高中数学平面向量综合练习含解析

合集下载

(压轴题)高中数学必修四第二章《平面向量》测试题(含答案解析)(2)

(压轴题)高中数学必修四第二章《平面向量》测试题(含答案解析)(2)

一、选择题1.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .32.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .323.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3 B .4C .5D .64.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A .21-B .2C .21+D .22+5.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B 6C 5D .26.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦7.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .328.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(0,21⎤-⎦B .(0,21⎤+⎦ C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣9.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定10.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +11.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .412.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.已知向量(9,6),(3,)a b x ==,若//a b ,则()b a b ⋅-=___________.14.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______15.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.20.已知ABC ∆中,3AB =,5AC =,7BC =,若点D 满足1132AD AB AC =+,则DB DC ⋅=__________.三、解答题21.已知向量()sin ,cos a x x =,()3,1b =-,[]0,x π∈.(1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值.22.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值.23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 25.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.2.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得55m =, ∴452555D ⎛⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,45255,EA λλ⎛⎫=-- ⎪ ⎪⎭; ∵34OE EA ⋅=, ∴2454525354λλλ⎛⎫⎛⎫⋅--= ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为()()45251,1ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭, 当34λ=时,551,2ED ⎛⎫== ⎪ ⎪⎝⎭;当14λ=时,35353,2ED ⎛⎫== ⎪ ⎪⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 3.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.4.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.5.C解析:C 【分析】以,AD AB 为一组基底,表示向量,AE BF ,然后利用12AE BF ⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭,223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos 3BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.B解析:B 【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==,所以点Q 的轨迹为圆2234x y +=,又()3,4P ,所以,3322PO PQ PO -≤≤+,即3355PQ -≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.7.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果.【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.8.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 21,O 在BM 的延长线上时,OB 21. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.9.C解析:C 【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA≥,由垂线段最短可确定结论. 【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥,ABC ∴为直角三角形. 故选:C . 【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.10.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.11.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122bb bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.26【分析】先由求出求出再进行的计算【详解】因为所以解得所以故答案为:26【点睛】向量类问题的常用处理方法——向量坐标化利用坐标运算比较简单解析:26 【分析】先由//a b 求出2x =,求出b ,再进行()b a b ⋅-的计算. 【详解】因为//a b ,所以9180x -=,解得2x =,所以(6,4),()362426a b b a b -=⋅-=⨯+⨯=.故答案为:26 【点睛】向量类问题的常用处理方法——向量坐标化,利用坐标运算比较简单.14.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.15.【分析】先利用平面向量的夹角为且解出然后求解的最值即可得到的最值【详解】因为所以而当且仅当时等号成立所以故答案为:【点睛】本题考查平面向量数量积的运用考查模长最值的求解难度一般【分析】先利用平面向量a ,b 的夹角为120︒,且1a b ⋅=-解出2a b ⋅=,然后求解2a b -的最值即可得到a b -的最值. 【详解】因为1·cos 12a b a a b b θ⋅=⋅=-⋅=-,所以2a b ⋅=, 而2222222226a b a a b b a b a b -=-⋅+=++≥⋅+=,当且仅当2a b ==时等号成立,所以6a b -≥. 【点睛】本题考查平面向量数量积的运用,考查模长最值的求解,难度一般.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC∆的边长为4cos30︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,D(2,0)-, 由||1AP=,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M为PC中点,即有3cos sin (,)22M θθ+, 则2223cos ||3=+2BM θ+⎛⎫- ⎪⎝⎭⎝ 2(3cos )4θ-=+=3712sin 64πθ⎛⎫+- ⎪⎝⎭=, 当sin 16πθ⎛⎫-= ⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494. 【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题 解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解. 【详解】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.18.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.19.【分析】建立平面直角坐标系从而得到的坐标这样即可得出的坐标根据与共线可求出从而求出的坐标即得解【详解】建立如图所示平面直角坐标系则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表 13【分析】建立平面直角坐标系,从而得到,,a b c 的坐标,这样即可得出a b λ+的坐标,根据a b λ+与c 共线,可求出λ,从而求出a b λ-的坐标,即得解. 【详解】建立如图所示平面直角坐标系,则:(1,1),(0,1),(2,1)a b c ==-= ;(,1)a b λλλ∴+=-a b λ+与c 共线2(1)02λλλ∴--=∴=(2,3)a b λ∴-=22||2313a b λ∴-=+=13【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.20.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-, 所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-= ⎪⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.三、解答题21.(1)6x π=;(2)23x π=时,()f x 取到最大值2,0x =时,()f x 取到最小值1-.【分析】(1)利用向量垂直的坐标表示可求得tan x =,结合x 的范围可求得x 的值; (2)将函数化简为()2sin 6f x x π⎛⎫=-⎪⎝⎭,根据x 的范围可求得6x π-的范围,结合正弦函数图象可确定最大值和最小值取得的点,进而求得结果. 【详解】解:(1)因为a b ⊥,所以sin co 30s b x x a =-=⋅,于是sin tan s 3co x x x ==, 又[]0,x π∈,所以6x π=;(2)()())sin ,1cos f x a x b x =⋅=⋅-cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭.因为[]0,x π∈,所以5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 从而12sin 26x π⎛⎫-≤-≤ ⎪⎝⎭于是,当62x ππ-=,即23x π=时,()f x 取到最大值2; 当66x ππ-=-,即0x =时,()f x 取到最小值1-.【点睛】本题考查平面向量垂直的坐标表示、平面向量与三角函数的综合应用,涉及到三角函数最值的求解问题;求解三角函数最值的关键是能够利用整体对应的方式,结合正弦函数的图象来进行求解.22.(1)223-;(2)2-. 【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解. 【详解】(1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒, 在POB 中,由余弦定理,得222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=-∴84362PB =-=,又222PA OA ==,∴1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-=- ⎪⎝⎭(2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 234sin αααα=--+-+2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】 本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.23.(1)π3;(2)27 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】(1)设向量a 与b 的夹角θ,()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得: ()222a b a b -=-=2244a a b b -⋅+4123627-+=.【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)(2,4)-;(2)5-.【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标;(2)根据向量数量积的运算律及数量积的定义计算.【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+=∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭.【点睛】 本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.25.(1)1a b +=;-1;(2)45︒.【分析】(1)根据平面向量数量积的运算律求出||a b +,再根据平面向量的几何意义求出b 在a 方向上的投影;(2)根据向量垂直,则数量积为零,即可得到1a b ⋅=,再根据夹角公式计算可得; 【详解】解:(1)由已知得2222()2121()212a b a b a a b b +=+=+⋅+=+⨯-+=,∴1a b +=;b 在a 方向上的投影为||cos1352(12b =-=- (2)由已知得()0a b a -⋅=,即20a a b -⋅=∴1a b ⋅=,∴[]2cos ,,0,212a b a b a b a b π⋅===∈⨯,, ∴向量a 与b 的夹角为45︒.【点睛】本题考查平面向量的数量积及夹角的计算,属于中档题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦.【详解】(1)313cos 32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a a b a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b ⋅+∴+===⨯⋅+ 【点睛】 本题主要考查了利用定义求模长以及求夹角,属于中档题.。

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦5.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(0,21⎤-⎦B .(0,21⎤+⎦C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣ 6.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .437.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( )A .14B .12C .2D .48.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AMMB =__________.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.18.在ABC ∆中,1AC BC ==,3AB =,且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小;(2)若3c =2a b +的取值范围.23.已知向量()1,2a =,(),1b x =.(1)若|2|||a b a b -=+,求实数x 的值;(2)若2x =,求2a b -与a b +的夹角.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求c 的坐标;(2)若5||b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值; (2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.A解析:A【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.C解析:C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示: 由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.B解析:B【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】 由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=, 又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B.【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.5.C解析:C【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+.故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy a c x y x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.B解析:B【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM .【详解】如图,平行四边形ABCD 中,3DE CE =,ABM EDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.7.C解析:C【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos 62b a b t a a π⋅=-=-时,()g t 取得最小值1,变形可得22sin 16b π=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<, 所以()g t 恒大于零, 所以当232cos 622b b a b t a a a π⋅=-=-=-时,()g t 取得最小值1, 所以2223332122b b b g a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =, 所以2b =,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin(3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()bc a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 为圆心,2为半径的圆M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径22, ∴d 最大值为222+. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 17.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=,所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.18.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=,∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点,∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c = ∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题. 23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算. 【详解】(1)因为()1,2a =,(),1b x =, 所以()22,3a b x -=-,()1,3a b x +=+. 因为|2|||a b a b -=+,=解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=, 所以()()203339a b a b -⋅+=⨯+⨯=,23a b -=,32a b +=.设2a b -与a b +的夹角为θ.则(2)()cos |2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π. 【点睛】 本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点,∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB ,又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.(1)(2,4)或(2,4)--;(2)π.【分析】(1)根据共线向量的坐标关系运算即可求解;(2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a , 222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, (2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a b a b θ⋅∴==-, 又[0,π]θ∈,πθ∴=.【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题. 26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。

高考数学专题练习:平面向量的综合应用 (含参考答案)

高考数学专题练习:平面向量的综合应用 (含参考答案)

数学 平面向量的应用一、选择题1.若O 为△ABC 内一点,|OA →|=|OB →|=|OC →|,则O 是△ABC 的( ) A .内心 B .外心 C .垂心D .重心2.在矩形ABCD 中,|AB →|=4,|AD →|=2,则|BA →+BD →+BC →|=( ) A .5 B .35 C .45D .253.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形4.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为( ) A .1 B .2 C .3D .25.已知A ,B 是圆心为C 半径为5的圆上两点,且|AB →|=5,则AC →·CB →等于( ) A .-52B .52C .0D .5326.在△ABC 中“AB →·BC →<0”是“△ABC 为锐角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件7.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=14λDC →,则AE →·AF →的最小值为( )A .2918B .78C .1718D .1588.(安徽省黄山市2019届高三第一次质量检测数学试题)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A .2B .3C .3D .43二、填空题9.已知向量a =(λ,-6),b =(1,-2),若a 与b 的夹角为锐角,则实数λ的取值范围是_______.10.已知正方形ABCD 的边长为1,点E 是AB 边上的动点.DE →·DC →的最大值为________. 11.已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x 4).若m ·n =1,则cos(2π3-x )= ___ .12.函数f (x )=sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.三、解答题13.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =(c -2b ,a ),n =(cos A ,cos C ),且m ⊥n .(1)求角A 的大小;(2)若a =3,b +c =3,求△ABC 的面积.14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n .(1)求角B 的大小;(2)设BC 中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积.1.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( )A .π6B .π3C .π2D .2π32.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-32,则实数λ=( )A .12B .1±22C .1±102D .-3±2223.已知A (-1,cos θ),B (sin θ,1),若|OA →+OB →|=|OA →-OB →|(O 为坐标原点),则锐角θ= .4. (2018·浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是_________,最大值是 ___ .5.(2018·广西南宁摸底)已知向量m =(2cos x ,sin x ),n =(cos x,23cos x )(x ∈R ),设函数f (x )=m·n -1.(1)求函数f (x )的单调增区间;(2)已知△ABC 的三个内角分别为A ,B ,C ,若f (A )=2,B =π4,边AB =3,求边BC .【参考答案】一、选择题1.若O 为△ABC 内一点,|OA →|=|OB →|=|OC →|,则O 是△ABC 的( B ) A .内心 B .外心 C .垂心D .重心[解析] 由向量模的定义知O 到△ABC 的三顶点距离相等,故O 是△ABC 的外心,故选B .2.在矩形ABCD 中,|AB →|=4,|AD →|=2,则|BA →+BD →+BC →|=( C ) A .5 B .35 C .45D .25[解析] 由平行四边形法则可得BA →+BC →=BD →,则原式=2|BD →|=242+22=45.3.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( A )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形[解析] ∵(OB →-OC →)·(OB →+OC →-2OA →)=0,∴CB →·[(OB →-OA →)+(OC →-OA →)]=CB →·(AB →+AC →)=0,由此可得△ABC 中,BC 与BC 边上的中线垂直,∴△ABC 为等腰三角形,故选A .4.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为( B ) A .1 B .2 C .3D .2[解析] ∵a =(1,sin θ),b =(1,cos θ),∴a -b =(0,sin θ-cos θ). ∴|a -b |=02+(sin θ-cos θ)2=1-sin2θ.∴|a -b |最大值为 2.故选B .5.已知A ,B 是圆心为C 半径为5的圆上两点,且|AB →|=5,则AC →·CB →等于( A )A .-52B .52C .0D .532[解析] 由于弦长|AB |=5与半径相等,则∠ACB =60°⇒AC → ·CB →=-CA → ·CB →=-|CA → |·|CB →|·cos ∠ACB =-5·5·cos60°=-52.6.在△ABC 中“AB →·BC →<0”是“△ABC 为锐角三角形”的( B ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件[解析] AB →·BC →<0⇒BA →·BC →>0⇒B 为锐角,但得不出△ABC 为锐角三角形;反之,△ABC 为锐角三角形,B 一定为锐角⇒BA →·BC →>0⇒AB →·BC →<0,∴“AB →·BC →<0”是“△ABC 为锐角三角形”的必要不充分条件,故选B .7.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=14λDC →,则AE →·AF →的最小值为( D )A .2918B .78C .1718D .158[解析] AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+λBC →)·(AD →+14λDC →)=78+12λ+λ2≥158,当且仅当12λ=λ2,即λ=1时取等号,故选D . 8.(安徽省黄山市2019届高三第一次质量检测数学试题)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( B )A .2B .3C .3D .43[解析] AP →=mAC →+12AB →=mAC →+34AD →,由于P 、C 、D 共线,所以m =14,设AC =b ,AB=c ,S △ABC =12b b c sin A =34b b c =23,∴bc =8,|AP → |2=AP → 2=(14b A C +34AD → )2=116 (b 2+9×49b c 2+2×b ×2c ×12)=116(b 2+4c 2+2bc )≥116×6bc =3,∴|AP →|≥3,故选B .二、填空题9.已知向量a =(λ,-6),b =(1,-2),若a 与b 的夹角为锐角,则实数λ的取值范围是__(-12,3)∪(3,+∞)___.[解析] a·b =λ+12>0⇒λ>-12,若a 、b 夹角为0,则存在k >0使a =k b ,即(λ,-6)=(k ,-2k ),∴⎩⎪⎨⎪⎧λ=k ,-2k =-6,∴λ=3,∴使a 、b 夹角为锐角的λ的取值范围是(-12,3)∪(3,+∞).10.已知正方形ABCD 的边长为1,点E 是AB 边上的动点.DE →·DC →的最大值为__1___. [解析] (1)解法一:如图所示,以AB ,AD 所在的直线分别为x ,y 轴建立直角坐标系,设E (t,0),0≤t ≤1,则D (0,1),C (1,1),DE →=(t ,-1),DC →=(1,0),∴DE →·DC →=t ≤1.解法二:选取{AB →,AD →}作为基底,设AE →=tAB →,0≤t ≤1,则DE →·DC →=(tAB →-AD →)·AB →=t ≤1. 解法三:设AE →=tAB →,则DE →·DC →=DE →·AB →=|DE →|·1·cos ∠AED =|AE →|=|t ||AB →|=|t |≤1.11.已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x 4).若m ·n =1,则cos(2π3-x )= -12 .[解析] m ·n =3sin x 4cos x 4+cos 2x4=32sin x 2+1+cosx22=sin(x 2+π6)+12, 因为m ·n =1,所以sin(x 2+π6)=12.因为cos(x +π3)=1-2sin 2(x 2+π6)=12,所以cos(2π3-x )=-cos(x +π3)=-12.故填-12.12.函数f (x )=sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是__3___.[解析] 由图象可知,M (12,1),N (x N ,-1),所以OM →·ON →=(12,1)·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×(2-12)=3.故填3.三、解答题13.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =(c -2b ,a ),n =(cos A ,cos C ),且m ⊥n .(1)求角A 的大小;(2)若a =3,b +c =3,求△ABC 的面积. [解析] (1)由m ⊥n ,得m·n =0, 即(c -2b )cos A +a cos C =0.由正弦定理,得(sin C -2sin B )cos A +sin A cos C =0, 所以2sin B cos A =sin A cos C +sin C cos A , 2sin B ·cos A =sin(A +C ), 2sin B ·cos A =sin B .因为0<B <π,所以sin B ≠0,所以cos A =12,因为0<A <π,所以A =π3.(2)在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,又a =3,b +c =3,所以3=9-3bc ,解得bc =2.所以,△ABC 的面积S =12bc sin π3=12×2×32=32.14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n .(1)求角B 的大小;(2)设BC 中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. [解析] (1)∵m =(a +b ,sin A -sin C ),n =(c ,sin A -sin B )且m ∥n , ∴(a +b )(sin A -sin B )=c (sin A -sin C ). ∴(a +b )(a -b )=c (a -c ),即a 2+c 2-b 22ac =12,∴cos B =12,又0<B <π.∴B =π3.(2)在△ABD 中,3=c 2+(a 2)2-ac cos π3,∴4c 2+a 2-2ac =12,(a +2c )2-3a ·2c =12, ∵a ·2c ≤(a +2c 2)2=(a +2c )24(当且仅当a =2c 时取等号)∴(a +2c )24≤12,∴a +2c ≤43,此时△ABD 为正三角形,且S △ABD =334从而S △ABC =2S △ABD =332.1.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( B )A .π6B .π3C .π2D .2π3[解析] 因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3.2.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-32,则实数λ=( A )A .12B .1±22C .1±102D .-3±222[解析] 因为BQ →·CP →=-32,所以-32=(AQ →-AB →)·(AP →-AC →)=[(1-λ)AC →-AB →]·(λAB →-AC →)=-(1-λ)AC →2-λAB →2+[(1-λ)λ+1]AB →·AC →=-4(1-λ)-4λ+2[(1-λ)λ+1] =-2λ2+2λ-2,解得λ=12.3.已知A (-1,cos θ),B (sin θ,1),若|OA →+OB →|=|OA →-OB →|(O 为坐标原点),则锐角θ= π4. [解析] 利用几何意义求解:由已知可得,OA →+OB →是以OA ,OB 为邻边所作平行四边形OADB 的对角线向量OD →,OA →-OB →则是对角线向量BA →,由对角线相等的平行四边形为矩形.知OA ⊥OB .因此OA →·OB →=0,即-sin θ+cos θ=0,所以锐角θ=π4.4. (2018·浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是__4___,[解析](|a +b |+|a -b |≤2[|a +b |2+|a -b |2]=4(|a |2+|b |2)=2 5.(当且仅当a ⊥b 时取等号),|a +b |+|a -b |≥|(a +b )-(a -b )|=2|b |=4(当且仅当a 、b 共线时取等号)∴最小值为4,最大值为25.5.(2018·广西南宁摸底)已知向量m =(2cos x ,sin x ),n =(cos x,23cos x )(x ∈R ),设函数f (x )=m·n -1.(1)求函数f (x )的单调增区间;(2)已知△ABC 的三个内角分别为A ,B ,C ,若f (A )=2,B =π4,边AB =3,求边BC . [解析] (1)f (x )=m·n -1=2cos 2x +23sin x cos x -1=cos2x +3sin2x=2sin(2x +π6), ∵x ∈R ,由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤π6+k π(k ∈Z ), ∴函数f (x )的单调增区间为[-π3+k π,π6+k π](k ∈Z ). (2)∵f (A )=2,即2sin(2A +π6)=2, ∵B =π4,∴0<A <3π4,∴π6<2A +π6<5π3,∴2A +π6=π2,得A =π6,∴C =712π, ∴sin C =sin 7π12=sin(π4+π3)=6+24, ∵AB =3,由正弦定理得BC =AB sin A sin C =3(6-2)2.。

人教版A版(2019)高中数学必修第二册:第六章 平面向量及其应用 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第六章 平面向量及其应用 综合测试(附答案与解析)

第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )D.62.已知两个单位向量a 和b 的夹角为60︒,则向量-a b 在向量a 上的投影向量为( )A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB 取最小值时,P 点的坐标是( ) A.(2,0) B.(4,0)C.10,03⎛⎫ ⎪⎝⎭D.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=,圆O 的半径为2,则OB CB =( ) A.1- B.2- C.1 D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +∈R 的最小值为( )A. B.5 C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+⋅-=a b a b ,且1==a b ,则a 与b 的夹角θ为( )A.34π B.4π C.3π D.23π 9.已知sin 1sin cos 2ααα=+,且向量(tan ,1)AB α=,(tan ,2)BC α=,则AC 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sλ==,则23λλ⋅取到最大值时, 2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c π=+,则ac=( ) A.2 B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC △的形状不可能是( ) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知,12e e 是平面内的单位向量,且12⋅=12e e .若向量b 满足1⋅=⋅=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-a b ⋅a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ⊥,2DC A A B D ==,E 为AD 的中点,若CA CE DB λμ=+,则λ=________,μ=________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60︒的C 处,12时20分测得轮船在海岛北偏西60︒的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==a b 为邻边作OADB ,11,33BM BC CN CD ==,用,a b 表现,,OM ON MN .18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =. (1)若4b =,求sin A 的值; (2)若4ABC S ∆=,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-, (1)求sin C 的值;(2)若ABC △的外接圆面积为(4π+,试求AC BC 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20︒方向的C 处,由城A 出发的一条公路,走向是南偏东40︒,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明: (1)BE CF ⊥; (2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭b ,函数()2f x =⋅a b ,()4g x f x π⎛⎫= ⎪⎝⎭. (1)求()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++的值;(3)已知t ∈R ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、 1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a ∴=可化为sin sin A B =.又sin 22sin cos 2,sin sin 2B B B A B B B =∴==,cos B ∴. 2.【答案】A【解析】由已知可得111122⋅=⨯⨯=a b ,211()122-⋅=-⋅=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-⋅⋅=a b a a a a . 3.【答案】D【解析】点P 在x 轴上,∴设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x ∴=--=-,22(2)(4)266(3)3PA PB x x x x x ∴⋅=---=-+=--,∴当3x =时,PA PB ⋅取最小值.P ∴点的坐标是(3,0).4.【答案】D 【解析】OA OC OB +=,OA OC =,∴四边形OABC 是菱形,且120AOC ∠=︒,又圆O 的半径为2,22cos602OB CB ∴⋅=⨯⨯︒=. 5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++,22222()(4)(32)520255(2)55OA tOB t t t t t ∴+=+++=++=++≥,∴当2t =-时,等号成立,此时OA tOB +取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ∠∠∠,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ⎧+-=⎪⨯⨯⎪⎪+-=⎨⨯⨯⎪⎪+-=⎪⨯⨯⎩>>>即()()222100,280,680,a a a a a ⎧-⎪⎪-⎨⎪+⎪⎩>>>解得a ,故选B . 7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====,sin 8cC∴=,1sin 216ABC abc S ab C ∆∴===8.【答案】C 【解析】22(2)(54)5680+⋅-=+⋅=-a b a b a a b b ,又11,63,cos 2θ==∴⋅=∴=a b a b ,又[0,],3πθπθ∈∴=,故选C .9.【答案】D【解析】sin 1sin cos 2ααα=+,cos sin αα∴=,tan 1α∴=,(2tan ,3)(2,3)AC AB BC α∴=+==.故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P ∴到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S λλ++===.由此可得223231216λλλλ+⎛⎫⋅= ⎪⎝⎭≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF ∴+=.由向量加法的四边形法则可得,2PA PB PE +=,2PA PC PF +=,两式相加,得20PA PB PC ++=.0PA xPB yPC ++=,∴根据平面向量基本定理,得12x y ==,从而得到322x y +=. 二、11.【答案】AC【解析】3B π=,a c +=,2222()23a c a c ac b ∴+=++=,①由余弦定理可得,2222cos3a c acb π+-=,②联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2ac=或12a c =.故选AC .12.【答案】ACD 【解析】P 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=,|||()()|0CB PB PA PC PA ∴--+-=,即||||CB AC AB =+,||||AB AC AC AB ∴-=+,两边平方并化简得0MC AB ⋅=,AC AB ∴⊥,90A ︒∴∠=,则ABC △一定是直角三角形.故选ACD .三、13.【解析】解析令1e 与2e 的夹角为θ.1cos cos 2θθ∴⋅=⋅==1212e e e e ,又0θ︒︒≤≤180,60θ∴=︒.()0⋅-=12b e e ,∴b 与,12e e 的夹角均为30︒,从而1||cos30︒=b . 14.【答案】52【解析】|4|-a b ,52⋅≥a b ,即⋅a b 的最小值为52. 15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=,,(2,2)(2,1)(1,2)CA CE DB λμλμ=+∴-=-+,22,22,λμλμ-+=-⎧∴⎨+=⎩解得6,52.5λμ⎧=⎪⎪⎨⎪=⎪⎩16./h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE ∠=︒,150EAC ∠=︒.在AEC △中,由正弦定理的sin sin EC AE EAC C=∠, sin 5sin1501sin 52AE EAC C EC x x︒∠∴===. 在ABC △中,由正弦定理得sin120sin BC ABC =︒,14sin sin120x BC C AB ⋅∴===︒. 在ABE △中,由余弦定理得22216312cos30252533BE AB AE AB AE︒=+-=+-=,故BE ∴船速的大小为/h)3BE t==. 四、 17.【答案】解:BA OA OB =-=-a b ,11153666OM OB BM OB BC OB BA ∴=+=+=+=+a b . 又OD =+a b ,222333ON OC CN OD ∴=+==+a b , 221511336626MN ON OM ∴=-=+--=-a b a b a b . 18.【答案】解:3cos 05B =>,且0B π<<, 4sin 5B ∴=. 由正弦定理得sin sin a b A B=,42sin 25sin 45a B Ab ⨯∴===. (2)1sin 42ABC S ac B ∆==, 142425c ∴⨯⨯⨯=,5c ∴=. 由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,b ∴=19.【答案】(1)解:ABC △中,由sin cos 1sin 2C C C +=-,得22sin cos 2sin sin 2222C C C C =-, sin 02C >,1cos sin 222C C ∴-=-,两边平方得11sin 4C -=,解得3sin 4C =. (2)设ABC △的外接圆的半径为R ,由(1)知sin cos 22C C >,24C π∴>, 2C π∴>,cos C ∴=. 易得2sin c R C =,22294sin (44c R C ∴==,由余弦定理得,222977(4221444c a b ab ab⎛⎫⎛⎫=+=+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,902ab ∴<≤,cos 8AC BC ab C ⎡⎫∴=∈-⎪⎢⎪⎣⎭,即AC BC 的取值范围是8⎡⎫-⎪⎢⎪⎣⎭. 20.【答案】解:如图所示,设ACD α∠=,CDB β∠=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD β+-+-===-⨯⨯,sin 7β∴=()411sin sin 60sin cos60sin 60cos 27αβββ︒︒︒⎛⎫∴=-=-=--= ⎪⎝⎭在CBD △中,由正弦定理得21sin 60sin AD α=︒, 21sin 15sin60AD α∴==︒(千米). ∴这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F .(1)(1,2)(2,0)(1,2)BE OE OB =-=-=-,(0,1)(2,2)(2,1)CF OF OC =-=-=--,(1)(2)2(1)0BE CF ∴⋅=-⨯-+⨯-=,BE CF ∴⊥,即BE CF ⊥.(2)设(,)P x y ,则(,1)FP x y =-,(2,)BP x y =-,由(1)知(2,1)CF =--,(1,2)BE =-,FP CF ∥,2(1)x y ∴-=--,即24y x =-+.同理,由BP BE ∥,即24y x =-+.22,24,x y y x =-⎧∴⎨=-+⎩解得6,58,5x y ⎧=⎪⎪⎨⎪=⎪⎩即68,55P ⎛⎫ ⎪⎝⎭. 222268455AP AB ⎛⎫⎛⎫∴=+== ⎪ ⎪⎝⎭⎝⎭, ||||AP AB ∴=,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x π⎫=⋅=-+=+=⎪⎭a b1sin 22sin 223x x x π⎛⎫=- ⎪⎝⎭,2x ππ⎡⎤∈⎢⎥⎣⎦, 252333x πππ∴-≤≤,1sin 23x π⎛⎫∴-- ⎪⎝⎭≤,∴当3232x ππ-=,即1112x π=时,()f x 1-,当2233x ππ-=,即2x π=时,()f x(2)由(1)得()sin 23f x x π⎛⎫=-+⎪⎝⎭. ()sin 423g x f x x πππ⎛⎫⎛⎫∴==-+ ⎪ ⎪⎝⎭⎝⎭, 4T ∴=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g ∴+++=+++==+++.又(1)(2)(3)(4)gg g g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g ∴++++=⨯+=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ∈Z 时,由图象可知,sin 23x y ππ⎛⎫- ⎝=⎪⎭与2y =-两图象无交点,即()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++∈Z <≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++∈Z ≤≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =2个交点,即()g x 有2个零点.。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。

高中数学(平面向量)综合练习含解析

高中数学(平面向量)综合练习含解析

高中数学(平面向量)综合练习含解析1.在△ABC 中,AB c ,AC b .若点 D 满足BD 2DC ,则AD ()A.2 1b c B.3 35 2c b C.3 32 1b c D.3 31 2b c3 32.已知OA 1, OB 3 ,OA OB 0 ,点 C 在AOB 内,且AOC 30 ,OC mOA nOB m,n R ,则mn等于()A.3 B.13C.33D. 33.若向量a,b,c 满足a∥b,且a c,则c a 2b ()A.4 B.3 C.2 D.04.已知向量m (a, 2), n (1,1 a) ,且m∥n,则实数a ()A. 1 B.2 或 1 C.2 D. 25.已知向量a (1,2) ,向量b (x, 2) ,且a(a b) ,则实数x等于A. 4 B.4 C.0 D. 96.已知| a| =1,| b | = 2 ,且a (a b),则向量a与向量b 的夹角为()A. B . C . D .6 4 3 2 37.已知平面向量a,b 满足a a b 3 ,且 a 2 ,b 1,则向量a与b 夹角的正弦值为()A.12B .32C .12D .328.在平行四边形ABCD 中,AD 2 ,BAD 60 ,E为CD 的中点.若AD BE 1,则AB 的长为( )A. 6 B .4 C .5 D .69 .O 为平面上的定点, A , B , C 是平面上不共线的三点,若(OB OC ) (OB OC 2OA) 0,则ABC 是()A.以AB为底面的等腰三角形B.以BC为底面的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形试卷第 1 页,总 4 页10.在ABC 中,则有()1MB AB ,且对AB边上任意一点N,恒有NB NC MB MC ,4A.AB BC B .AB ACC.AB AC D .AC BC11.点P是ABC 所在平面内的一点,若CB PA PB( R) ,则点P在()A.ABC 内部B.AC边所在的直线上C.AB边所在的直线上D.BC边所在的直线上12.在ABC 中,角A,B,C 所对的边分别为a,b ,c,c b 6,c b a 2 ,且O 为此三角形的内心,则AO CB ()A.4 B .5 C .6 D .713.在ABC 中,BC a, AC b,| a|2,| b| 3,a b 3则∠C的大小为()A.30 B .60 C .120 D .15014.在ABC 中,A、B 、C 的对边分别为a、b 、c,且b c o s C 3 a c o s B c o s B ,BA BC 2,则ABC 的面积为()A. 2 B .32C .2 2D .4 215.若非零向量a, b满足| a b | | a b | 2 | a |,则向量b与a b 的夹角为.16.在平面直角坐标系中,设M , N,T 是圆C : 2 2(x 1) y 4上不同三点,若存在正实数a,b,使得CT aCM bCN ,则3 2 2 1a ab ab ba的取值范围为.17.已知向量a (1, 3) ,向量a,c 的夹角是3 ,a c 2,则|c|等于.18.已知正方形ABCD ,过正方形中心O的直线MN 分别交正方形的边AB ,CD 于点2MNM、N ,则最小值为_________________.2BN19.若a,b均为非零向量,且a 2b a, b 2a b ,则a,b的夹角为.120.在等腰梯形ABCD中,已知AB//DC,∠ABC=60°,BC=2AB=2,动点 E 和F 分别在线段BC和DC上,且BE = BC ,DF =12DC ,则AE ·BF 的最小值为.试卷第 2 页,总 4 页21.已知ABC 是边长为 1 的正三角形,动点M 在平面ABC内,若AM AB 0,|CM | 1,则CM AB的取值范围是.22.向量a (1,1),且a与a b 的方向相反,则 a b的取值范围是.23.如图,在三棱锥中 D ABC 中,已知AB 2,AC BD 3,设AD a,BC b ,CD c ,则2cab 1的最小值为.24.已知 A 点坐标为( 1,0) ,B 点坐标为(1,0) ,且动点M 到A 点的距离是 4 ,线段MB 的垂直平分线l 交线段MA 于点P .(1)求动点P 的轨迹C方程.(2)若P是曲线C上的点,,求k PA PB 的最大值和最小值.25.△ABC中,内角为A,B,C,所对的三边分别是a,b,c,已知 2b ac ,cos3 B .4(1)求1 1 tan A tan C;(2)设BA·3BC , 求a c.226.已知函数 f x1x 1,点O为坐标原点, 点A n n, f n (n N *) ,向量i0,1 ,cos cos cosn 是向量OA n 与i的夹角,则 1 2 2016sin sin sin1 2 2016的值为.27.已知向量3a (sin x, ),b (cos x, 1).2试卷第 3 页,总 4 页(1)当a//b时,求22cos x sin2x的值;(2)求f(x)(a b)b在,02上的值域.2y2DX Ey F28.如图,在平面直角坐标系中,方程为x0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.(1)若四边形ABCD的面积为40,对角线AC的长为8,AB AD0,且ADC为锐角,求圆的方程,并求出B,D的坐标;(2)设四边形ABCD的一条边CD的中点为G,OH AB,且垂足为H,试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.29.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC中三边围成的区域(含边界)上,且OP AB AC(,R).(1)若23,求OP;(2)用x,y表示并求的最大值.30.已知椭圆22x yC:1(a b0)22a b,过左焦点F1(1,0)的直线与椭圆C交于M、N两点,且F2MN的周长为8;过点P(4,0)且不与x轴垂直的直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)求OA OB的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.试卷第4页,总4页参考答案1.C【解析】试题分析:如图所示,在ABC 中,AD AB BD又BD 2DC ,2 2 2 2 1BD BC BC AC AB b c AD AB BC c b c b c3 3 3 3 3故选C.考点:向量加法2.A【解析】试题分析:如图所示,建立直角坐标系.则OA 1,0 ,OB 0, 3 ,.故选 B∴, 3 , tan 30 3n 3 m 3OC mOA nOB m nm 3 n考点:共线向量【名师点睛】本题主要考查了共线向量及向量的模等知识,属基础题.解题时对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.3.D【解析】试题分析:设 a b ,则由已知可得c (a 2b) c a c (2b) c a c (2 b) 2 1 c a 0考点:向量的运算4.B【解析】试题分析:由已知m∥n,则a (1 a) 2 1 a2 a 2 0 a 1,a 2考点:共线向量5.D答案第 1 页,总13 页【解析】试题分析: a b 1 x,4 由a(a b) 1,2 1 x,4 1 x 8 0 x 9考点;向量垂直的充要条件6.B【解析】试题分析:由题意得 2 a b 2a (a b) 0 ab a 1 cos a,b| a | | b | 2r ,所以向量a与r向量b的夹角为 4 ,选B.考点:向量夹角7.D【解析】试题分析:2 1 2a ab 3 a a b 3 a b 1 cos a,b a,b .2 3选D.考点:向量夹角8.D【解析】试题分析:1 1AD BE AD(BA+ AD DE) AD(- AB +AD AB) AD(AD AB)2 21 14 2 AB cos 4 AB 12 3 2,因此AB 6. 选D.考点:向量数量积9.B【解析】试题分析:设BC 的中点为 D ,∵(OB OC) (OB OC 2OA) 0 ,∴CB (2OD 2OA )0,∴CB 2AD 0,∴C B AD ,故△A BC的B C边上的中线也是高线.故△ABC是以BC为底边的等腰三角形,故选B.考点:三角形的形状判断.10. D【解析】试题分析:以 A 为原点,AB 为x轴,建立直角坐标系,设B(4,0), C(a,b) ,N ( x,0) ,则M (3,0) ,MB MC (1,0) (a 3,b ) a 3 ,答案第 2 页,总13 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)

(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)

一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。

高考数学平面向量专题练习、参考答案

高考数学平面向量专题练习、参考答案

高考数学平面向量专题练习考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法。

3、掌握实数与向量的积,理解两个向量共线的充要条件。

4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。

6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。

1、已知向量b a 与不共线,且0||||≠=b a ,则下列结论中正确的是 A .向量b a b a -+与垂直 B .向量b a -与a 垂直C .向量b a +与a 垂直D .向量b a b a -+与共线2.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的A .内心B .外心C .重心D .垂心3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC =,则AD 用b a ,表示为 。

4、已知21,e e 是两个不共线的向量,而→→→→→→+=-+=2121232)251(e e b e k e k a 与是两个共线向量,则实数k = .5、设→i 、→j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且→→+=j i OA 24,→→+=j i OB 43,则△OAB 的面积等于 :A .15B .10C .7.5D .56、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 ,将向量OC 按逆时针方向旋转90°得到向量OD ,则向量OD 的坐标是 . 7、已知)3,2(),1,(==AC k AB ,则下列k 值中能使△ABC 是直角三角形的值是A .23B .21-C .-5D .31-8、在锐角三角形ABC 中,已知ABC AC AB ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量AB 与CD 的位置关系是 A. 平行B. 垂直C. 相交但不垂直D. 无法判断10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围是:A .]4,0[π B .]125,4[ππ C .]125,12[ππ D .]2,125[ππ 11、若,4,,2||,3||π夹角为且b a b a ==则||b a +等于:A .5B .52C .21D .1712、已知→a =(6,2),→b =)21,4(-,直线l 过点A )1,3(-,且与向量→→+b a 2垂直,则直线l 的一般方程是 . 13、设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数)(x F 的单调递增区间,将)(x F 的图象按)0,(π=a 平移得到一个新的函数)(x G 的图象,则)(x G 的单调递减区间必是:A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ14、把函数3)2(log 2+-=x y 的图象按向量a 平移,得到函数1)1(log 2-+=x y 的图象,则a 为( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)15、如果把圆)1,(02:22-==-+m a y y x C 沿向量平移后得到圆C ′,且C ′与直线043=-y x 相切,则m 的值为 .16、已知P 是抛物线122-=x y 上的动点,定点A (0,-1),若点M 分PA 所成的比为2,则点M 的轨迹方程是_____,它的焦点坐标是_________.17、若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为:A. 165B. 125C. 85D. 4518、若向量),sin ,(cos ),sin ,(cos ββb a ==αα则b a与一定满足:A.b a 与的夹角等于βα-B.)()(b a b a -⊥+C. b a //D.b a ⊥19、已知A (3,0),B (0,3),C (cos α,sin α).(1)若BC AC ⋅=-1,求sin2α的值; (2)若13||=+OC OA ,且α∈(0,π),求OB 与OC 的夹角.20、已知O 为坐标原点,a R a R x a x OB x OA ,,)(2sin 3,1(),1,cos 2(2∈∈+==是常数),若.OB OA y ⋅=(Ⅰ)求y 关于x 的函数解析式);(x f (Ⅱ)若]2,0[π∈x 时,)(x f 的最大值为2,求a 的值并指出)(x f 的单调区间.21、已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB AD AC +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 22、如图,已知△OFQ 的面积为S ,且 1=⋅FQ OF . (1)若21<S <2,求向量OF 与FQ 的夹角θ的取值范围; (2)设|OF | = c (c ≥2),S =c 43,若以O 为中心,F 为焦点的椭圆经过点Q ,当|OQ |取得最小值时,求此椭圆的方程.参考答案1、A ;2、D ;3、→→+b a 4341;4、231或;5、D ;6、)2,1(-,)1,2(--;7、D ;8、3π, 2;9、A ;10、C ;11、D ;12、0932=--y x ;13、D ;14、D ;15、35±;16、)0(162≠-=x x y ,)21,0(;17、C ;18、B19(1)解:(cos 3,sin )AC αα=-,(cos ,sin 3)BC αα=-∴BC AC ⋅=-1⇒cos (cos 3)sin (sin 3)1αααα-+-=- ∴2cos sin 3αα+=,∴224cos sin 2sin cos 9αααα++= ∴5sin 29α=- (2)∵(3cos ,sin )OA OC αα+=+=化简得1cos 2α=, ∵(0,)απ∈,∴sin 2α=∴3sin cos ,sin 3||||OB OC OB OC OB OC αα⋅<>====2 ∴OB 与OC 的夹角为6π20.(1),2sin 3cos 22a x x OB OA y ++=⋅=).](32,6[:).](6,3[:)(.1,23,3)(,]6,0[6,262.1)62sin(2)()2(.12sin 32cos )(Z k k kx Z k k kx x f a a a x f x x a x x f a x x x f ∈+-∈+--==++∈==+∴+++=+++=∴πππππππππππ单调减区间是的单调增区间是可解得函数解得由取最大值时解得 21.解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x AC +=),)0,4(=AB则),6(00y x AC AB +=+,故)2,32()(2100y x AC AB AD +=+=又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x 代入2)2(||2020=++=y x AC 得122=+y x ,即为所求点D 的轨迹方程.(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②. 因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a ,设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆ 故所求的椭圆方程为.14822=+y x 22.解:(1)由已知,得.2tan 1cos ||||)sin(||||21S FQ OF SFQ OF =⇒⎪⎩⎪⎨⎧==-⋅θθθπ ∵21<S <2,∴2<tan θ<4,则4π<θ<arctan4. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设椭圆方程为12222=+by a x (a >0,b >0),Q 的坐标为(x 1,y 1),则FQ =(x 1-c ,y 1),∵△OFQ 的面积为,43||211c y OF =⋅∴y 1 =23又由OF ·FQ =(c ,0)·⎪⎭⎫ ⎝⎛-23 ,1c x =(x 1-c )c = 1,得x 1 =491|| ,122121+⎪⎭⎫ ⎝⎛+=+=+c c y x OQ c c (c ≥2).当且仅当c = 2时|OQ |最小,此时Q 的坐标为⎪⎭⎫⎝⎛23 ,25,由此可得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+6104149425222222b a b a b a , 故椭圆方程为161022=+y x .。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)

第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知平面向量(1,2)=-a ;(1,0)=b ,则向量3+a b 等于()A .(2,6)-B .(2,6)--C .(2,6)D .(2,6)-2.化简:AB DC CB --=uu u r uuu r uur()A .ADuuu rB .ACuuu r C .DA uu u r D .DBuu u r 3.下列说法中正确的是()A .若AB DC =uu u r uuu r,则,,,A B C D 四点构成一个平行四边形B .零向量与单位向量的模相等C .若a 和b 都是单位向量,则=a b 或=-a bD .零向量与任何向量都共线4.在四边形ABCD 中,设,,AB AD BC ===a b c uu u r uuu r uu u r ,则DC uuu r等于()A .-+a b cB .()-+b a cC .++a b cD .-+b a c5.已知平面内两点(2,1),(5,3)A B -,则与向量AB uu u r同向的单位向量是()A .34,55⎛⎫- ⎪⎝⎭B .34,55⎛⎫ ⎪⎝⎭C .43,55⎛⎫ ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭6.在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,则EB =uu r()A .1344AB AC -uu ur uuu r B .3144AB AC -uu ur uuu r C .1344AB AC +uu ur uuu r D .3144AB AC +uu ur uuu r 7.如图所示,P Q 、是ABC △的边BC 上的两点,且BP QC =uu r uuu r ,则化简AB AC AP AQ +--uu u r uuu r uu u r uuu r的结果为()A .0B .BP uurC .PQ uu u rD .PCuu u r 8.过ABC △内一点M 任作一条直线l ,再分别过顶点,A B C ,作l 的垂线,垂足分别为,D E F ,,若AD BE CF ++=0uuu r uur uu u r恒成立,则点M 是ABC △的()A .垂心B .重心C .外心D .内心9.已知,,O A B 是平面内的三个点,直线AB 上有一点C ,满足0AB AC +=uu u r uuu r ,则OC =uuu r()A .2OA OB -uur uu u r B .2OA OB -+uur uu u rC .2133OA OB -uu r uu ur D .1133OA OB-+uu r uu ur 10.在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB 、BC 的中点,P 为以A 为圆心,AD 为半径的圆弧DE 的中点(如图所示).若AP AF ED λμ=+uu u r uu u r uu u r,其中,λμ∈R ,则λμ-的值是()A .24B .324C D .34二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.下列命题中不正确的是()A .两个有共同始点且相等的向量,其终点可能不同B .若非零向量AB uu u r 与CD uuur 共线,则A B C D 、、、四点共线C .若非零向量a 与b 共线,则=a bD .四边形ABCD 是平行四边形,则必有AB CD=uu u r uu u r12.下列说法中正确的是()A .模相等的两个向量是相等向量B .若230OA OB OC ++=uur uu u r uuu r,,AOC ABC S S V V 分别表示AOC △,ABC △的面积,则:1:6AOC ABC S S =V V C .两个非零向量,a b ,若-=+a b a b ,则a 与b 共线且反向D .若∥a b ,则存在唯一实数入使得λ=a b三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知点O 固定,且2OA =uur,则A 点构成的图形是________.14.已知点O 为四边形ABCD 所在平面内一点,且向量,,,OA OB OC OD uu r uu u r uuu r uuu r 满足等式OA OC OB OD +=+uur uuu r uu u r uuu r,则四边形ABCD 的形状一定为________.15.设向量a ,b 不平行,向量14λ+a b 与-+a b 平行,则实数λ=________.16.如图,在长方形ABCD 中,,M N 分别为线段,BC CD 的中点,若()1212,MN AM BN λλλλ=+∈R uuu r uuu r uuu r,则12λλ+的值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量(1,2),(3,1)==-a b .(1)求与2+a b 同向的单位向量e ;(2)若向量113,3⎛⎫=-- ⎪⎝⎭c ,请以向量,a b 为基底表示向量c .18.(12分)已知平面内的三个向量(3,2),(1,2),(4,1)==-=a b c .(1)若(,)c λμλμ=+∈R a b ,求λμ+的值;(2)若向量k +a b 与向量2-b c 共线,求实数k 的值.19.(12分)如图,在OCB △中,点A 是BC 的中点,点D 是靠近点B 将OB 分成2:1的一个内分点,DC和OA 交于点E ,设OA =a uu r ,OB =b uu u r.(1)用,a b 表示向量,OC DC uuu r uuu r;(2)若OE OA λ=uu u r uu r,求λ的值.20.(12分)已知向量(,)x y =u 与向量(,2)y y x =-v 的对应关系用()f =v u 表示.(1)设(1,1),(1,0)==a b ,求向量()f a 与()f b 的坐标;(2)求使()(,)f p q =c (,p q 为常数)的向量c 的坐标;(3)证明:对任意的向量,a b 及常数,m n 恒有()()()f m n mf nf +=+a b a b 成立.21.(12分)已知(2,4),(3,1),(3,4)A B C ----,设AB =a uu u r ,BC =b uu u r ,CA =c uu r.(1)求33+-a b c 的值;(2)求满足m n =+a b c 的实数,m n 的值;(3)若线段AB 的中点为M ,线段BC 的三等分点为N (点N 靠近点B ),求MN uuu r.22.(12分)如图,已知河水自西向东流,流速为01m /s v =,设某人在静水中游泳的速度为1v ,在水中的实际速度为2v.v=,求他实际前进方向与水流方向的夹角α和2v的大小;(1)若此人朝正南方向游去,且1m/sv,求他游泳的方向与水流方向的夹角β和1v的大小.(2)若此人实际前进方向与水流垂直,且2m/s第六章综合测试答案解析一、1.【答案】A【解析】因为(1,2)=-a ,所以3(3,6)=-a ,又因为()1,0=b ,所以3(31,60)(2,6)+=-++=-a b ,故选A .2.【答案】A【解析】AB DC CB AB BC CD AD --=++=uu u r uuu r uu r uu u r uu u r uu u r uuu r,故选A .3.【答案】D【解析】对于选项A ,,,,A B C D 四点可能共线,故A 不正确;对于选项B ,零向量的模为0,单位向量的模为1,不相等,故B 不正确;对于选项C ,因为a 和b 都是单位向量,所以a b =,但它们的方向是任意的,故C 不正确;对于选项D ,零向量与任何向量都共线,故D 正确.故选D .4.【答案】A【解析】因为四边形ABCD 中,AB =a uu u r ,AD =b uuu r ,=BC c uu u r ,所以DC AC AD AB BC AD =-=+-=-+a b c uuu r uuu r uuu r uu u r uu u r uuu r,故选A .5.【答案】B【解析】因为两点(2,1)A -,(5,3)B ,所以()3,4AB =uu u r,所以34(3,4),55||AB AB ⎛⎫== ⎪⎝⎭uu u ruu u r ,所以与向量AB uu u r 同向的单位向量为34,55⎛⎫⎪⎝⎭,故选B .6.【答案】B【解析】因为在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,所以11131()22244EB AB AE AB AD AB AB AC AB =-=-=-⨯+=-uu r uu u r uu u r uu u r uuu r uu u r uu u r uuu r uu u r uuu r,故选B .7.【答案】A【解析】因为BP QC =uu r uuu r ,所以0PB QC +=uu r uuu r,所以()()=0AB AC AP AQ AB AP AC AQ PB QC +--=-+-=+uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu r uuu r,故选A .8.【答案】B【解析】因为过ABC △内一点M 任作一条直线l ,可将此直线特殊为过点A ,则0AD =uuu r ,则0BE CF +=uur uu u r恒成立如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点,所以点M 是ABC △的重心,故选B .9.【答案】A【解析】由向量的运算法则可得AB OB OA =-uu u r uu u r uu r ,AC OC OA =-uuu r uuu r uu r,又0AB AC +=uu u r uuu r ,则()()0OB OA OC OA -+-=uu u r uu r uuu r uu r,即2OB OC OA +=uu u r uuu r uu r ,即2OC OA OB =-uuu r uu r uu u r ,故选A .10.【答案】A【解析】因为P 为以A 为圆心,AD 为半径的圆弧DE 的中点,所以2AP AD AE ===uu u r uuu r uu u r,45DAP EAP ∠=∠=︒,所以2222AP AE AD =+uu u r u r uuur ,因为在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB BC 、的中点,所以易证得四边形BCDE 为平行四边形,故ED AD AE =-uu u r uuu r uu u r,11312222AF AB BF AB BC AB AE =+=+=+=+uuu r uu u r uu u r uu u r uu u r uu u r uu ur uu u r uuu r ,若AP AF ED λμ=+uu u r uuu r uu u r ,则3131()222222AE AD AE AD AD AE AE AD λμλμλμ⎛⎫⎛⎫⎛⎫+=++-=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uu u r uuu r uu u r uuu r uuu r uu u r uu u r uuu r ,即3,221,22λμλμ=-⎪⎪⎪=+⎪⎩解得,24λμ⎧=⎪⎪⎨⎪=⎪⎩故24λμ-=,故选A .二、11.【答案】ABC【解析】A 中,相等向量的始点相同,则终点一定也相同,所以A 中命题不正确;B 中,向量AB uu u r 与CD uu ur 共线,只能说明AB uu u r 、CD uu ur 方所在直线平行或在同一条直线上,所以B 中命题不正确;C 中,向量a 与b 共线,说明a 与b 方向相同或相反,a 与b 不一定相等,所以C 中命题不正确;D 中,因为四边形ABCD 是平行四边形,所以AB uu u r 与CD uu u r 是相反向量、所以AB CD =uu u r uu u r,所以D 中命题正确、故选ABC .12.【答案】BC【解析】相等向量是大小相等、方向相同的向量,向量的模相等,但方向不一定相同,故A 选项错误;设AC的中点为M ,BC 的中点为D ,因为230OA OB OC ++=uu r uu u r uuu r ,所以2220OM OD ⨯+=uuu r uuu r ,即2OM OD =-uuu r uuu r ,所以O 是线MD 上靠近点M 的三等分点,可知O 到AC 的距离等于D 到AC 距离的13,而B 到AC 的距离等于D 到AC 距离的2倍,故可知O 到AC 的距离等于B 到AC 距离的16,根据三角形面积公式可知B 选项正确;C 选项中,当a 与b 共线且反向时,可知-=+a b a b 成立,当a 与b 不共线或共线方向相同时,结论不成立,故C 选项正确;D 选项错误,例如0=b .故选BC .三、13.【答案】圆【解析】因为2OA =uu r,所以点A 到点O 的距离为2,故A 点构成的图形是以点O 为圆心、2为半径的圆。

(完整版)高中数学平面向量综合练习含解析

(完整版)高中数学平面向量综合练习含解析
高中数学
1.在△
uuu
ABC中,AB
r c,
uuur AC
b.若点
uuur
D满足BD
uuur
2DC,贝U
uiur
AD()
2〔
1r
5r
2r
2r
1r
1r
2r
A.—b
_c
B.
-c
-b
C.
_b
-c
D.—b
-c
3
3
3
3
3
3
3
3
uuu
uur
uuu
uuu
2.已知
OA
1,
OB
船,
OA
OB
0,

八、、
C在
AOB内,且
)
A.
1B.
2或1C. 2
D
2
r
r
r
r
r
5.
已知向量a
(1,2),向量b
(x, 2),

a
(a
b),则实数
x等于
A.
4
B.4C.0
D.
9
r
r-
rr
r
rr
6.
已知|a|=1,
1b|=2,且
a (a
b)
,则向量
a与向量b
的夹角为(
)
A.—
B.—C.—
D.2
6
4
3
3
r rr r r
r
「r r
7.已知平面向量a,b满足a a b 3,且
AOC:
uuu uun uuum
OC mOA nOB m,n R,则m等于()

高中数学平面向量精选题目(附答案)

高中数学平面向量精选题目(附答案)

高中数学平面向量精选题目(附答案)一、平面向量的概念及线性运算1.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.[解析] ∵AM ―→=2MC ―→,∴AM ―→=23AC ―→. ∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→), ∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→ =12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16. [答案] 12 -16 注:向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D ∵AB ―→=(-8,8),AC ―→=(3,y +6). 又∵AB ―→∥AC ―→,∴-8(y +6)-24=0.∴y =-9.3.如图,点A ,B ,C 是圆O 上不重合的三点,线段OC 与线段AB 交于圆内一点P .若OC ―→=m OA ―→+2m OB ―→,AP ―→=λAB ―→,则λ=( )A.56B.45C.34D.23解析:选D 由题意,设OP ―→=n OC ―→. 因为AP ―→=OP ―→-OA ―→=λ(OB ―→-OA ―→), 故n OC ―→-OA ―→=λ(OB ―→-OA ―→),n (m OA ―→+2m OB ―→)-OA ―→=λ(OB ―→-OA ―→), 即(mn +λ-1)OA ―→+(2mn -λ)OB ―→=0.而OA ―→与OB ―→不共线,故有⎩⎨⎧mn +λ-1=0,2mn -λ=0,解得λ=23.选D.4.如图,半径为1的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°.若OC ―→=λOA ―→+μOB ―→,则λ+μ=________.解析:由已知,可得OA ⊥OC ,以O 为坐标原点,OC ,OA 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则有C (1,0),A (0,1),B (cos 30°,-sin 30°),即B ⎝ ⎛⎭⎪⎫32,-12.于是OC ―→=(1,0),OA ―→=(0,1),OB ―→=⎝ ⎛⎭⎪⎫32,-12,由OC ―→=λOA ―→+μOB ―→,得(1,0)=λ(0,1)+μ⎝ ⎛⎭⎪⎫32,-12=⎝ ⎛⎭⎪⎫32μ,λ-12μ,∴⎩⎪⎨⎪⎧32μ=1,λ-12μ=0,解得⎩⎪⎨⎪⎧μ=233,λ=33.∴λ+μ= 3. 答案:3二、平面向量的数量积5.(1)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D.32(2)设四边形ABCD 为平行四边形,|AB ―→|=6,|AD ―→|=4.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.(2)如图所示,由题设知:AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,NM ―→=NC ―→-MC ―→=13AB ―→-14AD ―→, ∴AM ―→·NM ―→=⎝ ⎛⎭⎪⎫AB ―→+34 AD ―→ ·⎝ ⎛⎭⎪⎫13 AB ―→-14 AD ―→ =13|AB ―→|2-316|AD ―→|2+14AB ―→·AD ―→-14AB ―→·AD ―→=13×36-316×16=9. [答案] (1)A (2)C 注:(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行计算.6.已知△ABC 中,AB ―→=c ,BC ―→=a ,CA ―→=b ,若a ·b =b ·c 且c ·b +c ·c =0,则△ABC 的形状为( )A .锐角三角形B .等腰非直角三角形C .钝角三角形D .等腰直角三角形解析:选D 由c ·b +c ·c =c ·(b +c )=0,即AB ―→·(CA ―→+AB ―→)=AB ―→·CB ―→=0,可得∠B 是直角. 又由a ·b =b ·c ,可得b ·(a -c )=0, 即CA ―→·(BC ―→+BA ―→)=0, 所以CA 与CA 边的中线垂直, 所以△ABC 是等腰直角三角形.7.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2解析:选B 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.8.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.答案:19.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ―→·BE ―→=1,则AB 的长为________.解析:设|AB ―→|=x ,x >0,则AB ―→·AD ―→=12x .又AC ―→·BE ―→=(AD ―→+AB ―→)·⎝ ⎛⎭⎪⎫AD ―→-12 AB ―→ =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:12三、平面向量与三角函数的综合问题10.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. [解] (1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3, ∴m ·n =|m |·|n |cos π3, 即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 注:在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.11.已知向量a =(6sin α,2)与向量b =(3,4sin α)平行,则锐角α=( ) A.π4B.π6C.π3D.5π12解析:选B 因为向量a =(6sin α,2)与向量b =(3,4sin α)平行,所以24sin 2α=6,所以sin 2α=14,sin α=±12.又α是锐角,所以sin α=12,α=π6.12.(2017·江苏高考)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 则tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3; 当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.巩固练习:1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→=( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0B .1C .2 D. 53.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( ) A. 3 B .2 C. 5D .35.在△ABC 中,(BC ―→+BA ―→)·AC ―→=|AC ―→|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .67.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 8.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 9.已知向量OA ―→=(1,7),OB ―→=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA ―→·MB ―→的最小值是________.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.11.已知a =(cos α,sin α),b =(cos β,sin β),a 与b 满足|ka +b |=3|a -kb |,其中k >0.(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求出此时a ,b 的夹角.12.已知平面上三个向量a ,b ,c 的模均为1,它们两两之间的夹角均为120°. (1)求证:(a -b )⊥c ;(2)若|ka +b +c |>1(k ∈R),求实数k 的取值范围.参考答案:1.解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→, ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→.③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,④将④代入③,得2AP ―→=a +b -12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,解得AP ―→=27a +47b .2.解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D.3.解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12(舍去).故选B.5.解析:选C 由(BC ―→+BA ―→)·AC ―→=|AC ―→|2,得AC ―→·(BC ―→+BA ―→-AC ―→)=0,即AC ―→·(BC ―→+BA ―→+CA ―→)=0,∴2AC ―→·BA ―→=0,∴AC ―→⊥BA ―→,∴A =90°.故选C.6.解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝ ⎛⎭⎪⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝ ⎛⎭⎪⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝ ⎛⎭⎪⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝ ⎛⎭⎪⎫-1-3-32=3,∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-28.解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6. 答案:-69.解析:设M ⎝ ⎛⎭⎪⎫x ,12x ,则MA ―→=⎝ ⎛⎭⎪⎫1-x ,7-12x ,MB ―→=⎝ ⎛⎭⎪⎫5-x ,1-12x ,MA ―→·MB―→=(1-x )(5-x )+⎝ ⎛⎭⎪⎫7-12x ⎝ ⎛⎭⎪⎫1-12x =54(x -4)2-8.所以当x =4时,MA ―→·MB ―→ 取得最小值-8.答案:-810.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13.11.解:(1)将|ka +b |=3|a -kb |两边平方,得|ka +b |2=(3|a -kb |)2,k 2a 2+b 2+2ka ·b =3(a 2+k 2b 2-2ka ·b ),∴8ka ·b =(3-k 2)a 2+(3k 2-1)b 2, a ·b =(3-k 2)a 2+(3k 2-1)b 28k.∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=1,b 2=1,∴a ·b =3-k 2+3k 2-18k =k 2+14k .(2)∵k 2+1≥2k (当且仅当k =1时等号成立),即k 2+14k ≥2k 4k =12,∴a ·b 的最小值为12.设a ,b 的夹角为γ,则a ·b =|a ||b |cos γ. 又|a |=|b |=1,∴12=1×1×cos γ,∴γ=60°,即当a ·b 取最小值时,a 与b 的夹角为60°.12.解:(1)证明:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°, ∴(a -b )·c =a ·c -b ·c =|a ||c |cos 120°-|b ||c |·cos 120°=0,∴(a -b )⊥c . (2)∵|ka +b +c |>1,∴(ka +b +c )2>1, 即k 2a 2+b 2+c 2+2ka ·b +2ka ·c +2b ·c >1,∴k 2+1+1+2k cos 120°+2k cos 120°+2cos 120°>1. ∴k 2-2k >0,解得k <0或k >2.∴实数k 的取值范围为(-∞,0)∪(2,+∞).。

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)

人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第六章综合测试
一、单项选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)
1.已知平面向量 a = (−1, 2) ; b = (1,0) ,则向量 3a + b 等于( )
A. (−2,6)
C.若 a 和 b 都是单位向量,则 a = b 或 a = −b
D.零向量与任何向量都共线
uuur uuur uuur
uuur
4.在四边形 ABCD 中,设 AB = a, AD = b, BC = c ,则 DC 等于( )
D. (2, −6) uuur
D. DB
A. a − b + c
B. b − (a + c)
(1)求 3a + b − 3c 的值; (2)求满足 a = mb + nc 的实数 m,n 的值;
uuur (3)若线段 AB 的中点为 M ,线段 BC 的三等分点为 N (点 N 靠近点 B ),求 MN .
6 / 15
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 22.(12 分)如图,已知河水自西向东流,流速为 v0 = 1 m / s ,设某人在静水中游泳的速度为 v1 ,在水中的
C.外心
D.内心
uuur uuur
uuur
9.已知 O, A, B 是平面内的三个点,直线 AB 上有一点 C ,满足 AB + AC = 0 ,则 OC = ( )
uur uuur A. 2OA − OB
uur uuur B. −OA + 2OB
C.
2
uur OA

高中数学练习题附带解析平面向量的运算与应用

高中数学练习题附带解析平面向量的运算与应用

高中数学练习题附带解析平面向量的运算与应用高中数学练习题附带解析——平面向量的运算与应用一、选择题1. 已知平面向量A=(2,5)A=(3,1),则A-A的模为:A. √5B. √10C. √13D. √17解析:向量的减法是将两个向量相应的分量相减得到新的向量。

A-A=(2-3,5-1)=(-1,4)。

所以向量A-A的模为√((-1)^2+4^2)=√17,选D。

2. 若平面向量A=(3,-4),A=(6,2),则向量A•A的值为:A. 10B. -10C. 26D. -26解析:向量的数量积是将两个向量相应的分量相乘再相加得到一个数。

A•A=3*6+(-4)*2=18-8=10,选A。

3. 若平面向量A=A,且A的模为5,则向量A的模为:A. 0B. 5C. 25D. 1解析:两个向量相等,说明它们的分量相等。

设向量A=(A,A),那么A = 5 ,A = 0 ,所以向量A的模为√(A^2+A^2)=√(5^2+0^2)=5,选B。

二、填空题1. 已知平面向量A=(3,4),A是与A同向的单位向量,则A=________。

解析:单位向量是模为1的向量,为了找到与A同向的单位向量A,只需要将A的模除以A的模即可。

所以A=(3,4)/√(3^2+4^2)=(3/5,4/5)。

2. 设平面向量A=(A,A),A=(A,A),且A和A垂直,则有________。

解析:若两个向量垂直,则它们的数量积为0。

即A•A=A*A+A*A=0。

三、解答题1. 已知平面向量A=(2,3),A=(6,1),求果AA的模及方向角。

解析:向量AA是起点为A,终点为A的向量。

设向量AA=(A,A),则有AA=(A-A)=(6-2,1-3)=(4,-2)。

所以向量AA的模为√(A^2+A^2)=√(4^2+(-2)^2)=√20=2√5。

向量AA的方向角A可以由以下公式计算:A=tan^(-1)(A/A)=tan^(-1)(-2/4)=tan^(-1)(-1/2)≈-26.57°2. 若平面向量A=(1,2),A=(3,4),求平面向量A和A的夹角的余弦值。

专题28 平面向量综合练习(新高考地区专用)(解析版).pdf

专题28 平面向量综合练习(新高考地区专用)(解析版).pdf

2
2
23
解得
x
2
| ,∴
AC
|
2
2 3
2
,故选B。
3 | AB | 2 3
5.已知 | a | 1 , | b | 2 ,且 a (a b) ,则向量 a 在 b 方向上的投影为( )。
1 A、
2
2 B、
2
【参考答案】B
C、 1
D、 2
【解析】设 a 与 b 的夹角为 ,∵ a (a b) ,∴ a (a b) | a |2 a b | a |2 | a | | b | cos 0 ,
AE AF ( AB BC) ( AD 1 DC) AB AD AB 1 DC BC AD 1 BC DC ,
B、 | a | | b || a b |
C、 (b c)a (c a)b 不与 c 垂直
D、 (3a 2b)(3a 2b) 9 | a |2 4 | b |2
【参考答案】BD 【解析】A选项,平面向量的数量积不满足结合律,故A假,
B选项,由向量的减法运算可知 | a | 、 | b | 、 | a b | 恰为一个三角形的三条边长, 由“两边之差小于第三边”,故B真,
【参考答案】 (2, )
【解析】令 c a b ,则 a b c , b 与 c 的夹角为 60 ,
∴|
a
|2 | b
c
|2
2
b
2b
c
2
c
|
c
|2
2 2 |
c
| cos 60
22
|
c
|2
2 |
c
|
4
(|
c
|
1)2

高中数学平面向量学习习题集及答案解析

高中数学平面向量学习习题集及答案解析

第二章 平面向量一、选择题1.在△ ABC 中, AB = AC , D ,E 分别是 AB , AC 的中点,则 ( ).A . AB 与 AC 共线B . DE 与 CB 共线C .AD 与 AE 相等 D .AD 与 BD 相等2.以下命题正确的选项是 (). (第1题)A .向量 AB 与 BA 是两平行向量B .若 a , b 都是单位向量,则a =bC .若 AB = DC ,则 A , B ,C ,D 四点组成平行四边形D .两向量相等的充要条件是它们的始点、终点同样3.平面直角坐标系中, O 为坐标原点,已知两点A (3 ,1) ,B ( - 1,3) ,若点C 知足 OC=OA +OB ,此中,∈ R ,且 += 1,则点 C 的轨迹方程为 ( ) .A . 3x + 2y - 11= 0B . ( x - 1) 2+ ( y - 1) 2= 5C .2 - = 0D . x +2 y -5=0x y4.已知 、 是非零向量且知足 ( a-2 )⊥ ,(-2 )⊥,则 a 与 b 的夹角是 ( ).a bbaba bA .B .C .2D .563365.已知四边形 ABCD 是菱形, 点 P 在对角线 AC 上 ( 不包含端点 A ,C ) ,则 AP = () .A . λ( AB + AD ) , λ∈ (0 , 1)B . λ( AB + BC ) , λ∈ (0 ,2 )2C . λ( AB - AD ) , λ∈ (0 , 1)D . λ( AB - BC ) , λ∈ (0 ,2 )26.△ ABC 中, D , E , F 分别是 AB ,BC , AC 的中点,则 DF =().A .EF +EDB .EF -DEC .EF + ADD .EF +AF7.若平面向量 a 与 b 的夹角为 60°, | b | = 4,( a + 2b ) ·( a - 3b ) =- 72,则向量 a 的模为( ).A. 2B. 4C. 6D. 128.点O是三角形ABC所在平面内的一点,知足OA·OB=OB·OC=OC·OA,则点O 是△的().ABCA.三个内角的角均分线的交点B.三条边的垂直均分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB= a+2b,BC=-4a- b,CD=-5a-3b,此中 a, b 不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,| AD |=| BC |,EF∥AB∥CD则相等向量是().A. AD与 BC B.OA与OBC. AC与 BD D.EO与OF二、填空题(第 10题)11.已知向量 OA = ( k, 12) , OB = (4 , 5) , OC = ( -k,10) ,且A,B,C三点共线,则 k=.12.已知向量a=( x+3, x2-3x-4)与MN相等,此中M(-1,3), N(1,3),则x =.13.已知平面上三点A,B, C知足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC· CA+ CA· AB的值等于.14.给定两个向量a=(3,4), b=(2,-1),且( a+mb)⊥( a-b),则实数 m等于.15.已知A,B,C三点不共线,O是△ ABC内的一点,若OA + OB + OC = 0,则O是△ ABC的.O,OA= a,OB= b,OC= c,OD =d,若a+ c= b 16.设平面内有四边形ABCD和点+ d,则四边形ABCD的形状是.三、解答题17.已知点A(2 ,3) ,B(5 ,4) ,C(7 ,10) ,若点P知足 AP = AB +λ AC ( λ∈R) ,试求λ为什么值时,点P在第三象限内?18.如图,已知△ABC,A(7,8), B(3,5), C(4,3), M, N, D 分别是 AB, AC, BC的中点,且 MN与 AD交于 F,求DF.(第 18题)19.如图,在正方形ABCD中, E, F分别为 AB, BC的中点,求证: AF⊥ DE(利用向量证明 ) .( 第 19题)20.已知向量= (cosθ, sinθ) ,向量b= (3,- 1) ,则 |2a-| 的最大值.a b参照答案一、选择题1. B分析:如图,AB与 AC , AD 与 AE不平行,AD 与BD共线反向.2.A(第 1 题)分析:两个单位向量可能方向不一样,故 B 不对.若 AB = DC ,可能A,B,C,D四点共线,故 C 不对.两向量相等的充要条件是大小相等,方向同样,故 D 也不对.3. D分析:提示:设OC =(x,y), OA =(3,1), OB =(-1,3),OA =(3,) ,OB=(-,3) ,又OA +OB =(3-,+3) ,∴ (,) =(3-,+ 3),∴ x=3-,又+= 1,由此获得答案为D.x y y=+34. B分析:∵ ( a- 2b) ⊥a, ( b- 2a) ⊥b,∴ ( a-2b) ·a=a2- 2a·b= 0, ( b- 2a) ·b=b2- 2a·b= 0,∴a 2=b2,即 |a| = |b|.∴|a| 2=2||||cosθ=2|a|2cosθ.解得 cosθ=1.a b2∴ a 与 b 的夹角是π.35. A分析:由平行四边形法例,AB + AD = AC ,又 AB + BC = AC ,由λ 的范围和向量数乘的长度,λ∈(0,1).6. D分析:如图,∵AF =DE,∴DF=DE+EF=EF+AF .( 第6题)7. C分析:由 ( a+ 2b) · ( a- 3b) =- 72,得a2-a·b- 6b2=- 72.而 | b| = 4,a·b= | a|| b| cos 60 °= 2| a| ,∴ | a| 2- 2| a| - 96=- 72,解得 | a| = 6.8. D分析:由OA·OB=OB·OC=OC·OA,得 OA·OB=OC ·OA,即OA·( OC - OB)=0,故 BC ·OA=0, BC⊥OA,同理可证 AC ⊥ OB,∴ O是△ ABC的三条高的交点.9. C分析:∵ AD = AB + BC + CD =- 8a- 2b=2 BC ,∴ AD ∥ BC 且 | AD | ≠ | BC | .∴四边形 ABCD为梯形.10. D分析: AD 与 BC , AC 与 BD , OA 与 OB 方向都不同样,不是相等向量.二、填空题11.-2.3分析: A, B, C三点共线等价于AB , BC 共线,AB = OB - OA = (4 ,5) - ( k,12) = (4 -k,- 7) ,BC = OC - OB = ( -k, 10) -(4 , 5) = ( -k- 4, 5) ,又 A,B, C三点共线,∴5(4 -k) =- 7( -k-4) ,∴k=-2. 312.- 1.分析:∵M(-1,3),N(1,3),∴MN = (2 ,0) ,又a=MN,x+3=2x=-1∴解得2或x=4x -3x-4=0x=-1∴ x=-1.13.- 25.分析:思路1:∵AB = 3, BC = 4, CA = 5,∴ △ABC为直角三角形且∠ABC=90°,即AB⊥BC,∴AB·∴AB· BC+ BC·CA+CA·AB=BC·CA+CA· AB=CA·( BC+ AB)=-( CA)22=- CA=- 25.思路 2:∵AB =3, BC = 4, CA =5,∴∠ABC=90°,∴cos ∠CAB=AB=3, cos ∠BCA=BC=4.CA5CA5依据数积定义,联合图(右图)知AB·BC=0,4BC · CA = BC · CA cos ∠ACE= 4× 5×( -) =- 16,3CA · AB = CA · AB cos ∠BAD= 3× 5×( -) =- 9.∴AB · BC + BC · CA + CA · AB =0―16―9=- 25.BC =0,D ( 第 13题)14.23.3分析: a+ mb=(3+2m,4- m), a- b=(1,5).∵( a+mb) ⊥ ( a-b) ,∴ ( a + mb ) · ( a - b ) = (3 + 2m ) × 1+(4 - m ) × 5= 0 m =23.315.答案:重心.分析:如图, 以 OA , OC 为邻边作 □AOCF 交 AC 于点,则 OF =OA +OC ,又 OA +OC =- OB ,E∴ OF =2OE =- OB .O 是△ 的重心.(第 15 题)ABC16.答案:平行四边形.分析:∵ a +c = b + d ,∴ a - b = d - c ,∴ BA = CD .∴ 四边形 ABCD 为平行四边形.三、解答题17. λ<- 1.分析:设点 P 的坐标为 ( x , y ) ,则 AP = ( x , y ) - (2 , 3) = ( x - 2,y - 3) .AB + λ AC = (5 ,4) - (2 ,3) + λ[ (7 , 10) - (2 , 3) ]= (3 ,1 ) + λ (5 , 7) = (3 + 5λ,1+ 7λ) .∵ AP = AB + λ AC ,∴ ( x - 2, y -3) = (3 +5λ, 1+7λ) .x 2 3 5 x 5 5∴31 7即4 7yy要使点 P 在第三象限内,只要5 5 0 47解得 λ<- 1.18. DF =(7,2) .4分析:∵ A (7 ,8) ,B (3,5) ,C (4,3) ,AB =( -4,- 3) , AC =(- 3,- 5) . 又 D 是 BC 的中点,(第 18题)∴AD=1( AB+ AC)=1(-4-3,-3-5) 22=1(-7,-8)=(-7,- 4).22又 M,N分别是 AB, AC的中点,∴ F 是 AD的中点,∴DF =- FD=-1AD =-1(-7,-4)=(7,2).222419.证明:设 AB =a, AD =b,则 AF =a+1b,ED=b-1a.22∴AF · ED = ( a+1b) · ( b-1a) =1b2-1a2+3a·b.22224又 AB ⊥AD,且AB=AD,∴a2=b2,a·b=0.∴ AF·ED=0,∴ AF⊥ED.(第 19 题)此题也能够建平面直角坐标系后进行证明.20.剖析:思路 1: 2a-b= (2cosθ- 3 ,2sinθ+1),∴ |2 a-b| 2= (2cos θ-3 ) 2+ (2sinθ+1)2=8+4sinθ-4 3 cosθ.又 4sin θ- 4 3 cos θ= 8(sinθ cos ππ= 8sin(π- cos θsin)θ-) ,最大值为3338,∴ |2 a-b| 2的最大值为16,∴ |2 a-b| 的最大值为 4.思路 2:将向量2a,b平移,使它们的起点与原点重合,则|2 a-b| 表示 2a,b终点间的距离. |2a | =2,因此 2的终点是以原点为圆心, 2 为半径的圆上的动点,b的终点是a P该圆上的一个定点,由圆的知识可知, | | 的最大值为直径的长为 4.Q PQ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)设四边形 ABCD的一条边 CD 的中点为 G , OH AB ,且垂足
为 H ,试用平面解析几何的研究方法判断点 O、G、H 是否共线,
并说明理由.
29.在直角坐标系 xOy 中,已知点 A(1,1), B(2,3),C(3, 2) ,点 P(x, y) 在
ABC 中三边围成的区域(含边界)上,且 OP AB AC (, R) . (1)若 2 ,求 OP ;
P 在( )
A. ABC 内部 B.AC 边所在的直线上
C.AB 边所在的直线上
D.BC 边所在的直线上
12.在 ABC 中,角 A,B,C 所对的边分别为 a , b , c , c b 6,
c b a 2 ,且 O 为此三角形的内心,则 AO CB ( )
A.4
B.5
C.6
D.7
13.在 ABC 中, BC a, AC b,| a | 2,| b | 3,a b 3 则∠C 的大小为是向量 OAn

i
的夹角,则
cos1 sin 1
cos2 sin 2
cos2016 sin 2016
的值为 .
27.已知向量 a (sin x, 3),b (cos x, 1).
2
(1)当 a // b 时,求 2cos2 x sin 2x 的值;
(2)求
f
(x)
(a
b)
7.已知平面向量 a ,b 满足 a a b 3 ,且 a 2 , b 1,则向量 a
及 b 夹角的正弦值为(

A. 1
2
B. 3
2
C. 1
2
D. 3
2
8.在平行四边形 ABCD中,AD 2 ,BAD 60 ,E 为 CD 的中点.若
AD BE 1,则 AB 的长为 ( )
3
3
3
33
故选 C.
考点:向量加法
2.A
【解析】
试题分析:如图所示,建立直角坐标系.则OA 1,0,OB 0, 3 ,
∴OC mOA nOB m, 3n ,tan 30 3n 3 m 3.故选 B m 3n
考点:共线向量 【名师点睛】本题主要考查了共线向量及向量的模等知识,属基础 题.解题时对一个向量根据平面向量基本定理进行分解,关键是要根 据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据 已知条件构造三角形,解三角形即可得到分解结果.
考点:向量夹角
7.D
【解析】





2 / 24
高中数学平面向量综合练习含解析
2
1
2
a a b 3 a a b 3 a b 1 cos a,b a,b .
2
3 选 D.
考点:向量夹角
8.D
【解析】





AD BE AD( BA+AD DE) AD( -AB+AD 1 AB) AD( AD 1 AB)
4 / 24
高中数学平面向量综合练习含解析
b

2
, 0
上的值域.
4 / 24
高中数学平面向量综合练习含解析 28.如图,在平面直角坐标系中,方程为 x2 y2 DX Ey F 0 的 圆 M 的内接四边形 ABCD的对角线 AC和BD互相垂直,且 AC和BD分 别在 x 轴和 y 轴上.
(1)若四边形 ABCD的面积为 40,对角线 AC 的长为 8,AB AD 0 , 且 ADC为锐角,求圆的方程,并求出 B, D 的坐标;
AD a , BC b , CD c ,则 c2 的最小值为

ab 1
24.已知 A 点坐标为 (1,0) ,B 点坐标为 (1,0) ,且动点 M 到 A 点的
距离是 4 ,线段 MB 的
垂直平分线l 交线段 MA 于点 P .
(1)求动点 P 的轨迹 C 方程.
(2)若 P 是曲线 C 上的点,,求 k PA PB 的最大值和最小值.
a
的取值范围为

17.已知向量 a (1, 3) ,向量 a, c 的夹角是 , a c 2 ,则 | c | 等
3


18.已知正方形 ABCD,过正方形中心 O 的直线 MN 分别交正方形
的边
AB, CD
于点 M、N
,则
MN 2 BN 2
最小值为_________________.
19.若 a,b 均为非零向量,且 a 2b a, b 2a b ,则 a,b 的夹角
1 / 24
高中数学平面向量综合练习含解析
3.D 【解析】 试 题 分 析 : 设 a b , 则 由 已 知 可 得
c (a 2b) c a c (2b) c a c (2b) 2 1 c a 0
考点:向量的运算 4.B 【解析】
试题分析:由已知 m∥n ,则 a (1 a) 21 a2 a 2 0 a 1,a 2
NB NC (4 x, 0) (a x,b) (4 x)(a x) ,
(4 x)(a x) x2 (a 4)x 4a (x a 4)2 4a (a 4)2 ,
2
4
3 / 24
高中数学平面向量综合练习含解析
由题意 4a (a 4)2 a 3 (或 a 4 3 ),解得 a 2 ,所以 AC BC .故
4
2
选 D.
考点:向量的数量积,数量积的坐标运算.
【名师点睛】1.平面直角坐标系中,以原点为起点的向量 OA = a ,
点 A 的位置被 a 所唯一确定,此时 a 的坐标及点 A 的坐标都是(x,y).向
量的坐标表示和以坐标原点为起点的向量是一一对应的,即向量(x,
y)
向量 OA
点 A(x,y).要把点的坐标及向量的坐
OC mOA nOBm,n R ,则 m 等于( )
n
A.3
B. 1
3
2
C. 03
03
D. 3
3.若向量 a,b,c 满足 a∥b ,且9a c ,则 c a 2b ( 0

A.4
B.3
4
2
C.2
D.0
4.已知向量
m
(a,
2), n
0
(1,1
a)
,且
m∥n
,则实数
a


A. 1
B. 2 或 1
(2)求 OAOB 的取值范围;
(3)若 B 点关于 x 轴的对称点是 E ,证明:直线 AE 及 x 轴相交于
定点.
5 / 24
高中数学平面向量综合练习含解析 参考答案
1.C 【解析】 试题分析:如图所示,在 ABC 中, AD AB BD

BD 2DC

BD 2 BC BC AC AB b c AD AB 2 BC c 2 b c 2 b 1 c


20.在等腰梯形 ABCD 中,已知 AB//DC,∠ABC=60°,BC= 1 AB=2,
2
动点 E 和 F 分别在线段 BC 和 DC 上,且 BE = BC , DF = 1 DC ,
2
则 AE · BF 的最小值为

21.已知 ABC 是边长为 1 的正三角形,动点 M 在平面 ABC 内,若
D. 4 2
15.若非零向量 a,b 满足| a b || a b | 2 | a | ,则向量 b 及 a b 的夹
角为
.
16.在平面直角坐标系中,设 M , N,T 是圆 C : (x 1)2 y2 4 上不同
三点,若存在正实数 a, b ,使得 CT aCM bCN ,则 a3 ab2 2ab b 1
2
2
4 1 2 AB cos 4 1 AB 1
2
3
2
,因此 AB 6. 选 D.
考点:向量数量积
9.B
【解析】
试题分析:设 BC 的中点为 D,∵ (OB OC) (OB OC 2OA) 0 ,∴ CB (2OD 2OA) 0 , ∴ CB 2AD 0 ,∴ CB AD ,故△ABC 的 BC 边上的中线也是高线.故
D.以 BC 为斜边的直角三角形 10.在 ABC 中, MB 1 AB ,且对 AB 边上任意一点 N,恒有
4
NB NC MB MC ,则有( )
A. AB BC
B. AB AC
C. AB AC
D. AC BC
11.点 P 是 ABC 所在平面内的一点,若CB PA PB( R) ,则点
高中数学平面向量综合练习含解析 高中数学(平面向量)综合练习含解析
1.在△ABC 中,AB c ,AC b .若点 D 满足 BD 2DC ,则 AD ( )
A. 2 b 1 c
33
B. 5 c 2 b
33
C. 2 b 1 c
33
D. 1 b 2 c
33
2.已知 OA 1, OB 3 ,OA OB 0 ,点 C 在 AOB 内,且 AOC 30 ,
f (x) (4 x)(a x) 的最小值是 a 3 或在 x 3时取得最小值,由二次函数
的性质结论易得.
11.B
【解析】
试题分析:由 CB PA PB 得 CB PB PA ,即 CP PA,所以CP 及 PA
共线,故选 B.
考点:向量的线性运算,向量的共线.
12.C
【解析】
3
(2)用 x, y 表示 并求 的最大值.
30.已知椭圆 C
:
x2 a2
y2 b2
1(a
b
0) ,过左焦点 F1(1, 0) 的直线及椭圆
C 交于 M 、 N 两点,且 F2MN 的周长为 8 ;过点 P(4, 0) 且不及 x 轴
相关文档
最新文档