5专题5---4.2 图形的全等
图形的全等-【题型·技巧培优系列】七年级数学下册精讲精练(北师大版)2
【解答】解: 、两个图形不全等,故此选项不合题意;
、两个图形全等,故此选项符合题意;
、两个图形不全等,故此选项不合题意;
、两个图形不全等,故此选项不合题意.
故选: .
题型二全等图形的性质
【例题2】(2022秋?琼山区校级期中)下列选项中表示两个全等的图形的是
【分析】根据图形即可得到结论.
【解答】解:由图知, ,
故选: .
【变式3-2】(2021秋?台江区期末)如图,已知方格纸中是4个相同的正方形,则 的度数为
A. B. C. D.
【分析】根据对称性可得 , .
【解答】解:观察图形可知, 所在的三角形与 所在的三角形全等,
,
又 ,
,
故选: .
【变式3-3】(2022秋?鄞州区期中)如图是单位长度为1的正方形网格,则 .
故选: .
【变式2-2】(2022秋?浦口区校级月考)如图,在四边形 与 中, , , .下列条件中:① , ;② , ;③ , ;④ , .添加上述条件中的其中一个,可使四边形 四边形 ,上述条件中符合要求的有
A.①②③B.①③④C.①④D.①②③④
【分析】连接 、 ,通过证明 △ , △ ,即可得到结论.
、能够完全重合的两个图形是全等图形,故此选项正确,符合题意;
故选: .
解题技巧提炼
此题主要考查了全等图形,正确把握全等图形的定义是解题关键.
【变式2-1】(2022秋?金湖县期中)下列说法正确的是
A.两个形状相同的图形称为全等图形
B.两个圆是全等图形
C.全等图形的形状、大小都相同
D.面积相等的两个三角形是全等图形
《图形的全等》word教案 (公开课获奖)2022北师版 (6)
4.2 图形的全等一、教材的本质、地位和作用:《图形的全等》是北师大版数学七年级下册第四章第二节的内容。
这节课是在学生学习了线段、角、相交线和平行线及三角形的根本概念后引入的,主要探究全等图形的概念和特征以及全等三角形的概念、性质、对应关系和符号表示。
重点渗透了由一般到特殊、由具体到抽象和对应的数学思想。
内容虽不多,也不难,但却是进一步学习三角形全等的根底,特别是全等三角形的对应关系更是学习三角形全等的核心内容。
二、教学目标分析:知识技能:⒈通过实例理解图形全等的概念及特征,并能识别图形的全等。
⒉理解全等三角形的概念,掌握全等三角形的性质。
数学思考:通过观察、操作等活动,进一步开展学生的空间观念、几何直观,积累数学活动经验,培养学生由一般到特殊,由具体到抽象以及对应的数学思想。
问题解决:通过“看〞、“说〞、“做〞、“议〞、“练〞等活动,培养学生观察操作、合作交流以及解决问题的能力。
情感态度:通过让学生积极参与图形全等的探究过程,从中体味合作与成功的快乐,建立学好数学的自信心,体会数学与现实生活的密切联系。
本节课的教学重难点是:重点:全等图形及全等三角形的性质。
难点:全等三角形对应元素确实定。
三、教学问题诊断在学习本节课之前,学生已经学过了线段、角、相交线、平行线、三角形的有关知识及一些简单的说理内容。
在相关知识的学习过程中,学生已经经历了一些认识图形的活动,解决了一些简单的现实问题,具有了一定的图形分析能力,具备了一定的合作与交流的能力,获得了一些数学活动经验的根底。
因此学生在学习全等图形、全等三角形的定义及性质时困难并不大,但是一下子要学生从直观的图形去概括出抽象的图形全等的概念这是比拟困难的。
因此在设计时我用学生创作的以“中国梦·我的梦〞为主题的艺术作品引出课题,这样做既能让学生对图形全等有一个感性的认识,又能激发起学生的学习兴趣,同时也能让学生感受到数学来源于生活。
然后让学生经历“看、说、做、议、练〞等教学活动,使学生通过“动眼〞、“动手〞、“动口〞、“动脑〞感悟图形的全等——应用图形的全等——创造图形的全等,带动知识发生、开展到应用的全过程。
北师版数学七年级下册同步练习4.2图形的全等
4.2图形的全等一、单选题1.下列说法正确的是()A. 所有的等边三角形都是全等三角形B. 全等三角形是指面积相等的三角形C. 周长相等的三角形是全等三角形D. 全等三角形是指形状相同大小相等的三角形2.下列说法中,错误的是()A. 全等三角形对应角相等B. 全等三角形对应边相等C. 全等三角形的面积相等D. 面积相等的两个三角形一定全等3.下列命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为()A.1个B.2个C.3个D.4个4.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A. B. C. D.5.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形6.下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等7.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,下列结论不正确的是()A. EF⊥ACB. AD=4AGC. 四边形ADEF为菱形D. FH=BD8.下列说法正确的是()A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A. 90°B. 120°C. 135°D. 150°10.下列说法正确的是()A. 面积相等的两个图形全等B. 周长相等的两个图形全等C. 形状相同的两个图形全等D. 全等图形的形状和大小相同二、填空题11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=________度。
新教材【北师大版】七年级下册数学4.2《图形的全等》教学设计
(新教材)北师大版精品数学资料第五章三角形5.2 图形的全等〖教学目标〗1.知识与技能:(1)理解全等图形的概念和特征。
(2)能够认识和区分全等图形。
(3)对给出的图形,能够分割成全等图形。
2.数学思考、解决问题、情感与态度:(1)经历认识全等图形、辨认全等图形、自主分割全等图形的学习过程,体验数学活动充满探索性和创造性,体现“学有用的数学”。
(2)通过师生的共同活动,来提高学生对图形的分析能力,发展他们的空间观念和积极参与的主动精神。
〖教材分析〗本节课是学习全等三角形的准备课,属于入门教学内容。
本节课的活动内容较多,更注重对学生开放性思维的培养。
要求教师通过创设与学生生活环境、知识背景密切相关的教学情境,帮助学生理解数学概念,寻求解决数学问题的方法。
本节课倡导合作交流的学习气氛,通过师生互动、生生互动学习新知识。
〖学校及学生状况分析〗我校是甘肃省示范性中学,办学条件良好,有一栋实验楼,3间多媒体教室,每个班都有投影仪。
绝大部分学生来自城市,有较好的学习基础。
〖教学设计〗(一)创设问题情境,引出新课(出示幻灯片)在通往数学王国的道路上,有一天,小聪聪遇到了一个难题:在一个房间内有四扇门,其中只有一扇是智慧之门,小聪聪只知道这扇门与其他几扇门不太一样,有它自己特有的特征。
但是,特征是什么,他也不知道,只能通过自己的观察来作出判断。
同学们,假如你是小聪聪,你会选择哪一扇门呢?生1:第三扇,因为上面的图案只有一种,而其他的门上都有多种图案。
生2:第三扇门上的图案全都一样,是三角形,并且大小也一样,所以我也认为是它。
师:是不是这样呢?我们继续来看。
点击第三扇门,继续播放:大门打开,屏幕出现:“祝贺你向数学王国又进了一步,开始今天的学习吧!”字幕。
师:刚才第三扇门上的图案全都一样,它们的大小也相同,我这里还有一些图片,请大家仔细观察,看看它们有什么特点?生:每组图片的图案一样,大小也一样。
师:非常好,我们继续来看。
4.2 图形的全等
√
)
(4)一个图形通过平移、旋转、翻折得到的图形 与原图形全等 -------------( √ ) (5)边数相同的图形一定能互相重合---(
(6)所有的圆都是全等图形---------------(
× ×
)
)
图中共有多少对全等图形?分别是哪些?
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
D
一对最长的边是对应边,一对最短的边是对应边. 一对最大的角是对应角,一对最小的角是对应角.
你能将一个等边三角形分
成两个全等三角形吗?
能把它分成三个,四个 全等三角形吗?
你能将一个等边三角形分
成两个全等三角形吗?
能把它分成三个,四个 全等三角形吗?
你能将一个等边三角形分
成两个全等三角形吗?
能把它分成三个,四个 全等三角形吗?
能够完全重合即可.完全重合包含两层含义:图形的
形状相同、大小相同; (2)全等图形的周长、面积分别相等,但周长或面积相等 的两个图形不一定是全等图形. 3.几种常用的全等变换方式:平移、翻折、旋转.
①和⑨、②和③、④和⑧、⑪和⑫ 例 下图中是全等图形的是_________________________________ .
(3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角,
最小的角是对应角;
说一说:
说说你生活中见过的全等图形的例子。
议一议:
观察下面两组图形,它们是不是全等图形?为什么? 形状 相同
大小 相同
观察下列各组图形是不是全等图形?为什么?
北师大版七年级数学下册教案:4.2图形的全等
-空间想象力的培养:全等图形的学习需要较强的空间想象力,而这一能力对部分学生来说是一个难点。
举例解释:
-针对判定方法的选择难点,可以通过对比练习,让学生在不同的题目中尝试使用不同的判定方法,并通过讨论和讲解明确每种方法的适用场景。
1.讨论主题:学生将围绕“图形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-全等图形的判定方法:掌握SSS、SAS、ASA三种判定方法,能够准确地识别和应用这些方法判断两个图形是否全等。
-全等图形的性质:了解全等图形的对应角相等、对应边相等的性质,并能够运用这些性质解决相关问题。
举例解释:
-在讲解全等图形的定义时,可以通过实际操作教具或多媒体演示,让学生直观地看到两个图形如何完全重合,强化对定义的理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,让学生直观地感受全等图形的特点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
-在全等图形性质的应用方面,可以设计一些具体的题目,如“已知三角形ABC全等于三角形DEF,求证:AB=DE,∠B=∠E”,通过这样的题目帮助学生理解性质的应用。
4.2 图形的全等
知3-讲
解:因为Rt△ABC≌Rt△CDE, 所以∠BAC=∠DCE. 又因为在Rt△ABC中,∠B=90°, 所以∠ACB+∠BAC=90°.
所以∠ACB+∠ECD=90°.
所以∠ACE=180°-(∠ACB+∠ECD) =180°-90°=90°.
(来自《点拨》)
知3-讲
总
结
示大小相同.记两 个三角形全等时,通常把表示对应顶点的字母写在对应
的位置上,如点A和点D,点B和点E ,点C和点F是对应
顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和 ∠D,∠B和∠E,∠C和∠F是对应角.
4.教你一招:对应元素的确定方法:
(1)字母顺序确定法:根据书写规范,按照对应顶点确定对 应边、对应角,如△CAB≌△FDE,则AB与DE、AC与 DF、BC与EF是对应边,∠A和∠D、∠B和∠E、∠C 和∠F是对应角;
(来自《点拨》)
知3-讲
例6 如图,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且
B,C,D三点在一条直线上,求∠ACE的度数.
要求∠ACE,只需求∠ACB、 导引: ∠ECD或∠ACB+∠ECD即可. 由于∠ACB和∠ECD无法求出,
因此必须求∠ACB+∠ECD.
由Rt△ABC≌Rt△CDE,可知∠BAC=∠DCE, 结合直角三角形的两个锐角互余的性质,可求∠ACB 与∠ECD的度数和,再根据平角的定义可求∠ACE的 度数.
(来自《点拨》)
知3-练
1
若△ABC与△DEF全等,点A和点 E,点B和点D分
别是对应点,则下列结论错误的是(
A.BC=EF C.∠C=∠F 2 B.∠B=∠D D.AC=EF )
)
北师大版七年级数学下册 4.2 图形的全等同步练习(无答案)
北师大版七年级数学下册 4.2 图形的全等同步练习(无答案)一.选择题1.在下列每组图形中,是全等图形的是( )图4-2-12.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形全等;④全等三角形的周长相等;其中正确的说法为()A.①②③④ B.①②③ C.②③④ D.①②④5.下列图形与如图所示的图形全等的是()A.B.C.D.6.全等形是指()A.形状相同的两个图形 B.面积相同的两个图形C.两张中国地形图,两个等腰三角形都是全等形 D.能够完全重合的两个平面图形7.全等形是指A. 形状相同的两个图形B. 面积相同的两个图形C. 两张中国地形图,两个等腰三角形都是全等形D. 能够完全重合的两个平面图形8若△ABC≌△DEF,则下列说法不正确的是()A. 和是对应角B. AB和DE是对应边C. 点C和点F是对应顶点D. 和是对应角9如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,若测得∠A=∠D=90°,AB=3,DG=1,AG=2,则梯形CFDG的面积是()A. 5B. 6C. 7D. 810.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B. 120°C. 135°D. 150°二.填空题11两个能够完全重合的图形称为 .12全等图形的和完全相同.13由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).14如图,△EFG≌△NMH,△EFG的周长为15cm,HN=6cm,EF=4cm,FH=1cm,则HG= ______ .15如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3,若这两个三角形全等,则x= ______ .16.各边长度都是整数.最大边长为8的三角形共有________个.三、解答题17. 如图,已知△ABC≌△DCB.(1)分别写出对应角和对应边;(2)请说明∠1=∠2的理由.18. 如图所示,已知△ABC≌△FED,试说明AB∥EF.19. 如图,若点A、D、E、B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°,则CD⊥AB,为什么?你能求出∠B的度数吗?20.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.。
《同步学案》北师七年级(下册)4.2 图形的全等
4.2 图形的全等1.了解全等图形的定义;2.掌握全等图形的特征,并能利用这些特征解决相关问题;3.重难点:了解图形的全等与全等图形的特征;能识别全等图形及通过实践活动得出全等形.知识导入试着找出下列各组图形间的特点是什么?知识点一:全等图形的概念例1 指出下列图形中的全等图形.分析根据全等图形的定义,进行识别判断即可.主要看它们的形状和大小是否相同.解析⑴和⑺,⑶和⑹,⑷和⑽都是全等图形.点拨解决本题的关键是抓住全等图形的定义,两个图形全等,只和它们的形状和大小有关,和它们的位置没有关系.知识点二:全等图形的性质例2 下列说法中,错误的个数是()⑴只有两个三角形才能完全重合;⑵两个全等的图形的周长一定相等;⑶如果两个图形全等,它们的形状和大小一定都相同;⑷两个全等的图形的边数一定相同.A.1个B.2个C.3个D.4个分析不是只有三角形才可以完全重合,只要两个图形全等,其他的图形也可以,所以⑴错误;两个全等的图形,它们的形状和大小都相等,所以边数和周长也一定相同,所以⑵⑶⑷都是正确的.解析 A点拨两个图形全等,那么它们的形状和大小也都相同,进而还可以判断出全等的两个图形的周长和面积以及边数都是相等的.知识点三:分割一个图形为几个全等图形例3 如图,把一个正方形割去四分之一,将余下的部分分成3个全等的图形(图①);将余下的部分分成4个全等的图形(图②).仿照示例,请你将一个正三角形割去四分之一后余下的部分(1)分成3个全等的图形(在图③中画出示意图).(2)分成4个全等的图形(在图④中画出示意图).(3)你还能利用所得的4个全等的图形拼成一个平行四边形吗?若能,画出大致的示意图.分析(1)由③中图形按其面积分成三个面积相等图形而画得;(2)在其中间找到一横线平行于与底边,尺度合适而画得;(3)结合(1)(2)利用平行,面积分别相等而画得.解析(1)如图一;(2)如图二;(3)答案不唯一,如图③④⑤.点拨本题主要考查利用全等图形的性质,根据图形的特点,把图形分割为形状相同的几个图形.知识探究1.判断两个图形是否全等的方法判断两个图形是否全等只需要判断两个图形的形状和大小是否完全相同,只有形状和大小都相同的两个图形才是全等的.2.利用图形全等的性质解决问题图形全等的性质:⑴形状相同;⑵大小相同;这里包含了两个全等图形的对应边相等,对应角相等,周长相等和面积相等.例一块田地里有四棵树,如图所示,你能不能给它们在这块地上用篱笆分成形状和大小都相同的四块?分析图中有16个小方格,平均分成4份后,每份应有4个小方格,且每份中应有一棵树,因此必须经过正方形的中心点,中间4个小方格应分开.解析如图所示,能分成大小、形状完全相同的四块地.点拨解决本题的关键是分析出四份的分界线经过正方形的中心点,且每个地块应该有四个小方块,被分成的四块地一定要全等,另外每块地里还要有一棵树.易错辨析题下列语句正确的是()A.所有的正方形都全等B.所有的长方形都全等C.所有的圆都全等D.同一底片洗出的两张一寸的照片是全等的图形错解 A辨析本题错解错在只考虑的图形的形状,而忽略了图形的大小.A中的两个正方形如果边长不相等的话,也不是全等图形,B中的长宽各不相同的两个长方形也不是全等图形,C中的圆如果半径不相等,两个图形也不是全等图形,而D中的同一底片洗出的两张一寸的照片,形状和大小都是一样的,所以是全等图形,故D正确.正解 D1. (1)两个形状相同的图形称为全等图形;(2)两个圆是全等图形;(3)两个正方形是全等图形;(4)全等图形形状大小都相同;(5)面积相等的两个三角形是全等图形.下列说法中正确的是().A.(1)(2)(3)B. (1)(2)(5)C. (1)(4)(5)D. 只有(4)正确.2. 下列四个图形中用两条线段不能分成四个全等图形的是()3.如下图所示,已知正方形的边长为4cm,则图中阴影部分的面积为 cm2.4. 如图,是用4个全等的等腰梯形镶嵌成的图形,则这个图形中等腰梯形上下两底边比是 .5. 如图,把大小为4×4正方形方格分割成两个全等图形,例如图1、请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形图形方格分割成两个全等图形.如图所示的一个长为40cm,宽为30cm的矩形钢板的左上角被截去了一块长为20cm,宽为10cm的矩形后,剩下的一块下脚料.工人师傅要将它做适当的切割,重新拼接后焊接成一个面积和原下脚料的面积相等且接缝尽量短的正方形工件.请根据上述要求,设计出将这块下脚料适当分割成四块或四块以上的两种不同的拼接方案,在图(2)和图(3)中分别画出切割时所沿的虚线,以及接缝后所得到的正方形,保留拼接的痕迹.分析根据题目中的要求,最后拼接成一个正方形,这个正方形的边长正好是以30cm和10cm 为两直角边的直角三角形的斜边长,为此设法在原钢板上构造直角边长为30cm和10cm的直角三角形即可.解析答案不唯一,如图所示,原钢板下脚料被切割成四块和五块的不同图案.点拨解决本题的关键是利用全等图形的特点,对原下脚料的各个边长分析得出所拼得的正方形的边长是是以30cm和10cm为两直角边的直角三角形的斜边长.练习如图所示,直角梯形ABCD是由一个正方形ABED和一个腰长与正方形边长相等的等腰直角三角形BEC拼成的,请你将它分成4个全等的直角梯形(保留作图痕迹,不必写出画法).参考答案课堂检测1. D 2. B 3.. 8 4. 1: 2 解析根据已知图形得出AE=CE,AB∥CE,BC∥AD,推出等边△AED,和平行四边形ABCD,推出AB=2CE,即可求出答案.5. 解析:四种不同的分法:方法①:竖着从中间做对称轴如图一所示.方法②:横着从中间做对称轴如图二所示.方法③:做互补图形,翻过来可以保持全等,如图三所示.方法④:做互补图形,翻过来可以保持全等,如图四所示.综合提升练习分析设正方形的面积为2,则△BEC的面积为1,根据题意,分成的每一个直角梯形的面积为34 ,然后找出正方形的中心O,过中心O分别作OF∥AD交AB于点F、作OG ∥CD交BE于点H,交BC边于点G,连接OD、HE,即可作出.解析如图所示,①②③④部分就是全等的直角梯形.。
图形的全等讲解
课题:第四章第二节图形的全等课型:新授课授课人:授课时间:教学目标:1.通过实例理解图形全等的概念和性质,并能识别图形的全等.2.理解全等三角形的概念及性质,会寻找全等三角形的对应边、对应角.(重难点)3.利用全等三角形的性质,能进行简单的推理和计算,并能解决一些实际问题.(重点)教法及学法指导:本课应用五环节教学模式:创设情境—自主探究—合作竞学—巩固训练—测试评价,由“感悟图形的全等——应用图形的全等——创造图形的全等”,带动知识发生、发展的全过程。
在实际教学中,特别注重不同难度的问题,提问不同层次的学生,有效地开发全体学生的潜在智能,力求使每个学生都能在原有的基础上得到发展.课前准备:教师制作课件,准备作图工具;学生准备白纸和剪刀,并预习本节课的内容.教学过程:一、创设情境感悟导入师:图形给大家带来了美好的视觉感受,一款和图形有关的小游戏也让人爱不释手.(播放“连连看”)生:(兴致勃勃观看游戏)师:能够连接成功的图形具有什么特点?生:一模一样.师:好,从本节课开始,我们就共同来探究这些图形的联系.(板书课题“4.2图形的全等”)【设计意图】其一,有趣的游戏引入,极大地调动学生的学习兴趣;其二,为下一步寻找全等图形打下铺垫;其三,对全等图形建立一个感性认识.二、自主学习探究新知1. 全等图形的定义和性质(1)找一找师:这是一组生活中的图片,每组图片有什么共同特征?生1:两个国旗能够完全重合.生2:四张邮票也一模一样,能够完全重合.生3:第三组中小“S”能完全重合,大“S”也能完全重合.师:这样的两个图形我们称为全等图形,你能不能给全等图形下个定义?生:能够完全重合的两个图形称为全等图形.师:你能从下列几何图形中找出全等图形吗?(出示另一组图片)生1:(4)和(9)是全等图形;(5)和(11)全等;(7)和(10)全等.(2)说一说师:你身边也有很多全等图形,能说出几组吗?生(饶有兴致寻找,观察,思考)生1:我们班的纪律循环红旗和卫生循环红旗.生2:我的左手和右手.生3:我身边的这两扇窗户.‥‥‥‥‥‥(3)议一议师:大家都有一双善于发现的眼睛。
《4.2 图形的全等》教案5
《4.2图形的全等》教案
教学目标:
1.知识目标:借助具体情境和图案,经历观察、发现和实践操作重叠图形等过程,了解图形全等的意义,了解全等图形的特征;
2.能力目标:培养学生善于观察的能力;
3.情感目标:培养学生审美情趣.
教学重、难点:
图形的全等与全等图形的特征的了解是本节课的重点,识别全等图形及通过实践活动得出全等力形既是重点也是难点.
教学过程:
一、导入新课
1.看一看
引导学生观察课本两组图形.
多举一些学生比较熟悉的能全等或不全等图形的实例,让学生进行想象全等图形与不全等图形的区别;例如:
(1)同一张底片冲印出两张相同尺寸的相片与两张不同尺寸的相片;
(2)同一人的两只手掌与一大人左手掌和一小孩的左手掌;
(3)一个三角形和一个四边形.
这些图形中,有些是完全一样的,如果把它们叠在一些,它们就能重合;你能分别从图中找出这样的图形吗?
两个能够重合的图形称为全等图形.
2.议一议
(1)用复写纸印出任一封闭图形.
(2)把两张纸叠在一起,用剪子随意剪出一个图形.
这样得到的两个图形有什么特征?
这两个图形能够重合,它们的形状和大小都相同.
(3)在看一看中,你的看法如何?
形状相同且大小也相同的两个图形能够重合,反之亦然.
形状不同或大小不同的两个图形不能重合,不能重合的两个图形大小一定不相同.
(4)能够重合的两个图形称为全等图形.
(5)观察下面两组图形,它们是不是全等图形?
得出结论:全等图形的形状和大小都相同.
二、小结:
本节课学习了能够重合的图形称为全等图形,全等图形的形状和大小都相同.。
北师大版七年级下册数学教学设计:4.2《图形的全等》
北师大版七年级下册数学教学设计:4.2《图形的全等》一. 教材分析《图形的全等》是北师大版七年级下册数学的第二节内容。
本节内容是在学生已经掌握了图形的认识、图形的性质等基础知识的基础上进行学习的。
全等是几何中的一个重要概念,是判断两个图形是否相同的依据。
通过学习全等,可以使学生进一步理解图形的性质,提高解决问题的能力。
本节内容主要包括全等的定义、全等的性质和全等的判定方法。
二. 学情分析学生在学习本节内容之前,已经掌握了图形的认识、图形的性质等基础知识,但全等作为一个新的概念,对学生来说还是比较抽象的。
因此,在教学过程中,需要通过具体的事例,使学生感知全等的概念,并通过实践活动,使学生理解和掌握全等的性质和判定方法。
三. 教学目标1.理解全等的定义,掌握全等的性质和判定方法。
2.能够运用全等解决实际问题。
3.培养学生的观察能力、动手能力和解决问题的能力。
四. 教学重难点1.全等的定义和性质。
2.全等的判定方法。
五. 教学方法1.采用情境教学法,通过具体的事例,使学生感知全等的概念。
2.采用实践活动法,让学生通过动手操作,理解和掌握全等的性质和判定方法。
3.采用问题解决法,让学生在解决问题的过程中,运用全等知识和方法。
六. 教学准备1.教学PPT。
2.教学素材(如图片、图形等)。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的全等现象,如两只完全相同的铅笔、两只完全相同的手套等,让学生感知全等的概念。
2.呈现(10分钟)引导学生观察和分析这些全等现象,总结出全等的定义,并给出全等的符号表示。
3.操练(10分钟)让学生通过动手操作,尝试判断一些给定的图形是否全等。
在此过程中,引导学生理解和掌握全等的性质和判定方法。
4.巩固(10分钟)让学生解答一些关于全等的问题,巩固所学知识。
5.拓展(5分钟)引导学生运用全等知识解决实际问题,如判断两个三角形是否全等,解决一些几何问题等。
6.小结(5分钟)让学生总结本节课所学的主要内容和知识点。
4.2 图形的全等课件
D O
C
⑶.找出对应角,它们有什么关系? (口答) = B _________ = C ∠A 和∠ ,∠D 和∠ 对应角:________
∠ DOA 和∠ ______________ = COB ⑷.如果∠A=35°,∠D=75°,那么 70° ∠COB=____
A
图1
A C
B
2、如图2,如果△ADE ≌ △CBF,那么AE∥CF吗? D B 是 ___ (口答“是”或“不是”)
在两个全等三角形中,对应角的对边是对应边,对应边 的对角是对应角。
在两个全等三角形中公共角是对应角,公共边是对应边。 在两个全等三角形中(不等边),相等的角是对应角, 相等的边是对应边。 在两个全等三角形中,一对最长的边是对应边,一对最 短的边是对应边。一对最大的角是对应角,一对最小 的角也是对应角。
15
2.几种常见的全等三角形基本图形
A D
B
C
E
F
平移
D
A D
A E B C F
B E C F
16
2.几种常见的全等三角形基本图形
E D
E
A
A
B
D
C
B C
旋转
17
2.几种常见的全等三角形基本图形
A E B C D
A E B O D C
翻折
A
A
D
A
B
C
B C D E
B
C
D
18
确定对应边、对应角的方法
11
A1
A1
B1
C1
B1
C1
定义:能够完全重合的两个三角形称为全等三角形。 记作:△ABC≌△A1B1C1 注:记两个三角形全等时,通常把表示对应顶点 的字母写在对应的位置上。
北师大版七年级数学下册 4.2《图形的全等》教学课件%28共32张PPT%29
EF=7,求∠DEF的度数和CF的长.
E
D
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=7-4=3.
C A
F B
典型例题
例4.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D= 25°,∠EAB=120°,求∠ACB的度数.
探究新知
②如图,已知△ABC≌△A′B′C′,在△A′B′C′中画出与线段DE相 等的对应线段.
典型例题
例1.下列四个图形是全等图形的是( C)
A .(1)和(3) C .(2)和(4)
B .(2)和(3) D .(3)和(4)
典型例题
例2.如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三
探究新知
下面这些图形中有些是完全一样的,如果把它们叠在一起,它们 就能重合.你能分别从图中找出这样的图形吗?
定义:能够完全重合的两个图形称为全等图形.
探究新知
观察下面三组图形,它们是不是全等图形?为什么?
全等图形的性质:如果两个图形全等,它们的形状和大小一定都相同.
探究新知
A
D
B
C
E
F
能够完全重合的两个三角形叫做全等三角形.
(2)如图,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数 为___3_0_°_____ .
随堂练习
(3)如图,C为直线BE上一点,△ABC≌△ADC,∠DCF= ∠ECF,则AC和CF的位置关系是 A_C__⊥__C_F.
随堂练习
4.找出下列图形中的全等图形.
(1) (2) (3) (4) (5) (6)
2020-2021学年北师大版七年级数学下册第四章4.2图形的全等 同步测试(原卷版)
北师大版七年级数学下册第四章4.2图形的全等 同步测试(原卷版)一.选择题1.下列各组中的两个图形属于全等图形的是( )A .B .C .D .2.全等形是指两个图形( )A .大小相等B .完全重合C .形状相同D .以上都不对3.如图所示,下列图形中能够重合的图形有( )A .1对B .2对C .3对D .4对4.若△ABC △△DEF ,且△A =60°,△B =70°,则△F 的度数为( )A .50°B .60°C .70°D .80°5.如图是由4个相同的小正方形组成的网格图,其中△1+△2等于( )A .150°B .180°C .210°D .225°6.用两个全等的直角三角形拼成凸四边形,拼法共有( )A .3种B .4种C .5种D .6种 7.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是()A.带△去B. 带△去C. 带△去D. 带△和△去8.如图,△ABC △△ADE ,点E 在BC 边上,△AED =80°,则△CAE 的度数为( ) ② ①③ 7题A.80°B.60°C.40°D.20°9.三个全等三角形按如图的形式摆放,则△1+△2+△3的度数是()A.90°B.120°C.135°D.180°10.如图,△ABC△△ADE,若△B=80°,△C=30°,△DAC=25°,则△BAE的度数为()A.55°B.75°C.105°D.115°11.图中的小正方形边长都相等,若△MNP△△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A12.如图,已知△ABC△△DEF,CD平分△BCA,若△A=30°,△CGF=88°,则△E的度数是()A.30°B.50°C.44°D.34°二.填空题13.下列图形中全等图形是(填标号).14.已知△ABC△△DEF,若AB=5,则DE=.15.如图,在由6个相同的小正方形拼成的网格中,△1+△2=°.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,△1+△2+△3+△4+△5+△6+△7=.17.如图AB,CD相交于点E,若△ABC△△ADE,△BAC=28°,则△B的度数是.18.如图,△ABC△△ADE,△EAC=35°,则△BAD=°.三.解答题19.沿着图中的虚线,请把如图的图形划分为4个全等图形,把你的方案画在图中.20.找出下列图形中的全等图形.21.如图,△ABC△△DBE,点D在边AC上,BC与DE交于点P,已知△ABE =162°,△DBC=30°,求△CDE的度数.22.如图,ΔABC△ΔD EF,△A=25°,△B=65°,B F=3㎝,求△D FE的度数和E C 的长.23.如图所示,已知△ABC△△FED,AF=8,BE=2.(1)求证:AC△DF.(2)求AB的长.24.如图,△ABC△△DBE,点D在边AC上,BC与DE交于点P,已知△ABE =162°,△DBC=30°,AD=DC=2.5,BC=4.(1)求△CBE的度数.(2)求△CDP与△BEP的周长和.北师大版七年级数学下册第四章4.2图形的全等同步测试答案提示一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对解:能够完全重合的两个图形叫做全等形,故选:B.3.如图所示,下列图形中能够重合的图形有()A.1对B.2对C.3对D.4对解:仔细观察图形可得只有一对全等形(最右边的一对直角三角形).故选:A.4.若△ABC△△DEF,且△A=60°,△B=70°,则△F的度数为()A.50°B.60°C.70°D.80°解:△△A=60°,△B=70°,△△C=180°﹣60°﹣70°=50°,△△ABC△△DEF,△△F=△C=50°,故选:A.5.如图是由4个相同的小正方形组成的网格图,其中△1+△2等于()A .150°B .180°C .210°D .225° 解:由题意得:AB =ED ,BC =DC ,△D =△B =90°,△△ABC △△EDC (SAS ),△△BAC =△1,△1+△2=180°.故选:B .6.用两个全等的直角三角形拼成凸四边形,拼法共有( )A .3种B .4种C .5种D .6种 解:可拼成如上图所示的四种凸四边形.故选:B . 7.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是()A.带△去B. 带△去C. 带△去D. 带△和△去解答:因为第△块就能确定所需要玻璃的大小,故选C .② ①③ 6题8.如图,△ABC△△ADE,点E在BC边上,△AED=80°,则△CAE的度数为()A.80°B.60°C.40°D.20°解:△△ABC△△ADE,△AED=80°,△△C=△AED=80°,AE=AC,△△AEC=△C=80°,△△CAE=180°﹣△C﹣△AEC=180°﹣80°﹣80°=20°,故选:D.9.三个全等三角形按如图的形式摆放,则△1+△2+△3的度数是()A.90°B.120°C.135°D.180°解:如图所示:由图形可得:△1+△4+△5+△8+△6+△2+△3+△9+△7=540°,△三个全等三角形,△△4+△9+△6=180°,又△△5+△7+△8=180°,△△1+△2+△3+180°+180°=540°,△△1+△2+△3的度数是180°.故选:D.10.如图,△ABC△△ADE,若△B=80°,△C=30°,△DAC=25°,则△BAE的度数为()A.55°B.75°C.105°D.115°解:△△B=80°,△C=30°,△△BAC=180°﹣△B﹣△C=70°,△△ABC△△ADE,△△DAE=△BAC=70°,△△DAC=25°,△△EAC=△EAD﹣△DAC=45°,△△BAE=△BAC+△CAE=70°+45°=115°,故选:D.11.图中的小正方形边长都相等,若△MNP△△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A解:观察图象可知△MNP△△MFD.故选:A.12.如图,已知△ABC△△DEF,CD平分△BCA,若△A=30°,△CGF=88°,则△E的度数是()A.30°B.50°C.44°D.34°解:△CD平分△BCA,△△ACD=△BCD=△BCA,△△ABC△△DEF,△△D=△A=30°,△△CGF=△D+△BCD,△△BCD=△CGF﹣△D=58°,△△BCA=116°,△△B=180°﹣30°﹣116°=34°,△△ABC△△DEF,△△E=△B=34°,故选:D.二.填空题13.下列图形中全等图形是△和△(填标号).解:由全等形的概念可知:共有1对图形全等,即△和△能够重合.故答案为:△和△.14.已知△ABC△△DEF,若AB=5,则DE=5.解:△△ABC△△DEF,△AB=DE=5,故答案为:515.如图,在由6个相同的小正方形拼成的网格中,△1+△2=45°.解:如图所示:由图可知△ACE与△ABD与△ACF全等,△AB=AC,△1=△CAE=△ACF,△△CAE+△DAC=90°,△△1+△DAC=△BAC=90°,△△ABC是等腰直角三角形,△△2+△ACF=45°,△△1+△2=45°,故答案为:45.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,△1+△2+△3+△4+△5+△6+△7=315°.解:在△AEF和△LBA中,△△AEF△△LBA(SAS),△△7=△EAF,△△1+△7=90°,同理可得△2+△6=90°,△3+△5=90°,而△4=45°,△△1+△2+△3+△4+△5+△6+△7=90°+90°+90°+45°=315°.故答案为315°.17.如图AB,CD相交于点E,若△ABC△△ADE,△BAC=28°,则△B的度数是48°.解:△△ABC△△ADE,△AE=AC,△△AEC=△ACE,△△BAC=28°,△△AEC=△ACE=(180°﹣△BAC)=76°,△△ABC△△ADE,△BAC=28°,△△B=△D,△DAE=△BAC=28°,△△B=△D=△AEC﹣△DAE=76°﹣28°=48°,故答案为:48°.18.如图,△ABC△△ADE,△EAC=35°,则△BAD=35°.解:△△ABC△△ADE,△△BAC=△DAE,△△BAC﹣△DAC=△DAE﹣△DAC,△△BAD=△EAC,△△EAC=35°,△△BAD=35°,故答案为:35.三.解答题19.沿着图中的虚线,请把如图的图形划分为4个全等图形,把你的方案画在图中.解:如图所示:20.找出下列图形中的全等图形.解:由题意得:(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形.21.如图,△ABC△△DBE,点D在边AC上,BC与DE交于点P,已知△ABE =162°,△DBC=30°,求△CDE的度数.解:△△ABE=162°,△DBC=30°,△△ABD+△CBE=132°,△△ABC△△DBE,△△ABC=△DBE,△C=△E,△△ABD=△CBE=132°÷2=66°,△△CPD=△BPE,△△CDE=△CBE=66°.22.如图,ΔABC△ΔD EF,△A=25°,△B=65°,B F=3㎝,求△D FE的度数和E C 的长.解:根据已知条件,△ABC△△DEF,可知△E=△B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.△ABC中△A=25°,△B=65°,△△BCA=180°-△A-△B=180°-25°-65°=90°,△△ABC△△DEF,△△BCA=△DFE,BC=EF,△EC=BF=3cm,△△DFE=90°,EC=3cm.23.如图所示,已知△ABC△△FED,AF=8,BE=2.(1)求证:AC△DF.(2)求AB的长.证明:(1)△△ABC△△FED,△△A=△F.△AC△DF.(2)△△ABC△△FED,△AB=EF.△AB﹣EB=EF﹣EB.△AE=BF.△AF=8,BE=2△AE+BF=8﹣2=6△AE=3△AB=AE+BE=3+2=524.如图,△ABC△△DBE,点D在边AC上,BC与DE交于点P,已知△ABE=162°,△DBC=30°,AD=DC=2.5,BC=4.(1)求△CBE的度数.(2)求△CDP与△BEP的周长和.解:(1)△△ABE=162°,△DBC=30°,△△ABD+△CBE=132°,△△ABC△△DBE,△△ABC=△DBE,△△ABD=△CBE=132°÷2=66°,即△CBE的度数为66°;(2)△△ABC△△DBE,△DE=AC=AD+DC=5,BE=BC=4,△△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.。
(北师大版)七年级数学下册:第四章三角形4.2图形的全等备课素材
置疑导入归纳导入复习导入悬念激趣观察实物、图片.请同学们观察下面这些图片有何特征?教学中要充分让学生列举生活中的例子,并试着用一个名词概括这些例子.请大家想一想在你周围有没有全等的图形?请看我手里的照片,同一底片,相同的两张是全等的,不同的两张是不全等的.同一人的两只手掌以及老师的手掌和学生手掌.图4-2-1说明:利用生活中的全等形图片导入新课,让学生初步感知全等形的特点,这样不仅可以调动学生的积极性,也能让学生感受数学无处不在.建议:让学生通过观察,对全等图形有一个感性认识.听故事,赏图片(多媒体出示一组图片)图4-2-2【师】艺术家M.C.埃舍尔把自己称为一个“图形艺术家”.他专门从事于木板画,在1956年举办的一次画展得到了许多数学家的赞赏,在他的作品中数学的原则和思想得到了非同寻常的形象化.你知道他的画里蕴含着什么奥秘吗?让我们一起去探索吧!说明:利用名人的故事引入,激起学生学习新课的兴趣.学生通过观看图片,会发现其中有很多一样的图形.然后出示下一组图片,顺利进入全等图形的认识阶段.建议:通过小故事和具有视觉冲击力的图片,可迅速吸引学生的注意力和调动学生的学习欲望,然后利用学生发现的秘密引出探究学习的内容.94页随堂练习第2题图4-2-3如图4-2-3,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.【模型建立】全等三角形的对应边相等,对应角相等.【变式变形】1.如图4-2-4,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是(C)图4-2-4A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC由于两个三角形完全重合,故面积、周长相等.因为AD和BC是对应边,因此AD=BC,又∠ADB 与∠CBD为对应角,即∠ADB=∠CBD,可得AD∥BC.只有结论C不正确,答案为C.本题的解题关键是要知道两个全等的三角形中,对应顶点在对应的位置上,易错点是容易找错对应角∠ABD与∠CBD.2.如图4-2-5,△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于(C)A.6 B.5 C.4 D.无法确定4-2-54-2-6.如图4-2-6,已知△EAD≌△ABC,点A和点B是对应点,点C和点D是对应点,那么在图中,与CD+BC相等的线段是__AC__.4.如图4-2-7,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,求∠C的度数.4-2-74-2-85.如图4-2-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的.若∠1∶∠2∶∠3=28∶5∶3,求∠α的度数.6.如图4-2-9,已知△EFG≌△NMH,∠F和∠M是对应角,在△EFG中,FG是最长边,在△NMH 中,MH是最长边.EF=2.1 cm,EH=1.1 cm.HN=3.3 cm.图4-2-9(1)写出其他对应边和对应角;(2)求线段NM和线段HG的长度.全等图形的判断要熟练掌握全等图形的判别方法,能够完全重合的两个图形是全等图形.即形状和大小完全一样的两个图形.例如图4-2-10所示的图形是交通队新做的路牌,并未投入使用.图4-2-10完全一样的图形叠在一起,应该能够完全重合,这些图形中,哪些是完全一样的?请你分别从图中找出这样的图形,填在横线上__B与G,D与H,E与I__.设计全等图形根据全等图形的概念设计全等图形.例把一个正方形各边中点连接起来,就能把一个正方形分成四个全等的小正方形,如图4-2-11①.你还能把一个正方形分成四个全等的其他图形吗?请在图②,图③和图④中给出另外三种不同的方案.图4-2-11解:答案不唯一,如图4-2-12所示.图4-2-12全等三角形的性质全等三角形的对应边相等,对应角相等;全等三角形的周长相等,面积相等.例如图4-2-13,已知△ACF≌△DBE,∠E=∠F,AD=9 cm,BC=5 cm,则AB的长为__2__ cm.图4-2-13P95习题4.51.下面图形中有哪些是全等图形?解:(1)(8),(2)(12),(4)(9),(5)(11).2.如图,△AOD≌△BOC,写出其中相等的角.解:∠A=∠B,∠D=∠C,∠AOD=∠BOC.3.如图,△ABC≌△A′B′C′,∠C=25°,BC=6 cm,AC=4 cm,你能得出△A′B′C′中哪些角的大小、哪些边的长度?解:∠C′=25°,B′C′=6 cm,A′C′=4 cm.4.如图,一栅栏顶部由全等三角形组成,其中AC=0.2 m,BC=2AC,求BD的长.解:BC=2AC=0.4(m),BD=7BC=2.8(m).5.一个风筝如图所示,请在风筝图中找出3对全等三角形,并指出它们的对应边和对应角(可以在图中标注字母).解:略.6.沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.解:答案不唯一,如下图所示.专题一 图形全等的辨别即全等图形的性质 1.下列说法中,错误的是( )①只有两个三角形才能完全重合;②如果两个图形是全等形,那么它们的形状和大小一定都相同;③两个正方形一定是全等形;④边数相同的图形一定能互相重合.A .①③④B .①②③C .①③D .①④ 2.下列每组中的两个图形,是全等图形的为( )1. 若长为l 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为( )A .61≤x <41 B .81≤x <41C .61<x <41 D .81<x <41 专题二 与全等图形相关的操作探究题4.沿着图中的虚线,把下面的图形划分为两个全等图形(至少找出两种方法).5.将一个等边三角形分成全等的三部分,请设计出不同的方案.【知识要点】1.全等图形的概念:能够完全重合的两个图形称为全等图形.如:用同一个底片冲洗的同尺寸的照片. 2.全等图形的性质:全等图形的形状和大小都相同.3.全等三角形的相关概念:全等三角形是两个能够完全重台的三角形,或者是两个形状和大小完全相同的三角形,其中能够重舍的顶点,叫做对应顶点;能够重合的边,叫做对应边;能够重合的角叫做对应角,全等用符号“≌”表示,如△ABC 和△DEF 全等,我们把它记作“△ABC ≌△DEF ”,在这两个三角形中,对应顶点是A 和D ,B 和E ,C 和F ;对应边是AB 和DE ,AC 和DF ,BC 和EF ;对应角是∠A 和∠D ,∠B 和∠E ,∠C 和∠F . 4.全等三角形的性质:全等三角形的对应边相等,对应角相等. 【温馨提示】1.全等的图形必须是能够完全重合的图形,具备其他条件不能说明它们是全等图形,如: 全等图形的面积相等,我们不能说面积相等的图形是全等图形.2.全等图形的形状和大小都相同,同时全等图形的其他元素同样相同,例如:全等图形的周长相等;全等图形的面积相等;全等图形中的对应线段和对应角也相等.3.我们在表示三角形全等时,通常把表示对应顶点的字母写在对应的位置上,此时我们只要看到表示式就可以知道对应顶点、对应边和对应角了. 【方法技巧】1.判断两个图形是否全等,要判断形状和大小是否同时相同,两者缺一不可,只有大小和形状都相同的两个图形才是全等图形.2.在全等的两个三角形中:对应边所对的角一定是对应角;全等三角形的两条对应边所夹的角是对应角;对应角所对的边一定是对应边;最大的边(或者角)是对应边(或者角),最小的边(或者角)是对应边(或者角);公共边一定是对应边(或者对顶角一定是对应角).3.因为全等三角形能够完全重合,所以对应边上的中线、高线和对应角的角平分线也相等. 4.全等三角形的周长相等、面积相等,很多情况下,全等三角形的性质可以用来证明线段或角相等. 1.A 【解析】①错误,不是三角形的图形也能全等;②正确,两个图形全等,它们一定重合,所以它们的形状和大小一定都相同; ③错误,边长不同的正方形不全等; ④错误,两个边长不等的正方形不全等. 综上可得①③④错误. 故选A .2.A 【解析】A 选项两图形能够重合,为全等形,正确; B 选项的大小不同,不重合,故错误; C 选项的大小也不一样,不重合,错误; D 选项形状不一样,不重合,错误. 故选A .3.A 【解析】∵围成两个全等的三角形可得两个三角形的周长相等,∴x +y+z =21.∵y +z >x , ∴可得x <41.又因为x 为最长边不小于周长的31, ∴x ≥61.综上可得61≤x <41. 故选A . 4.5.略应用小孩思想----澄清全等问题从前,法国有个聪明的孩子,人人都赞美他,称他为神童.一次,国王在后花园里散步,忽然指着水池问身边的大臣:“池中有几桶水?”大臣们都被这古怪的问题问住了,你看看我,我看看你,答不上来,国王很扫兴,说:“给你们三天的时间,谁能回答谁就有赏.”三天过去了,大臣们还是答不上来.这时,有位大臣奏道:“城东有个孩子,人称神童,要不叫他来试一试.”国王想,全城都称赞这个孩子,这次就考考他.于是,国王下令宣小孩进宫.孩子听了国王的问题,眼睛眨巴了两下,随口答道:“如果桶和池一样大,就是一桶水;如果桶比池小一半,就是两桶水;如果桶是水池的三分之一,就是三桶水;如果……”没等小孩子说完,国王便连连赞道:“答的好,答得妙!真是聪明过人,胜过我的大臣.”大臣们听了都很惭愧.细品上述故事,小孩的确答得妙,妙在一个众人认为不易回答的问题,小孩能分情况考虑巧妙的答出,他这种思考问题的方法,实质是数学分类的思想方法.数学中需要用分类的方法解答的题很多.现在用此方法解答三角形全等中容易出错的一个问题.在全等三角形中常有这样一题:判断“两边及其中一边的对角分别对应相等的两个三角形全等”是否正确?同学们的答案差异很大.其实,若用小孩的分类的思想讨论,答案是很明显的.浙江省绍兴市2006年中考就有这样一题:我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整)证明:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=900,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.解:(1)又∵AB=A1B1,∠ADB=∠A1D1B1=90°.∴△ADB≌△A1D1B1,∴∠A=∠A1,又∵∠C=∠C1,BC=B1C1,∴△ABC≌△A1B1C1.(2)若△ABC、△A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形时,•AB=A1B1,BC=B1C1,∠C=∠C1,则△ABC≌△A1B1C1(当△ABC为锐角三角形、△A1B1C1为钝角三角形时,虽然满足了上述条件但它们不全等).阅读上述的故事和例题,这个全等中容易混淆的问题,一定很清楚了吧!。
2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等 同步练习题
2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子______________;(2)对应相等的边是______,______,______;(3)对应相等的角是______,______,______.2.(1)如图,两个三角形为全等三角形,则∠α的度数是______.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为______.3.如图,图中由实线围成的图形与①是全等图形的有______.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为______.二、选择题5.给出下列四对图形,其中为全等图形的有( )A.1对B.2对C.3对D.4对6.下列命题中正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( ) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为( )A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=______cm.12.如图所示的方格中,∠1+∠2+∠3=______.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=______.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.参考答案2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子:△AOC≌△BOD;(2)对应相等的边是AO=BO,OC=OD,AC=BD;(3)对应相等的角是∠A=∠B,∠C=∠D,∠AOC=∠BOD.2.(1)如图,两个三角形为全等三角形,则∠α的度数是72°.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为3.3.如图,图中由实线围成的图形与①是全等图形的有②③.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为30°.二、选择题5.给出下列四对图形,其中为全等图形的有(A)A.1对B.2对C.3对D.4对6.下列命题中正确的是(D)A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是(C) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为(A)A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.证明:∵△ABC≌△FED,∴∠A=∠F,∴AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.解:①对应角:∠BAC与∠CDB,∠ABC与∠DCB,∠ACB与∠DBC;对应边:AB与DC,AC与DB.BC与CB.②证明:∵△ABC≌△DCB,∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.∴∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.解:在△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°.∵△ABC≌△DEF,∴∠BCA=∠EFD,BC=EF.∴EC=BF=3 cm.∴∠DFE=90°,EC=3 cm.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.解:①证明:∵△ACD≌△ECD,∴∠A=∠CED,∠ADC=∠EDC.∵∠ADC+∠EDC=180°,∴∠ADC∠EDC=90°.∴CD⊥AB.②∵△CEF≌△BEF,∴∠B=∠ECF.设∠B=∠ECF=x,则∠CED=2x=∠A.∵∠ACB=90°,∴x+2x=90°.∴x=30°,即∠B=30°.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=27cm.12.如图所示的方格中,∠1+∠2+∠3=135°.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=28°.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.解:如图所示.(答案不唯一)或C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.解:∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.∵∠ACB=105°,∴∠CAB=180°-105°-25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°,∠AGB=∠ACB-∠GAC=105°-50°-10°=45°.。
2022河南数学中考总复习--三角形及其全等(试题、含解析)
2022河南数学中考总复习--4.2三角形及其全等五年中考考点1三角形的有关概念1.(2020吉林,5,2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°答案B如图,∠α是△ABC的外角,所以∠α=∠ABC+∠A=45°+30°=75°.故选B.2.(2021河北,12,2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点是()分别是点P1,P2,则P1,P2之间的距离可能..A.0B.5C.6D.7答案B连接OP1,OP2,因为点P关于直线l,m的对称点分别是点P1,P2,根据轴对称的性质得OP1=OP,OP2=OP.根据三角形的三边关系得OP1+OP2>P1P2,因为OP=2.8,所以0<P1P2<5.6,故选B.3.(2018福建,3,4分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案C三角形的三边边长要满足“任意两边之和大于第三边,任意两边之差小于第三边”,选项A、B、D均不符合.故选C.4.(2021福建,14,4分)如图,AD是△ABC的角平分线.若∠B=90°,BD=√3,则点D到AC的距离是.答案√3解析过D点作DE⊥AC于E点.∵AD是△ABC的角平分线,DB⊥AB,∴DE=BD=√3,即点D到AC的距离是√3.5.(2020北京,15,2分)如图所示的网格是正方形网格,A,B,C,D是网格线交点,则△ABC的面积与△ABD的面积的大小关系为:S△ABC S△ABD(填“>”“=”或“<”).答案=解析根据题中图形可以求得△ABC的面积为4,△ABD的面积由割补法可求,为4,所以两个三角形的面积相等.一题多解连接CD,可知CD∥AB,即点C、D到直线AB的距离相等,两个三角形同底等高,故面积相等.6.(2018湖北黄冈,12,3分)一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为 . 答案 16解析 ∵x 2-10x +21=(x -3)(x -7)=0,∴x 1=3,x 2=7, ∵3+3=6,∴3不能作为该三角形的第三边长, ∴三角形的第三边长为7, ∴三角形的周长为3+6+7=16.7.(2019四川成都,25,4分)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为 .答案 4或5或6解析 ∵A (5,0),S △OAB =152,点B 在x 轴的上方,∴点B 的纵坐标为3.设边OB ,AB 分别与直线y =1交于点E ,F ,与直线y =2交于点C ,D ,则BC =CE =EO ,CD ∥EF ∥OA ,∴CD =13OA =53,EF =23OA =103,∴线段CD 可以覆盖1个或2个整点,线段EF 可覆盖3个或4个整点,∴△OAB 内部(不含边界)的整点的个数为4或5或6.考点2三角形全等1.(2021重庆A卷,7,4分)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判定△ABC≌△DEF的是()A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD答案C由BF=EC可得BC=EF,又∠B=∠E,所以添加AB=DE后,根据SAS可得△ABC≌△DEF;添加∠A=∠D后,根据AAS可得△ABC≌△DEF;添加AC∥FD后,得∠ACB=∠DFE,根据ASA可得△ABC≌△DEF.添加AC=DF后,由SSA不能判定△ABC≌△DEF.故选C.2.(2019山东临沂,6,3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.2答案B∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△CFE中,{∠A=∠FCE,∠ADE=∠F, DE=FE,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB-AD=4-3=1.故选B.3.(2018江苏南京,5,2分)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c答案D∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,又∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b.∵EF=c,∴AD=AF+DF=a+(b-c)=a+b-c.故选D.思路分析证明△ABF≌△CDE,得出AF=CE=a,BF=DE=b,从而推出AD=AF+DF=a+b-c.解后反思本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形,属于中考常考题型.4.(2020北京,14,2分)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是(写出一个即可).答案答案不唯一,如:D是BC的中点解析根据题意可知AB=AC,∠B=∠C,若根据“边角边”判定△ABD≌△ACD,可以添加BD=CD(D是BC的中点);若根据“角边角”判定△ABD≌△ACD,可以添加∠BAD=∠CAD(AD平分∠BAC);若根据“角角边”判定△ABD≌△ACD,可以添加∠BDA=∠CDA(AD⊥BC或∠ADC=90°),答案不唯一.5.(2020江西,11,3分)如图,CA平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.答案82°解析∵∠EAC=49°,∴∠DAC=180°-∠EAC=131°.∵CA平分∠DCB,∴∠DCA=∠BCA,又CB=CD,CA=CA,∴△DCA ≌△BCA,∴∠DAC=∠BAC=131°,∴∠BAE=131°-∠EAC=82°.6.(2019辽宁大连,19,9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:AF=DE.证明∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.在△ABF和△DCE中,{AB=DC,∠B=∠C, BF=CE,∴△ABF≌△DCE(SAS),∴AF=DE.7.(2021陕西,18,5分)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.证明∵BD∥AC,∴∠EBD=∠C.(2分)∵BD=BC,BE=AC,∴△EDB≌△ABC.(4分)∴∠D=∠ABC.(5分)8.(2019江苏苏州,24,8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕点A旋转到AF的位置,使得∠CAF=∠BAE.连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.解析(1)证明:∵线段AC绕点A旋转到AF的位置,∴AC=AF.∵∠CAF=∠BAE,∴∠CAF+∠CAE=∠BAE+∠CAE,即∠EAF =∠BAC. 在△ABC 和△AEF 中,{AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS ), ∴EF =BC. (2)∵AE =AB ,∴∠AEB =∠ABC =65°. ∵△ABC ≌△AEF , ∴∠AEF =∠ABC =65°,∴∠FEC =180°-∠AEB -∠AEF =180°-65°-65°=50°. ∵∠FGC 是△EGC 的外角,∠GCE =28°, ∴∠FGC =∠GEC +∠GCE =50°+28°=78°.9.(2021河南,23,10分)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.图1小明:如图1,(1)分别在射线OA ,OB 上截取OC =OD ,OE =OF (点C ,E 不重合);(2)分别作线段CE ,DF 的垂直平分线l 1,l 2,交点为P ,垂足分别为点G ,H ;(3)作射线OP ,射线OP 即为∠AOB 的平分线.简述理由如下:由作图知,∠PGO =∠PHO =90°,OP =OP ,OG =OH ,所以Rt △PGO ≌Rt △PHO ,则∠POG =∠POH ,即射线OP 是∠AOB 的平分线.图2小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP,射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是(填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=√3+1,点C,D分别为射线OA,OB上的动点且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.图3解析(1)⑤(2分)(2)是.(注:若没写出判断结果,但后续证明正确,不扣分)(3分)理由如下:由作图可知,OC=OD,OF=OE.又∵∠COF=∠DOE,∴△COF≌△DOE.∴∠OFC =∠OED. (5分) 连接EF.∵OF =OE ,∴∠OFE =∠OEF. ∴∠PFE =∠PEF ,∴PF =PE. 又∵OP =OP ,OF =OE , ∴△FOP ≌△EOP. ∴∠FOP =∠EOP ,即射线OP 是∠AOB 的平分线. (8分)(3)2或2+√3. (10分)提示:连接OP.由(1)(2)可知,图形关于直线OP 对称,分情况讨论:①如图1,当点C 在线段OE 上时,连接EF ,过点C 作CG ⊥OB 于点G ,∵∠COB =60°,OE =OF =√3+1,∴△OEF 为等边三角形,∴∠OFE =60°,∵PE =PF ,∴∠EFP =12∠2=12×30°=15°,∴∠1=∠OFE -∠EFP =45°,设OG =x ,则CG =√3x ,GF =CG =√3x ,∴OG +GF =x +√3x =√3+1,∴x =1. ∴OC =2x =2;②如图2,当点C 在线段OE 的延长线上时,连接CD ,过点E 作EH ⊥OB 于点H ,同①可证∠1=45°,在Rt △EOH中,EH =OE ·sin 60°=√32(√3+1)=32+√32,OH =12OE =√32+12,在Rt △EHD中,HD =EH =32+√32,∴OD =OH +HD =2+√3,∴OC =2+√3.综上,线段OC 的长为2或2+√3.图1图2题干解读本题是以作已知角的平分线的不同方法为背景的几何综合题,小明和小军的作图过程中分别提供了相等的角和线段,可以依据三角形全等的判定和性质证明作图的正确性.在(3)中,点C,D分别为射线OA,OB上的动点,OE=OF且OE,OF为定长,需分点C,D分别在线段OE,OF上和点C,D分别在线段OE,OF的延长线上两种情况,再结合题中所提供的条件,构造等边三角形、直角三角形,通过计算可以求得线段OC的长.三年模拟A组基础题组一、选择题(每题3分,共9分)1.(2021南阳宛城一模,4)在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°答案C根据题意得,∠ACB=45°,∠D=60°,∠DCB=90°,则∠DCA=90°-45°=45°,所以∠α=∠D+∠DCA=60°+45°=105°.故选C.2.(2020信阳二模,8)如图,已知在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径作弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于12DE长为半径作弧,两弧交于点F,作射线AF交BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1B.2C.32D.52答案B由题意知AF平分∠BAC,过点G作GH⊥AC于点H,∵∠B=90°,∴GH=BG=1,∴S△ACG=12GH·AC=2.故选B.3.(2021商丘柘城一模,4)如图,△EFG的三个顶点E,G和F分别在平行线AB,CD上,FH平分∠EFG,交线段EG于点H,若∠AEF=36°,∠BEG=57°,则∠EHF的大小为()A.105°B.75°C.90°D.95°答案B∵∠AEF=36°,∠BEG=57°,∴∠FEH=180°-36°-57°=87°.∵AB∥CD,∴∠EFG=∠AEF=36°,∵FH平分∠EFG,∴∠EFH=12∠EFG=12×36°=18°,∴∠EHF=180°-∠FEH-∠EFH=180°-87°-18°=75°.故选B.思路分析本题主要考查三角形内角和定理的应用,角平分线的定义及平行线的性质,依据上述性质得出相关角的大小,由角的和差运算求出∠EHF的大小即可.二、填空题(每题3分,共6分)4.(2021信阳一模,12)一副直角三角板如图放置,AB∥EF,∠B=30°,∠F=45°,则求∠1=.答案75°解析∵AB∥EF,∠F=45°,∴∠BDF=∠F=45°,∴∠1=∠B+∠BDF=75°.5.(2020信阳一模,13)一个等腰三角形边长的数值是方程x2-6x+8=0的根,那么这个等腰三角形的周长为.答案10解析解方程x2-6x+8=0,得x1=2,x2=4,则等腰三角形的三边长分别为2,4,4.故其周长为10.三、解答题(共20分)6.(2021信阳一模,18改编)定义:三角形一个内角的平分线与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.如图,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E.解析 ∵BE 平分∠ABC ,CE 平分∠ACD , ∴∠EBD =12∠ABC ,∠ECD =12∠ACD , ∵∠ECD =∠E +∠EBD ,∴∠E =∠ECD -∠EBD =12(∠ACD -∠ABC )=12∠A =12α.7.(2021郑州三模,22改编)如图,两个等腰直角△ABC 和△CDE 中,∠ACB =∠DCE =90°. (1)观察猜想如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ; (2)探究证明把△CDE 绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由.解析 (1)AE =BD ;AE ⊥BD. (2)结论成立.理由如下:如图,延长AE 交BD 于点H ,交BC 于点O.在△ABC和△CDE中,AC=CB,CE=CD,∠ACB=∠ECD=90°,∴∠ACB-∠BCE=∠ECD-∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.思路分析本题考查几何变换、等腰直角三角形的性质及全等三角形的判定和性质.(1)根据条件证明△ACE≌△BCD即可.(2)结论不变.在图2中,延长AE交BD于点H,交BC于点O,证明△ACE≌△BCD,可以求得结论.8.(2020中原名校三模,22(1)(2))问题呈现:已知等边三角形ABC边BC的中点为点D,∠EDF=120°,∠EDF的两边分别交直线AB,AC于点E,F,现要探究线段BE,CF与等边三角形ABC的边长BC之间的数量关系.(1)特例研究:如图1,当点E,F分别在线段AB,AC上,且DE⊥AB,DF⊥AC时,请直接写出线段BE,CF与BC的数量关系:;(2)问题解决:如图2,当点E落在射线BM上,点F落在线段AC上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请通过证明探究出线段BE,CF与等边三角形ABC的边长BC之间的数量关系.解析(1)BE+CF=1BC.(3分)2(2)不成立.理由如下:如图,分别过点D作DG⊥AB于点G,DH⊥AC于点H,易证得△BDG≌△CDH,则BG=CH,DG=DH.∵∠A=60°,∠DGA=∠DHA=90°,∴∠GDH=120°,∵∠EDF=120°,∴∠FDH=∠EDG,则△DGE≌△DHF,∴EG=FH,∴CF-FH=CF-EG=CF-(BE+BG)=CF-BE-BG=CH,即CF-BE=2CH,在Rt△DCH中,CD=2CH,∴CF-BE=CD,即CF-BE=1BC.(8分)2思路分析(1)根据等边三角形的性质和直角三角形的性质可得出线段BE、CF和BC之间的关系.(2)过点D 作AB、AC的垂线,结合题中的条件构造全等三角形,依据全等的性质找出相等线段,判断三条线段的数量关系.B组提升题组一、选择题(每题3分,共6分)1.(2020驻马店二模,7)如图,在△ABC中,∠BAC=80°,以点B为圆心,以任意长度为半径画弧交BA,BC于点D,E,分别以点D,E为圆心,以大于1DE的长度为半径画弧,两弧交于点P,作射线BP;以点C为圆心,以任意长度为半径2画弧交AC,BC于点M,N,分别以点M,N为圆心,以大于1MN的长度为半径画弧,两弧交于点Q,作射线CQ.若BP与CQ2相交于点O,则∠BOC的度数是()A.100°B.110°C.120°D.130° 答案 D 由作图知BP ,CQ 分别平分∠ABC ,∠ACB , 则∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12(∠ABC +∠ACB ), ∴180°-∠BOC =12(180°-∠A ), ∴∠BOC =90°+12∠A =130°.故选D .2.(2021开封二模,10)如图,将△ABC 沿着过BC ,AB 的中点D ,E 所在的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,点D 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD ,BE 的中点D 1,E 1所在的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,点D 1到AC 的距离记为h 2,按上述方法不断操作下去……经过第n 次操作后得到点D n -1到AC 的距离记为h n ,若h 1=1,则h n 的值为 ( )A.2-12n -1B.2-12nC.1+12n -1D.1+12n答案 A 如图,过点B 作BG ⊥AC 于点G 交DE 于点F ,交D 1E 1于点M ,过点D 作DH ⊥AC 于点H ,∵D ,E 分别为BC ,BA 的中点,∴BD =DC ,DE ∥AC ,∴DE ⊥BF ,∴∠BFD =∠DHC =90°,∠BDF =∠C , ∴△BFD ≌△DHC ,∴BF =DH =FG , 即h 1=12BG =1,∴BG =2, 同理BM =12BF =12,即h 2=2-12, ∴h 3=2-122,…,h n =2-12n -1.故选A .一题多解 过点B 作BG ⊥AC 于点G ,交DE 于点F ,交D 1E 1于点M ,,∵D ,E 分别为BC ,AB 的中点,∴DE ∥AC ,DE =12AC ,∴BF BG =BD BC =12,∴BF =FG =12BG =1,∴BG =3,同理,BM =12BF =12,∴h 2=2-12,∴h 3=2-122,…,h n =2-12n -1.故选A .二、填空题(每题3分,共9分)3.(2021濮阳二模,14)如图,在△ABC 中,已知AB =4,AD ⊥BC ,垂足为D ,BD =2CD ,若E 是AD 的中点,则EC = .答案 2解析 取BD 的中点F ,连接EF , ∵E 是AD 的中点, ∴EF =12AB =2, ∵BD =2CD ,∴FD =CD , ∵AD ⊥BC ,∴EC =EF =2.4.(2020信阳二模,13)如图,在△ABC 中,∠BAC =90°,∠B =36°,AD 是BC 边上的中线,将△ACD 沿AD 折叠,使点C 落在点F 处,DF 交AB 于点E ,则∠DEB = .答案 108°解析 在Rt △ABC 中,∠BAC =90°,∴∠C =90°-∠B =54°.∵D 是BC 的中点,∴DA =DC ,∴∠DAC =∠C =54°,∴∠ADC =∠ADF =72°,∴∠EDB =180°-2×72°=36°,∴∠DEB =180°-∠B -∠EDB =180°-36°-36°=108°.5.(2019郑州一模,14)如图,已知△ABC ≌△DCE ≌△GEF ,三条对应边BC 、CE 、EF 在同一条直线上,连接BG ,分别交AC 、DC 、DE 于点P 、Q 、K ,其中S △PQC =3,则图中三个阴影部分的面积和为 .答案 39解析 ∵△ABC ≌△DCE ≌△GEF , ∴∠ACB =∠DEC =∠GFE ,BC =CE =EF. ∴AC ∥DE ∥GF.∴PC KE =12,PC GF =BC BF =13,∴KE =2PC ,GF =3PC. 又∵DK =DE -KE =3PC -2PC =PC , 易证△DQK ≌△CQP.设△DQK 的边DK 长为x ,DK 边上的高为h , 则12xh =3,整理得xh =6, ∴S △BPC =12x ·2h =xh =6.∴S 四边形CEKQ =12×3x ·2h -3=3xh -3=3×6-3=18-3=15,S △EFG =12×3x ·2h =3xh =18. ∴三个阴影部分的面积和为6+15+18=39.三、解答题(共25分)6.(2021许昌二模,18改编)如图,在△ABC 中,∠BAC =90°. (1)尺规作图,作出经过A ,B ,C 三点的☉O ;(不写作法,保留作图痕迹) (2)连接AO 并延长,交☉O 于点D ,连接DB ,DC. 求证:△BDC ≌△CAB.解析 (1)如图所示,☉O 即为所求.(2)证明:∵OA =OD ,OB =OC , ∴四边形ABDC 是平行四边形, ∴CD =AB ,BD =CA ,在△BDC 和△CAB 中{CD =BA ,BD =CA ,BC =CB ,∴△BDC ≌△CAB (SSS ).7.(2019开封一模,22(1)(2))(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形;(不写画法)(2)根据上述操作得到的经验完成探究活动:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF与DC的延长线相交于点F.试探究线段AB与AF,CF之间的等量关系,并证明你的结论.解析(1)如图①.(1分)(2)结论:AB=AF+CF.(2分)证明:如图②分别延长AE、DF交于点M,∵E为BC的中点,∴BE=CE,∵AB∥CD,∴∠BAE=∠M.在△ABE与△MCE中,{∠BAE=∠M,∠AEB=∠MEC, BE=CE,∴△ABE≌△MCE(AAS),∴AB=MC,∵∠BAE=∠EAF,∴∠EAF=∠M,∴AF=MF,∴AB=MC=MF+FC=AF+FC.(6分)8.(2021濮阳二模,23)(1)[问题背景]如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D是直线BC上的一点,将线段AD 绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;(2)[尝试应用]如图2,在(1)的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证FG=√2AE;(3)[拓展创新]如图3,A 是△BDC 内一点,∠ABC =∠ADB =45°,∠BAC =90°,BD =√3,直接写出△BDC 的面积为 .解析 (1)[问题背景]证明:如图1∵∠BAC =∠DAE =90°,∴∠DAB =∠EAC ,在△ABD 和△ACE 中{AD =AE ,∠DAB =∠EAC ,AB =AC ,∴△ABD ≌△ACE (SAS ).(2)[尝试应用]证明:如图2,过点D 作DK ⊥DC 交FB 的延长线于点K.∵DK ⊥CD ,BF ⊥AB ,∴∠BDK =∠ABK =90°,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠DBK =∠K =45°,∴DK =DB ,∵△ABD ≌△ACE ,∴∠ABD =∠ACE =135°,DB =EC =DK ,∴∠ECG =45°,∵BF ⊥AB ,CA ⊥AB ,∴AG ∥BF ,∴∠G =∠DFK.在△ECG 和△DKF 中{∠ECG =∠K ,∠G =∠DFK ,CE =KD ,∴△ECG ≌△DKF (AAS ),∴DF =EG ,∵DE =√2AE ,∴DF +EF =√2AE ,∴EG +EF =√2AE ,即FG =√2AE.(3)[拓展创新]32.提示:如图3中,过点A 作AE ⊥AD 交BD 于点E ,连接CE ,∵∠ADB =45°,∠DAE =90°,∴△ADE 与△ABC 都是等腰直角三角形,∠DEA =45°,同法可证△ABD ≌△ACE ,∴CE =BD =√3,∵∠AEC =∠ADB =45°,∴∠CED =∠AEC +∠DEA =90°,∴S △BDC =12·BD ·CE =12×√3×√3=32.思路分析 本题考查旋转变换,三角形全等的性质与判定及等腰直角三角形的性质.(1)根据条件,用“边角边”判定全等.(2)以DB 为边,点D 为直角顶点作辅助线构造等腰直角三角形,证明全等,将FG 的长转化为DE ,而DE =√2AE ,求得结论.(3)作辅助线构造“手拉手模型”的全等三角形,证出CE 即为△DBC 的边BD 上的高,即可求出面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)
(1)
(2)
(3)
(5)
6
(7)
(8)
(12)
(13)
(14)
(15)
(9)
(16) (17)
议一议 全等图形的特征
(1) 你能说出生活中全等图形的例子吗? (2) 观察下面两组图形,它们是不是全等图形?
形状
(1)
相同
大小 相同
(2)
(3) 如果两个图形全等,它们的形状大小一定都相同吗?
全等图形的形状和大小都相同
A
D
B
CE
F
能够完全重合的两个三角形叫做全等三角形。
ADBຫໍສະໝຸດ CEF对应顶点:点A和点D,点B和点E,点C和点F,
对应边:AB和 DE,AC 和 DF,BC 和 EF 对应角:∠A 和 ∠D,∠B和∠E,∠C和∠F
全等三角形的对应边相等,对应角相等。
全等三角形的性质: 全等三角形的对应边相等,对应角相等。
∴ ∠C’ =∠ C =250 C
B’ C’ =BC=6cm
C’
A’ C’ =AC=4cm
A B B’
A’
(第7题)
8.如图,一栅栏顶部是由全等的三角形组成 的,其中AC=0.2m ,BC=2AC,求BD的长.
A
B
C
D
(第8题 )
解:根据题意得 BD=7BC=7×2AC=7×2×0.2
=2.8(m)
4.2图形的全等
全等图形的定义
这些图形中,有些是 完全一样的,如果把 它们叠在一起,它们 就能重合
你能分别从图中找 出这样的图形吗?
两个能够完全重合的图形称为全等图形
全等图形的判断
判定两个图形是否全等的基本方法是把他们重叠起来, 看看他们是否能够互相重合,但在不少情况下, 无须把两个 图形重叠在一起, 就知他们是否全等. 图中共有多少对全等图形, 他们分别是
CB=___E__D____,∠B=___∠_D_____, ∠BAC=__∠_D_A__E___,∠BAD=__∠_C__A_E___.
5.如图 , △ABC≌△AEC,∠B =300,∠ACB=850, 求出△AEC各内角的度数.
解:在△ABC中, ∵∠B=30°, ∠ACB=85°(已知) ∴∠BAC=180o-∠B-∠ACB =180o-30o-85o=65o (三角形内角和等于180°) ∵△ABC≌△AEC(已知) ∴∠EAC=∠BAC=65°,∠ACE=∠ACB=85°,∠E=∠B=30° (全等三角形对应角相等).
2.“全等”用符号“≌ ”来表示, 作“ 全等于 ”
3.全等三角形的 对应边 相等、 ___对__应__角___相等.
4.书写全等式时要求把 对应 字母 放在 对应 的位置上.
1.判断题 (1).如图,两个三角形全等,则∠A=∠E.(∨ )
(2).若△ABC ≌△A’B’C’,则AB=A’B’. ( ∨ )
角 ∠B= ∠E 角 ∠ACB= ∠F
2.请指出图△ABC≌△ADE 对应边和对应角
边
E
D
边
2
A
边
1
角
B
C
角
角
填一填
AB= AD AC= AE BC= DE
∠B1=AC∠=∠2 DAE
∠B= ∠D ∠C= ∠E
A
D
“全等”符号:
“≌”
B
CE
F
如上图:△ABC 与△DEF全等 则记作△ABC≌△DEF
通过这节课的学习,你对 全等图形有哪些认识?
1 能够完全重合的图形称为全等图形. 2 全等图形的形状和大小都相同. 3 能够完全重合的两个三角形称为 全等三角形. 4 全等三角形的对应边和对应角相等.
(3).周长相等的三角形是全等三角形. ( × )
(4).全等三角形面积相等.
( ∨)
(5).面积相等的两个三角形是全等三角形.×( )
2.若△ABD≌△ACD,对应边是
,
对应角是
.
A
AB和AC,AD和AD,BD和CD
∠ABD和∠ ACD,
B
∠ ADB和∠ ADC,
∠ BAD和∠ CAD
D
C
A
D
通常把对应的 顶点字母写在
对应位置上
仔细观察,再用全等符号表示下列两组全等三角.
全等三角形对应边的高,中线相等。
全等三角形的对应线段(包括对应角的平分线) 都相等。
A
M
S
C
O B
D
△AOB≌ △DOC
△OAB≌ △ODC
O
N
T
△MON≌ △SOT
1. 能够重合的两个三角形 叫做 全等三角形.
互相重合的顶点叫做对应顶点. 互相重合的边叫做对应边 互相重合的角叫做对应角.
C
E
B
F
3.已知:△ACE≌ △DEB,则:
对应角有:__________________________
对应边有:_______________________________
4.如图,将△ABC绕顶点A旋转一定角度得到 △ADE,那么△ABC____≌_____△ADE,
AB=___A__D____,AC=____A_E____,
6如图,△AOD≌△BOC,写出其中相等的角.
D
C
解: ∵△AOD≌△BOC
∴∠A=∠B
∠D=∠C
A
∠AOD=∠BOC
O B
(第6题)
7.如图,△ABC ≌△ A’ B’ C’, ∠C=250, BC=6cm, AC=4cm, 你能得出△ A’ B’ C’ 中哪些 角的大小、哪些边的长度?
解:
∵△ABC≌△ A’ B’ C’
A
D
B
CE
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等)
1.请指出图中∆ABC≌ ∆DEF对应边和对应角
A
填一填
B D
F
C 边 AC= DF
边 AB= DE 边 BC= EF
E 角 ∠A= ∠D