d I B πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300==方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

大学物理课后习题及答案第13章

大学物理课后习题及答案第13章

第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。

利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。

*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。

利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。

13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。

光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。

13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。

若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。

大学物理9~13课后作业答案Word版

大学物理9~13课后作业答案Word版

第八章8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p =3(r )3内r - ∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sd ε∑ ⎰ = ⋅ q SE s取同轴圆柱形高斯面,侧面积rl S π2= 则rlE S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE )(21210σσε-= 1σ面外, nE)(21210σσε+-=2σ面外, nE )(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrEPO =,03ερr E O P '-=' ,∴0003'3)(3ερερερd OO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===AC AB AB AC E E σσ且 1σ+2σS q A= 得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R q R q U εε8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεεrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(3)金属球的电势rd r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D 得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl QD π2=(1)电场能量密度22222π82l r Q D w εε==薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r QW εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题《大学物理学》热力学基础一、选择题13-1.如图所示,bcab 1a 和b 2a 功与吸收热量的情况是( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功;(B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功;(C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功;(D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B 状态A 和状态B 过程,气体必然 ( )(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循)A ()B ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( ) (A )2000J ; (B )1000J ; (C )4000J ; (D )500J。

大学物理13章光的干涉习题答案

大学物理13章光的干涉习题答案

第13章习题答案13—7 在双缝干涉实验中,两缝的间距为mm 5.0,照亮狭缝S 的光源是汞弧灯加上绿色滤光片。

在m 5.2远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为mm 2。

试计算入射光的波长。

解:已知条纹间距32210-==⨯x mm m ∆,缝宽405510-==⨯d .mm m ,缝离屏的距离25=D .m=D x d ∆λ ∴ 43751021041025---⨯==⨯⨯=⨯d x m D .λ∆ 13—8用很薄的云母片(58.1=n )覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹的位置上,如果入射光波长为nm 550,试问此云母片的厚度为多少解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ13—9 用包含两种波长成分的复色光做双缝实验,其中一种波长nm 5501=λ。

已知双缝间距为mm 6.0,屏和缝的距离为m 2.1,求屏上1λ的第三级明条纹中心位置。

已知在屏上1λ的第六级明条纹和未知波长光的第五级明条纹重合,求未知光的波长。

解:屏上1λ的三级明纹中心的位置m 103.310550106.02.133933---⨯=⨯⨯⨯⨯==λd D k x 依题意屏上1λ的第六级明条纹和波长为λ的第五级明条纹重合于x 处则有 λλdD k d D k x 516== 即 λλ516k k = m 106.6105505679156--⨯=⨯⨯==λλk k13—10平板玻璃(5.1=n )表面上的一层水(33.1=n )薄膜被垂直入射的光束照射,光束中的光波波长可变。

当波长连续变化时,反射强度从nm 500=λ时的最小变到nm 750=λ时的同级最大,求膜的厚度。

习题13-10图解∵ 321n n n <<,故有 ,3,2,1,02)12(21112=+==k k e n λδ ① 3,2,12222222===k k e n λδ ② 由上两式21312k k =+⇒当231-=n k 时满足上式 n =1,2,3,…但由于λ是连续可调的,在1λ和2λ间无其他波长消失与增强,所以取,1,121==k k 把11=k 或12=k 代入①式或②式 972275010310(m)22 1.33e n λ--⨯==≈⨯⨯13—11一玻璃劈尖的末端的厚度为mm 5.0,折射率为50.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
dE B1 2 r 0 ( r 0 ) dt
2
r dE —— 磁感应强度大小 B1 0 0 2 dt
13_09_与变化电场相联系的磁场 —— 电磁学
—— 磁场在空间的分布
r dE B1 0 0 2 dt
R dE B2 0 0 2r dt
2
13_09_与变化电场相联系的磁场 —— 电磁学
—— 将电源合上,电流开始增大,导线回路中有变化的 电流,电容器之间没有电流
—— 以L为边界作两个曲面S1和S2
13_09_与变化电场相联系的磁场 —— 电磁学
—— 对两个曲面具有相同的回路L应用安培环路定理 S1曲面
B dr 0 I
1)两极板之间的位移电流
D DS 0 E R 2
dE dD 2 R 0 ID dt dt
13_09_与变化电场相联系的磁场 —— 电磁学
2) 距离轴线r处的磁感应强度计算
—— 位移电流具有轴对称分 布特点,磁场也应具有轴对 称性 区域r>R:选取半径为r的圆 形回路L2 ,回路绕行方向与 场强变化满足右手螺旋关系
dE ID R 0 dt
2
B2 dr 0 I D
L
dE B2 2 r 0 ( R 0 ) dt
2
R dE B2 0 0 2r dt
2
13_09_与变化电场相联系的磁场 —— 电磁学
区域r<R:选取半径为r的圆形回路L1,回路绕行方向与 场强变化满足右手螺旋关系
非恒定情况下安培环路定理
B dr 0 ( Ic I D ) Ic — 传导电流 ID — 位移电流
D B dr 0 I c 0 t dS L S
—— 电磁场中的安培环路定理
L
I c J c dS
S
L
S2曲面
B dr 0 I
L
—— 两个不同曲面具有相同的回路L,积分结果相等
13_09_与变化电场相联系的磁场 —— 电磁学
—— 以L为边界再做两个曲面S1和S2
S1曲面 B dr 0 I
L
S2曲面 B dr 0
L
—— 同一个闭合回路选取不同曲面,结果不一样!
电容器内部
d D dq dt dt
位移电流
dD ID dt
dD d D dS dt dt S
—— 如果曲面S不随时间变化 —— 闭合回路选取S2曲面时
D ID dS t S B dr 0 I D
L
13_09_与变化电场相联系的磁场 —— 电磁学
13_09_与变— 极板的电量增长,电容器内部的电场变 —— 平行板电容器内部,极板之间的电位移通量 化
D DS
D S
d D d ( S ) dq dt dt dt
—— 电位移通量的变化率等于导线中电流
13_09_与变化电场相联系的磁场 —— 电磁学
D 0E
E B dr 0 ( J c 0 t ) dS L S
13_09_与变化电场相联系的磁场 —— 电磁学
例题08 半径为R的两块金属圆板构成平行板电容器,
dE 对电容器均匀充电,两极板之间电场的变化率为 dt
求: 1)电容器两极板间的位移电流;2)距两极板轴线距 离为r点的磁感应强度B(忽略边缘效应)
—— 穿过回路L1的电位移通量
D D ( r ) 0 E ( r )
2 2
—— 穿过回路L1的位移电流
dD dE 2 ID r 0 dt dt
13_09_与变化电场相联系的磁场 —— 电磁学
dE ID r 0 dt
2
—— 应用安培环路定理
B1 dr 0 I D
13_09_与变化电场相联系的磁场 —— 电磁学
13. 9 与变化电场相联系的磁场
—— 稳恒电流磁场中安培环路定理 B dr 0 I int
L L
—— 应用于非稳恒电流激发的磁场中时产生了矛盾 —— 1861年麦克斯韦在研究电磁场的规律时 提出位移电流假设 建立了变化的磁场安培环路定理
相关文档
最新文档